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Abstract001

Recent works have suggested that In-Context002
Learning (ICL) operates in dual modes, i.e.003
task retrieval (remember learned patterns from004
pre-training) and task learning (inference-time005
“learning" from demonstrations). However, dis-006
entangling these the two modes remains a chal-007
lenging goal.008

We introduce ICL CIPHERS, a class of task009
reformulations based on substitution ciphers010
borrowed from classic cryptography. In this011
approach, a subset of tokens in the in-context012
inputs are substituted with other (irrelevant)013
tokens, rendering English sentences less com-014
prehensible to human eye. However, by design,015
there is a latent, fixed pattern to this substitu-016
tion, making it reversible. This bijective (re-017
versible) cipher ensures that the task remains018
a well-defined task in some abstract sense, de-019
spite the transformations. It is a curious ques-020
tion if LLMs are capable of solving ICL CI-021
PHERS with a BIJECTIVE mapping, which re-022
quires deciphering the latent cipher.023

We show that LLMs are better at solving ICL024
CIPHERS with BIJECTIVE mappings than the025
NON-BIJECTIVE (irreversible) baseline, pro-026
viding a novel approach to quantify “learning”027
in ICL. While this gap is small, it is consis-028
tent across the board on four datasets and four029
models families. Finally, we examine LLMs’030
internal representations and identify evidence031
in their ability to decode the ciphered inputs.032

1 Introduction033

In-Context Learning (ICL) is an emergent behav-034

ior in Large Language Models (LLMs) that al-035

lows them to identify patterns in demonstrations036

given as prompts and apply these patterns to sim-037

ilar tasks (Brown et al., 2020). This intriguing038

inference-time learning ability has spurred numer-039

ous studies to better understand its dynamics. De-040

spite recent efforts (Xie et al., 2021; Min et al.,041

2022; Srivastava et al., 2023; Shin et al., 2022;042
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Input: I today my apple! There is …
Output: positive

Input: The funny doesn’t looks so nice
Output: negative

    ⋮

Input: I don’t today looking at the funny

Figure 1: An example of ICL CIPHERS, a cryptographic
task reformulations framework where a subset of tokens
are ciphered (replaced with other tokens in the lexi-
con) via a BIJECTIVE mapping (e.g., each instance of
“school” is replaced with “apple”.) Since this cipher is
a bijection, one can recover the original format of the
ICL instance, ensuring the well-defined task upon the
transformations.

Razeghi et al., 2022; Shen et al., 2024), the liter- 043

ature’s understanding of the functional aspects of 044

ICL remains elusive and contentious. 045

Most pertinent to our study, Pan et al. (2023); Lin 046

and Lee (2024); Wang et al. (2024) propose ICL’s 047

dual behavior: task retrieval (TR), which involves 048

recalling a previously encountered task from pre- 049

training data through its demonstrations, and task 050

learning (TL), which refers to the ability to grasp 051

new input-label mappings that were not seen dur- 052

ing pre-training. Although these two mechanisms 053
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are not necessarily separate in practice, examining054

them independently may help researchers better055

understand their strengths and limitations. Specif-056

ically, Pan et al. (2023) measure TL by assessing057

task performance when labels are substituted with058

abstract symbols (such as numbers or letters) that059

have never co-occurred with the inputs during pre-060

training. However, it remains unclear whether this061

label mapping is sufficient to ensure pure TL (i.e.,062

no partial influence of TR). It is conceivable that063

LLMs could still use the human-readable inputs064

and prompt structure to deduce the task, thereby065

performing implicit task retrieval. Fundamentally066

differentiating TR and TL is hard because it is hard067

to know whether the learning signal comes from068

the in-context examples or pretraining data even069

after modifying input-label mapping suggested in070

prior work which leaves the inputs intact and leaves071

the door open for LLM to exploit human-readable072

inputs and prompt structure to deduce the task,073

thereby performing implicit task retrieval. This074

consideration motivates the exploration of alterna-075

tive approaches for quantifying task learning.076

In this study, we introduce ICL CIPHERS, a class077

of prompt reformulations based on substitution ci-078

phers borrowed from classic cryptography, applied079

to task inputs. For example, in a sentiment classifi-080

cation task where sentences are assigned to target081

classes, we apply BIJECTIVE shuffling to part of082

the LLM’s original vocabulary, ensuring a one-to-083

one correspondence between tokens in the shuffled084

and original vocabularies. This random BIJECTIVE085

shuffling is done before the experiments and re-086

mains constant throughout. We then replace tokens087

in the input text with their corresponding tokens088

based on this mapping (e.g., every instance of “love”089

is replaced with “today”), as shown in Figure 1.090

The outcome of substitution ciphers is generally091

not easily interpretable by humans (see Fig.1 for092

examples), resembling a random shuffling of words.093

However, since ICL ciphers are reversible, the orig-094

inal tasks can be reconstructed from the encoded095

version, ensuring that the task, although not easily096

understood by human eyes, still represents a valid097

task. This lack of interpretability is a design feature098

(rather than a flaw) here as it greatly reduces the099

likelihood that our prompts have been encountered100

in the pre-training data. As a results, our work-101

ing hypothesis is that any gains above the random102

(NON-BIJECTIVE shuffles should be indicative of103

TL (as opposed to TR) within ICL.104

We evaluate ICL ciphers using 4× pre-trained105

models across 4× well-known benchmarks and 106

different range few-shot numbers demonstra- 107

tions. Our empirical results demonstrate that ICL 108

achieves better-than-random performance on ci- 109

phered tasks (§5). For example, on the BIJEC- 110

TIVE ciphered HellaSwag, Llama3.1 (8B) averages 111

3.6% higher accuracy than NON-BIJECTIVE ci- 112

phers, across various demonstration counts (Ta- 113

ble 2). This suggests that LLMs can learn and 114

decode these random bijections, enabling them to 115

solve ICL Ciphers. Furthermore, we provide ad- 116

ditional results with the shuffling rate and model 117

scale. Finally, we perform an interpretability anal- 118

ysis (§6.4) which reveals promising, albeit weak, 119

trends in their ability to decode the ciphered inputs. 120

Unlike previous work by (Pan et al., 2023; Wang 121

et al., 2024) that intervenes in task outputs through 122

label shuffling, our approach modifies task inputs. 123

This creates instances less likely to have been en- 124

countered in pre-training data, offering an alter- 125

native TL indicator by necessitating the LLM to 126

decode ciphers as part of task solving. These per- 127

spectives can be seen as complementary, each as- 128

sessing different aspects of “learning” in ICL. 129

In conclusion, we propose an alternative method 130

for quantifying “learning” in ICL through the use 131

of substitution ciphers. We establish a framework 132

for evaluating the performance of ICL within this 133

experimental context. Our findings demonstrate 134

evidence of task learning in ICL, both in terms of 135

downstream performance and through interpretabil- 136

ity analysis. As far as we know, this is the first 137

work to propose such cryptographic approaches 138

for quantifying genuine “learning” in in-context 139

demonstrations. We hope these insights inspire 140

future research aimed at gaining a deeper under- 141

standing of the emergence of ICL in LLMs. 142

2 Related Work 143

Dual operating modes of ICL: Min et al. (2022) 144

showed the disconnect between “learning” and the 145

content of in-context demonstrations (lack of task 146

“learning”). This motivated follow works to iden- 147

tify two primary modes of operation for In-Context 148

Learning (ICL): task retrieval (TR), which involves 149

recalling patterns previously encountered in pre- 150

training data, and task learning (TL), which in- 151

volves learning new patterns on-the-fly that were 152

not seen during pre-training. Some studies empha- 153

size TR by exploring the factual recall capabilities 154

of ICL (Sun et al., 2023; Golchin et al., 2024; Han 155
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et al., 2023; Zhao, 2023; Reddy, 2023; Dankers and156

Titov, 2024), providing insights into how LLMs157

memorize pre-training data, thus facilitating TR.158

Other studies (Lin and Lee, 2024; Song et al., 2024;159

Nafar et al., 2024; Anand et al., 2024) focus on160

simplified datasets (e.g., linear regression) or archi-161

tectures (e.g., shallow transformers), which differ162

from our focus. Additionally, Pan et al. (2023);163

Wang et al. (2024) have attempted to separate TR164

and TL through output intervention by replacing165

labels with abstract symbols like numbers or let-166

ters. However, it remains uncertain whether using167

abstract labels effectively eliminates the influence168

of TR in ICL. Many human-readable tasks may169

have inherent priors embedded in the pre-training170

datasets, suggesting that LLMs might still use in-171

puts and prompt structures to infer the task, thereby172

engaging in implicit task retrieval. Our approach173

proposes an alternative method for quantifying TL174

by intervening in the input space.175

Ciphers and their use in AI: The problem of de-176

ciphering substitution ciphers is studied in NLP177

as it may provide automatic ways to decipher178

lost languages without any parallel corpus (Knight179

et al., 2006; Ravi and Knight, 2008, 2011; Dou and180

Knight, 2012; Berg-Kirkpatrick et al., 2013; Pour-181

damghani and Knight, 2017; Nuhn et al., 2013;182

Berg-Kirkpatrick and Klein, 2011; Corlett and183

Penn, 2010; Aldarrab and May, 2020, inter alia).184

For instance, Ravi and Knight (2011) introduces185

a Bayesian approach for deciphering substitution186

ciphers, combining information from letter n-gram187

language models and word dictionaries to perform188

efficient sampling-based inference for decipher-189

ment results. We also note various optimization-190

based and heuristic-based computational frame-191

works that are deterministic in nature for deci-192

phering substitution ciphers (Peleg and Rosenfeld,193

1979; Ganesan and Sherman, 1993; Olson, 2007).194

We also note the work of Yuan et al. (2023)195

which is the only work (that we know of) applying196

ciphers on LLMs (GPT-4) in the context of safety197

problems, which is a different focus than ours.198

Alternative explanations of ICL: Since the dis-199

covery of ICL (Brown et al., 2020), numerous stud-200

ies have explored it across various contexts (Zhao201

et al., 2021; Min et al., 2022; Mishra et al., 2022;202

Han et al., 2023; Wang et al., 2023; Sia et al., 2024;203

Vacareanu et al., 2024; Mueller et al., 2024). For ex-204

ample, Perez et al. (2021); Lu et al. (2022); Mishra205

et al. (2022) demonstrated ICL’s sensitivity to the206

selection and sequence of demonstrations, while 207

Shin et al. (2022); Razeghi et al. (2022) highlighted 208

its sensitivity to the frequency and size of the rel- 209

evant pre-training corpus. Another research di- 210

rection seeks to elucidate the mechanisms behind 211

ICL. Xie et al. (2021) described ICL as implicit 212

Bayesian inference, where ICL demonstrations are 213

mapped to a latent concept (task) learned during 214

pre-training. Other works have attempted to ex- 215

plain ICL as a form of implicit optimization (gra- 216

dient descent and its variants) (Garg et al., 2022; 217

Zhang et al., 2023; Dai et al., 2023; Von Oswald 218

et al., 2023; Li et al., 2023), though the applicability 219

of these formalisms to real LLMs is debated (Shen 220

et al., 2024). A few studies aim to understand how 221

ICL emerges in LLMs. Hahn and Goyal (2023) 222

suggested that the compositional structure of natu- 223

ral language leads to emergent in-context learning, 224

while other works (Chan et al., 2022) propose that 225

certain distributional properties in the pre-training 226

data may give rise to ICL. Although many of these 227

studies explain certain aspects of ICL, they fall 228

short in others. The precise origins of ICL in LLMs 229

remain an active area of research. 230

3 Defining ICL CIPHERS 231

3.1 Preliminaries: In-Context Learning 232

Let fθ denote a pre-trained language model pa- 233

rameterized by θ. This model performs ICL by 234

conditioning on an ordered set of n-many input- 235

output pairs Ddemo = (x1, y1, x2, y2, . . . , xn, yn). 236

To measure this model’s competence, we evalu- 237

ate it on a collection of input-output pairs Dtest = 238

{(xi, yi)}. Specifically, for instance (xtest, ytest) ∼ 239

Dtest, from an LM conditioned on the demon- 240

strations with an appropriate encoding: ypred ∼ 241

fθ(Ddemo, xtest) we extract a predicted label ypred 242

which is then compared against the gold label ytest. 243

3.2 ICL CIPHERS 244

A simple substitution cipher is a technique for en- 245

coding messages. Specifically, each letter in the 246

plain text is substituted with a different letter from 247

the alphabet, usually according to a predetermined 248

mapping or key. ICL CIPHERS are token-level sub- 249

stitution ciphers that are applied to demonstration 250

inputs in ICL. Formally, we define a ICL cipher 251

c : V → V that maps each token in the lexicon 252

V = {tj}|V |
j=1 to another token. Note that a token is 253

allowed to be mapped to itself. If all the tokens are 254

mapped to themselves (i.e., c(tj) = tj for all j), 255
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then the ICL cipher is equal to a identity function,256

and substittution with this mapping would lead to257

no changes in the text. We define the tokens that258

are mapped to different tokens as ciphered tokens259

S := {tj |tj ∈ V, c(tj) ̸= tj}. The proportion260

shffled tokens in the lexicon is called shuffle rate261

r ∈ [0, 1]. The mapping of ciphered tokens de-262

pends on the specific type of ICL CIPHERS, which263

we discuss next.264

3.3 BIJECTIVE ciphers265

We create a BIJECTIVE mapping between two266

permuted orders of S. For example, say the to-267

ken “school” is mapped to “apple”, as illustrated268

in Figure 1. Let the input xi be constituted of269

Ki tokens, i.e., xi is the ordered sequence of to-270

kens (t1, . . . , tKi). For all tj = school ∈ xi or271

xtest, c(tj) = apple. This results in corresponding272

ciphered inputs x′i or x′test. Moreover, as c is a bi-273

jection, ∃ c−1 such that for all tj = apple ∈ x′i or274

x′test, c
−1(tj) = school. Note that “apple” doesn’t275

have to be mapped back to “school”.276

Decipherability of BIJECTIVE cipher: Since277

we ensure the mapping is BIJECTIVE (reversible),278

theoretically the models are able to learn the map-279

ping through enough demonstrations. Let the ac-280

tual function between all (xi, yi) pairs be h, i.e.281

h(xi) = yi,∀(xi, yi) ∈ Ddemo ∪Dtest. Using ICL,282

the model fθ employs both TR and TL to approx-283

imate h′ ≈ h such that h′(xi) ≈ yi. This original284

function h can not be expected to work on ciphered285

(or shuffled) inputs x′i. However, there is a corre-286

sponding function g = h(c−1(x′i)) that is equiva-287

lent to h(xi). This shows that h is still recoverable288

from the ciphered inputs. In natural language, re-289

placing a word with another fixed but randomly290

decided word can completely change the meaning291

of its context. Any TR capabilities are expected to292

be severely hurt with ciphered inputs. To perform293

well on Dtest, the model has to rely heavily on TL294

to learn and perform this composite function.295

3.4 NON-BIJECTIVE Ciphers296

For comparison with BIJECTIVE ciphers (§3.3),297

we also create a NON-BIJECTIVE cipher. In this298

cipher, whenever a token tj ∈ S appears in the299

demonstration inputs, it will be replaced by a300

uniformly randomly picked token t′ ∈ S, i.e.,301

c(tj) ∼ uniform(S). For example, if the token302

“school” appears twice in the demonstration inputs,303

then they will likely be replaced by two different304

tokens. In contrast, in BIJECTIVE cipher (§3.3) we 305

ensure multiple occurences of a token are conis- 306

tently replaced by the same token. 307

Indecipherability of NON-BIJECTIVE cipher: 308

In a NON-BIJECTIVE cipher, the mapping is no 309

longer reversible, which means it’s impossible for 310

models to learn the mapping nor recover the origi- 311

nal inputs. This is because c is not surjective any- 312

more, and hence c−1 does not exist. This implies 313

that a composite function through which h can be 314

recovered also does not exist. 315

3.5 Measuring “Learning” via ICL CIPHERS 316

Bijective ciphers offer a novel and challenging yet 317

solvable task encoding, making it unlikely to be 318

seen from pretraining. However, the performance 319

of LLMs on this cipher might be influenced by 320

unciphered tokens (t ∈ V \ S), which may invoke 321

task retrieval capability of LLMs. 322

In contrast, we use the gaps between BIJECTIVE 323

(§3.2) and NON-BIJECTIVE (§3.4) ciphers to quan- 324

tify the “learning” in ICL. The comparison between 325

these two ciphers is meaningful because the ciphers 326

always share the same ciphered tokens for con- 327

sistency. The only difference between the two is 328

their token mapping functions: BIJECTIVE cipher 329

mapping allows a reversible mapping of ciphered 330

tokens. In contrast, NON-BIJECTIVE cipher re- 331

moves the learnable patterns. Therefore, the gap 332

between the performance on BIJECTIVE and NON- 333

BIJECTIVE ciphered text can be a practical measure 334

of TL. 335

4 Experimental Setup 336

We evaluate ICL CIPHERS on a range of LLMs 337

and datasets. We then use the difference between 338

the two types of ciphers to quantify a proxy for TL 339

capabilities of these LLMs on various tasks (§3.5). 340

4.1 Design Choices for ICL CIPHERS 341

Zipfian shuffling: Literature has shown a strong 342

correlation between token frequency in the pre- 343

training corpus and model performance (Razeghi 344

et al., 2022; Mallen et al., 2023)—LLMs tend to 345

perform better on frequent tokens. To diminish 346

the confounding influence of token frequency, we 347

constrain the shuffling between tokens of similar 348

frequency. Inspired by Zipfian shuffling (Pianta- 349

dosi, 2014), we divide all the tokens into k (k = 10 350

in our experiments) groups of similar frequency 351

and shuffle the tokens within each chunk. Since the 352
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pre-training corpora are usually not accessible for353

LLMs, we use a representative external corpus to354

approximate the real token frequency. Specifically,355

we use the Wikipedia (Foundation) to calculate to-356

ken frequency instead, which is an approximation357

to the actual token frequency.358

Priority sampling of ICL demos: To create an359

ICL demo set, one way to do it is randomly sam-360

ple the required number of examples (say n) from361

the pool of demos. We call this non-priority (ran-362

dom) sampling. However, in practice we always363

perform priority sampling (unless otherwise spec-364

ified) where we prioritize examples that contain the365

substituted tokens of the test case input. This is366

done to expose LLMs to the relevant substitutions367

from which they can learn to decipher. Suppose368

the number of tokens to be shuffled in the test input369

is m (which depends on the shuffle rate r). The370

goal is to select n demonstrations from the pool of371

demos, such that each of them contain at least one372

of the m uniquely ciphered (substituted) tokens.373

This is trivial if m = n (i.e., n demos cover the374

whole set of m substitutions). Otherwise:375

• If m < n (i.e., the number of substitutions are376

less than the required number of ICL demos to be377

sampled from the pool), we choose m examples378

according to priority sampling and the rest of379

n−m examples are randomly picked from the380

demo pool.381

• If m > n, we select a random subset of the382

ciphered tokens of size n. For each of these383

cases, we randomly sample a demonstration.384

We always use priority sampling (unless otherwise385

specified). However, in §D we compare priority386

sampling with non-priority (random) sampling.387

Shuffle Rate: The shuffle rate r determines the388

proportion of tokens that are replaced. When r is389

close to 0, the cipher’s effect is minimal, as few or390

no tokens are substituted, making it uninteresting.391

Conversely, when r approaches 1, nearly all tokens392

are shuffled and solving the task is nearly impossi-393

ble (under both BIJECTIVE and NON-BIJECTIVE394

ciphers). Thus, our focus lies on a moderate shuffle395

rate between 0 and 1, striking a balance between396

these extremes. We analyze this in §6.1.397

Special tokens and filters: LLMs usually have398

a list of special tokens that help the model un-399

derstand the prompt and task (e.g. next token400

prediction). For example, Llama3.1 models use401

<|begin_of_text|> and <|end_of_text|> to de-402

note the start of input and end of generation. We 403

preserve special and punctuation tokens from get- 404

ting ciphered to avoid hurting models’ basic func- 405

tionality. (Full list of preserved tokens are in Ap- 406

pendix A.1). Similarly, we avoid disturbing spaces 407

in the original text (details in Appendix A.2). 408

4.2 Models 409

We focus on pretrained LLMs in our exper- 410

iments, including Llama 3.1 (Dubey et al., 411

2024, Llama-3.1-8B), QWen 2.5 (Team, 2024b, 412

Qwen2.5-7B), OLMo (Groeneveld et al., 2024, 413

OLMo-7B-0724-hf) and Gemma 2 (Team, 2024a, 414

Gemma-2-9b). We don’t do experiments on aligned 415

(instruction-tuned or RLHF-ed) models as prior 416

work shows that alignment trades typically hurts 417

in-context learning performance (Fu et al., 2022). 418

4.3 Datasets 419

We conduct experiments on four datasets. SST-2 420

(Socher et al., 2013) and Amazon (Hou et al., 2024, 421

Amazon Reviews 2023) are for binary sentiment 422

classification task. HellaSwag (Zellers et al., 2019) 423

is for sentence completion task, formatted as four- 424

choices QAs. WinoGrande (Sakaguchi et al., 2020) 425

is for pronoun resolution task, formatted as binary- 426

choice QA. For each dataset, we curate a demo pool 427

for sampling ICL demos and a test set contain to- 428

be-tested cases. We use accuracy as the metric for 429

all our experiments if not specified. We averaged 430

the metrics across three runs of experiments for a 431

more reliable evaluation. Further details on datasets 432

(prompts and examples) are in Appendix. 433

5 Evidence of Task-Learning in ICL 434

Table 1 shows the performance of fours LLMs on 435

four datasets ciphered using ICL CIPHERS. 436

LLMs can decipher BIJECTIVE Ciphers: We 437

see a consistent improvement in the performance 438

of LLMs on BIJECTIVE ciphered inputs over NON- 439

BIJECTIVE ciphered inputs (except for OLMo on 440

SST-2). With fixed shuffle rate and number of 441

demonstrations, any influence of task retrieval 442

on the model performance remains the same for 443

both ciphered inputs. However, the consistent gap 444

clearly demonstrates that the model understands 445

decipherable BIJECTIVE maps better than the un- 446

decipherable NON-BIJECTIVE maps. This provides 447

evidence for task learning capabilities of LLMs. 448
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Model → Cipher 20-shot

Dataset (shuffle rate) ↓ LLaMA Qwen Olmo Gemma

SST-2 (r = 0.6) NON-BIJECTIVE 55.7 65.7 56.9 59.1
BIJECTIVE 58.7 (+3.0 ↑) 67.4 (+1.7 ↑) 54.5 (-2.4 ↓) 62.6 (+3.5 ↑)

Amazon (r = 0.6) NON-BIJECTIVE 63.7 71.3 72.2 79.1
BIJECTIVE 74.9 (+11.2 ↑) 76.8 (+5.5 ↑) 75.9 (+3.7 ↑) 83.4 (+4.4 ↑)

HellaSwag (r = 0.3) NON-BIJECTIVE 28.7 53.0 26.3 32.2
BIJECTIVE 32.0 (+3.3 ↑) 60.5 (+7.5 ↑) 27.0 (+0.7 ↑) 36.2 (+4.0 ↑)

WinoGrande (r = 0.1) NON-BIJECTIVE 53.7 61.3 53.5 62.7
BIJECTIVE 55.6 (+1.9 ↑) 63.4 (+2.1 ↑) 54.8 (+1.3 ↑) 63.1 (+0.4 ↑)

Table 1: LLM accuracy (reported in %) with 20-shot demonstrations, under BIJECTIVE and NON-BIJECTIVE cipher.
We fix it to a reasonable number here to demonstrate the gap, though later we provide an analysis on the effect of
shuffle rate (§6.1). The numbers inside the parenthesis shows the change from NON-BIJECTIVE to BIJECTIVE
encoding (gains in green↑ and losses in red↓). In majority of cases, we observe consistent performance gains
under BIJECTIVE cipher.
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Figure 2: LLaMa 3.1 8B on SST-2 dataset. Left: With the BIJECTIVE cipher, accuracy decreases smoothly as
the shuffling rate increases, highlighting the difficulty in interpreting the ciphered text. With more demonstrations
accuracy also increases, suggesting that the model’s ability to solve BIJECTIVE cipher. Right: y-axis shows the
accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers. For very high shuffle rates (e.g, > 0.8) tasks
become very hard to understand (for the model and even humans) as as the task becomes ill-defined.

6 Further Empirical Analysis449

6.1 Effect of Shuffle Rates450

Figure 2 illustrates the performance of Llama 3.1451

on SST-2 dataset with priority sampling. We can452

observe a consistent and clear gap between BIJEC-453

TIVE ciphers and NON-BIJECTIVE ciphers across a454

range of shuffle rates, indicating the model’s ability455

to decipher bijections.456

6.2 Effect of Number of Demonstrations457

In Table 2, we present the gap in performance be-458

tween BIJECTIVE and NON-BIJECTIVE ciphers459

under the effect of number of ICL demos. Over-460

all, the BIJECTIVE cipher consistently outperforms461

the NON-BIJECTIVE cipher across different num-462

bers of demonstrations. Increasing the number of463

demonstrations generally results in a larger gap464

between BIJECTIVE and NON-BIJECTIVE ciphers. 465

However, beyond a certain threshold, this effect 466

plateaus, and additional demonstrations have a di- 467

minishing impact. Figure 2 (on the right) also 468

shows this visually for SST-2 dataset. 469

6.3 Effect of Models Size 470

Figure 3 shows the effect of model size on this gap. 471

As the model size increases, performance for both 472

BIJECTIVE and NON-BIJECTIVE ciphers improve, 473

but the gap between them remains existent. This 474

indicates that decipherability of BIJECTIVE ciphers 475

exists across models of different sizes. 476

6.4 Probing Representations 477

To understand the LLMs’ internal processing of 478

ciphered inputs, we use Logit Lens (nostalgebraist, 479
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Shots → Cipher Model: Llama 3.1 8B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.6) NON-BIJECTIVE 53.6 57.3 56.8 55.7 54.9 56.6
BIJECTIVE 56.0 (+2.4 ↑) 57.6 (+0.3 ↑) 59.2 (+2.4 ↑) 58.7 (+3.0 ↑) 59.4 (+4.5 ↑) 57.8 (+1.2 ↑)

Amazon (r = 0.6) NON-BIJECTIVE 60.8 67.9 66.5 63.7 65.7 67.0
BIJECTIVE 65.7 (+4.9 ↑) 74.6 (+6.7 ↑) 75.6 (+9.1 ↑) 74.9 (+11.2 ↑) 74.6 (+8.9 ↑) 77.3 (+10.3 ↑)

HellaSwag (r = 0.3) NON-BIJECTIVE 31.2 29.5 30.0 28.7 29.3 29.3
BIJECTIVE 33.8 (+2.6 ↑) 33.1 (+3.6 ↑) 32.8 (+2.7 ↑) 32.0 (+3.3 ↑) 32.7 (+3.5 ↑) 32.0 (+2.7 ↑)

WinoGrande (r = 0.1) NON-BIJECTIVE 55.7 54.5 54.8 53.7 52.4 52.0
BIJECTIVE 55.8 (+0.1 ↑) 57.8 (+3.3 ↑) 55.6 (+0.8 ↑) 55.6 (+1.9 ↑) 55.1 (+2.7 ↑) 54.4 (+2.4 ↑)

Table 2: Task accuracy (reported in %) with varying numbers of ICL examples under BIJECTIVE vs. NON-
BIJECTIVE. The numbers inside the parenthesis shows the change from NON-BIJECTIVE to BIJECTIVE encoding.
With various number of demonstrations, LLMs get a higher accuracy under Bijective substitution.
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Figure 3: Accuracy comparison of Llama-3.1-8B and Llama-3.1-70B models on SST-2 (left) and Amazon (right)
datasets under BIJECTIVE and NON-BIJECTIVE ciphers. The experimental setting is 20-shot with r = 0.6. Larger
models outperform smaller ones under both ciphers and BIJECTIVE consistently yields higher accuracy.

2020) to probe LLMs’s intermediate layer repre-480

sentations. Logit Lens uses embeddings of a token481

from intermediate layers and uses the final LM482

head to decode it as the next token. The probing483

task here is focused on Amazon sentiment dataset484

and uses Llama 3.1 .485

Selecting tokens for probing: We first pick 600486

most frequent tokens in the demo set after filtering487

out tokens other than verbs, nouns and adjectives,488

using NLTK (Bird et al., 2009). We randomly sam-489

ple 30 tokens from them as the “original tokens”.490

We then randomly sample another 30 tokens from491

the remaining 570 tokens as the “substituted to-492

kens”, each of which has a one-to-one correspon-493

dence with the original tokens.494

Token substitution: For BIJECTIVE cipher, we495

create a bijection between the 30 original tokens496

and the selected 30 substitution tokens, creating a497

correspondence for the original tokens to be sub-498

stituted. For NON-BIJECTIVE cipher, we substi-499

tute each occurrence of each original token, by a 500

randomly sampled token from the remaining 570 501

tokens. 502

Building ciphered inputs: For each original to- 503

ken t′ (the token to be ciphered), we sample 15 504

examples from the demo pool that contain t′, and 505

apply our two substitution ciphers to build the 506

ciphered prompt. Given the positions of orig- 507

inal tokens P = (p1, p2, ..., pn), we apply the 508

Logit Lens and observe embeddings at positions 509

P ′ = (p1− 1, p2− 1, ..., pn− 1) (i.e., one position 510

prior) to find the ranks of original tokens and “sub- 511

stituted tokens”. This gives us an understanding 512

of how the model changes its preference between 513

original and substituted tokens. We quantify this 514

notion as the rank difference (original token rank - 515

substitution token rank): 516

rank-diff = rank(tj)− rank(c(tj)), (1) 517

where rank denotes the position of a given token in 518

the model’s softmax score over the vocabulary set. 519
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Figure 4: x-axis indicates the i-th occurrence of ciphered tokens in the Llama 3.1 context. y-axis indicates the
rank difference (Eq 1). Positive values (red) indicate the model’s preference for substituted tokens over original
ones. In the BIJECTIVE cipher (left), we see a preference that favors substituted tokens. However, there is no clear
preference in the NON-BIJECTIVE setting (right).

LLM representations favor substituted tokens520

in BIJECTIVE cipher: For BIJECTIVE cipher521

(Fig.4; left) as the model observes more substitu-522

tions, the rank difference changes from negative to523

positive (in deeper layers, where the model inter-524

preting with LogitLens is more meaningful). Con-525

sistently, the model gives a higher rank to the sub-526

stituted tokens than the original tokens, suggesting527

that the model starts to understand the cipher. In528

contrast, there is no trend for NON-BIJECTIVE ci-529

pher (Fig.4; right) as there is nothing to decipher.530

7 Discussion and Conclusion531

Can your results be due to data contamination?532

Our work is motivated by the same issue. Data533

contamination makes it difficult to attribute the suc-534

cess of ICL to “retrieval” (from pre-training) vs535

“learning” (from in-context demonstrations, with-536

out seeing them a priori). A reasonable approach537

to measure the latter (and mitigate the former) is538

through randomized tasks. The point of our study539

is to substitute the given tasks with randomly gen-540

erated bijection tokens which makes it impossible541

for any model to have memorized them. We re-542

port the difference in performance with bijection vs543

random shuffling and de-emphasize any absolute544

performance numbers which could have resulted545

from memorization of the original task.546

Does BIJECTIVE cipher guarantee measuring547

only “learning”? Achieving a perfect distinction548

between “learning” and “retrieval” may be unattain-549

able, as any learning inherently involves non-zero550

level of retrieval (e.g., language understanding).551

Our framework provides a systematic method to552

quantify learning, distinct from the previous work 553

such as Pan et al. (2023). Though understanding 554

the complementarity of these approaches and suc- 555

cess at quantifying pure learning remains to be 556

further understood in future work. 557

Do the modest gains of BIJECTIVE cipher in- 558

dicate that the weakness of “learning” in ICL? 559

Not necessarily. The proposed re-encoding of ICL 560

transforms tasks into more complex problems that 561

are inherently more challenging to solve. This is 562

a feature, not a bug, as it allows us to argue that 563

such esoteric encoding tasks reduce the potential 564

confounding effect of retrieval. However, the side 565

effect is that this increased difficulty in task re- 566

encoding results in smaller gains. The key point 567

is that there are consistent positive gains between 568

the BIJECTIVE and NON-BIJECTIVE settings. The 569

magnitude of this gap is a secondary considera- 570

tion and is likely to change with future innovative 571

methods for re-encoding tasks. 572

Conclusion: We introduced ICL CIPHERS, a 573

class of cryptography text transformations designed 574

to evaluate novel task learning capabilities of 575

LLMs. We show that LLMs exhibit the capacity to 576

decipher these novel tasks during inference. This 577

evidence indicates LLMs’ ability to learn novel 578

tasks outside of their pre-training corpus. The ex- 579

act mechanism of this “learning” remains an active 580

area of study. Understanding this mechanism holds 581

the potential to unleash novel problem solving ca- 582

pabilities of LLMs. 583
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Limitations584

We discuss the potential limitations of our work:585

Deviation from natural language: Ciphered586

text generated using ICL CIPHERS diverges from587

natural language. While this is useful to assess588

LLMs’ TL capabilities, it may also make the task589

excessively challenging for them. It is possible590

there might be alternative ways to measure learn-591

ing in a way that maintains the naturalness of the592

tasks.593

More models and datasets: Although we eval-594

uated 16 settings (four models × four datasets),595

expanding our study to include more and larger596

models would strengthen our findings. The largest597

model we tested was Llama 3.2 70B, due to lack598

of more compute resources. Additionally, we did599

not evaluate aligned models such as GPT-4-o1, or600

Gemini. Anecdotal evidence suggests that aligned601

models may lose their ability to follow in-context602

demonstrations (Fu et al., 2022), a crucial aspect of603

our task definition. However, we acknowledge that604

our task could potentially be adapted into a task de-605

scription or instruction format suitable for aligned606

models, which deviates from our current setting607

and could be explored in future work. It would also608

be interesting to evaluate ICL CIPHERS on various609

pre-training checkpoints to better understand how610

ICL “learning” emerges through pre-training.611

More interpretability analysis: In terms of in-612

terpretability analysis, we experimented with sev-613

eral approaches (e.g., PatchScope (Ghandeharioun614

et al., 2024)) but found success only with the sim-615

plest method, the Logit Lens. More advanced inter-616

pretability analyses could provide deeper insights617

into the underlying mechanisms, offering a clearer618

understanding of the processes involved.619

We recognize these as areas for further explo-620

ration and encourage future research to address621

these limitations.622
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Supplemental Material 909

A Additional Experimental Details 910

A.1 Preserved Tokens 911

For Llama 3.1, we preserve the tokens whose ids range from 0 to 255, 128000 to 128256. For Qwen 2.5, 912

we preserve the tokens whose ids range from 0 to 255, 151643 to 151664. For OLMo, we preserve the 913

tokens whose ids range from 0 to 244, 50254 to 50279. For Gemma 2, we preserve the tokens whose ids 914

range from 0 to 472, 255968 to 255999. For all the models, we preserve the spaces and underlines to 915

ensure the framework of each task. For example, in the WinoGrande dataset, LLMs are asked to predict 916

the pronouns in a sentence, where the original pronouns are replaced by a underline. 917

A.2 Handling of White Space 918

LLMs encode the spaces between words differently depending on their tokenization. Gemma 2 uses a 919

special underline to represent a space, while Llama 3.1 , QWen 2.5 and OLMo uses ’Ġ’. There are usually 920

two versions of the same word – with or without a space before it, which corresponds to two different 921

tokens. Take Llama 3.1 for example, the encoded id of “is” is 285 while that of “Ġis” is 374. We name 922

tokens containing a space at the beginning as “space tokens” and the others as “non-space tokens”. To 923

avoid disturbing spaces in the original text, which may confuse the model, we constrain the shuffling to be 924

within their space/non-space sets. 925

A.3 Design choices for ICL CIPHERS 926

In Tab.3, we explain our design strategies for choosing priority sampling (in selecting demonstrations 927

from the demo pool) and zipfian shuffling (in choosing the mapping c). 928

Strategies for ... Variant 1 Variant 2

selecting (sampling)
demonstrations

Priority: select demonstrations that contain the
target substitution in the test example ✓

Non-priority: select demonstrations randomly ✗

choosing the token
mapping c

Zipfian: c maps tokens of similar frequency
(popularity) among each other ✓

Non-Zipfian: c maps tokens irrespective of their
frequency (popularity) ✗

Table 3: Design choices for experiments in ICL CIPHERS discussed in §4.1.

A.4 Datasets 929

For SST-2, HellaSwag and WinoGrande no label provided for the test set. Therefore, we use their 930

validation set instead. 931

SST-2: We use its validation set as our test set, which has size of 872. Its training set, which contains 932

67.3k examples, is used as the demo pool. 933

Amazon: To fit the Amazon dataset into binary sentiment classification framework, we filter ratings 934

4-5 as positive and 1-2 as negative (discard rating 3). We focus on reviews under the the “All_Beauty” 935

category in our experiments. We sample 144k positive and negative samples to build the demo pool; and 936

500 other positive and negative examples as the test set. 937

HellaSwag: We use its validation set as our test set, which contains 444 positive examples and 428 938

negative examples (872 examples in total). Its training set, which contains 38K positive examples and 30k 939

negative examples, is used as the demo pool. 940

We randomly sample 1k examples from the validation set as our test set. We use its training set as the 941

demo pool, which contains 40k examples. 942

WinoGrande: We use its develop set as the test set, which contains 1267 examples. Its xl training set is 943

used as demo pool, which has 40k examples. 944
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A.5 Prompt Template945

We don’t include any instructions in our prompt. For SST-2 and Amazon, we use the following prompt946

template:947

Input: {input_demo}948

Output: {label_demo}949

...950

Input: {input_test}951

where {input_demo} and {label_demo} are the input text and sentiment labels of demonstrations, and952

{input_test} is the input text of test case.953

For HellaSwag and WinoGrande, we use the following prompt template:954

Question: {question_demo}955

Options: {options_demo}956

Answer: {answer_demo}957

...958

Question: {question_test}959

Options: {options_test}960

where question_demo}, options_demo} and {answer_demo} are the questions, options and correct answers961

of demos, and question_test} and options_test} are the question and option of the test case.962

B Example Inputs/Outputs963

Here we display the example inputs/outputs on all the four datasets. Note that in our experiments the964
original inputs are not included in the prompts.965

Dataset: SST-2; Model: QWen 2.5 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: been sc Mil Swift the Inch for pen Venezuela Moody
Original Input: been sent back to the tailor for some major alterations
Output: negative

Ciphered Input: is born Slovenia of an Platform San sitcom involved also Sr implementedecture
embarrassed Swift Malay you reach for the tissues Confederate
Original Input: is born out of an engaging storyline , which also is n’t embarrassed to make
you reach for the tissues .
Output: positive
...

Ciphered Test Input: allows us Swift hope Esc implementedolan Sr poised Swift cheating a
Venezuela career Mr a assembled Kann steak filmmaker Confederate
Original Test Input: allows us to hope that nolan is poised to embark a major career as a
commercial yet inventive filmmaker .

966
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Dataset: Amazon ; Model: Gemma 2 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: didnSUwell really notice anything mob. I sink it householder substance Woodward
Bean Simple Woodward Senior Caldwell Snowyyn Ato was instance.
Original Input: didn’t really notice anything special. I bought it because of the reviews and
the price but honestly, I was disappointed.
Output:negative

Ciphered Input:Item arrived regions principle unrest neighbours’]modern /><modern urchatosyn
Woodward item was calcium steamer principle Counter cap rendering Woodward cover ent since it
periodsSUwell Fam Arch anymore Simple iconicBer bottom Simple consequently’]modern /><modern
urchofficial was wrapped dentist regions principle padded envelope.
Original Input:Item arrived in a quick manner.<br /><br />However, the item was received with a
damaged cap rendering the cover useless since it won’t snap on anymore and dented bottom and
top.<br /><br />It was wrapped tightly in a padded envelope.
Output:negative
...

Ciphered Test Input: tried it for cosmetic qualifications perimeter a day spa0̆0f2 didnPervers
Tehran workil
Original Test Input: tried it for cosmetic procedures in a day spa; didn’t really work.

967

Dataset: Hellaswag; Model: OLMo ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Ter Back sits million titled with his Board effective on the keys. the Back
Original Question: A man sits a piano with his hands placed on the keys. the man
Ciphered Options: (1) begins playing the titled.\n(2) Carlos the keys with million malorn.\n(3)
beats the titled in million benefitedmic thought.\n(4) increases the play for playing.\n
Original Options: (1) begins playing the piano.\n(2) hits the keys with a mallet.\n(3) beats
the piano in a rhythmic beat.\n(4) increases the volume for playing.\n
Answer: (1)
...
Ciphered Question: People are noted on the street. million Back
Original Question: People are running on the street. a man
Ciphered Options: (1) is wearing poetilts.\n(2) limited million drink out Wars million After
presidents.\n(3) negotiating into million encourages Wars fire.\n(4) limited million high jump
in million Chris competition.\n
Original Options: (1) is wearing stilts.\n(2) takes a drink out of a water bottle.\n(3) jumps
into a pile of fire.\n(4) takes a high jump in a bar competition.\n

968

Dataset: WinoGrande ; Model: Llama 3.1 ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Estonia ferry that my parents story tied I permanent in Johnston permanent
Stadium partners bla than my house now because the _ permanent anchored.
Original Question: The home that my parents had when I was in school was a lot nicer than my
house now because the _ was sophisticated.
Ciphered Options: (1) ferry, (2) house
Original Options: (1) home, (2) house
Answer:(1)
...
Ciphered Question: Sarah permanent Stadium much better Chart than Maria so _ always got the
easier cases.
Original Question: Sarah was a much better surgeon than Maria so _ always got the easier cases.
Ciphered Options: (1) Sarah, (2) Maria
Original Options: (1) Sarah, (2) Maria

969

C Additional Related Work 970

Empirical understanding of ICL: Ever since In-Context Learning was discovered (Brown et al., 2020), 971

multiple works have studied it under diverse settings (Zhao et al., 2021; Min et al., 2022; Mishra et al., 972

2022; Han et al., 2023; Wang et al., 2023; Sia et al., 2024; Vacareanu et al., 2024; Mueller et al., 2024). 973

For instance, Srivastava et al. (2023) benchmarked ICL under multiple tasks and models; Perez et al. 974

(2021); Lu et al. (2022) showed the sensitivity of ICL to the choice of demonstrations and their orderings; 975
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Shin et al. (2022); Razeghi et al. (2022) showed the sensitivity of ICL performance to the frequency and976

size of the relevant pre-training corpus. These works have made useful observations that allow us to better977

use this elusive quality of LLMs.978

Functional nature of ICL: A more recent line of study aims to understand how ICL actually works in979

LLMs. Multiple works have compared ICL with implicit optimization (specifically gradient descent) (Garg980

et al., 2022; Zhang et al., 2023; Dai et al., 2023; Akyürek et al., 2022; Von Oswald et al., 2023; Li et al.,981

2023; Kim and Suzuki, 2024). This line of work claims that Transformers can meta-learn to perform982

optimization of internal models given a set of demonstrations. However, their study setup with toy983

transformers does not align with how LLMs are trained as shown by Shen et al. (2024). Moreover, this984

line of study does not explain the TR capabilities of LLMs.985

Forces that lead to ICL: Few works try to understand how ICL emerges in LLMs. Xie et al. (2021)986

explained ICL as implicit Bayesian inference, which maps a ICL demonstrations to a latent concept (task)987

learned via pre-training. Hahn and Goyal (2023) posited that compositional structure in natural language988

gives rise to emergent in-context learning. Other works (Chan et al., 2022) theorize more distributional989

properties in the pre-training data, that may give rise to ICL. Many of these works explain some properties990

of ICL, but fail at others. The exact origin of ICL in LLMs still remains an active area of study.991

D Priority vs Non-Priority Sampling992

Figure 5 shows peformance of LLaMa 3.1 8B on SST-2 dataset with non-priority sampling. Comparing993

with Figure 2, they demonstrate similar trend but there are more variance in non-priority sampling due to994

the its random nature. Therefore, we use priority sampling throughout our experiments for more steady995

results.996

Figure 7 shows accuracy comparison of Llama-3.1-8B and Llama-3.1-70B on SST-2 and Amazon997

datasets with non-priority sampling under BIJECTIVE and NON-BIJECTIVE substitution strategies.998
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Figure 5: Left: Peformance of LLaMa 3.1 8B on SST-2 dataset with non-priority sampling. Right: The y-axis
displays the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers.

E Restricting the Space of Cipher999

We notice that the gaps on HellaSwag and WinoGrande are smaller than those in SST-2 and Amazon. The1000

reason behind it could be the complexity of these two datasets, which could impact the model’s ability to1001

solve the ciphers. To verify this, we constrain the vocabulary shuffling to only nouns on these two datasets.1002

Table 4 shows that the gap between BIJECTIVE and NON-BIJECTIVE ciphers moderately increases for1003

noun-constrained shuffling. This means that the model is more effectively learning to solve ICL ciphers.1004
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Figure 6: LLama3 accuracy on Amazon dataset with priority sampling (similar to Fig.2). The left plot shows the
accuracy change of BIJECTIVE cipher. The right plot shows the gap between BIJECTIVE and NON-BIJECTIVE
cipher.
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Figure 7: Accuracy comparison of Llama-3.1-8B and Llama-3.1-70B models on SST-2 (Left) and Amazon ((Left))
datasets (non-priority sampling) under BIJECTIVE and NON-BIJECTIVE substitution strategies.

F Further Results on Probing Analysis 1005

To get a clearer vision, we extract the rank difference from the last layer on SST-2, dividing them equally 1006

into 5 chunks, as shown in Figure 9. For random substitution, there is not much change for rank difference. 1007

For BIJECTIVE substitution, rank difference increase as the chunk number gets bigger. This suggests that 1008

as LLM sees more occurence of the substitution token, it learns to use substitution token as the original 1009

token, namely solving ICL CIPHERS. 1010
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Figure 8: Whole heatmap of original token rank minus substitution token rank on Amazon. Left: BIJECTIVE
substitution Right: NON-BIJECTIVE substitution

Cipher LLaMA 20-shot

Dataset ↓ All Noun

HellaSwag NON-BIJECTIVE 28.7 31.1
BIJECTIVE 32.0 (+3.3 ↑) 35.5 (+4.4 ↑)

WinoGrande RANDOM 53.7 54.6
BIJECTIVE 55.6 (+1.9 ↑) 56.7 (+2.1 ↑)

Table 4: LLM accuracy (reported in %) with 20-shot demonstrations, under BIJECTIVE and RANDOM cipher
with zipfian shuffling and informative sampling. The shuffle rates for HellaSwag and WinoGrande are 0.3 and 0.1
respectively. “All” operates shuffling on all the tokens while “Noun” constrains shuffling to only nouns.
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Figure 9: Average rank differences (original token rank - substitution token rank) in SST-2 (left) and Amazon
(right) datasets for BIJECTIVE (blue) and NON-BIJECTIVE (red) Cipher strategies over 15 occurrences, divided
into 5 chunks of size 3. Rank difference serves as a proxy for the model’s deciphering ability. Under BIJECTIVE
substitution, this ability improves with more exposure to substituted tokens, while NON-BIJECTIVE substitution
shows no clear pattern.
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