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ABSTRACT

In this study, we propose parameter-varying neural ordinary differential equations
(NODEs) where the evolution of model parameters is represented by partition-
of-unity networks (POUNets), a mixture of experts architecture. The proposed
variant of NODEs, synthesized with POUNets, learn a meshfree partition of space
and represent the evolution of ODE parameters using sets of polynomials associ-
ated to each partition. We demonstrate the effectiveness of the proposed method
for three important tasks: data-driven dynamics modeling of (1) hybrid systems,
(2) switching linear dynamical systems, and (3) latent dynamics for dynamical
systems with varying external forcing.

1 INTRODUCTION

1.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS AND THEIR VARIANTS

Neural ordinary differential equations (NODEs) (Chen et al., 2018; Weinan, 2017; Haber &
Ruthotto, 2017; Lu et al., 2018) are a class of continuous-depth neural network architectures that
learn the dynamics of interest as a form of systems of ODEs:

dh(s)

ds
= f(h(s); Θ),

where h denotes a hidden state, s represents a continuous depth, and the velocity function f is
parameterized by a feed-forward neural network with learnable model parameters Θ.

As pointed out in (Massaroli et al., 2020), the original NODE formulation (Chen et al., 2018), is
limited to incorporate the depth variable s into dynamics as it is, e.g., by concatenating s and h,
which are then fed to f(h, s; Θ), rather than constructing the map s 7→ Θ(s). Recent studies inves-
tigate strategies to extend NODEs to be depth-variant. ANODEV2 (Zhang et al., 2019) proposes a
hypernetwork-type approach which builds a coupled system of NODEs, where one NODE defines
an evolution of state variables, while another NODE defines an evolution of model parameters. In
(Massaroli et al., 2020), stacked NODEs and Galerkin NODEs (GalNODEs) have been proposed
where the evolution of model parameters are modeled as piecewise constants and a set of orthogonal
basis, respectively. The idea of spectrally modeling model parameters has been further extended to
enable basis transformation leading to stateful layers and compressible model parameters (Queiruga
et al., 2021).

In this work, following the work by (Massaroli et al., 2020) which has proposed two depth-variant
NODEs: stacked NODEs (i.e., a piecewise constant representation of model parameters, e.g., Fig-
ure 1a) and Galerkin NODEs (i.e., spectral representation of model parameters, e.g., Figure 1b).
Inspired by these two variants, we propose an a combination of stacked and Galerkin NODEs lead-
ing to spectral-element-like (Patera, 1984) or hp-finite-element-like (Solin et al., 2003) methods,
which we denote by Partition-of-Unity NODEs (POUNODEs, e.g., Figure 1c). We decompose the
domain of model parameters (e.g., depth) into disjoint learnable partitions, with model parameters
approximated on each as polynomials.

Our main contributions include 1) development of an hp-element-like method for representing the
evolution of model parameters of NODEs and 2) to showcase the effectiveness of POUNODEs
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(a) Stacked NODE (b) Galerkin NODE (c) POUNODE

Figure 1: An illustrative example depicting evolution of model parameters for Stacked NODE,
Galerkin NODE, and the proposed POUNODE. Models are trained to perform the binary classifica-
tion task of two concentric circles.

with three different important applications: learning hybrid systems, switching linear dynamics, and
latent-dynamics modeling with varying external factor.

2 POUNETS INTO NODES

We begin by introducing partition-of-unity networks (POUNets) (Lee et al., 2021b), which a partic-
ular type of deep neural network developed for approximating functions with exponential conver-
gence. POUNets automatically learn partitions of the domain and simultaneously compute the co-
efficients of polynomials associated in each partition. Then we introduce a method to use POUNets
for representing the evolution of model parameters for NODEs.

2.1 PARTITION-OF-UNITY NETWORKS

Several recent works (He et al., 2018; Yarotsky, 2017; 2018; Opschoor et al., 2019; Daubechies
et al., 2019) on approximation theory of deep neural networks (DNNs) investigate the role of width
and depth to the performance of DNNs and have theoretically proved the existence of model pa-
rameters of DNNs that emulate algebraic operations, a partition of unity (POU), and polynomials
to exponential accuracy in the depth of the network. That is, in theory, with a sufficiently deep
architecture, DNNs should be able to learn a spectrally convergent hp-element space by construct-
ing a POU to localize polynomial approximation without a hand-tailored mesh. As has seen in
(Fokina & Oseledets, 2019; Adcock & Dexter, 2020; Lee et al., 2021b), however, such convergent
behaviours in practice are not realized due to many reasons (e.g., gradient-descent-based training).
In (Lee et al., 2021b), a novel neural network architecture, POUNets, has been proposed, which
explicitly incorporates a POU and polynomial elements into a neural network architecture, leading
to exponentially-convergent DNNs.
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(b) Quadratic wave

Figure 2: Learned partitions (left) and
predictions (cian dashed) depicted with
the ground truth target function (black
solid).

Mathematically, a POU can be defined as Φ(x) =
{ϕi(x)}

npart
i=1 satisfying

∑
i ϕi(x) = 1 and ϕi ≤ 0 for all

x. Then POUNets can be represented as

yPOU(x) =

npart∑
i=1

ϕi(x;π)

dim(V )∑
j=1

αi,jϕj(x),

where V = span({ψj}), typically taken as the
space of polynomials of order m, and Φ(x;π) =
[ϕ1(x;π), . . . , ϕnpart(x;π)] is parameterized by a neural
network with the model parameters π. To ensure the prop-
erties of the partition-of-unity, the output layer of the neu-
ral network Φ is designed to produce positive and normal-
ized output (i.e., ϕi(x;π) ≥ 0 and

∑
i ϕi(x;π) = 1).

Figure 2 depicts an example of regressing a quadratic
wave with a POUNet, where standard MLPs exhibit poor
performance: the left panel shows the learned partitions and the right panel shows the ground truth
target function (solid black) and the prediction (dashed cian). In each partition, a set of monomials
with the maximal degree 2 is fitted optimally by solving local linear least-squares problems.
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2.2 PARTITION-OF-UNITY-BASED NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Now, we introduce the proposed partition-of-unity-based neural ordinary differential equations,
where the model parameters are represented as a POUNet: Θ(s) ∈ RnΘ :

Θ(s;α, π) =

npart∑
i=1

ϕi(s;π)pi(s) =

npart∑
i=1

ϕi(s;π)

npoly∑
j=1

αi,jψj(s), (1)

where s denotes a set of variables whose domains are expected to have a set of partitions (e.g.,
s can be a depth variable in depth-continuous neural network architectures), ϕi(s;π) ∈ R de-
notes a partition of unity network, parameterized by π, ψj(s) ∈ R denotes a polynomial basis,
and α·,j ∈ RnΘ denote the polynomial coefficients. Thus, collectively, there is a set of parameters
α = (α1, . . . , αnpart) with αi = [αi,1 · · · , αi,npoly ] ∈ Rnθ×npoly . In the following, we present a couple
example cases of the types of the variables s.

Temporally varying dynamics / depth variance As in the typical settings of NODEs, when an
MLP is considered to parameterize the velocity function, f(·; Θ), the model parameters can be rep-
resented as a set of constant-valued variables, Θ = {(Wℓ, bℓ)}Lℓ=1, where Wℓ and bℓ denote weights
and biases of the ℓ-th layer. As opposed to the depth-invariant NODE parameters Θ, POUNODEs
represent depth-variant NODEs (or non-autonomous dynamical systems) by setting the model pa-
rameters as

Θ(t) = {(Wℓ(t), bℓ(t))}Lℓ=1,

where t denotes the time variable or the depth of the neural network and represent, and by represent-
ing Θ(t) as a POUNet as in Eq. (1) with s = t.

Spatially varying dynamics Another example dynamical systems that can be represented by
POUNODEs is a class of dynamical systems whose dynamics modes are defined differently on
different spatial regions. In this case, the model parameters can be set as spatially-varying ones:

Θ(x) = {(Wℓ(x), bℓ(x))}Lℓ=1.

and can be represented as a POUNet as in Eq. (1) with s = x.

Remark 2.1. Although not numerically tested in this study, the idea of representing the evolution
of model parameters via POUNets can be applied to different neural network architectures, e.g.,
POU-Recurrent Neural Networks (POU-RNNs).

3 USE CASES

This section exhibits example use cases where the benefits of using POUNODE can be pronounced.
All implementations are based on PYTORCH (Paszke et al., 2019) and the TORCHDIFFEQ library
(Chen et al., 2018) for the NODEs capability.

For all following experiments, we consider a POUNet, Φ = {ϕi}
npart
i=1 , based on a radial basis function

(RBF) network (Broomhead & Lowe, 1988; Billings & Zheng, 1995); for each partition, there is an
associated RBF layer, defined by its center and shape parameter, and then the output of the RBF
layers is normalized to satisfy the partition-of-unity property (refer to Appendix for more details).

3.1 SYSTEM IDENTIFICATION OF A HYBRID SYSTEM

As a first set of use cases, we apply POUNODEs for data-driven dynamics modeling. In particular,
we aim to learn a dynamics model for a hybrid system, where the different dynamics models are
mixed in a single system: a system consisting of multiple smooth dynamical flows (SDFs), each
of which is interrupted by sudden changes (e.g., jump discontinuities or distributional shifts) (Van
Der Schaft & Schumacher, 2000).

Following (Shi & Morris, 2021), we are interested in modeling a hybrid system, where external
factors exist and results in sudden changes in the dynamics modes, which makes the applications of
traditional dynamics modeling approach challenging.
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Again, similar to (Shi & Morris, 2021), as a benchmark, we consider the Lotka–Volterra (LV) equa-
tion:

ẋ = a(t)x− b(t)xy,

ẏ = d(t)xy − c(t)y,

where (a(t), b(t), c(t), d(t)) are time-varying ODE parameters that define the dynamics. As a sys-
tem identification benchmark problem, we generate a trajectory consisting of four different dynamics
(SDFs) as depicted in Figure 3. The ODE parameters are chosen to be piecewise constant and the
values of the parameters are listed in Table 1. There are three change points at 35.85, 57.34, and
88.07 seconds, which are non-uniformly distributed over time.

Figure 3: A trajectory of four different dynamics generated from solving the LV equation.

Now, we identify the system of the given trajectory using the proposed POUNODE. For the param-
eterization of the velocity function, we consider a dictionary-based approach:

fΘ(t)(x) =
(
Φ(x)TΞ(t)

)T
, (2)

where Φ(x) ∈ Rp×1 denotes a vector of dictionaries and Ξ(t) ∈ Rp×n denotes a trainable time-
dependent coefficients (i.e., Θ(t) = Ξ(t)). For the following experiments, we choose a set of
polynomials as our dictionaries, i.e., Φ(x) = [1, x, x2, xy, y, y2]T and p = 6. The coefficients Θ(t)
are modeled as a set of piecewise constant model parameters using POUNets such that

Θ(t;α, π) =

npart∑
i=1

ϕi(t;π) (αi,1ψ1(t)) =

npart∑
i=1

αiϕi(t;π).

That is, there is a set of constant coefficients associated with each partition, αi ∈ Rp×n, i =
1, . . . , npart. Note that the above equation is a special case of the expression in Eq. (1) with npoly = 1.

t (seconds) [0, 35.85] [35.86, 57.34] [57.35,88.07] [88.08,113.68]

Ground truth ẋ = 0.3543x− 0.2867xy ẋ = 0.4301x− 0.2731xy ẋ = 0.2500xy − 0.2966y ẋ = 0.3256x− 0.3364xy
ẏ = 0.3492xy − 0.3011y ẏ = 0.3847xy − 0.4695y ẏ = 0.3548xy − 0.2568y ẏ = 0.4213xy − 0.4176y

POUNODE ẋ = 0.3604x− 0.2895xy ẋ = 0.4334x− 0.2754xy ẋ = 0.2500x− 0.2950xy ẋ = 0.3285x− 0.3384xy
(npart = 4) ẏ = 0.3447xy − 0.2950y ẏ = 0.3822xy − 0.4612y ẏ = 0.3532xy − 0.2565y ẏ = 0.4134xy − 0.4110y

POUNODE ẋ = 0.3530x− 0.2856xy ẋ = 0.4353x− 0.2712xy ẋ = 0.2508x− 0.2958xy ẋ = 0.3225x− 0.3342xy
(npart = 8) ẏ = 0.3512xy − 0.3007y ẏ = 0.3829xy − 0.4676y ẏ = 0.3561xy − 0.2576y ẏ = 0.4213xy − 0.4154y

Table 1: A hybrid Lotka–Volterra system consisting of four different dynamics. The coefficients for
each dynamics of the ground truth system, and learned systems are listed.

For training, we use the training algorithm proposed in the work of sparse nonlinear dynamics
identification method (Lee et al., 2021a). The essence is that a sparsity promoting L1 penalty (or
L1 weight decay (LASSO) (Tibshirani, 1996)), is applied to the weight α = [α1, . . . , αnpart ] and an
element of the weight whose magnitude is smaller than a certain threshold is pruned over the course
of gradient-based training. We leave the details in Appendix. As we use the zero initialization (i.e.,
all elements of αi are set to zero), we do not repeat the same experiments.
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Table 1 reports the coefficients for the ground-truth systems (the second row) and the coefficients
identified by using the proposed methods: POUNODE (npart = 4), and POUNODE (npart = 8).
POUNODE (npart = N) indicates that the model starts withN partitions; some of them are expected
to vanish as training proceeds, e.g., the right panel in Figure 4. Figure 4 also depicts the trajectory
of the learned dynamics (dashed cyan color on two left panels) that is almost overlapped with the
ground-truth trajectory and the learned partitions (on the right panel).

Figure 4: A trajectory (dashed cyan color on two left panels) generated by solving learned dynamics
model with eight beginning partitions (npart = 8) and the learned partitions (right).

Figure 5: Relative errors in predictions

Although the main objective of the system identification
is to discover an interpretable model (via imposing strong
inductive biases such as the choice of dictionaries), we
can also see how well the model fits to the data. As
a baseline for comparison, we test RNN-LSTM, RNN-
GRU, hyperLSTM (Ha et al., 2017), NODE (npart = 1,
npoly = 1), StackedNODE, GalNODE (npart = 1, npoly =
3), and ANODEv2(Gholami et al., 2019)1. Here, we em-
ploy the same dictionary-based parameterization (Eq. (2))
for NODE, StackedNODE and GalNODE as well as the
“black-box” MLP parameterization for NODE and GalN-
ODE. For MLP, we consider 4 layers with 25 neurons in
each layer. Figure 5 shows the time-instantaneous rela-
tive error of the trajectory of x(t), i.e., e(t) = |x(t)−x̃(t)|

|x(t)| , where x̃(t) denotes the predictions and | · |
denotes an absolute value. As Figure 5 shows POUNODE outperforms other baseline approaches
in terms of accuracy and have comparable accuracy with Stacked NODE (dictionary-based, 8 parti-
tions) and GalNODE (mlp): the relative errors measured in L2-norm are 0.0160, 0.0615, and 0.0264
for POUNODE, StackedNODE and GalNODE, respectively. StackedNODE, however, is not ca-
pable of pinpointing the change points, and GalNODE requires a much larger number of model
parameters (×50 more parameters, compared to POUNODE).

3.2 SWITCHING LINEAR DYNAMICAL SYSTEMS

As a next set of use cases, we consider switching linear dynamical systems (SLDS) consisting of
multiple sequences of simple dynamical modes that change the dynamics mode based on a dis-
crete switch (Ackerson & Fu, 1970; Chang & Athans, 1978; Ghahramani & Hinton; Fox et al.,
2008; Linderman et al., 2016). We are interested in data-driven dynamics modeling of SLDS in the
continuous-time setting as has considered in (Chen et al., 2020), taking the ground-truth dynamics
as described in Table 2. At the boundary of each spatial subdomain (as depicted in Figure 6a),
the dynamics changes instantaneously and, thus, the resulting dynamics consists of sequences of
different dynamics and can exhibit discontinuities at the moment of switching.

This benchmark problem considered is an SLDS example of a particle moving around a fan-shaped
synthetic race track as in (Chen et al., 2020), which has been originally adapted from (Linderman
et al., 2016). Figure 6 (left) depicts an example of the ground-truth trajectory and the vector field
and the analytical expression of the ODEs can be found in Table 2.

1The results of RNN-GRU and ANODEv2 were not reported as the both models did not seem to be trained
well under the experimental configuration used for training the proposed method and other baselines.
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(a) Ground-truth (b) Initial partitions (c) POUNODE (d) Trajectories over time

Figure 6: A ground-truth trajectory with the ground-truth vector field (left), a computed trajectory
computed from the learned vector field (right). Different colors indicate the different partitions.

Coordinates (x, y) x < 2, y < 0 x < 2, y ≥ 0 x ≥ 2

Ground truth ẋ = 1 ẋ = −1 ẋ = −y
ẏ = −1 ẏ = −1 ẏ = x+ 2

Partitions Top-left (green) partition Bottom-left (red) partition Right (pink) partition

POUNODE ẋ = 0.9980 ẋ = −1.0033 ẋ = −1.0000y
ẏ = −1.0000 ẏ = −0.9965 ẏ = 0.9977x+ 1.9968

Table 2: A switching linear dynamical system: The ODEs of each dynamics of the ground truth
system, and learned systems are listed.

Our goal is to utilize POUNODE to model an SLDS by treating SLDS parameters as parameters that
are dependent on the spatial coordinates x. That is, we consider a time-continuous model

dx

dt
= fΘ(x)(x) = C(x)x+ d(x),

where C(x) and d(x) are model parameters, Θ(x) = [C(x),d(x)] ∈ R2×3, that are piecewise
constant on each partition:

Θ(x;α, π) =

npart∑
i=1

αiϕi(x;π),

where αi ∈ R2×3 denotes the i-th coefficients defined on the i-th partition, ϕi. Our intention is to
learn the three disjoint spatial regions as disjoint partitions and the associated piece-wise constant
coefficients to correctly identify the vector field.

For training, we again use the same algorithm, proposed in (Lee et al., 2021a), which we summarize
in Appendix. For the system identification task, we use a single trajectory to train the model.

Figures 6b–6d show the initial 3 × 3 partitions (Figure 6b), the learned partitions and the trajec-
tory produced by solving the learned dynamics model (Figure 6c), and the trajectories of each state
variable (Figure 6d). Table 2 reports the identified systems in each region. As reported in Fig-
ures 6b–6d and Table 2, POUNODE successfully identify the benchmark SLDS with the errors in
the third/fourth most significant digits.

Figure 7 reports the results of learning dynamics using multiple trajectories and applying the learned
dynamics in the predictive setting. For this experiments, we have generated 80 training, 10 valida-
tion, and 10 test trajectories with varying initial conditions. Figures 7b–7d depict the ground-truth
trajectories (solid black) and the trajectories computed from the learned dynamics model (dashed
cyan). Figure 7b shows that there are four remaining partitions, where the learned coefficients are
as follows:

(purple partition) (yellow partition) (gray partition) (brown partition)
ẋ = 0.9992, ẋ = −0.9997, ẋ = −0.9995y, ẋ = −0.9985y,
ẏ = −0.9982, ẏ = −1.0010, ẏ = 0.9966x+ 2.0034, ẏ = 0.9962x+ 2.0217.

Compared to the approach where the method learns a differential event function (Chen et al., 2020),
the proposed approach directly learns the vector fields that are differently defined in each spatial
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(a) Initial partitions (b) POUNODE (c) Test trajectory #1 (d) Test trajectory #2

Figure 7: Ground-truth trajectories (solid black) and trajectories computed from the learned vector
field (dashed cyan) are depicted. Different colors in background indicate the different partitions:
initial partitions (Figure 7a) and learned partitions (Figure 7b).

domain and, thus, does not require to specify in advance how many events of switching dynamics
will happen in the simulation run.

3.3 LATENT DYNAMICS MODELING (REDUCED-ORDER MODELING)

The next use case is a latent-dynamics modeling in the context of reduced-order modeling (ROM), a
computational framework that is widely investigated in the field of computational science and engi-
neering (Fulton et al., 2019; Lee & Carlberg, 2020; 2021). The main goal of developing ROMs is to
provide a means to perform rapid simulations of complex physical phenomena (typically described
in partial differential equations) to support time-critical applications such as control.

As elaborated in (Lee & Carlberg, 2021), a latent-dynamics modeling requires two main compo-
nents: 1) an embedding, i.e., a nonlinear mapping between high-dimensional dynamical-system
states and low-dimensional latent states, and (2) a dynamics model, i.e., the time evolution model
of the latent states. For learning an embedding, nearly all traditional numerical methods seek a lin-
ear embedding, which is typically defined by principal component analysis, or “proper orthogonal
decomposition” (POD) (Holmes et al., 2012), performed on measurements of the high-dimensional
states. Recent approaches, on the other hand, explore the use of deep neural networks, (autoencoders
(Hinton & Salakhutdinov, 2006), in particular), to build a nonlinear embedding (Morton et al., 2018;
Wiewel et al., 2019; Fulton et al., 2019; Lee & Carlberg, 2020; 2021). After learning the embedding,
a (nonlinear) latent-dynamics model is constructed, representatively, via long short-term memory
(Hochreiter & Schmidhuber, 1997), Koopman operators (Li et al., 2019; Azencot et al., 2020), and
NODEs (Chen et al., 2018; Lee & Parish, 2020).

Figure 8: A latent-dynamics model

In the following experiment, we choose a linear embed-
ding, defined by a POD basis matrix, φ ∈ RN×p, where
N and p denote the dimensions of the high dimensional
space and the latent space. The encoding and the de-
coding are defined as h = φx and x = φTh, where
x ∈ RN and h ∈ Rp. Given the linear encoder and
the decoder, we learn the latent dynamics with the pro-
posed POUNODE. As Figure 8 illustrates that an initial
high-dimensional state is encoded into the latent initial
state, future latent states are computed via the forward
pass of POUNODE, and the high-dimensional approxi-
mate states are computed via the decoder.

As a benchmark problem, we consider 1-dimensional inviscid Burgers’ equation with a parameter-
ized forcing term; setting different values to the parameter change the dynamics. We generate a
35-seconds-long trajectory that has two change points at t = [13.4, 22.1] seconds, where the value
of the forcing parameter changes. We test the latent-dynamics modeling in a reconstructive set-
ting with a single trajectory and we set the original data dimension to be N = 256 and the latent
dimension to be p = 3.
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The velocity function is parameterized as an MLP with 2 hidden layers, 25 neurons in each layer, and
the hyperbolic Tangent nonlinearity such that f = W (3)σ(W (2)σ(W (1)h + b(1)) + b(2)) + b(3),
where the weights and the biases are function of time Θ(t) = {(W (ℓ)(t), b(ℓ)(t)}3ℓ=1, which are
modeled as a POUNet (Eq. (1)).

Table 3: Performance

Models Accuracy
RNN-LSTM 0.4367 ± 0.08620
RNN-GRU 0.3035 ± 0.06128

HyperLSTM (Ha et al., 2017) 0.2244 ± 0.06812
NODE (npart = 1, npoly = 1) 0.2981 ± 0.00275

ANODEv2 (Gholami et al., 2019) 0.3589 ± 0.08057
GalNODE (npart = 1, npoly = 3) 0.4783 ± 0.15414
StackedNODE (npart = 6, fixed) 0.3659 ± 0.00472

POUNODE (npart = 3, npoly = 1) 0.1147 ± 0.00072
POUNODE (npart = 6, npoly = 1) 0.0731 ± 0.00286
POUNODE (npart = 9, npoly = 1) 0.0730 ± 0.00057

Table 3 reports relative errors in the L2-norm,
∥X−X̃∥F

∥X∥F
, where X, X̃ ∈ RN×nseq denote the

ground-truth solution measurements and the pre-
dicted solutions. POUNODE with npart = 1 and
npoly is equivalent to NODE and POUNODE with
npart = 1 and npoly = 3 is conceptually same
as the GalNODE. We also observed that setting
npart ≥ 6 does not improve the performance signif-
icantly. As baselines of comparisons, we assess the
performance of RNN-LSTM, RNN-GRU, HyperL-
STM (Ha et al., 2017), ANODEv2 (Gholami et al.,
2019), and Stacked NDOEs (with 6 fixed partitions),
of which results are reported in Table 3. For each
model, we repeat perform 5 runs of experiments with
different random seeds. The details of the neural network architecture and hyperparameter choices
are in Appendix.

Figure 9 illustrates the ground truth change points (the black dashed vertical lines), where in between
the forcing term remain the same (the regions highlighted with different colors), and the learned
partitions. The partitions are learned to have disjoint sections that do not cross over the change
points, and some of the unnecessary partitions are eliminated. Figure 10 depicts the ground-truth
solution snapshots (solid blue) and the approximated solution snapshots (dashed red) for varying
latent dynamics models with npart = {1, 3, 9}. The approximate solutions are smooth as they are
represented as linear combinations of three principal basis (φ ∈ RN×p with p = 3), however the
approximate solutions that are generated with the latent dynamics models (npart ≥ 3) shows that
they can match the shock locations (i.e., a place of the discontinuity in each snapshot).

(a) npart = 3 (b) npart = 6 (c) npart = 9

Figure 9: Learned partitions for the latent-dynamics models. The subcaption, npart = k, indicates
the number of the beginning partitions.

4 DISCUSSION

4.1 LIMITATIONS AND FUTURE DIRECTIONS

Minibatching Minibatching trajectories with different change points requires multiple POUNets,
where each POUNet needs to be a realization of an input-data dependent POUNet, i.e.,
Θ(s,x(input);α, π), where x(input) denotes the input data. An approach similar to data-controlled
NODEs proposed in (Massaroli et al., 2020) can be extended to be equipped with POUNets such
that dh(t)

dt = f(h(t),x(input); Θ(s,x(input))).

Predictive tasks As shown in Sections 3.1 and 3.3, the proposed POUNODEs has demonstrated
their effectiveness for identifying or building a surrogate model for a hybrid system. As demon-
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(a) npart = 1 (b) npart = 3 (c) npart = 9

Figure 10: The ground-truth solution snapshots (solid blue) and the approximated solution snapshots
(dashed red) for varying latent dynamics models with npart = {1, 3, 9}.

strated in (Shi & Morris, 2021), the proposed models can be used for extrapolation in a somewhat
limited scenario, where the dynamical mode remain unchanged. To be useful in the extrapolation
settings, where the future dynamics is under temporal drift, alternative approaches that learn to pro-
duce future model parameters based on past sets of model parameters (e.g., hypernetwork-based
approaches (Ha et al., 2017)) or that exploit hierarchical structures of time-series for forecasting
(e.g., N-BEATS (Oreshkin et al., 2019)).

Fast optimizer In the original work of POUNets (Lee et al., 2021b), a fast optimizer, which alter-
nates between gradient descent updates for updating partition parameters and least-squares solves
for computing optimal polynomial coefficients, has been proposed for solving polynomial regression
problems and has demonstrated the faster convergence. Thus, as opposed to the gradient-descent-
based optimizer used in this work, which updates all model parameters simultaneously, developing
an optimizer tailored to POUNODE would allow faster and more accurate training.

POUNODEs as general NN architectures As in previous work (Zhang et al., 2019; Massaroli
et al., 2020), the depth-variant neural ODEs have demonstrated increased performance in other
downstream tasks, e.g., image classification. We have tested POUNODEs, where convolutional
kernels are spectrally represented, for image classification with CIFAR-10 by using the same setting
considered in (Dupont et al., 2019; Massaroli et al., 2020) and observe only marginal improvements
(1∼2% increase in the test accuracy, but with the increase in the number of function evaluations).
We expect that the benefits of using POUNODEs can be more pronounced in more complex set-
tings, e.g., replacing multiple ResBlocks in ResNet-151 (He et al., 2016) with a small number of
POUNODE-Blocks, and plan to further investigate the performance of POUNODEs in those set-
tings.

5 CONCLUSION

In this study, we have introduced a new variant of NODEs (POUNODEs) with evolving model
parameters, where the evolution is modeled by using partition-of-unity networks. We have demon-
strated the effective of the proposed POUNODEs with three important case studies: learning hybrid
dynamical systems, switching linear dynamics, and latent dynamics modeling with varying external
factors. In those use-cases, we have demonstrated that the POUNODEs are very effective and outper-
form the baselines including the previous depth-variant NODEs and hypernetwork-based LSTMs.

6 REPRODUCIBILITY STATEMENT

The code will be publicly released upon acceptance and the hyperparameters to reproduce the results
shown in the manuscript will be provided.
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A TRAINING ALGORITHMS

For the system identification, where the dictionary-based parameterization of the right-hand side of
ODEs is employed (in Sections 3.1–3.2), we use the neural ODE-based sparse nonlinear dynamics
identification method (i.e., nerual SINDy) developed in (Lee et al., 2021a).

During the training, the model takes the forward pass by solving initial value problems as in neu-
ral ODEs. Then, as a training objective, the L1-distance between the data and the prediction is
minimized. In addition, to promote the sparsity of the coefficients matrix Ξ, the elements of Ξ is
penalized with the L1-penalty:

L =
1

nbnseq

nb∑
j=1

nseq∑
i=1

∣∣∣x(j)
i − x̃

(j)
i

∣∣∣+ λ∥Ξ∥1,

where nb and nseq denote the size of a minibatch and the length of sequences in the minibatch, x
and x̃ denote the data and the prediction, and λ is the penalty weight, which is set as 10−4.

In addition, over the course of training, neural SINDy prunes the coefficients based on their absolute
magnitude with a certain threshold, τ :

[Ξ]kl = 0 if |[Ξ]kl| < τ.

We set τ = 10−6 for all experiments. Pruning is applied to learned Ξ every feeding 100 minibatches.
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B RADIAL-BASIS-FUNCTION-BASED POUNETS

For all experiments, we use the simple RBF-based POUNets as follows (in a one-dimension case):

ϕi(x) =
exp

(
− |x−c(i)|

b(i)

)
∑

k exp
(
− |x−c(k)|

b(k)

) ,
where {(c(i), b(i)}npart

i=1 is a set of learnable parameters. Here, c(i) and b(i) denote the center and the
bandwidth of the RBF, respectively.

The centers are initialized to be on a uniform grid of the spatial domain.

C MODEL ARCHITECTURES AND HYPERPARAMETERS

System identification of a hybrid system experiments

• Model architectures
– (Dictionary-based) NODE, StackedNODE, GalNODE, POUNODE: a single layer that

linearly combines the output of the dictionaries Φ(x) = [1, x, x2, xy, y, y2]

– (MLP-based) NODE, GalNODE : 4 layers with 25 neurons and Tanh activation
– LSTM: 4 stacked LSTM cells with 25 neurons for hidden and cell states
– hyperLSTM: 4 stacked LSTM and hyperLSTM cells with 25 neurons for hidden, cell

states and 25 neurons for hyper and embedding units
• Hyperparameters

– Learning rate: 0.01
– Max epoch: 3000
– Batch size: 1 (50 for hyperLSTM)
– Batched subsequence length: 100
– ODE integrator: Dormand–Prince (dopri5) (Dormand & Prince, 1980) with the rela-

tive tolerance 10−7 and the absolute tolerance 10−9

Learning switching linear dynamical systems

• Model architectures
– POUNODE: a single layer that linearly combines the output of dictionaries, Φ(x) =

[1, x, y]

• Hyperparameters
– Learning rate: 0.01
– Max epoch: 3000
– Batch size: 1
– Batched subsequence length: 100
– ODE integrator: Runge–Kutta of order 4

Latent dynamics modeling

• Model architectures
– (MLP-based) NODE, StackedNODE, GalNODE, POUNODE : 2 layers with 25 neu-

rons and Tanh activation
– ANODEv2: 2 layers with 24 neurons and Tanh for the main NODEs, 2 layers with 50

neurons and Tanh for the weight NODEs
– LSTM: 2 stacked LSTM cells with 25 neurons for hidden and cell states
– hyperLSTM: 2 stacked LSTM and hyperLSTM cells with 25 neurons for hidden, cell

states and 50 neurons for hyper and embedding units
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• Hyperparameters
– Learning rate: 0.01
– Max epoch: 500
– Batch size: 1
– Batched subsequence length: 50
– ODE integrator: Dormand–Prince (dopri5) (Dormand & Prince, 1980) with the rela-

tive tolerance 10−7 and the absolute tolerance 10−9

D 1D INVISCID BURGERS’ EQUATION

As a benchmark problem for reduced-order modeling (shown in Section 3.3 latent-dynamics mod-
eling), we consider 1-dimensional inviscid Burgers’ equation, which is defined as,

∂w(x, t;µ)

∂t
+
∂f(w(x, t;µ))

∂x
= 0.02eµx, ∀x ∈ [0, 100], ∀t ∈ [0, T ]

w(0, t;µ) = 4.5, ∀t ∈ [0, T ]

w(x, 0) = 1, ∀x ∈ [0, 100],

where µ defines the the forcing term, and we set µ = µ(t) to be a time dependent function. In the
high-fidelity simulation, we set µ(t) to be a piecewise-constant function over time such that

µ(t) =

{
0.005 if t ≤ 13.4
0.015 if 13.4 < t ≤ 22.2
0.025 if t > 22.2

For the discretization, we apply Godunov’s scheme with 256 control volumes (i.e.,N = 256 degrees
of freedom) and the backward-Euler scheme with 600 uniform time steps.
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