Nonparametric Bayesian inference of item-level features in classifier combination

Patrick Stinson'

Nikolaus Kriegeskorte'

1Zuckerman Institute, Columbia University

Abstract

In classification tasks, examples belonging to the
same class can often still differ substantially from
one another, and being able to capture such hetero-
geneity and its impact on classification can be im-
portant for aggregating estimates across multiple
classifiers. Bayesian models developed so far have
relied on a fixed set of latent variables to model
these causal factors, which not only introduces the
need for model selection but also assumes that
each item is governed by the same set of causal
factors. We develop a Bayesian model that can in-
fer generic item features by modeling item feature
membership as distributed according to an Indian
Buffet Process. Despite its flexibility, our model is
scalable to a large number of classifiers and exam-
ples. We compare our method with models from
item response theory and Bayesian classifier com-
bination on black-box crowdsourcing tasks and
with neural network instance-dependent models in
white-box classifier combination tasks.

1 INTRODUCTION

In classification problems, better performance can often be
achieved by combining the predictions of an ensemble of
classifiers [Dietterichl 2000\ [Yuksel et al., [2012] with the
underlying intuition that different models may be respon-
sive to different features in a given dataset and the set of
predictions from an ensemble of models provides a more
comprehensive statistic from which inferences can be done.

Crowdsourcing [Howe, [2006} |Callison-Burch and Dredze|
2010] outsources a wide range of problems to humans,
many of them requiring either special expertise or reasoning
whose nature and scope can be difficult for algorithms to
accurately capture (see e.g., [Budd et al., 2021]]), especially
if such examples aren’t well-represented in the training data.

Estimates among groups of classifiers, both human and
machine, are often correlated (conditional on the ground-
truth label) despite the classifiers operating independently
[Kim and Ghahramanil 2012} [Trick and Rothkopf], [2022]]
because items with the same ground-truth label are usu-
ally still not homogeneous: different items will often have
different features which will give rise to different classifica-
tion patterns that will coincide among classifiers, making
it appear as if the classifiers are statistically dependent. As
a simple example, a more difficult item will be classified
correctly less often than an easier item. A model that does
not differentiate among these different latent item features
effectively marginalizes over them, thus correlating classi-
fications which when otherwise conditioned on the correct
latent variables would be independent.

Fully Bayesian black-box methods exist for modeling the re-
sulting statistical dependencies among the classifiers while
keeping items homogeneous [[Kim and Ghahramanil, 2012}
Moreno et al.| 2015} [Li et al., 2019} Trick and Rothkopf,
2022]), but one should expect modeling these marginal distri-
butions to be suboptimal as item-specific information is lost
and all items are treated the same when they are not. For
example, the classifier outputs for difficult items would be
the same as for easy items as long as they belong to the same
class. Moreover, these methods require specifying a gener-
ative model of (and inferring) these dependencies, which
could be complex and without a straightforward closed form
approximation, as they arise from marginalizing over an un-
known (and likely variable) set of random variables.

Item response theory (IRT) [Lazarsfeld, 1950, Raschl 1960,
Lord et al., |1968|, |Baker and Kim) [2004] was developed to
measure specific latent traits such as ability or attitude in
individuals based on their performance on tests whose items
were assumed to possess specific latent features such as diffi-
culty or discriminability. Thus, a Bayesian treatment of IRT
models provides a means to heterogeneous item methods,
and one of our contributions is generalizing the {1, 2, 3}-PL
(parameter logistic) IRT models to classification tasks of
higher arity and evaluating their performance on simulated
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Figure 1: Illustration of our proposed method, item-dependent BCC (idBCC). (a). The presence of shared latent features
that can either increase classification accuracy (blue) or decrease classification accuracy (red) is inferred for every item.
(b) The confusion matrix of each classifier conditioned on the item is the softmaxed sum of the baseline factors unique to
classifier m that determine its classification probabilities in the absence of any latent features (its confusion matrix is just
the softmax of those factors over each row) and the (classifier-specific) inferred effects of each latent feature belonging to
the item. Conditioning on the label of the item selects a row of the confusion matrix representing the classifier’s labling
probabilities (features can be shared across items of potentially different ground-truth label).

data and crowdsourcing benchmarks. A potential issue with
IRT models, however, is that the number latent features and
how they interact is determined a priori instead of inferred
from the data and that each item is assumed to possess the
same set of latent features.

Item-dependent methods based on neural networks [Ro{
drigues and Pereiral 2018}, |Guo et al., [2023| |Li et al., [2024]]
have been developed, but these methods require direct ac-
cess to the item, which although straightforward in certain
tasks such as image recognition, a numerical representation
of an item, such as a patient’s entire medical chart, or all the
information necessary to integrate to make a forecast (along
with the appropriate architecture to transform this data into
a representation), can be difficult to determine. Additionally,
many neural network models require large numbers of data
points to be trained adequately, which limits their scope of
use.

To address these limitations, we propose a Bayesian non-
parametric model that infers black-box item-level features.
We model these item-specific feature membership as dis-
tributed according to an Indian Buffet Process [Griffiths
and Ghahramanil, 2005| [2011]], so we do not place a priori
assumptions on the number of item-specific latent factors
and do not assume which items possess which factors. For
each factor, we infer a classifier-specific effect, so we do
not place a priori assumptions on how each latent factor
affects classification (which can vary among classifiers).
We compare our model with the competitors on simulated
data, black-box crowdsourcing benchmarks, and white-box
classifier combination tasks.

2 RELATED WORK

2.1 ITEM RESPONSE THEORY

Item response theory (IRT) [Lazarsfeld, |1950, [Rasch) 1960,
Lord et al., [1968, Baker and Kim, [2004] models the re-
sponses of test takers to items in a test using a few hand-
crafted parameters, namely the ability of the test taker (in
terms of sensitivity a(!) given an item whose ground-truth
value is True or specificity o(?) given an item whose ground-
truth value is False), the difficulty of the item S, the discrim-
inability of the item +, and the guessability of the item A.
Indexing the items with n and test takers with m, we have

P(z(™ =t,10,t,) = A + (1 = Ap)o(yn (i) — B)),
(1)

where 6 = {«, 8,7, A} and t,, is the ground-truth label of
item n. The binary model is generalized to L-ary when t,, €
{1, ..., L} with the probability of being incorrect split evenly
among the alternative L — 1 choices. Thus, a limitation of
IRT extended to L-ary classification problems is that the
off-diagonal entries of the corresponding confusion matrix
P (xgm) = l'|t,, = 1) are all equal, so the model cannot learn
label- or item-conditional class-dependent misclassification
rates; e.g., in digit recognition, the model probability for
misclassifying an instance of a 1 for a 7 must be the same
as that for misclassifying it for an 8.

Equation () is called the 3 parameter logistic (3-PL) model.
The 2-PL and 1-PL models can be recovered by setting
An = 0 and both A,, = 0,7, = 1, respectively. Bayesian
treatments of IRT include |Whitehill et al.| [2009], [Trick et al.
[2023]] using 1-PL and Han et al.|[2024]] using various com-
binations of parameters but evaluating models on two binary
labeling tasks separate from crowdsourcing benchmarks.



2.2 BLACK-BOX INDEPENDENT AND
DEPENDENT BAYESIAN CLASSIFIER
COMBINATION MODELS

IBCC [Kim and Ghahramani, [2012]] models each classifier’s
labeling probability of an item independently based on the
underlying (inferred) ground-truth label of the item:

2™ty =1 ~ Cat(x{™),

where m and n index classifiers and items, respectively, [
indexes the ground-truth label, and 7 (") represents the mth
classifier’s confusion matrix whose rows are each given a
Dirichlet prior:

Wl(:n) ~ Dir(ozl(in))7
where
aft) ~ Exp(AI( = I') + NI(L # 1),

and \ < )\ is set to reflect an inductive bias that classifiers
are better than chance level.

Kim and Ghahramani| [2012] also propose a dependent
model in which a Markov network models the label-
conditional dependencies between each pair of classifiers;
however, the model requires computing a partition function
and does not scale well to large numbers of classifiers.

Li et al,| [2019] develop a variational Bayesian method,
EBCC, that approximates this dependency matrix using
a low-rank tensor decomposition.

Clustering based BCC (cBCC) [Moreno et al.,|2015]] uses
a Chinese Restaurant Process [[Ferguson, |1973| |Blackwell
and Macqueen, |1973| [Tehl |2010] prior to infer a nonparam-
eteric clustering of classifiers. For each classifier in each
cluster, the confusion matrices are the same. In a hierarchi-
cal version, the intra-cluster classifiers’ confusion matrices
are distributed according to the same distribution.

2.3 WHITE-BOX ITEM DEPENDENT MODELS

In contrast to black-box models which can be used in any
crowdsourcing or classifier combination task, more recent
white-box models use neural networks to transform the
data underlying a given item (for example, the image in an
image recognition task) into a representation that can be
used to relate features in a given data point to the labels
the classifiers assign to the item. White-box models are
therefore limited in scope of use, as some classification
tasks cannot easily be represented as a numerical input,
and neural network models often cannot be trained well on
limited amounts of data.

CrowdLayer Rodrigues and Pereiral [2018]] learns a simple
mapping, such as a linear or affine transformation, from

the bottleneck layer of a neural network to each classifier’s
confusion matrix parameters.

IDNT |Guo et al.|[2023]] uses neural networks to learn sepa-
rate nonlinear representations of both the classifier’s exper-
tise and the features of the item as a function of the item
and determines labeling predictions using Bayesian linear
regression with a spike-and-slab weight prior.

TAIDTM [Li et al| [2024] learns an annotator adjacency
graph which is transformed by a graph convolutional net-
work Kipf and Welling [2017] into item-dependent parame-
terizations for each classifier.

3 MODEL

Our model, which we call idBCC for item-dependent
Bayesian Classifier Combination, infers a binary feature
membership matrix, V € {0, 1} *¥ paired with each fea-
ture’s inferred effects on each classifier { Uy, x }me[n] ke[k]
whose dimensionality K is dynamic during inference via
the Indian Buffet Process (IBP) Griffiths and Ghahramani
[2005}, 2011].

We illustrate the idea behind our model in Figure [T} Each
item is associated with a set of latent features (including
potentially none) represented by 1s in the corresponding
row of V. The combination of a given item’s latent features,
the effects each feature has on each classifier, the (inferred)
ground-truth label of the item, and the classifiers’ ground-
truth label-conditional rating probabilities (i.e., each of their
baseline confusion matrices) gives the labeling probabilities
of that item for the classifiers.

The IBP is a stochastic process that defines a probability
distribution over binary matrices with an infinite number of
columns (with only a finite number of columns containing
1s). Modeling feature membership as a realization of an IBP,
we are able to infer a variable and unbounded number of
causal factors for each item, in contrast to existing models
whose causal factors are generally fixed in number and
whose number cannot vary across items.

The IBP prior can be derived by first fixing the number of
features/columns K and using a Beta-Bernoulli model to
generate a N x K binary matrix:

0y ~ Beta(a/K, 1) 2)
Vn,k|9k ~ Bern(@k), (3)

where « controls the row and column sums of V. Integrating

out 6, gives

['(Nk + a/ K)I'(N — Ni 4 1)
I'N+1+4+a/K) ’

K o
P(V)= H r “)
k=1

where Ny, is the row sum of column k. Taking the limit
K — oo and arranging the columns in a particular way (see



Griffiths and Ghahramani| [2011]] for more details), we get

PV) = o'+ exp(—aHy) ﬁ (N — NN, — 1)!
k=1

N _ b)
2:1 ' Kp! N
&)
where K, is the number of nonzero columns in V, K}, is
the number of columns whose entries match the index h

. N
expressed as a binary number, and Hy :=>_;"; 1.

In contrast with models with handcrafted features, for exam-
ple in the IRT model described in Equation (IJ), we do not
specify a priori how each learned feature impacts the classi-
fication probabilities. Instead, in our model, the kth feature
has an impact on each classifier that is represented by the
matrix Up, 1, € RiXL , which can be thought of as an unnor-
malized confusion matrix factor. Our model’s prediction of
the mth classifier’s labeling of the nth item is determined by
softmaxing the sum of the unnormalized confusion matrix
factors for classifier m corresponding to the features present
in the nth item:

K
2|,V t, ~ Cat(softmax (Y U kb, Vo)1)

k=0

(6)
We reserve a bias term for k = 0 such that V. o = 1, which
equips our model with the standard item-independent base-
line confusion-matrix parameterization, on top of which
item dependencies can be learned when K > 0. Thus,
our model can be considered a generalization of IBCC (al-
though our effective prior over confusion matrix rows is not
Dirichlet) as well as 1-PL.

To avoid potentially learning spurious features, we place
some constraints on the form U, ; can take. Each matrix
is constrained to be nonnegative to avoid learning matri-
ces that cancel each other out. Furthermore, since the soft-
max function is invariant to adding a constant to each term,
we constrain the form each U,  can take to ensure each
learned feature has an impact on classification probabilities.
This can be achieved by enforcing an inductive bias that
each feature has either a positive or negative effect on each
classifier’s accuracy. For example, to refer to a toy example
illustrated in Section [5] a handwritten digit drawn thinly
such that the digit’s edges don’t activate convolutional fil-
ters as well as those with thicker edges should give rise to
a negative classification accuracy effect regardless of the
digit being drawn or the particulars of the specific classifier
architecture being used. Thus, the inductive bias is that the
feature’s effect sign on classification, i.e., whether it is pos-
itive or negative, is invariant with respect to the particular
item or classifier.

Introducing an indicator variable s;, € {+, —} that indicates
a positive/negative feature, a prior over Uy, ;. that satisfies

these constaints is

I(1 £ 1)6(0) + I(l = YN (0,v), s, = +
I =16(0) + I(1 # "N (0,v), s, = —
(N
where NV, (-, -) is a nonnegative (truncated) normal distribu-
tion. U. o corresponds to each classifier’s item-independent
label-conditional rating (unnormalized log-) probabilities,
analogous to 7 in IBCC, for which on each entry we place a

U k>0, |5k ~ {

N(0,v) prior.

Sometimes in our exposition, a clearer notation is to
separate U into three separate matrices: U. o, U (pos) . —
{U-Jc}{k:sk:+}9 and U(neg) = {U-,k}{k:ssz}’ and we do
the same for the corresponding binary feature variables:
V(pOS) = {V7k}{k:sk:+}’ V(neg) = {V,k}{k:sk:—}~

Positive and negative features are distributed according to
separate Indian Buffet Processes:

1 (pos) IBP(a(P"S)),
V()  IBP(a(™®).

We put an inverse-gamma prior on the variance
v~ IG (0w, Bo)
and a prior on the ground-truth labels
t, ~ Cat(k).

Our full model is shown in Figure[2]

IBP(a)

IBP(a") Vik

3 \‘:

Figure 2: Plate notation of idBCC.

4 INFERENCE
We use Gibbs sampling for inference, so we derive posterior
conditional distributions for all latent variables in our model.

The posterior distribution for Uy, ;1 is log-concave and
can be efficiently sampled using an adaptive rejection sam-



pling (Gilks and Wild|[[1992] (ARS) routine:

U k1. K4 Krew:

(.Z‘n|U[ n,— k71Kngw] tn,v, gk)

EU. seirisessonen [P@nlU U gy1xtwoess [V, —, Lives ], oy v, 5]

{n:t,=l
xglm) =l/}

log p(Unn 1,10 Ungi— (8)

L K
> log D exp( > Unwr i Vo) +108(p(Un k10 |5))-

{n:t,=l} '=1 k’=0

Dealing with missing data requires simply indexing over
non-missing entries.

4.1 SAMPLING THE ITEM FEATURES

Gibbs sampling over the binary feature matrix V' involves
two different steps. For V;, j; such that Zn Itn Vo >0,
i.e., another item shares the same feature, we have

P(Vn,k|xa U7 V—n,k:atna Sk) X P(x|V—n,k7 U» Vn,katn)*
P(Vn,

7n,k7sk)7

where from Equation (),

V?];]-N — Vn,k + ask/KS’“

P(Vn,k: N+0[Sk/KSk )

= 1UV_p ks Sk) =

where K 5% := 25:1 I(spr = si).

When V_,, ;. = 0, factor k is replaced by a sample over
the posterior distribution of latent features that no other
item possesses. First, the number of new features K™V is
sampled with probability

P(K™Y |z, U, Vs —k, tn, v, 8k) o< P(K™Y|s1) %
(l‘n‘U [ n,—k» 1KneW],tn,’U75k), (9)

where [V, _, 1 xn] indicates the concatenation of the nth
item’s latent factors (except the kth one) with K™V extra
latent factors. From the IBP, the prior P(K"V|s;,) is given
by Pois(a®* /N). In practice, the probability mass function

of the posterior P(K""|rest) is truncated at some Kjow.

The second term in Equation () is marginalized over the
possible effects of the new latent factors represented by

= HEUm,K+1:K+K"eW {P(‘rgzm)ﬂﬁ Um$K+1:K+K"ewit7l7

m

[Vn7_k-, ].Knew:l, v, Sk):|

K
H 2y 1 ~N4(0,0) [SOftmax Z Um kytn,l’ Vn kT

m k=0
KHCW
D awrUsk =PI = ta)+
k'=1

T
I(sp = ) # tn)))ﬁ=1)] ™,

where m indexes over all classifiers that classified item n.

Note that conditioning on sj, indicates that inference is being
done using two separate IBP priors: one for s = +, the
latent factors improving classification accuracy, and s, =
—, those detrimental to classification accuracy. Not only
does this reflect a more generalized model in which we
may expect a different number of positive and negative
latent factors, but it also simplifies the next step in inference,
which is to evaluate the second term in Equation (9).

Recall from Section [3] that a positive factor (s, = +) re-
sults in a truncated normal N (0, v) random variable being
effectively added to each term on the diagonal of each classi-
fier’s confusion matrix factors, and a negative factors results
in the same to the off-diagonal entries. For each possible
K™% this is done independently K™% times. Since the (in-
ferred) label ¢,, is conditioned on, we only need to calculate
the expectation of the softmax function w.r.t. these random
variables on the ¢,,th row of the resulting confusion matrix.

When s;, = + and only one element in the row has a random
variable (or sum of RVs) to add, we can express any element
of the softmax output as the result of applying the logistic
sigmoid function, ¢. To use arbitrary variables y and z,
and adding z to the /th entry of vector y representing the
confusion matrix factor row we have:

exp(y1 + 2)

> vz exp(yr) + exp(yi + 2)

=o(y — log(z exp(yrr)) + 2)

£l
(10)
exp(yr) _ o eply)
Svzexp(yr) Texpyi+2) Xy exp(yr)
a(log(D>_ exp(yp) — yi — 2))- (11)

1#£1

For any real value  we can represent o(x) as a Taylor



expansion at some point f:
1
o(@) = =@ (u)(@ - ). (12)

Setting © = y + Zkzlw 2), where 2z, ~ N5 (0,v), then
x = p+ Y (2 —m1), where p :=y + K"¥m, and m,,
is the pth moment of N (0, v). The expectation of o(x) is
then

Blo(@)] =Y 0@ (WE(S (s - m)P).  (13)

|
p: "
From the multinomial theorem, we have

E[(Z(zk — ml))P} _
k
(hl, hg?..., hK) Mp,Mpy My -

hit+hat-+hx=p
hk€Z+

(14)
The moments of a truncated normal distribution and the
integer partitions needed can be efficiently calculated
[Kelleher and O’Sullivan, 2014} |Orjebinl 2014]. Com-
puting derivatives of o(u) can be done recursively by
noting that (o(P))’ = p(¢(®) — ¢(P*+1)) 5o differentiation is
matrix multiplication in the coefficient space of powers of o.

For z ~ N_(0,
compute expectations of o (y —

v), E[z’] = (-=1)Pm,, so we can
> zk) in the same way.

We can thus compute the value of Equation (9) to arbi-
trary precision for positive latent features. While in general
this allows avoiding costly Monte Carlo approximations to
marginalizing over the item feature effects, it is particularly
important for our method, as it enables our method to scale
well with V.

When s, = —, we approximate the expectation of adding
independent sums of K™ truncated normals to all the off-
diagonal terms with the expectation of the softmax when
subtracting the sum of K™V truncated normals from the
diagonal term, thus enabling approximating the expectation
again by a Taylor series expansion.

After sampling K"V, the effects of the new item features on
the classifiers U. k.1 gnev are sampled via Equation (@

Finally, the feature variance is updated by

ML
vlrest ~ IG (av + T(KP"S + (L -

% Z U?n,k,l,l’

m,k,Ll

1K™®), Bu+

and the labels updated by

P(tn = lrest) < P(2,|U, Vy. tn = DP(t, = ).

s o

1
>
=
]
c
(3]
©
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Figure 3: Toy example of item heterogeneity in a classifica-
tion task. Left: A simple CNN binary classifier’s activation
values for classifying Os vs 1s in MNIST. Top right: Items
of label 0 with lowest activation values. The thinness of the
digit means the convolutional filters learned do not activate
well. Bottom right: Items of label 0 with typical activation
~10.

S EXPERIMENTS

In all experiments, we initialize U.  to be 2.51, v = 5, and
sample for 1000 iterations, discarding the first 100 iterations
and subsampling each 10th iteration to form a final esti-
mate marginalized over subsamples. Our initialization and
procedure in the IRT models is done the same way for fair
comparison. We set a(P®) = o("8) = 102, This created
a high threshold for adding new item features in order to
prevent inferring spurious features. We truncate our Taylor
series to 5 terms and took KoY = 1 for computational ef-

max

ficiency as we found no instances when using larger KoY
in which more than one new feature of the same sign was
sampled for a particular item. We set v, = 3, = 1073 for

a vague prior over the variance. We set k = 1.

For the IRT models we set the priors (when applicable) to be
\; ~ U[0,1], 7; ~ Lognormal(0, 1), aly) ~ A°(0,1), 8; ~
N (0, 1). We used an adaptive Metropolis-Hastings method
to simulate from the non-log-concave conditional posterior
distributions of the 3-PL IRT model, simulating 100 steps
each Gibbs step to ensure adequate mixing. Otherwise, the
conditional posterior distributions are log-concave and can
be sampled using ARS.

5.1 TOY EXAMPLE

To make more concrete our motivation that modeling item
heterogeneity can improve classification performance, we
illustrate this in a toy example of classifying Os from 1s in
MNIST. We choose a simple architecture for illustration
purposes consisting of 20 5x5 convolutional filters followed
by a max pooling over the entire feature map. We set the
predictive probability of the digit being 0 or 1 proportional
to the exponential of the sum of the first half of the max-
pooled feature maps and the sum of the last half, respectively



Table 1: Cross-model classification accuracy in simulated data.

rows: inference / cols: generation 1-PL 2-PL 3-PL 1idBCC
MV 0.925 £0.004 0.701 £0.002 0.717 £0.007 0.855 +£ 0.002
1-PL 0931 £0.004 0.73 £0.004 0.801 £ 0.005 0.861 = 0.003
2-PL 0.926 +£0.003  0.745 £0.004 0.780 £ 0.006  0.859 + 0.005
3-PL 0.882 £0.015 0.740 £0.006 0.777 £ 0.007  0.855 £ 0.004
idBCC 0.935 +0.006 0.780 + 0.003 0.824 = 0.004 0.865 + 0.006
Table 2: Model classification accuracy on black-box crowdsourcing benchmarks.
face SP CF web bird MS
MV 0.637 £0.004 0.886 +0.001 0.881 £0.009 0.729 +£0.005 0.759 £ 0.000 0.704 £ 0.009
1-PL 0.643 £0.002 0911 +£0.000 0.887 £0.003 0.744 £0.004 0.889 = 0.000 0.801 + 0.001
2-PL 0.650 £0.002 0.910 £ 0.001 0.890 £ 0.000 0.769 +0.002 0.824 & 0.000 0.794 £+ 0.001
3-PL 0.647 £0.002 0.902 £+ 0.002 0.885 £ 0.005 0.665 = 0.000 0.815 £ 0.000 0.790 % 0.002
IBCC  0.638 £0.002 0.916 +£0.000 0.883 +£0.000 0.753 £0.003 0.889 +0.000 0.785 £ 0.005
EBCC 0.638 £0.008 0.915+0.000 0.883+0.000 0.769£0.000 0.863 +£0.015 0.787 &£ 0.000
cBCC  0.651 £0.000 0.915+0.000 0.877£0.000 0.782+0.000 0.889 £ 0.000 0.777 &£ 0.000
idBCC 0.651 £ 0.004 0.918 + 0.001 0.888 £ 0.005 0.859 = 0.003 0.926 + 0.000 0.787 £ 0.013

(i.e., it is the softmax of the activation sum over each half of
the filters).

From Figure [3] we see that after training, convolutional
filters are learned such that the resulting activation values
(the sum of the max-pooled O feature maps minus the sum
of the max-pooled 1 feature maps) are clustered according
to the digit, but the classes are not fully separated. Upon
inspecting the convolutional filters, we found that the filters
that learned to match for O (the first half of the set of filters)
were better at classification than those learned to match for 1
(possibly because an edge detector that activates for 1 would
still activate relatively strongly for many Os), with a similar
clustering of digits as in the figure. However, certain items
did not adequately activate the learned convolutional filters
due to the thinness of the drawn digit, thus giving rise to
label-conditional item heterogeneity.

We wanted to see if 1. our proposed model could infer
the heterogeneity in our data purely from the individual
outputs of the filters 2. modeling this heterogeneity would
lead to better performance. We constructed a black-box
dataset consisting of the activations of our filters binarized
by thresholding them at their mean activations for 300 data
points: 100 points consisting of the Os that activated the 0
filters the least (the difficult items), 100 points consisting of
the Os that activated the O filters the most (the easy items),
and 100 points that activated the 1 filters the most. We
found our model to approximately correctly identify the item
heterogeneity, inferring a negative item feature that 81% on

average of the difficult items had as a feature, compared to
12% of the easy Os and 0% of the easy 1s. Under majority
vote, predictive accuracy was 0.947, compared to 0.970
under our proposed model.

5.2 SIMULATED DATA

We compared idBCC and the Bayesian IRT models on sim-
ulated data, performing all pairwise comparisons between
models, shown in Table |1}, where we generated data from
the prior of each of our Bayesian models, corresponding
to each column in the table, and ran inference under each
model, recording the predictive accuracy of each model in
the rows. Note that in general performance is highest among
the IRT models for data generated by the 3-PL models be-
cause, due to a non-zero guessing probabilities A, the base
classifiers are strictly more accurate than under the 2- and
1-PL models.

Our results show that even when the generative and inferen-
tial models are the same, a simpler (and more flexible, in the
case of idBCC) model can often perform better. Even if the
structure of the model matches that of the ground truth, if
the model has many parameters, it might be difficult to end
up in a region of parameter space in which all the parameters
are useful to the model. Otherwise, the model effectively
marginalizes over a set of nuisance parameters that it must
infer, in contrast to idBCC which can remove parameters
if they contribute little or negatively to the evidence (or



Table 3: CIFAR10 classification accuracy (Average classifier accuracy of base models: .952)

Training/Testing points IDNT TAIDTM CrowdLayer 1dBCC
5000 0.933 £0.005 0.787 £0.023  0.963 £ 0.007 0.960 £ 0.003
1000 0.933 £0.003 0.481 £0.015 0.946 £0.001 0.957 £ 0.004
500 0.930 £0.007 0.378 £0.022 0.950 £ 0.006 0.955 -+ 0.004
200 0.929 £0.014 0.298 £0.007 0.952 £0.013  0.956 + 0.007
100 0.924 £0.011 0.200 £0.018 0.935 £ 0.007  0.950 £ 0.005

Table 4: FashionMNIST classification accuracy (Average classifier accuracy of base models: .916)

Training/Testing points IDNT TAIDTM CrowdLayer idBCC
5000 0.915+0.003 0.917+0.005 0.925+0.003 0.937 & 0.006
1000 0.905 +£0.004 0.915+0.006 0.918 £0.004 0.935 + 0.006
500 0.898 £0.006 0.913 £0.007 0.915+0.007 0.932 + 0.005
200 0.895+.0013 0.873 £0.023 0.912 +£0.006 0.930 & 0.007
100 0.882+0.015 0.593 +0.039 0.898 +0.009  0.920 + 0.005

add more if they help). Such nuissance parameters are not
limited to the 2-PL and 3-PL models; if, for example, an
item’s difficulty is close to 0 in the 1-PL model (or if in the
2-PL model its discriminability is very low), not modeling
its difficulty (effectively setting its parameterization to 0)
could be more beneficial than marginalizing over stochastic
inferences of it, which may contain little information.

5.3 BLACK-BOX CROWDSOURCING
BENCHMARKS

We next tested our model’s performance on several crowd-
sourcing black-box benchmark datasets [Welinder et al.,
2010, [Zhao et al., 2012, Rodrigues et al., 2013} Mozafari
et al.,[2014, [Venanzi et al.,[2015]], which we show in Table
Overall, we found that idBCC performs the most robustly
of all the methods, performing the best on the majority of
the datasets, and still performing close to the top when it
did not perform best.

We also found the IRT models to often perform surprisingly
well in comparison to state-of-the-art models, which are
generally more sophisticated. In particular, 1-PL and 2-PL
performed fairly robustly, although they were substantially
worse than idBCC on the web and bird datasets.

5.4 WHITE-BOX BENCHMARKS

We finally compared our method against neural network
based white-box methods CrowdLayer [Rodrigues and
Pereira, 2018, TAIDTM |Guo et al.| [2023]], and IDNT
[Li et al 2024] in two tasks combining classifications

from neural network classifiers. For our base classifiers,
we used max-one-hotted predictions from Densenet-bc-
L.190-k40, PreResnet-110, and Resnet-110 on the test set
of CIFAR1(]and from LeNet-5, AlexNet-Light, VGGNet-
16, and InceptionNet-10 on the test set of the FashionM-
NIST dataseﬂ We used the official implementations for
TAIDTM?|and IDNTE] and the Crowd-kiﬂ Python implemen-
tation for CrowdLayer.

We did not want to test model performance on data that
had been used for training/validation of the base classifiers,
so we restricted ourselves to the test set, taking random
subsamples of size 100, 200, 500, 1000, and 5000 of base
model classifications of the test set. Since the models have
access only to the images and the noisy annotations and we
are interested in these predictions, the training and test sets
are the same. We used the rest of the dataset (the original
test test containing 10000 examples) as the validation set
for the neural network based models to ensure good model
validation. For idBCC, we did not use this validation set,
which meant that we used at most half the amount of data
as the other methods in every comparison. We show perfor-
mance for CIFAR10 in Table@ In general, we found idBCC
gave the best performance and retained high performance as
the number of datapoints decreased down to 100. We found

'downloaded from github.com/GavinKerrigan/conf_matrix
_and_calibration

2pretrained weights downloaded from github.com/wzyjsha-
00/CNN-for-Fashion-MNIST

3 github.com/tmllab/TAIDTM

*github.com/hguo1728/BayesianIDNT

3crowd-kit.readthedocs.io



similar performance under FashionMNIST, which is shown
in Table[dl

6 DISCUSSION

A limitation of our model is that the features that can be
inferred are additive; it may be possible to generalize our
model further by allowing for interactions between two
features or among features up to some fixed order, or to a
generic order using a hierarchical version of the IBP (e.g.,
James et al.|[2024]).

To the best of our knowledge, our model is the first black-
box Bayesian instance-dependent model of classifier com-
bination, which we have shown generally performs better
compared to competitors both on black-box crowdsourcing
tasks as well as white-box classifier combination tasks when
there is limited data.
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