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ABSTRACT

Distant supervision is widely used in relation extraction in order to create a large-
scale training dataset by aligning a knowledge base with unstructured text. Most
existing studies in this field have assumed there is a great deal of centralized un-
structured text. However, in practice, text may be distributed on different plat-
forms and cannot be centralized due to privacy restrictions. Therefore, it is worth-
while to investigate distant supervision in the federated learning paradigm, which
decouples the training of the model from the need for direct access to the raw text.
However, overcoming label noise of distant supervision becomes more difficult in
federated settings, because the sentences containing the same entity pair scatter
around different platforms. In this paper, we propose a federated denoising frame-
work to suppress label noise in federated settings. The core of this framework is
a multiple instance learning based denoising method that is able to select reliable
sentences via cross-platform collaboration. Various experimental results on New
York Times dataset and miRNA gene regulation relation dataset demonstrate the
effectiveness of the proposed method.

1 INTRODUCTION

Relation extraction (RE) aims to mine factual knowledge from free text by labeling relations between
entity mentions, which is a crucial step in knowledge base (KB) construction. For example, given
a sentence “[Steve Jobs]e1 and Wozniak co-founded [Apple]e2 in 1967”, a relation extractor should
identify that “Steve Jobs” and “Apple” are in a “Founder” relationship.

Most existing supervised RE systems, such as Zeng et al. (2014); Zhang & Wang (2015); Wang
et al. (2016); Zhou et al. (2016), rely on a large-scale manually annotated training dataset, which is
extremely expensive and cannot cover all walks of life. To ease the reliance on annotated data, Mintz
et al. (2009) proposed distant supervision to automatically generate training data by heuristically
aligning a KB with unstructured text. The key assumption of distant supervision is that if two
entities have a relation in the KB, then all sentences that mention these two entities will express this
relation. Since then, there has been a rich literature devoted to this topic, such as Riedel et al. (2010);
Hoffmann et al. (2011); Zeng et al. (2015); Lin et al. (2016); Ye & Ling (2019); Yuan et al. (2019).

Though the progress is exciting, distant supervision approaches have so far been limited to the
centralized learning paradigm, which assumes that a great deal of text is easily accessible. However,
in practice, text may be distributed on different platforms and be massively convoluted with sensitive
personal information, especially in the healthcare and financial fields (Yang et al., 2019; Zerka et al.,
2020; Chamikara et al., 2020). Due to privacy restrictions, it is almost impossible or cost-prohibitive
to centralize text from multiple platforms. Recently, federated learning (McMahan et al., 2016)
provides a compelling solution for learning a model from decentralized and privacy-sensitive data.
The main idea behind federated learning is that each platform trains a local model based on its own
local data and a master server coordinates massive platforms to collaboratively train a global model
by aggregating these local model updates.

Unfortunately, directly applying federated learning to the decentralized distantly supervised data
fails, because conventional federated learning requires the local data to come with labels without
noise (Tuor et al., 2020), however, in distant supervision, automatic labeling inevitably accompanies
with label noise (Riedel et al., 2010; Hoffmann et al., 2011; Zeng et al., 2015; Lin et al., 2016),
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which means not all sentences that mention an entity pair can represent the relation between them.
Training on such noisy data will substantially hinder the performance of the RE model.

S1: Steve Jobs and
Wozniak co-founded Apple

in 1967 .

S2: Steve Jobs resigned as
chief executive from Apple

in 2011.

Platform 1

Steve Jobs Apple

Platform 2

Founder

Figure 1: An example of the sentences that con-
tain the same entity pair distributed on two plat-
forms. The triple (Steve Jobs, Founder, Apple) is
a fact in the KB

Moreover, even involving previous denoising
methods, such as Zeng et al. (2015); Lin et al.
(2016); Ye & Ling (2019), cannot handle la-
bel noise well in federated settings. This point
can be illustrated by the example in Figure
1. S1 and S2 contain the same entity pair
(“Steve Jobs”, “Apple”) but are distributed on
two platforms. S1 is true positive while S2 is a
false positive instance, which does not express
the “founder” relation. In centralized training,
there is no barrier between Platform 1 and Plat-
form 2; therefore, simultaneously considering
S1 and S2 can easily filter out noise via only
selecting S1 (Zeng et al., 2015) or placing a
small weight on S2 (Lin et al., 2016; Ye & Ling,
2019). However, raw data exchange between
platforms is prohibited in federated settings. Due to the lack of comparison with S1, previous de-
noising methods would mistakenly regard S2 as a true positive instance. As a result, S2 is retained
and then poisons the local model in platform 2, which would affect the global model in turn.

To suppress label noise in federated settings, we propose a federated denoising framework in this
paper. The core of this framework is a multiple instance learning (MIL) (Dietterich et al., 1997;
Maron & Lozano-Pérez, 1998) based denoising algorithm, called Lazy MIL, which is only exe-
cuted at the beginning of each communication round and then would rest until the next round. Since
the sentences containing the same entity pair scatter around different platforms, Lazy MIL algo-
rithm coordinates multiple platforms to jointly select reliable sentences. Once sentences have been
selected, they would be used repeatedly to train local models until the end of this round.

In summary, the contributions of this paper are:

• Considering data decentralization and privacy protection, we investigate distant supervision
under the federated learning paradigm, which decouples the model training from the need
for direct access to the raw data. To our best knowledge, combining federated learning with
distant supervision is still an unexplored territory, which is the main focus of this paper.

• Since the automatic labeling in distant supervision inevitably accompanies with label noise,
we present a multiple instance learning based denoising method, which can select reliable
instances via cross-platform collaboration.

• The proposed method yields promising results on two benchmarks datasets, and we perform
various experiments to verify the effectiveness of the proposed method. The code will be
released at http://anonymized.

2 RELATED WORK

In this section, we will briefly review the recent progress in distant supervision and some existing
studies in federated learning.

Distant supervision. Relation extraction is a task of mining factual knowledge from free text by
labeling relations between entity mentions. To alleviate the dependence of supervised methods
on annotated data, Mintz et al. (2009) proposed distant supervision by using a knowledge base to
annotate a large-scale dataset automatically. However, automatic labeling inevitably accompanies
with label noise. To deal with label noise, most distantly supervised approaches (Riedel et al., 2010;
Hoffmann et al., 2011; Surdeanu et al., 2012; Zeng et al., 2015; Lin et al., 2016; Luo et al., 2017; Ye
& Ling, 2019; Yuan et al., 2019) focus on reducing label noise at bag 1 level prediction. These studies
fall under multiple instance learning framework, which assumes that at least one sentence expresses
the relation in a bag. Another line of work aims to reduce label noise at sentence level prediction.

1A set of sentences containing the same entity pair is called a “bag”
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These studies (Zeng et al., 2018; Feng et al., 2018; Qin et al., 2018a;b) use reinforcement learning or
adversarial training to select trustable relation labels by matching the predicted labels with distantly
supervised labels. Compared with previous studies, our work focuses on reducing label noise at bag
level prediction and extends distant supervision to federated settings.

Distant supervision has also been applied to other natural language processing tasks, such as named
entity recognition (Ghaddar & Langlais, 2018; Shang et al., 2018; Nooralahzadeh et al., 2019), event
extraction (Chen et al., 2017), sentiment classification (Go et al., 2009) and question answer (Joshi
et al., 2017; Lin et al., 2018; Cheng et al., 2020).

Federated Learning. Recently, federated learning (McMahan et al., 2016; Konečnỳ et al., 2016a;b;
Bonawitz et al., 2017; Smith et al., 2017; Caldas et al., 2018; Zhao et al., 2018; Li et al., 2018; Jeong
et al., 2018; Peng et al., 2019; Li et al., 2019; Wang et al., 2020; Rothchild et al., 2020; Yu et al.,
2020) has become a rapidly developing topic in the research community, since it provides a new
communication-efficient way of learning a model over a collection of highly distributed platforms
while still preserving data privacy. However, most of the previous studies require the data stored by
the local platforms to come with ground-truth labels without noise. The problem of how to adapt
federated learning to a noisy environment is relatively ignored. In terms of overcoming noise in
federated settings, Tuor et al. (2020) is most relevant to our work but require a clean benchmark
dataset to train a benchmark model. Compared with Tuor et al. (2020), our work does not rely on a
clean benchmark dataset, which does not exist in distant supervision.

3 FEDERATED DENOISING FRAMEWORK

3.1 TASK DEFINITION

In this paper, we focus on distant supervision in federated settings. Define K platforms {P1, ...PK}
with respective unlabeled corpora {D1, ...DK}. Under the assumption of centralized training, each
platform transfers or shares its local corpus to a server, and the server will take the integrated corpus
D = D1 ∪ ... ∪DK to conduct training, while the task of distant supervision in federated settings
requires platform Pi does not expose its corpus Di to others (including the server). In distant su-
pervision, a KB is required to automatically label these corpora. In this paper, we only focus on the
data security of these unlabeled corpora and assume the KB is publicly available for all platforms.
The issue of protecting the security of KB is beyond the scope of the current work.

To solve this task, we propose a federated denoising framework. The key components of this frame-
work will be elaborated in the following section. Concretely, we firstly introduce the basic relation
extractor in Section 3.2, which is the network architecture shared by the global model and local
models. Then, we present how to select reliable instances via cross-platform collaboration in Sec-
tion 3.3. Next, we describe how to use the selected instances to train the local model in Section 3.4.
Finally, we present how to use the FedAvg algorithm to update the global model in Section 3.5.

3.2 RELATION EXTRACTOR

Following previous studies (Zeng et al., 2015), we adopt the Piecewise Convolutional Neural Net-
work (PCNN) as our relation extractor. Given a sentence s and two entities within this sentence, we
first split the sentence into tokens, and then each token wi is mapped into a dense word embedding
ei ∈ Rdw . To specify the entity pair, relative distances between the current token wi and the two
entities are transformed into two positional features by looking up the position embedding matri-
ces. Next, the token is represented as the concatenation of the word embedding and two positional
features, and is fed into a convolutional neural network. Then, piecewise max pooling (Zeng et al.,
2015) is employed to extract the high-level sentence representation. In the piecewise max pooling,
an input sentence is divided into three segments based on the two entities, and the maximum value
of CNN outputs in each segment is returned. After that, we apply a single fully connected layer to
output the logit value o. Finally, the conditional probability of j-th relation is denoted as follows:

p(relj |s,Θ) =
exp(oj)

M∑
i=1

exp(oi)

(1)

where Θ is the model parameter and M is the total number of relation.
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Algorithm 1 Lazy Multiple Instance Learning
1: Input: global model parameters Θ, the set of activated platforms A.
2: Define two dictionary on the server, named V and I . Run on the master server
3: Distribute Θ to each platform in A
4: for each platform i ∈ A in parallel do . Run on the activated platforms
5: for each triple (h, r, t) in KB do
6: for each sentence siz in the bag bi do
7: Compute p(r|siz,Θ) . According to Equation 1
8: vi, idi ← maxz(p(r|siz,Θ)), siz ∈ bi . vi is called uploaded value
9: Upload [vi, idi, i] to the server and append [vi, idi, i] to V[(h, r, t)]

10: for each key (h, r, t) in V do . Run on the master server
11: Sort V[(h, r, t) in descending order according to the uploaded values.
12: I[(h, r, t)]← V[(h, r, t)][0]
13: Broadcast I to each platform in A

3.3 LAZY MULTIPLE INSTANCE LEARNING

To avoid the local relation extractor being poisoned by false positive instances, we propose lazy
multiple instance learning (Lazy MIL), which can select reliable instances via cross-platform col-
laboration. The overview of Lazy MIL is illustrated in Algorithm 1.

Suppose that there is a triple (h, r, t) in the public KB, the set of sentences containing the head entity
h and tail entity t is represented as {(s1

1, s
1
2, ..., s

1
n1

), ..., (sK1 , s
K
2 , ..., s

K
nk

)}, where sji indicates the
i-th instance in the platform j. In the q-th communication round, assume that only platform i and
platform j are activated. At the beginning of this round, the parameters of the global model Θq

are distributed to the activated platforms i and j for initializing local models, which ensures that
all activated local models share the same parameters in Lazy MIL. In platform i, the sentences in
the set (si1, s

i
2, ..., s

i
ni

) are fed into the local model to get conditional probabilities associated with
the relation r according to Equation 1, where r is the predicate of the triple. The value vi and
index idi of the instance with the maximum conditional probability associated with the relation r
are computed as follows:

vi, idi = max
z

(p(r|siz,Θq)) 1 ≤ z ≤ ni (2)

After computation, platform i uploads the value vi and index idi to the master server. At the same
time, the same procedure is performed on platform j, and the value vj and index idj are also up-
loaded to the server.

The master server decides which local instance can be selected among all activated platforms based
on the uploaded values. If vi > vj , then the idi-th sentence in platform i is selected as the reliable
sentence that expresses the triple (h, r, t) in this round. This decision, called denoising information,
is broadcast to all activated platforms. Each activated platform selects reliable training instances
from its local corpus according to this denoising information. Note that since only values and indices
of conditional probabilities are uploaded to the master server, Lazy MIL almost does not leak the
corpus information in each platform.

3.4 LOCAL MODEL TRAINING

After platform i selects reliable instances from its local corpus Di, the selected reliable instance
set D?

i is used for training the local relation extractor. We use the cross-entropy loss function to
optimize parameters Θq , which is defined as follows:

J(Θq;D?
i ) = − 1

|D?
i |

|D?
i |∑

u=1

log p(ru|s?u,Θq) (3)

where s?u indicates the u-th sentence in the selected reliable instance setD?
i . After trainingE epochs

on the selected reliable instance set, the trained parameters Θi
q+1 are uploaded to the master server,

where the superscript i indicates the parameters are trained on platform i.
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Algorithm 2 Federated Denoising Framework
1: Hyperparameters: K is the total number of platforms; C is the fraction of platforms; B is the

local minibatch size; E is the number local epochs; η is the learning rate.
2: Master server executes:
3: Initialize Θ0

4: for communication round q = 0,1,... do
5: m←max(C ×K, 1) . Select activated platforms
6: Aq ← (random set of m platforms)
7: Execute lazy multiple instance learning algorithm . Defined in Algorithm 1
8: for each platform i ∈ Aq in parallel do
9: Θk

q+1 ← Local Training(i, Θq)

10: Θq+1 ←
∑

i∈Aq

|D?
i |∑

j∈Aq
|D?

j |
Θi

q+1 . Defined in Equation 5
11:
12: Function Local Training(i, Θ): . Run on platform i
13: Generate denoised dataset D?

i from Di based on the denoising information I
14: B ← (split D?

i into batches of size B)
15: for each local epoch e from 1 to E do
16: for batch b ∈ B do
17: Θ← Θ− η∇J(Θ; b) . J is defined in Equation 3
18: return Θ to the master server

3.5 GLOBAL MODEL UPDATE

Suppose Aq is the set of activated platforms in the q-th communication round. After all activated
platforms finish local training, the master server collects all trained parameters {Θi

q+1|i ∈ Aq} to
update the global model. We define the goal of the global model as follows:

min
Θq

∑
i∈Aq

|D?
i |∑

j∈Aq

|D?
j |
J(Θq;D?

i ) (4)

where J(Θq;D?
i ) is the local loss function for the platform i. Follow previous studies (McMahan

et al., 2016), we optimize this global objective function via taking the weighted average of all trained
parameters, which is shown as follows:

Θq+1 =
∑
i∈Aq

|D?
i |∑

j∈Aq

|D?
j |

Θi
q+1 (5)

where Θi
q+1 is the optimal parameters obtained by minimizing the local loss function on the local

data of platform i. Since all trained parameters from different platforms are aggregated together,
the corpus information of each platform is hard to be inferred. Thus, corpora in platforms are well-
protected. Complete pseudo-code of this framework is given in Algorithm 2.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Since conducting experiments on non-public privacy-sensitive datasets is not reproducible, we
choose public distantly supervised relation extraction datasets to investigate the effectiveness of
the proposed framework.

NYT 102 (Riedel et al., 2010) is a widely used dataset in distant supervision. It was automatically
generated by aligning the semantic triples in Freebase with the New York Times corpus. The training
set contains 466,876 sentences, 251,928 entity pairs and 16,444 relational facts. The development
set contains 55167 sentences, 28077 entity pairs and 1,808 relational facts. The test set contains

2https://github.com/thunlp/OpenNRE
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172,448 sentences, 96,678 entity pairs and 1,950 relational facts. There are 52 actual relations and
a special relation NA for representing no relation between two entities.

MIRGENE3 (Li et al., 2017) is a large-scale biomedical dataset. This dataset is generated by align-
ing Tarbase and miRTarBase with the abstracts in Medline. An example is shown in the following:
“ MicroRNA-223 regulates FOXO1 expression and cell proliferation”, where MicroRNA-223 is a
miRNA and FOXO1 is a gene. There are 172727 sentences in the training set and 1239 sentences in
the test set. We randomly sampled 10% of the data from the training set as the development set.

Data Partitioning. To study distant supervision in federated settings, we need to specify how to
distribute the data across platforms. In this paper, we focus on the IID situation, where the training
data are shuffled and then partitioned into K (the total number of platforms) platforms.

Evaluation Metrics. We evaluate our approach and baseline methods on the held-out test set of
these two datasets. Precision-recall (PR) curves, area under curve (AUC) values and Precision@N
(P@N) values are adopted as evaluation metrics in our experiments.

4.2 EXPERIMENTAL SETTINGS

Hyperparameter Search Space

Learning Rate (η) 0.05, 0.08, 0.1,0.2
Learning Rate Decay 0.01, 0.05

Dropout 0.1, 0.2, 0.5
Weight Decay 1e-5, 1e-6

Table 1: The search space of unfixed hyperparam-
eter.

For a fair comparison, we implement our
method and all baselines in the same experi-
mental settings. We divide the hyperparame-
ters into three parts, i.e., fixed hyperparame-
ters, unfixed hyperparameters and federated hy-
perparameters. Fixed hyperparameters follow
the hyperparameter settings in Lin et al. (2016),
including the 50-dimensional pretrained word
embeddings for NYT, the 5-dimensional po-
sition embeddings, and CNN module that in-
cludes 230 filters with a window size of 3.
For MIRGENE, 200-dimensional word embed-
dings pretrained on PubMed and MIMIC-III are used. The optimal unfixed hyperparameters are
determined by grid search based on the performance of the development set, and the search space of
unfixed hyperparameters is shown in Table 1. Federated hyperparameters include the total number
of platforms K, the fraction of platforms C, the local minibatch size B, the number of local epochs
E. All of these control the amount of computation. In the end-to-end comparison, we fix the K to
100,B to 32,E to 3, and set the hyperparameter space ofC as {0.1, 0.2, 0.5, 1} following McMahan
et al. (2016). We use stochastic gradient descent as the local training optimizer and all experiments
can be done by using a single GeForce GTX 1080 Ti.

4.3 BASELINES

We compare our method with the following baselines in federated settings: (1) Directly applying
FedAvg algorithm (McMahan et al., 2016) to the automatically labeled data is the first baseline,
which is called NONE. In this case, there is no denoising module in this method. (2) Zeng et al.
(2015) proposed to leverage multiple instance learning to choose the most reliable sentence as the
bag representation, and we abbreviate this method as ONE; (3) ATT was proposed by Lin et al.
(2016), which uses the attention mechanism to select reliable instances by placing soft weights on
a set of noisy sentences; (4) AVE (Lin et al., 2016) is a naive version of ATT and represents each
sentence set as the average vector of sentences inside the set; (5) ATT RA (Ye & Ling, 2019) is
a variant of ATT, which calculates the bag representations in a relation-aware way. The federated
framework of these baselines is shown in Algorithm 3 in the appendix.

4.4 MAIN RESULTS

Figure 2 and Figure 3 show the precision-recall curves on NYT dataset and MIRGENE datasets.
At the appendix, we also present AUC values of these curves in Table 8 and detailed precision val-
ues measured at different points along these curves in Table 9. To reduce randomness, we run 10

3https://github.com/leebird/bionlp17
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Figure 2: Aggregate precision-recall curves on NYT 10 dataset, where C is the fraction of platforms
that are activated on each round.
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Figure 3: Aggregate precision-recall curves on MIRGENE dataset, where C is the fraction of plat-
forms that are activated on each round.

AUC NONE ONE ATT AVE ATT RA Ours

C=0.1 0.1287±0.0034 0.1719±0.0030 0.1638±0.0030 0.1521±0.0029 0.1664 ±0.0026 0.2189±0.0025
C=0.2 0.1255±0.0032 0.1710±0.0029 0.1630±0.0028 0.1517±0.0027 0.1642±0.0022 0.2285±0.0023
C=0.5 0.1239±0.0045 0.1701±0.0020 0.1619±0.0025 0.1513±0.0024 0.1630±0.0020 0.2420±0.0021
C=1.0 0.1223±0.0037 0.1689±0.0021 0.1604±0.0022 0.1491±0.0015 0.1625±0.0022 0.2447±0.0019

Table 2: AUC values on NYT 10 dataset. We run 10 models using random seeds with early stopping
on the development set, and report the mean and standard deviation of test AUC values for all
methods.

AUC NONE ONE ATT AVE ATT RA Ours

C=0.1 0.7316± 0.0069 0.7665±0.0087 0.7535± 0.0062 0.7499±0.0055 0.7514± 0.0053 0.7846±0.0066
C=0.2 0.7246±0.0047 0.7610±0.0092 0.7472±0.0055 0.7428± 0.0052 0.7431±0.0071 0.7897±0.0059
C=0.5 0.7251±0.0054 0.7605±0.0065 0.7453±0.0058 0.7409±0.0062 0.7423 ±0.0079 0.7915±0.0065
C=1.0 0.7229± 0.0059 0.7559±0.0080 0.7424 ±0.0067 0.7368±0.0063 0.7395±0.0072 0.7942±0.0060

Table 3: AUC values on MIRGENE dataset. We run 10 models using random seeds with early
stopping on the development set, and report the mean and standard deviation of test AUC values for
all methods.

models using random seeds with early stopping on the development set. Table 2 and Table 3 show
the mean and standard deviation test AUC values for each method on NYT 10 dataset and MIR-
GENE dataset, respectively. We find that: (1) Our method significantly outperforms all baselines
in federated settings. We believe the reason is that our denoising method can use cross-platform
information to hinder false positive instances from poisoning local models, which leads to a better
performance of the global model. (2) Directly applying FedAvg algorithm (McMahan et al., 2016)
to the automatically labeled data achieve the worst results in both datasets. The reason behind that
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is training on the noisy data will substantially hinder the performance of the model. Therefore, it
is necessary to conduct denoise in federated distant supervision. (3) C is the fraction of platforms
that are activated on each round, which controls the amount of multi-platform parallelism. With
increasing platform parallelism, the performance of all baselines declines slightly while our method
performs better. Intuitively, increasing platform parallelism is able to lead to better results, since
involving more platforms in training can increase the likelihood that all sentences with the same en-
tity pair appear simultaneously. However, due to lack of cross-platform collaboration, all baselines
handle label noise only based on its own local data, which may hamper the performance. In con-
trast, our method selects reliable instances among all activated platforms, which can effectively reap
the benefits of increasing platform parallelism. (4) Leveraging attention mechanisms to denoise, an
effective solution in centralized settings, seems not to work in federated settings. Compared with
centralized training, the sentences in a bag scatter around different platforms in federated settings,
so the number of the sentences with the same entity pair on a platform is small, which may lead to
placing large attention weights on noisy sentences due to lack of inter-bag contrast.

4.5 INCREASING THE SIZE OF LOCAL DATASETS

AUC NYT MIRGENE

NONE 0.1325 0.7430
ONE 0.1856 0.7786
ATT 0.1806 0.7726
AVE 0.1687 0.7592

ATT RA 0.1842 0.7639
Ours 0.2285 0.7941

Table 4: AUC values on NYT 10 dataset
and MIRGENE dataset when K = 50.

In this section, we increase the size of local datasets by
setting K to 50. In such a way, each local dataset is twice
as large as it was (when K is set to 100). For a fair com-
parison, we fix C = 0.1, B = 32 and E = 3. Figure
4 show the results of AUC values. At the appendix, we
also present corresponding precision-recall curves in Fig-
ure 7 and detailed precision values measured at different
points along these curves in Table 10. From the results,
we observe that: (1) Our proposed method significantly
surpasses all baselines in both datasets. (2) Compared
with setting K to 100, the result of directly applying Fe-
dAvg algorithm (McMahan et al., 2016) to the automati-
cally labeled data remains almost unchanged when K is
set to 50. (3) As the size of local datasets increases, all
denoising methods can achieve better results. The most likely reason is that compared with setting
K to 100, setting K to 50 increases the probability that all sentences with the same entity pairs
simultaneously exist in the same platform.

4.6 INCREASING THE NUMBER OF LOCAL UPDATES
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Figure 4: AUC values vs. communication rounds on NYT data with differentE (the number of local
epochs) and B (the local minibatch size).

In this section, we investigate the impact of varying the number of local updates in this section.
The number of local updates is given by E |D

∗
i |

B , where |D∗i | is the size of the denoised dataset in
platform i at a round, B is the local minibatch size and E is the number of local epochs. Increasing
B, decreasing E, or both will reduce computation on each round. We fix C to 0.1 and only B and
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E are varied in this section 4. The results are shown in Figure 4. We find that: (1) Compared with
the other denoising baselines, our method converges faster to the optimal results. We conjecture that
is due to that the proposed denoising method can effectively filter out the noise, which makes the
relation extractor less affected by false positive instances and converge faster. (2) When setting B to
64 and E to 1, our method achieves the best AUC value. (3) Increasing the local minibatch B may
improve extraction performance. (4) Increasing the local epoch E can speed up converge, but may
not make the global model converge to a higher level of AUC value. These findings are in line with
McMahan et al. (2016), which shows it may hurt performance when we over-optimize on the local
dataset.

5 CONCLUSION

Considering data decentralization and privacy protection, we investigate distant supervision under
the federated learning paradigm, which permits learning to be done while data stays in its local envi-
ronment. To suppress label noise in federated settings, we propose a federated denoising framework,
which can select reliable instances via cross-platform collaboration. Extensive experiments on two
datasets have demonstrated the effectiveness of our method.

Distant supervision in federated settings is far from being solved and this work is just the beginning.
There are still many problems need to be solved, such as noisy bag problem (Xu et al., 2013; Liu
et al., 2017) and shifted label problem (Ye et al., 2019). Noisy bag problem means that all sentences
containing the same entity pair are incorrectly labeled, and shifted label problem means the label
distribution of training set does not align with that of test set. In federated settings, how these
problems affect the relation extractor is still unknown. In our future work, we will devote to solve
these problems in federated settings.
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A CASE STUDIES

Platform Sentence Type NONE ONE ATT ATT RA This Work

10

Most Muslims in Montenegro,
mindful of the Serbs’ killings of
Muslims in Bosnia, are expected
to vote to end ties with Serbia, but
villagers in Podgorica are worried
about how their Serb neighbors
would react to separation.

Fasle
Positive 3 3 3 3 7

7

They have passed through Zagreb;
Novi Sad; Belgrade; Pristina, in
Kosovo; Skopje; Tirana, Albania;
and Podgorica, Montenegro, on
their way to Sarajevo.

False
Positive 3 3 3 3 7

56

This is a great day for the
citizens of Montenegro to
regain independence after 88
years, ”said Ljubomir Djurkovic,
a theater director from Centinje,
a picturesque, pro-independence
town to the west of Podgorica.

False
Positive 3 3 3 3 7

26

The time has come, ” Montenegro’s
prime minister, Milo Djukanovic,
said Thursday at a jubilant final
rally in Podgorica, the capital.

True
Positive 3 3 3 3 3

Table 5: A case to illustrate the effectiveness of the proposed model. A fact in KB is (Podgor-
ica, /location/country/capital, Montenegro). Only the sentence in Platform 26 expresses the “/loca-
tion/country/capital” relation, while the other sentences are all false positive.

Table 5 shows how different denoising methods select reliable instances in the training phase. In
this case, a KB fact is (Podgorica, /location/country/capital, Montenegro). Aligning this KB fact
with decentralized raw text generates four training instances, which are distributed in four different
platforms. Only the sentence in Platform 26 correctly represents the “/location/country/capital”
relation. The other sentences distributed in the other platforms are all false positive instances, which
do not express the “/location/country/capital” relation.

From this case, we can find that: (1) If FedAvg algorithm (McMahan et al., 2016) was directly
applied to the automatically labeled data, it would face a noisy environment where most sentences
are false positive. (2) Previous denoising methods, such as ONE (Zeng et al., 2015), ATT (Lin et al.,
2016) and ATT RA (Ye & Ling, 2019), all fail to filter out false positive instances. In the worst
cases, these methods will lose their denoising function. (3) Our proposed method can remove all
false positive instances and only keep the true positive instance to train local models.
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B ADDITIONAL EXPERIMENTS

B.1 CAN A STRONG EXTRACTOR MITIGATE THE LABEL NOISE IN FEDERATED SETTINGS?

In this section, we investigate the impact of involving a stronger extractor. More concretely, we
replace the PCNN-based extractor with a BERT-based extractor (Devlin et al., 2018). In the BERT-
based extractor, we use the architecture of entity mention pooling (Soares et al., 2019) to represent
relations with the Transformer model (Vaswani et al., 2017), which is shown in Figure 5. Given a
sentence s and two entities within this sentence, we first segment the given sentence into tokens by
the byte pair encoding (Sennrich et al., 2016) and feed these tokens into the BERT encoder. The
output of the BERT encoder is the context-aware embeddings of tokens. After that, we use max
pooling on the context-aware embeddings that correspond to the word pieces in each entity mention,
to get two vectors he1 and he2 representing the two entity mentions. Finally, we concatenate these
two vectors to get the representation of relation.

Deep Transformer

[CLS] [E1] Entity 1 [/E1] ... [E2] Entity 2 [/E2] [SEP]

Max poolingMax pooling

Figure 5: The main architecture for BERT-based extractor.

For a fair comparison, we fixC = 0.1,B = 32,K = 100 andE = 3. For the BERT-based extractor,
we set the lr, lr decay and weight decay to 1e-5, 0.01 and 1e-5, and we use the pretrained BioBERT
(Lee et al., 2019) and cased base version of BERT 5 as the initialization parameters in MIRGENE and
NYT 10 dataset, respectively. The AUC values of PCNN-based extractor and BERT-based extractor
on NYT 10 dataset and MIRGENE dataset are shown in Table 5. From the result, we find that: (1)
Involving a stronger encoder can improve the performance for all denoising methods. (2) Whether
leveraging PCNN or BERT as the encoder, our method significantly outperforms all baselines.

Dataset Extractor NONE ONE ATT AVE ATT RA Ours

NYT 10 BERT-based Extractor 0.1744 0.2217 0.2156 0.2120 0.2086 0.2526
PCNN-based Extractor 0.1287 0.1719 0.1638 0.1521 0.1664 0.2189

MIRGENE BERT-based Extractor 0.7510 0.7773 0.7798 0.7650 0.7768 0.8103
PCNN-based Extractor 0.7316 0.7665 0.75335 0.7499 0.7514 0.7846

Table 6: The AUC values of PCNN-based extractor and BERT-based extractor on NYT 10 dataset
and MIRGENE dataset when k is set to 100 and C is set to 0.1.

B.2 ABLATION STUDY OF PARALLEL COMPUTATION

In this section, we conduct an ablation study of parallel computation in federated settings. Conven-
tional federated learning approach (McMahan et al., 2016) is based on a master-slave topology 6. In
this topology, each platform (slave) trains a local model based on its own local data and a master
server (master) coordinates massive platforms to collaboratively train a global model by aggregating
these local model updates.

5https://github.com/google-research/bert
6https://en.wikipedia.org/wiki/Master/slave_(technology)
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Parameters
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Platform 1

Model 
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Getting
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Figure 6: The main architecture for chain training.

To ablate parallel computation from the conventional federated learning topology, we propose a
simple way, called chain learning, to handle decentralized data. In chain learning, we only train
one local platform at a time, and then synchronize model parameters to the next platform for further
training. We show the architecture of chain learning in Figure 6. Compared with federated learning,
chain learning does not require a master server and parallel training.

ONE ATT AVE ATT RA Ours

Centralized Learning 0.2323 0.2345 0.2147 0.2365 -
Federated Learning 0.1719 0.1638 0.1521 0.1664 0.2189

Chain Learning 0.1574 0.1538 0.1466 0.1590 -

Table 7: AUC values of different learning paradigms on NYT 10 dataset. In federated learning and
chain learning, we fix C = 0.1, K =100 and E =3.

Table B.2 shows the AUC values of centralized learning, federated learning and chain learning on
NYT 10 dataset. For a fair comparison, we set batch size B to 32, set learning rate to 0.1, and set
weight decay to 1e-5 for all learning paradigms. From the result, we find that: (1) Centralized learn-
ing achieves the best result compared to federated learning and chain learning; (2) Compared to fed-
erated learning, chain learning cannot achieve satisfactory results. We conjecture that catastrophic
forgetting (McCloskey & Cohen, 1989; Goodfellow et al., 2013) may be the cause. In federated
learning, averaging step for model integration is carried out in each epoch, which may ensures the
generalization of the model. However, in chain learning, the model may forget the previous local
data and overfit to the latest local data, which hampers the performance. (3) Our approach narrows
the gap between federated training and centralized training in terms of performance. Therefore, we
can conclude that not chain learning but cross-platform collaboration is the key to mitigate label
noise in federated settings.
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C BASELINES

Algorithm 3 Federated Denoising Baseline
1: Hyperparameters: K is the total number of platforms; C is the fraction of platforms; B is the

local minibatch size; E is the number local epochs; η is the learning rate.
2: Master server executes:
3: Initialize Θ0

4: for communication round q = 0,1,... do
5: m←max(C ×K, 1) . Select activated platforms
6: Aq ← (random set of m platforms)
7: for each platform i ∈ Aq in parallel do
8: Θk

q+1 ← Local Training(i, Θq)
9: Θq+1 ←

∑
i∈Aq

|Di|∑
j∈Aq

|Dj |Θ
i
q+1 . Defined in Equation 5

10:
11: Function Local Training(i, Θ): . Run on platform i
12: B ← (split Di into batches of size B) . A batch is a set of bag
13: for each local epoch e from 1 to E do
14: for batch b ∈ B do
15: Conduct the denoising method . In NONE, we do not carry out this step
16: Update Θ based on the gradients of the loss function
17: return Θ to the master server

In Algorithm 3, we present the federated framework of denoising baseline. Compared with FedAvg
algorithm (McMahan et al., 2016), we only add one step in local training to denoise. Compared with
the proposed federated denoising framework, local platforms in the baseline framework handle label
noise only based on its own local data.
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D SOME TABLES AND FIGURES MENTIONED IN THE MAIN TEXT

AUC NYT MIRGENE

NONE ONE ATT AVE ATT RA Ours NONE ONE ATT AVE ATT RA Ours

C=0.1 0.1318 0.1747 0.1658 0.1544 0.1695 0.2207 0.7436 0.7705 0.7696 0.7577 0.7597 0.7893
C=0.2 0.1293 0.1747 0.1642 0.1531 0.1666 0.2315 0.7432 0.7649 0.7528 0.7491 0.7448 0.7923
C=0.5 0.1305 0.1725 0.1657 0.1527 0.1647 0.2448 0.7365 0.7626 0.7516 0.7431 0.7484 0.7946
C=1.0 0.1283 0.1715 0.1631 0.1503 0.1637 0.2465 0.7358 0.7570 0.7483 0.7432 0.7493 0.7966

Table 8: AUC values on NYT 10 dataset and MIRGENE dataset.

P@N(%) NYT MIRGENE

NONE ONE ATT AVE ATT RA Ours NONE ONE ATT AVE ATT RA Ours

C=0.1

p@100 57.0 63.0 60.0 57.0 62.0 69.0 83.0 87.0 89.0 87.0 86.0 89.0
P@200 49.0 60.0 57.0 55.0 55.5 67.0 75.0 79.5 77.5 78.0 77.0 80.0
P@300 44.7 54.7 52.7 53.0 53.3 63.0 69.0 71.3 69.3 70.7 71.3 70.7
Mean 50.2 59.2 56.6 55.0 56.9 66.3 75.7 79.3 78.6 78.6 78.1 79.9

C=0.2

p@100 56.0 66.0 59.0 59.0 61.0 74.0 80.0 85.0 87.0 85.0 80.0 91
P@200 46.5 58.5 57.0 51.5 54.0 70.5 78.0 79.5 78.0 76.0 76.5 80.5
P@300 42.3 55.0 52.7 50.7 51.0 68.7 69.7 70.7 70.7 70.3 69.3 73.0
Mean 48.3 59.8 56.2 53.7 55.3 71.1 75.9 78.4‘ 78.6 77.1 75.3 81.5

C=0.5

p@100 47 65.0 63.0 58.0 60.0 77.0 79.0 87.0 87.0 84.0 83.0 92.0
P@200 47 59.0 57.5 53.5 54.5 74.5 75.5 80.0 75.0 75.0 77.0 82.5
P@300 44.3 55.0 53.3 52.7 50.3 71.7 70.3 70.7 70.0 70.3 71.0 74.0
Mean 46.1 59.7 57.9 54.7 54.9 74.4 74.9 79.2 77.3 76.4 77.0 82.8

C=1.0

p@100 48.0 62.0 65.0 60.0 60.0 80.0 78.0 82.0 82.0 82.0 83.0 95.0
P@200 47.5 60.0 56.5 54.0 54.5 75.5 75.0 78.5 76.0 77.0 76.0 82.0
P@300 43.3 56.0 52.3 49.7 49.0 71.3 68.7 71.3 70.0 70.0 70.0 73.0
Mean 46.3 59.3 57.9 54.6 54.5 75.6 73.9 77.3 76.0 76.3 76.3 83.3

Table 9: P@100, P@200, P@300 and the mean of them for each model in held-out evaluation on
NYT 10 dataset and MIRGENE dataset.

P@N(%) NYT MIRGENE

NONE ONE ATT AVE ATT RA Ours NONE ONE ATT AVE ATT RA Ours

P@100 53.0 63.0 65.0 63.0 69.0 73.0 82.0 90.0 88.0 84.0 85.0 94.0
P@200 46.0 62.0 58.0 59.5 61.0 69.5 74.0 80.5 78.0 77.5 80.5 83.0
P@300 45.0 59.3 54.7 56.7 59.0 68.7 69.7 71.7 70.7 70.7 71.7 71.0
Mean 48.0 61.4 59.2 59.7 63.0 70.4 75.2 80.7 78.9 77.4 78.6 82.7

Table 10: P@100, P@200, P@300 and the mean of them for each model in held-out evaluation on
NYT 10 dataset and MIRGENE dataset when K is set to 50 and C is set to 0.1.
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Figure 7: Aggregate precision-recall curves on NYT 10 dataset and MIRGENE dataset when K is
set to 50 and C is set to 0.1.

18


	Introduction
	Related Work
	Federated Denoising Framework
	Task Definition
	Relation Extractor
	Lazy Multiple Instance Learning
	Local Model Training
	Global Model Update

	Experiments
	Datasets and Evaluation Metrics
	Experimental Settings
	Baselines
	Main Results
	Increasing the Size of Local Datasets
	Increasing the Number of Local Updates

	Conclusion
	Case Studies
	Additional Experiments
	Can a strong extractor mitigate the label noise in federated settings?
	Ablation study of parallel computation

	Baselines
	Some Tables and Figures mentioned in the Main Text

