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Abstract

Compositional generalization—a key open challenge in modern machine learning—
requires models to predict unknown combinations of known concepts. However,
assessing compositional generalization remains a fundamental challenge due to the
lack of standardized evaluation protocols and the limitations of current benchmarks,
which often favor efficiency over rigor. At the same time, general-purpose vision
architectures lack the necessary inductive biases, and existing approaches to endow
them compromise scalability. As a remedy, this paper introduces: 1) a rigorous
evaluation framework that unifies and extends previous approaches while reducing
computational requirements from combinatorial to constant; 2) an extensive and
modern evaluation on the status of compositional generalization in supervised
vision backbones, training more than 5000 models; 3) Attribute Invariant Networks,
a class of models establishing a new Pareto frontier in compositional generalization,
achieving a 23.43% accuracy improvement over baselines while reducing parameter
overhead from 600% to 16% compared to fully disentangled counterparts. Our
code is available at github.com/IBM/scalable-compositional-generalization.

1 Introduction

Robustness to distributional shifts is a long-standing research topic in machine learning, spanning
areas such as domain adaptation [[1} [2], transfer learning [3]], and out-of-distribution (OOD) general-
ization [4]. In this work, we focus on a specific type of OOD generalization, that is, compositional
generalization. Informally, this type of generalization requires the model to generalize to unknown
combinations of known concepts. For instance, given a dataset of pairs (input, {concepts labels}),
a model trained on the samples {(¢ ', {apple, yellow}), (=2, {banana, green})} should be able to
correctly predict {apple, green} for the test input image @9. Achieving and even assessing this type
of generalization remains, however, challenging. To date, a standardized evaluation methodology for
assessing compositional generalization has not been established. This renders the evaluation of exist-
ing results hard and prevents a consistent quantification of progress in the field. Furthermore, current
state-of-the-art (SOTA) evaluation frameworks often trade off efficiency with shallowness, usually
testing compositional generalization under weaker constraints to avoid a combinatorial complexity
explosion in the number of target attributes [} 6]. On the other hand, general-purpose SOTA vision
architectures typically lack inductive biases for compositionality and disentanglement, resulting in
limited generalization in both supervised and unsupervised settings [, [7, |8]. Existing methods for
incorporating such biases often rely on factorizing the prediction task across multiple specialized
models [9], which significantly reduces scalability and limits practicality even in simple domains.
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To tackle these issues, this work makes the following main contributions:

1. In Section[3] we present a universal evaluation framework for compositional generalization
in supervised learning. This evaluation strategy unifies prior strategies, improves efficiency
by reducing complexity from combinatorial to constant, and introduces a controllable degree
of freedom in the evaluation that significantly affects model performance and enables a
principled hierarchy of evaluation difficulty.

2. We extensively validate the proposed benchmarking method against alternative method-
ologies and previous works. As part of the validation, we train more than 5000 SOTA
vision models, representing the most extensive and up-to-date evaluation on compositional
generalization for supervised models.

3. Motivated by the results in Section [3] we introduce in Section 4] a new class of neural
architectures, Attribute Invariant Networks (AINs), that favor compositional generalization
by construction. We show that AINs achieve a new Pareto frontier in the scalability-
generalization tradeoff, significantly improving compositional generalization of standard
architectures with only a minimal parameter overhead.

2 Background

Formalizing compositional generalization. As Ren

et al. [10], we focus on the setting presented in Fig- ©
ure considering an arbitrary set of [N observations
X € RN*P and their corresponding downstream task
labels Y € RV*F . We assume that the observations are
generated from a finite set of discrete factors F, in turn
divided into I task-relevant factors G C F (for which
there exists a causal relationship with the downstream task)
and J task-irrelevant factors O = F \ G. Each obser- F
vation x € X is produced by a deterministic function

G : (F,e;) — R, mapping F and €, (L noise account-

ing for minor input variations, e.g., pixel-wise variations)
into the data manifold. Labels y are generated by a deterministic function G,, : (G, ey) — RE,
encoding the semantics of the task and parametrized by G and €, (L noise accounting for label
issues).

Figure 1: Theoretical setup.

Definition 2.1 (Compositional generalization). Compositional generalization emerges when the sup-
ports of the training and testing distributions over compositions of factors, Py.qin(G) and Pyest(G),
are disjoint. More formally, supp[Pyqin (G)] N supp[Prest (G)] = 0. The production rules G, and
G, are assumed to be consistent across training and testing.

Example 2.2. Consider the Shapes3D sample contained in the yellow corner of Figure [2a] The
generative factors of the dataset are F = (size, shape, object hue, floor hue, wall hue). Here, x is the
64 x 64 RGB image, while y = (small, cube, blue object). Hence, G = (size, shape, object hue)
and O = F \ G = (floor hue, wall hue). x represents a compositional generalization test example
iff Pyy.qin(small, cube, blue object) = 0.

Representation learning. We consider the classical representation learning framework (Fig.[I)).
A backbone model h : RP — R is used to extract a compressed representation of the input (z),
and a classification head g : RS — R is used on top of the extracted representations to solve the
downstream task. The output is predicted by the composition of these two functions, § = (goh)(x) =

f(x). This model is trained by minimizing the empirical risk & = 1/~ Zf\;l LY, f(X3)).

3 A novel framework for evaluating compositional generalization

We propose a general and scalable framework to evaluate compositional generalization and dis-
entanglement in fully supervised settings (where the generative factors G are known and labeled)
with variable degrees of difficulty (dictated by the similarity between train and test observations).
Additionally, we define a dataset-agnostic, efficient procedure (dubbed orthotopic evaluation) for
decomposing G in two splits (train and test), such that Py,.q;, and Pj.g; satisfy Deﬁnition



3.1 Method

An extended definition of compositional generalization. For any y1 € Pirgin, Y2 € Piest,
Deﬁnitionlﬂl constrains the number of task-relevant factors shared between the two observations,
K = MaXy, vy, Zle Iy, ,=y».» to be & < I — 1. However, the definition does not define any
lower bound for , which can take any value in [0, I — 1]. This ambiguity makes it unsuitable for
benchmarking purposes, as it could potentially result in inconsistent evaluation protocols and hinder
direct comparability across works. Previous works, in fact, already fell victim to this: some works
[[7, 18] considered the scenario where k = 1, whereas others [5, 6] focused on k = I — 1. To solve
this, we propose a more complete definition of compositional generalization.

Definition 3.1 (Compositional Generalization (complete)). Consider two data distributions, P4,
and P;.s:. For any yo € Pj.s: and its closest sample in the training data y1 € Piyqpn, compositional
generalization emerges when ¢ < k < I — 1. In particular, ¢ € [0, I], dubbed here as compositional
similarity index, is a hyper-parameter of the evaluation setup.

Intuitively, ¢ influences the degree of similarity between known and unknown compositions of
concepts and, indirectly, the volume of the concept space excluded from the training data. Consider,
for instance, Figure 2] When ¢ = I — 1 = 2, a corner of the hypercube (yellow orthotope) is
excluded from the training data and used for testing; all the samples in this volume share at most
two task-relevant factors with the closest samples observed during training. If ¢ = 1, on the other
hand, both the yellow and green orthotopes are excluded from training and used for testing; hence,
some test samples share two attributes with the closest training examples (green orthotopes), and
some share only one (yellow corner). The characterization of c is, to some extent, equivalent to the
concept distance metric introduced by Okawa et al. [11]. Other than ¢, we also identify the existence
of additional degrees of freedom in the evaluation, such as the size of the excluded volumes or their
position in the space (see Appendix [A.T), but we consider them fixed in the context of this work.

A new ladder for compositional generalization difficulty. We hypothesize that the newly in-
troduced compositional similarity index directly influences the difficulty of the evaluation task.
Intuitively, larger c values increase the similarity between known and unknown combinations of
concepts, rendering test samples “almost in-distribution”. In addition, larger c values increase the
overall combinations of concepts accessible during training, in turn enhancing data variety (known to
be vital for training robust and generalizing neural networks [[12,|13]]). Based on these observations,
we postulate the existence of a ladder of compositional evaluation difficulty, presented in Figure
[2b] In particular, we outline a discrete spectrum of evaluation complexity levels corresponding to
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Figure 2: Orthotopic evaluation for compositional generalization. Intuitively, orthotopic OOD
split generation works by iteratively projecting and pruning the data in every c-dimensional attribute’s
subspace. We exemplify this in (a) for the dataset Shapes3D, where we consider only I = 3 attributes
for simplicity. We highlight the disentangled compositional split (¢ = 1, green+yellow) and the
entangled compositional split (¢ = 2, yellow). (b) pictures the proposed ladder of compositional
evaluation difficulty, showing the dependence between the ¢ parameter and the similarity between train
and test generative factors. This delineates a ladder of different difficulties of compositional evaluation,
spanning from extrapolation to in-distribution regimes. Finally, (c) shows the computational advantage
of the proposed evaluation technique compared to the naive pair-wise evaluation strategy.



different c values, spanning from extrapolation (generalization to unseen attribute values, ¢ = 0) to
compositional generalization (1 < ¢ < I — 1) and, eventually, in-distribution generalization (¢ = I).

We further distinguish between two different types of generalization within the compositional case:
disentangled compositional generalization (¢ = 1) and entangled compositional generalization
(2 < ¢ £ I —1). The difference between the two is subtle. In entangled compositional generalization,
models can still generalize despite entangling the information of a subset of n task-relevant generative
factors in their latent space, as long as the evaluation is performed for ¢ > n. Consider the illustrative
example in Figure [2a] If the model learns entangled representations of the {shape, size} concepts,
it may still succeed on a test instance with ¢ = 2 (i.e., the sample in the yellow volume is used
for testing) because the attributes entangled by the model are observed during training (e.g., in the
small orange cube, top-left). However, when ¢ < n, the specific combination of attributes is, by
construction, absent from the training set, rendering generalization impossible for models relying
on entangled representations. Disentangled compositional generalization (¢ = 1), on the other hand,
strictly operates in the latter condition. This allows us to strictly evaluate both compositionality (that
is, the ability to combine known concepts) and disentanglement (that is, the ability to separate distinct
factors of variation independently). For more details, see Appendix

Scalable compositional evaluation procedure. How can we translate the principles previously
introduced into an algorithm that generates compositional evaluation splits? A naive procedure,
already explored to some extent in previous works [[7, 8] and referred to here as pair-wise evaluation,
allows for evaluating compositional generalization by considering only c factors at a time. While
effective, this protocol is not scalable: it requires training and evaluating a different model for each
s € §, where S is the set of all c-dimensional subspaces of the original /-dimensional task-relevant
concept manifold. That is, the evaluation complexity is ©(7€). In this work, we propose an alternative
procedure, dubbed orthotopic evaluation, whose complexity is ©(1). The pseudo-code is included in
Algorithm[I]and encompasses different stages. Firstly, the set of possible combinations of ¢ factors in
G (representing all the possible c-dimensional subspaces of the attributes’ hyperspace) is computed
(Line 2). Then, the dataset is iteratively projected and pruned in each one of these c-dimensional
subspaces (Lines 3-5), as intuitively visualized in Figure 2a] The pruning operation (Line 5) is based
on thresholds dynamically computed based on the percentage of the excluded orthotope’s support
along each dimension, summarized in the pseudo-code by the primitive exclusion (see Appendix
for an example). Compared to pair-wise, orthotopic evaluation allows for flexibly setting the
operating value of ¢ (in the range [1, T — 1]) while requiring only a single training run per model.
Figure [2c| shows an efficiency comparison between the two evaluation strategies, comparing the
number of training runs required for different numbers of task-relevant generative factors.

Algorithm 1 Orthotopic split generation.

1: procedure SPLITDATASET(X, G, ¢)

2 S=(%)={SCG:[S|=c+1} > Get all combinations of ¢ factors in G.
3 for each s € S do > Iterative orthotope pruning.
4: Xproj = Proj;Xirain > Project X onto the c-dimensional subspace s.
5 Xirain = Xirain \ (Xproj N exclusion(s)) > Pruning operation in the subspace s.
6 return X, qin, Xgmm

3.2 [Experimental setup

Datasets and OOD splits. We consider different vision datasets that encompass a broad spectrum
of complexity and visual diversity, ranging from purely synthetic to real images. Importantly, we
only use datasets for which the annotations of the generative factors F are available. In particular,
we experiment with dSprites [14], - RAVEN [15], Shapes3D [16], CLEVR [17], Cars3D [18]], and
MPI3D [19]. More details on the datasets can be found in Appendix [B.1] To create the compositional
OOD splits, we fix all the degrees of freedom of the proposed orthotopic framework and only study
compositional generalization for different values of the c parameter. In particular, we define attribute-
wise thresholds for the values of all task-relevant generative factors in each dataset such that the
percentage of excluded attribute-pairs is constant (~ 60%). This is tightly mirrored in the size of the
training and testing splits, as the data samples are equally distributed among different combinations.



Models. Inspired by Schott et al. [S]], we experiment with a wide range of models that encompass
different types of architectural and data inductive biases previously proposed to facilitate general-
ization. Besides MLPs [5], we evaluate convolutional neural networks (CNNs) such as Residual
Networks (ResNets) [20], Densely Connected Convolutional Networks (DenseNets) [21], Wide
Residual Networks [22]], and the most recent iteration of CNN architectures, ConvNeXt [23]. We also
consider vision transformers (that incorporate the attention mechanism, enabling global dependencies
modeling and contextual understanding), such as the original Vision Transformer (ViT) [24] and
the most recent Swin Transformer [25]. Since SOTA approaches in deep learning often rely on pre-
training on large corpora prior to fine-tuning on specific target tasks, we also evaluate this different
form of (data) bias. To this end, we fine-tune pre-trained versions of some of the previously mentioned
models: PyTorch’s RN-101, RN-152, and DN-121 pre-trained on ImageNet-1k. More details on
the models used in our experiments can be found in Appendix On an orthogonal direction
compared to the previous monolithic models, we additionally investigate explicitly disentangled
(ED) architectures. The core idea in these models is to factorize the forward and backward passes
by instantiating independent sub-networks for each factor in G. This corresponds to the strongest
inductive bias towards disentanglement that can be implemented in fully-supervised models from an
architectural perspective. We introduce an improved version of the Shared Architecture [9], which
attains on-par or superior performance on the evaluated dataset compared to the original model
(as shown in Appendix [B.3)). Specifically, our implementation constructs concept representations
endowed with a similarity-preserving structure, induced via a kernel-based initialization scheme [26].

Evaluation. We use the exact-match score (multi-label accuracy) as the main evaluation metric.
All the models are trained using a standard cross-entropy loss on all attribute labels. The model
selection is based on a 10% held-out split of the training data (testing in-distribution generalization).
We also investigated alternative selection metrics specifically designed to improve the performance
on compositional generalization splits; however, they did not perform better compared to the standard
in-distribution validation, as shown in Appendix[B.4} All experiments were conducted on compute
nodes with an AMD EPYC 7763 64-Core CPU, 2TB RAM, and an NVIDIA A100-SXM4 GPU
(80GB), running on Red Hat Enterprise Linux 9.4, CUDA 12.4, and PyTorch 2.3.0+cul21.

3.3 Results and discussion

In this section, we aim to address the following research questions on the orthotopic evaluation
framework introduced in Section 3l

(R1) To what extent does the similarity between training and testing observations, characterized
by the ¢ parameter, influence compositional generalization? Furthermore, do the empirical
results align with the postulated ladder of compositional evaluation difficulty?

(R2) How does orthotopic evaluation compare to less efficient methodologies (e.g., pair-wise
attribute evaluation) and previous works more generally?

c significantly influences the evaluation of compositional generalization (R1). Figure[3p reports
the results of the evaluation of the full range of ¢ values (0 < ¢ < I) on the different datasets and
models considered in this work. A general pattern appears from the results: ¢ distinctly impacts the
measured compositional generalization across all the studied model families and datasets. Notably,
this behavior is entirely attributable to the similarity between training and testing concepts, as the
training data size (number of observations) and variety (number of concept combinations) are fixed.
This observation entails several important implications for the empirical research on compositional
generalization. First, the specific value of c used in prior studies must be retrospectively taken into
account to properly contextualize and interpret their findings. Second, in light of its significant impact
on the measured generalization performance, ¢ should be systematically considered as part of future
empirical investigations of compositional generalization.

Empirical results support the proposed ladder of evaluation difficulty (R1). Figure 3h also
provides an empirical validation of the ladder of compositional evaluation difficulty proposed in
Section@ Starting from the two extremes of the considered intervals, we observe that on all datasets
not a single model could properly generalize in the extrapolation domain (¢ = 0), while (almost) every
model achieved perfect accuracy in-distribution (¢ = I). In between, compositional generalization
and c are in the majority of cases positively correlated. This suggests that neural networks can
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Figure 3: Orthotopic evaluation results. In (a), we report the test accuracy (on the compositional
generalization split) for different values of the compositional similarity index c. The results are
collected for six well-known representation learning datasets and grouped into the six major families
of models considered in this work. The uncertainty (SEM) is reported over different models in the
family (various model sizes, pre-training, etc.) and random seeds (3). (b) on the other hand compares
the results obtained with orthotopic evaluation (represented now at the granularity of single models,
averaged across different datasets and seeds, for ¢ = 1) with the results obtained with a more precise
but inefficient evaluation technique, pair-wise evaluation. In order to extract a more general picture,
we group the same results by model family in (¢). The results reported in this figure are obtained
from a large-scale analysis encompassing more than 5000 training runs.

leverage the increasing level of similarity between training and testing observations. However, as the
pressure towards learning disentangled representations increases (smaller c), the performances of
these models drop sensibly. For some datasets (e.g., dSprites and Shapes3D), it is possible to observe
a clear distinction between the disentangled (¢ = 1) and entangled compositional generalization
(1 < ¢ < I) regimes; the majority of the models, in fact, perfectly generalize on the latter (~ 100%
test accuracy), but struggle on the former. However, this difference is not as pronounced in other
datasets, a sign that sometimes models could even struggle recombining information of entangled
attributes. Overall, the consistent correlation between test accuracy and compositional complexity
provides empirical support for the proposed ladder of compositional evaluation difficulty. We also
provide some evidence that, realistically, the same observation would hold in more noisy, real-world
datasets in Appendix [E]

Orthotopic and pair-wise evaluation share the same overall trends (R2). Figure [3p reports
a comparison between the orthotopic evaluation and pair-wise evaluation frameworks. Pair-wise
represents the naive baseline where only a pair of attributes is considered in the creation of the test
split. From the results, we can observe that the test accuracy in orthotopic evaluation is consistently
lower (11.6% on average) than that measured in the pair-wise evaluation (while the in-domain test
accuracy is comparable, as shown in Supplementary Figure 25). This is, to some extent, expected
since in the orthotopic framework we exclude more observations from the training data (40% vs. 10%)
and the number of different task-relevant factors can be much larger (I — 1 vs. 2). Except for this, we
can observe in Figure 3} that the main trends are consistent across the two frameworks. Models with
no architectural inductive bias are the worst (MLP), pre-trained models generally perform worse than



models trained from scratch, some architectures are consistently better than others (e.g., ConvNeXt),
and ED architectures are significantly better than any other monolithic model. We observe similar
results when the number of optimization steps is substantially increased (up to 240X) to investigate
the emergence of grokking phenomena [27, 28] (see Appendix [C.5). Modifying the models by
replacing the original activation functions with learnable ones, intended to promote mappings closer
to isomorphic bijections, also does not improve the outcomes (see Appendix [C.4). The full results for
the two frameworks are included in Appendices [E.T|and [C.2] respectively.

Orthotopic evaluation results are mostly consistent with the results from previous works (R2).
Comparing the overall results presented in Figure [3] with the closest previous work from Schott
et al. [S)], we observe similar results on dSprites and Shapes3D. On the other hand, we measure
significantly better performances on MPI3D-real. Pointing out the exact origin of this discrepancy is
hard, since this work differs from theirs in many aspects: different problem formulation (classification
vs. regression), data pre-processing, and investigated models. The remaining datasets cannot be
directly compared to any previous work, since this is the first work that uses them in the context of
compositional generalization. As Montero et al. [8], we also observe that it is consistently harder for
most of the models to generalize well for specific attribute combinations (e.g., shape and size) when
the results are broken down to this granularity (as shown in Appendix [C.3).

4 Improving architectural scalability with Attribute Invariant Networks

The results presented in Section [3 provide a modern and comprehensive perspective on disentan-
glement and compositionality in vision architectures. In this section, we leverage some of the
insights gained from this analysis to devise a new architectural paradigm (dubbed Attribute Invariant
Networks) which achieves a new Pareto-optimality in the scalability-performance tradeoff for compo-
sitional generalization tasks. In particular, we observe that explicitly disentangled (ED) architectures
consistently outperform monolithic models, achieving an average improvement of 21.38% over
the strongest baseline (ConvNeXt) and making it the de facto strongest baseline by a margin for
what concerns compositional generalization. However, ED architectures suffer from a significant
limitation: requiring a separate set of weights for each additional attribute, they are hardly scalable to
any real-world scenario. Hence, we aim to answer the following question: Is it possible to achieve
levels of compositional generalization comparable to ED without incurring its significant parameter
overhead (i.e., retaining a model size which is closer to monolithic architectures)?

4.1 Method

The success of deep learning in vision tasks was initially driven by the insight that shift-invariance is
a fundamental symmetry in the image domain. Following a similar principle, we argue that achieving
compositional generalization requires identifying the key symmetries involved and design principles
that guarantee these invariances by construction.
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Attribute invariance. Ideally, to favor compositional generalization, the prediction of an attribute
should be invariant to group actions associated with other attributes [12]]. In other words, the output
of an attribute should be invariant under transformations that affect any other attribute. For instance,
the prediction of the attribute shape should remain unaffected when the color of the object is altered.
We refer to this property as attribute invariance (see Figure fa)).

Definition 4.1 (Attribute invariance). Let x be a sample, and let f;(x) be the logit corresponding to
attribute 7. For each attribute j, let &; be a group of transformations acting on the input space. Then,
fi is said to be artribute invariant if for every group action g € &, with j # i, f;(g.x) = fi(x).

Blueprint of Attribute Invariant Networks. In order to guarantee attribute invariance, we propose
Attribute-Invariant Nets (AINs), a class of neural architectures designed to support efficient composi-
tional generalization by construction (see Figure @) In general, for each attribute 7 € {1,..., P} an
AIN is a composition of three functions f; = g; o m o h;, where

e hi(6;): RP — RM is an encoder that extracts an attribute-specific representation q;.

» m(¢y) : RM — RS is a shared meta-model independently transforming any attribute-
specific representation into a compressed space, thus generating a set of attribute-specific
embeddings {z;}7, = {m(hi(x))}7,.

* gi(¢;) : R® — R is a classification head mapping compressed representations to the
corresponding attribute-specific logit §; = g;(z;).

The structure of AINs allows the optimization of each encoder h; to be sensitive to group actions
related to attribute ¢, while being invariant to group actions of any other attribute, as illustrated in the
following theorem (proof in Appendix [G).

Theorem 4.2 (Attribute invariances in gradient updates). Let (x,y) be a sample, and let f;(x) be
an AIN’s logit corresponding to attribute j. Then, for every group action g € &, if j # i, then
V. L5, fi(x)) = Vi, L(y;, fi(g.x)) = 0. On the other hand, if j = i, then V,, L(y;, fi(x)) #
Vi L(yi, fi(9.%)).

This is not the case for existing architectures where the encoder parameters are sensitive to gradients
from all attributes, i.e., V,L(y;, f;(x)) # 0, Vj € {1,..., P}. The only exceptions are ED models,
which can be seen as a special case of AINs where the meta-model is also attribute-specific. However,
this significantly increases the number of parameters of the model. Indeed, notice that 1-layer
encoders and classification heads are sufficient for attribute invariances in gradient updates. This
means that in practice |0;|, |¢| < |¢|, thus making their contributions negligible w.r.t. the size of
the model m. As a result, ED parameters complexity can be reduced from linear in the number of
attributes © (P x 1) to almost constant O (1)) (see Figure c).

4.2 Results and discussion

In this section, we aim to address the following research question:
(R3) How do AINs balance scalability and generalization compared ol — =
to existing models? To answer it, we compare three different architec- | e P e AN
tural patterns (monolithic models, AIN, and ED) leveraging the same 80

experimental setup introduced in Section [3.2] We select a ResNet- o

18 [20] as the backbone for all the models. We only disentangle
the first convolutional layer in AINs, as in preliminary experiments, 10 I }
we observe that this is the minimum amount of additional weights 20
sufficient to improve attribute invariance.

Test Accuracy (%)

0 2 4 6 8
AINs establish a new Pareto optimal in the compositional gener- Number of Parameters ~ *10

alization task (R3). Table[l|shows the results of the comparison ) o
between the accuracies achieved on the compositional generalization Figure 5: Pareto optimality.
split by the evaluated models (monolithic, AIN, and ED). Similar to

ED architectures, AINs consistently and significantly outperform their

monolithic counterparts on compositional generalization tasks (+23.43% average test accuracy).
This empirically supports the efficacy of enforcing attribute invariance in gradient updates, high-
lighting the crucial role that it can play in enhancing compositional generalization. Contrary to ED



Test accuracy (%)
Shapes3D MPI3D dSprites  I-RAVEN Cars3D CLEVR

RN-18 0% B5.47E0TL 41591216 9] 43£0.63 ] 30280 33 90181 94 6g+1-86
AIN 6.4%-16%  85.26%063 5402104 6] 43F0:33 66 23%2.26 43 90079 54 30%215
ED 300%-600% 96.09F265  70.76F0-24  61.31%0-61  76.12F270 4670098  53.98+1.46

Model Overhead

Table 1: Compositional generalization accuracy (%) of three architectures (monolithic, AIN, and ED)
across 5 datasets. ED and AIN are based on a standard ResNet-18. We report the SEM over three
seeds. For each family, we include the parameter overhead compared to the base monolithic model.

architectures, on the other hand, AINs incur a substantially lower parameter overhead. While both
approaches exhibit parameter growth that scales linearly with the number of task-relevant generative
factors (ranging from 3 to 6 in our experiments), the scaling coefficient for AINs is markedly smaller.
Consequently, AINs introduce an overhead between 6.4% and 16% relative to the base model size,
significantly lower than the 600% overhead associated with ED models. Overall, AINs achieve a new
Pareto-optimal operational point in the scalability-generalization tradeoff, as shown in Figure 5]

5 Related work

Compositional Generalization. Endowing neural networks with compositional generalization
capabilities is a long-standing problem in the literature [29-32]. A wide range of works was produced
in the past decades on the topic [5H10, 133-44]. Montero et al. [7, |8l 34] showed that a higher
degree of disentanglement does not necessarily translate to better compositional generalization, but
limited their investigation to unsupervised and slot-based architectures. Schott et al. S]] focused
on supervised learning, showing that many of the inductive biases usually integrated into neural
networks are not sufficient to generalize compositionally. More recent works [35} 36] showed that
compositional representations are insufficient for generalization due to memorization and shortcut
phenomena. On a parallel line of research, others explored compositional generalization in object-
centric models [37-41]], focusing, however, on objects rather than attributes as we do. Other
works [45], 146] explored attributes disentanglement in object-centric representation learning with
monolithic-style models, but did not specifically investigate compositional generalization of these
models. While alternative training strategies, such as iterated learning [0, [10], were also proposed
as a potential enabler of compositional generalization, this work rather focused on architectural
approaches, e.g., fully-disentangled models [9].

Generating compositional splits. Different strategies to create compositional evaluation splits
were proposed. Montero et al. [7, 8] evaluated a rigorous definition of compositional generalization
(Recombination-to-Range). Despite hinting that a larger subset of attributes could also be used, they
only investigate the exclusion of two attributes at a time (for a few selected pairs of attributes) as in
the (inefficient) pair-wise evaluation strategy. On the other hand, other works [SH7}134]] considered
a different setting where only a corner of the generative factor hyperspace was excluded. This
allowed to decouple the number of training runs from the number of attributes of the dataset but,
at the same time, resulted in a more shallow definition of compositionality, where test samples
could potentially share up to I — 1 task-relevant factors with training samples. While Okawa et al.
[L1] introduced a concept distance metric akin to our compositional similarity index, our works
significantly develop the idea further, proposing a scalable evaluation framework, broader empirical
analysis, and a formalization that unifies various generalization regimes under a compositional lens.

Disentangled representation learning. Following the initial proposal of Bengio et al. [12], many
works explored supervised [9} [16, 47 |48]|, semi-supervised [49]], and unsupervised [50H54] architec-
tures that aimed at separating distinct, independent, and informative generative factors of variation
in the data [55]. In practical terms, this ensures linear independence among factors within the
model’s latent space. In this work, however, we are primarily interested in compositionality, which is
concerned with combinations of generative factors. The relationship between disentanglement and
compositionality remains an open topic of debate to this day. While some works showed that the two
are not necessarily correlated [7} 33]], others observed that disentangled representations can improve
compositionality and generalization in specific settings [9, 56 57]].



6 Conclusions, limitations, and future work

Limitations The methods explored in this work — orthotopic evaluation and AINs — rely on the as-
sumption that (at least a subset of) the generative factors of variation are accessible. This is analogous
to how evaluating classification accuracy or training supervised models requires access to ground-truth
labels. Additionally, while AINs, like ED, scale linearly with the number of attributes, they do so with
a significantly lower constant factor, making them substantially more efficient in practice. Finally,
we emphasize that neither the attribute-invariant gradient updates used by AINs nor the explicit
disentanglement enforced by ED guarantee perfect disentanglement or complete independence among
attributes. Rather, they serve as effective mechanisms to promote these properties.

Conclusions and future works In this paper, we investigated compositional generalization in
computer vision architectures. In particular, we focused on the problem of supervised learning of
compositional and disentangled representations for (known) generative factors underlying visual
scenes. Firstly, we proposed a dataset-agnostic and efficient evaluation framework to benchmark com-
positionality and disentanglement in a principled fashion, unifying previously proposed approaches
and increasing the evaluation efficiency. We extensively validated this proposed approach against
alternative methodologies and previous works. As part of this validation, we trained more than 5000
SOTA vision models and observed that they still substantially fail to solve the compositional general-
ization problem. While it is well known that unsupervised learning of disentangled representations
is fundamentally impossible without inductive biases [54]], we additionally showed that learning
disentangled representations is empirically hard even in fully supervised settings (experiments on
¢ = 1), even when strong inductive biases on the models’ architecture (e.g., ED) are provided. The
results also highlight a critical limitation: common vision architectures lack compositionality and
disentanglement, which could in turn compromise sample efficiency and increase the vulnerability
to failures in real-world environments, where data distributions often exhibit heavy-tailed behavior.
Finally, we identify attribute invariance as a necessary precondition for compositional generalization.
Inspired by this observation, we propose a new class of neural architectures, Attribute Invariant
Networks (AIN), that endows attribute invariance in the gradient computation. Empirically, we show
that AINs achieve a new Pareto optimality in the scalability-generalization tradeoff, significantly im-
proving compositional generalization of monolithic models with only a minimal parameter overhead.
Possible future works could explore the extension of this study to real-world datasets (e.g., COCO or
ImageNet), where the generative factors are noisy and possibly unknown.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are supported by theoretical and
experimental results in the following sections and supplementary material.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
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A Extended orthotopic evaluation details

A.1 Additional degrees of freedom in the creation of compositional test splits

In the main text, we presented a simplified setting of the framework to pinpoint the specific impact of
the ¢ parameter on compositional generalization. However, the generality of the proposed setting can
be further increased by relaxing some of the constraints on the evaluation orthotopes. In particular,
we identify three additional degrees of freedom that can be specified on top of the minimal setup,
namely:

* size of the orthotopes,
* number of orthotopes,
* position of the orthotopes.
The rest of this supplementary note will provide an intuition about what each of these additional

parameters influences in the setup in practice and how they can be integrated in the original splitting
procedure presented in Algorithm [T}

n=1

1

(a) Variable orthotopes’ size. (b) Variable orthotopes’ number. (c) Variable orthotopes’ position.

Figure 6: Additional degrees of freedom in the split generation procedure. In this figure, we give
a pictorial intuition (in the simplified setting of a dataset composed of only 3 generative factors) on
how the procedure presented in Algorithm T|could be extended and generalized further. In (a) we
parametrize the size of the excluded cylinder with v (indicating the percentage of additional volume
excluded with respect to the available, not excluded volume). In (b), we parametrize the number of
excluded orthotopes n. The colors in this figure show the incrementally increasing volume removed
from the training data (e.g., for n = 2 the yellow volume is added to the original green volume of
n = 1). Finally, in (¢) we parametrize the position of the orthotopes in the hypercube, allowing them
to occupy regions which are not exclusively limited to the corners of the cube itself.

A.1.1 Size of the hypercubes.

In the main set of results, we studied the behavior of ¢ excluding a fixed, minimal number of attribute
values for each generative factors. This is, of course, an arbitrary choice, motivated by the observation
that the majority of models were already failing in this simple setting. In principle, it is possible to
make the task arbitrarily harder, excluding, during training, more and more elements from the set of
possible values that each attribute can assume. In other words, we can increase the difficulty of the
task by enlarging the support of each test orthotope in every c-dimensional subspace. An intuition
for this generalization is given in Figure[6a] The fact that increasing the volume of the excluded
orthotopes decreases compositional generalization is expected for different reasons. Firstly, since
the size of the dataset is constant, the number of observations available during training decreases,
requiring the models to increase their sample efficiency to retain the same performance. Secondly,
increasing the percentage of excluded observations directly reduces data variety, as fewer examples
will be available for each specific combination of task relevant generative factors.

In practice, there exist different strategies to implement this, the simplest being adding a parameter
v € [0, 1] that controls the percentage of values excluded for each attribute. For v = 0 we recover
the main paper setting, while for v = 1 all attribute values except one are excluded, since we still
need to guarantee the observability of every attribute value during training. All the intermediate steps
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can be studied for 0 < v < 1. This parameter is then used in the exclusion subroutine in order to
generate exclusion slices of variable size. The pseudo-code for the extended procedure is reported in
Algorithm[2]

Algorithm 2 Extended compositional split generation

1: procedure SPLITDATASET(X, G, ¢, v)

2 S= (Cfl) ={SCG:|S|=c+1} > Get all combinations of ¢ generative factors G.
3: for each s € S do > Iterative orthotope pruning.
4: Xproj = proj, X > Project X onto the c-dimensional subspace s.
5: E, = exclusion(s, v) > Infer excluded slice of the subspace s.
6: X =X\ (Xproj N Es) > Pruning operation in the subspace.

A.1.2 Number of hypercubes

Orthotopic evaluation works by excluding all the orthotopes in S = (cfl) simultaneously. This

guarantees a strict compositional evaluation on all the attributes at once. However, this procedure
could end up excluding a significant part of the available data (especially when c is small and the
number of task-relevant generative factors is large), due to the large number of excluded orthotopes.

On the other side of the spectrum, we find what we referred to as pair-wise evaluation, which consists
of training a separate model for each pair of generative factors. The advantage of this technique
lies in the relatively small amount of percentage of data excluded during training, since we limit
|G| = 2 and we (ideally) train models invariant to every other generative factor O. In other words, in
pair-wise evaluation, there only exists a single exclusion orthotope in the space. The downsides of this
approach, however, are many (corresponding exactly to the advantages of the orthotopic evaluation
framework). Firstly, it requires training a different model for each combination of two different
generative factors, which results in ©(|F|?) evaluation complexity, which scales quadratically in the
number of generative factors. Secondly, we only train models to predict pairs of attributes whose
usefulness is rather limited in practical scenarios.

Once again, however, orthotopic and pair-wise evaluations do not exist in isolation, but are rather the
extremes of a discrete spectrum that can be obtained by selecting only a subset of cardinality n of

the orthotopes S C S. An intuition for this generalization is given in Figure Naturally, in this
case, compositionality can be strictly evaluated only on the tuples of attributes corresponding to the
included orthotopes. Nonetheless, these intermediate scenarios might still be interesting to investigate
in at least two scenarios: 1) when we only care about evaluating compositional generalization on a
subset of attributes, or 2) in situations characterized by an extreme data scarcity or a limited number
of values for some attributes, that would be easier to detach from the main dataset and evaluate
separately (in order not to influence excessively the results of the entire evaluation). The pseudo-code
for this extended procedure is reported in Algorithm 3]

Algorithm 3 Extended compositional split generation

procedure SPLITDATASET(X, G, ¢, n)

1:

2 S=(5)={SCG:|S|=c+1|S|=n} > Get all combinations of factors.
3 for each s € S do > Iterative orthotope pruning.
4: Xproj = proj, X > Project X onto the c-dimensional subspace s.
5 E, = exclusion(s) > Infer excluded slice of the subspace s.
6 X =X\ (Xproj N Ey) > Pruning operation in the subspace.

A.1.3 Position of the hypercubes.

In the vanilla setting, we always assumed the excluded regions to be in some “corner” of the
hyperspace. While this simplifies the implementation, it is not necessary, and the excluded orthotopes
could be interchangeably placed in any region of the hyperspace.

The relaxation of the excluded slice position could have a measurable impact in settings where a
natural order for the values of the attributes exists (e.g., size or position). For instance, it would
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simplify the task for models that can, to some extent, perform interpolation but not extrapolation
(which is another possible way to generalize other than learning compositional representations in
the current framework). On the other hand, it does not make a difference for attributes that do
not incorporate any notion of ordering in their values (the space would be invariant to shuffling
operations). The pseudo-code for this extended procedure is reported in Algorithm 4]

Algorithm 4 Extended compositional split generation

1: procedure SPLITDATASET(X, G, ¢, 7)

2 S = (Cfl) ={SCG:|S|=c+1} > Get all combinations of factors.
3: for each s € S do > Iterative orthotope pruning.
4: Xproj = proj, X > Project X onto the c-dimensional subspace s.
5: E; = exclusion(s, 1) > Infer excluded slice of the subspace s.
6: X =X\ (Xproj N Ey) > Pruning operation in the subspace.

A.2 Extension to the new ladder of compositional evaluation difficulty

In the main text, we aimed to provide an intuitive introduction to the new concept of a ladder of
compositional evaluation difficulty. In this supplementary material, we further develop some of the
aspects introduced in the main text and provide more background to some of the plots reported in this
section.

Broader discussion. We expand here on the brief introduction to the ladder of compositional
generalization difficulty presented in the main text. The ladder is sketched to provide different steps
of difficulty related to different ranges of values of the compositional similarity index c. The steps
are, from the hardest to the simplest:

* Extrapolation generalization (c = 0); in this setting, part of the examples of the evaluation
split share exactly O values between training and testing. In other words, they represent
unseen values of the generative factors for the model. In the context of the attributes’
hypercube, this translates to having full slices (over some dimensions) of the hypercube
excluded during training.

* Compositional generalization (1 < ¢ < I — 1); in this setting, all the generative factors’
values are observed, but a subset of their combination is excluded from the training data. In
the context of the attributes’ hypercube, this corresponds to excluding partial slices of the
hypercube excluded during training.

* In-distribution generalization (c = I); in this setting, all the generative factors’ values, as
well as all their possible combinations, are observed. In the hypercube’s language, the entire
hypercube is effectively observed.

We create a further distinction within the compositional generalization case, between disentangled
composition generalization (¢ = 1) and entangled compositional generalization (1 < ¢ < I). We
include an example that should provide an intuition regarding the difference between the entangled
(1 < ¢ £ I —1) and disentangled (c = 1) compositional generalization settings. Consider Example
[2.2] A model that learns holistic representations for the factors (shape, size) can smoothly generalize
to the test example (small, cube, blue obj.) when evaluated with ¢ = 2. This is possible because the
pair (small, cube) is observable during training, because training and evaluation samples can share
up to 2 attributes (including the pair shape-size). However, the same model fails when evaluated with
c = 1 since the two concepts can only be observed independently in the training data.

In Figure[7} we show an additional experiment to help build up intuition on the different levels of
the proposed ladder of compositional evaluation difficulty. In this experiment, we measure the mean
cosine similarity between 100 randomly sampled training and testing embeddings for different values
of ¢. We consider ¢ = 6 and several total attributes P = 6, where each attribute can assume 8 different
values. Firstly, we randomly sample two vectors vs,qin and ve.s: of size 6, where each element is in
the range [0, 7]. Then, for each ¢ € [0, 6], we set the first ¢ elements of the testing vector to be equal to
the training vector. This allows us to evaluate the similarity between training and testing observations
for the most difficult samples of the testing split, that is, when they only agree on the minimum number
of attributes shared between training and testing (c). At this point, we encode the attribute values into
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distributed vector representations, extracted from a pre-defined codebook of representations of size
(6%,1024) (one for each possible combination of attributes) for holistic representations and (8, 2048)
for compositional representations. We use the same encodings for the values of different attributes;
however, this does not influence the resulting cosine similarity, since it is computed position-wise
(hence no interferences can happen between attributes). For compositional representation, the
final encoding consists of a simple concatenation of each attribute’s value encoding (concatenation
compositionality). We also experimented with a superposition of the individual attributes’ value
encodings (additive compositionality) and obtained similar results, thanks to the quasi-orthogonality
guaranteed by the high dimensionality of the representations. In n-holistic representations, on the
other hand, we get from the codebook a representation for the combination of the first n common
attributes, with n € [2, I — 1], and then concatenate it with compositional representations for the
remaining attributes. In practice, this simulates the representations that would be extracted by a model
that entangles the first n attributes, while learning compositional representations of the remaining
c — n attributes. In this scenario, it is expected that properly disentangled representations, where each
attribute is encoded separately, have a non-zero (1/1) similarity between training and testing similarity
also when ¢ = 1. At the same time, it is also natural that n-holistic representations have 0O similarity
with the corresponding training observation despite having ¢ — 1 attributes in common, since the
representation for those ¢ — 1 attributes is not disentangled and depends also on the c-th attribute.
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Figure 7: Ladder of compositional evaluation.

A.3 Orthotopic evaluation framework - an example

Consider the simple dataset with three generative factors, (g1, g2, g3), defined as
X =1{(0,3,2),(2,4,0),(3,4,2),(1,1,1),(1,3,2)}.

Assume that the projection subspace is (g1, g2), and the thresholds in this space are t; = 2,t5 = 1.
In this case, exclude would return all possible evaluation samples (given by the cartesian product
of the values g; > t;). Then, X,,,.,; N exclusion(s) = {(2,4,0), (3,4, 2)}, which would be removed
from the training data (and automatically become part of its complement, the evaluation data).
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B Additional experimental setup details

B.1 Datasets

We consider a range of vision datasets widely used in representation learning literature. Firstly,
dSprites [[14] is a synthetic dataset of low-resolution binary images of elementary shapes. Similarly,
I-RAVEN [115] is a visual analogical reasoning dataset containing synthetic images of B/W simple
sprites. Shapes3D [16] is a well-known dataset in the representation learning domain containing
synthetic low-resolution images of 3-dimensional solids in a simple environment. On a similar
note, CLEVR [17] is another dataset initially proposed in the context of elementary visual reasoning
containing higher-quality renderings of solid shapes with more sophisticated generative factors
compared to Shapes3D (e.g., material). Cars3D [18] is a dataset containing low-resolution synthetic
renderings of simple cars’ CAD models (increased subject complexity). We also include a real-world
dataset, MPI3D [19], containing pictures of physical solids attached to a robotic finger.

I-RAVEN I-RAVEN [15] is a modified version of the RAVEN [58]] dataset, which removes biases
in the answer sets. RAVEN is derived from the Raven Progressive Matrices (RPM) [59], a widely
accepted test of human abstract visual reasoning capabilities. The RAVEN dataset serves to assess
the visual reasoning capabilities of machines. The perception of the objects present in a panel and
their attributes is the first step in solving an abstract visual reasoning task. For a system to generalize
in visual abstract reasoning, it must also demonstrate strong generalization in perception. While
I-RAVEN consists of multiple panels per sample, we treat each individual panel as an independent
sample. Examples from the dataset are illustrated in Figure[8] The dataset features the following
generative factors:

* shape (5 classes)
e size (6 classes)
e color (10 classes)
* angle (8 classes)
While the shape attribute usually has no natural order, shapes in [-RAVEN can be ordered by their

number of vertices. Out of these generative factors, we exclude angle because of its ambiguity, hence
considering G = {shape, size, color} and O = {angle}.

Figure 8: Three images from the I-RAVEN dataset.

dSprites dSprites [[14]] is a procedurally generated dataset of 2D shapes. The dataset was created to
evaluate the disentanglement properties of unsupervised learning methods and is widely used as a
benchmark. It features very simple objects with four independent factors of variation. Samples from
the dataset are shown in Figure[9] Objects in the dataset have the following generative factors:

* shape (3 classes)

* scale (6 classes)

* orientation (40 classes)

* z-position (32 classes)

* y-position (32 classes)

Out of these generative factors, we exclude orientation because of its ambiguity, and effectively
consider G = {shape, scale, z,y} and O = {orientation}.
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Figure 9: Three images from the dSprites dataset.

Shapes3D 3D Shapes [16]] is a procedurally generated dataset of 3D shapes. Like dSprites, it was
created to assess the ability of models to reveal latent generative factors. Unlike dSprites, the objects
are three-dimensional, and the objects are in an environment that also has attributes, such as the color
of the wall behind an object. Samples from the dataset are shown in Figure Images in 3D Shapes
have the following generative factors:

e floor color (10 classes)

e wall color (10 classes)

* object color (10 classes)

« scale (8 classes)

* shape (4 classes)

* orientation (15 classes)

Among these generative factors, we select all of them except for orientation to be task-relevant,
yielding G = {shape, scale, floor hue, object hue, wall hue} and O = {orientation}.

Figure 10: Three images from the 3D Shapes dataset.

MPI3D MPI3D datasets are designed to benchmark representation learning algorithms in both
simulated and real-world environments. We use the Real world simple shapes dataset, which is a
dataset of photographs of a robot arm holding up various simple objects [[19]]. In contrast to the other
datasets used in this work, this is effectively a real-world dataset. Samples from the dataset are shown
in Figure[TT] The generative factors for this dataset are:

e color (6 classes)

* shape (6 classes)

e size (2 classes)

* height (3 classes)

* background color (3 classes)

¢ x-axis (40 classes)

e y-axis (40 classes)
To avoid excluding a disproportionate amount of observations, we do not consider the size attribute

(that can only assume two values) among the task-relevant generative factors. Hence, for this dataset,
G = {color, shape, height, bgcolor, x, y} and O = {orientation}.
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Figure 11: Three images from the MPI3D dataset.

Cars3D Cars3D was introduced by [18] to study the problem of visual analogy-making using deep
neural networks. The dataset contains images of a wide variety of cars. Among the datasets used in
this work, its type attribute has the largest number of classes. Samples from the dataset are shown in
Figure[2] The generative factors for this dataset are:

* orientation (24 classes)
* elevation (4 classes)

* type (183 classes)

* height (3 classes)

Because of its ambiguity, we exclude the height parameter from the task-relevant generative factors.
Effectively, we consider G = {elevation, type, orientation} and O = {height}.

&R oo

Figure 12: Three images from the 3D Cars dataset.

CLEVR CLEVR is a synthetic vision dataset initially introduced in the domain of elementary
visual reasoning. This dataset is composed of high-quality images of solids rendered with Blender.
Compared to other synthetically generated datasets, the objects in this dataset include a wider range
of object-level generative factors (e.g., the object texture). Samples from the dataset are shown in
Figure[I3] The generative factors for this dataset are:

* shape (3 classes)

* size (3 classes)

e material (2 classes)
¢ color (8 classes)

In this case, G = F = {shape, size, material, color}, while O = ().

Figure 13: Three images from the CLEVR dataset.
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As mentioned in the main text, we define attribute-wise exclusion thresholds for the orthotopic
evaluation experiments, such that roughly 60% of the observations of each dataset are used for
training and the remaining 40% for testing. We report in Table [2]the thresholds for each dataset. The
reported exclusion thresholds correspond to the attributes reported in the same table and correspond
to the lowest index excluded from the interval of attributes. Indices are considered in the interval
[0,n — 1], where n is the number of values that the attribute can assume.

Exclusion thresholds

Dataset Attributes c

0 2,4, 30,30

1 2,3,14,14
dSprites shape, scale, z, y ’

2 1,3,16,16

3 1,1,4,4

0 9,54
I-RAVEN shape, scale, z, y 1 6,3,3

2 3,2,1

0 26, 3,160
Cars3D orientation, elevation, type 1 15,2,113

2 6,1,43

0 2,2,1,7

1 2,2,1,7
CLEVR shape, size, material, color T

2 2,1,1,3

3 1,1,1,1

0 9,9,9,7,3

1 7,7,7,6,3
Shapes3D floor, wall, obj, scale, shape 2 6,5,6,5,2

3 4,4,4,3,1

4 2,2,1,1,1

0 5,5,2,2,38,38

1 5,4,2,2,34,34

2 4,3,2,2,27,27
MPI3D color, shape, size, height, bgcolor, x, y

3 3,4,1,2,22,22

4 2,2,1,1,10,10

5 1,1,1,1,1,1

Table 2: Attribute-wise exclusion thresholds used for each dataset.
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B.2 Models

In this section, we provide additional details on the models used in our experiments. Most of the
models’ implementation used in the experiments are taken from the torchvision.models zoo. The
models are either directly used or extended in the case of custom implementations (e.g., in the case of
the ablation of alternative activation functions presented in Appendix [C.4).

The MLP model is taken from Schott et al. [5], and consists of the following lay-
ers: [Linear (64*64*number-channels, 90), ReLU(), Linear(90, 90), ReLU(),
Linear (90, 90), ReLU(), Linear(90, 90), ReLU(), Linear(90, number-factors)].

The checkpoints used for the pre-trained models are, respectively,

* DenseNet-121: https://download.pytorch.org/models/densenet121-a639ec97.
pth;

* ResNet-101: https://download.pytorch.org/models/resnet101-cd907fc2. pth;

* DenseNet-152:  https://download.pytorch.org/models/resnet152-£82ba261,
pth;

The proposed Explicitly Disentangled (ED) model instantiates a different net (RN-18) for every
task-relevant generative factor. Compared to Separate Architecture (SA) 9], ED presents different
improvements. First, for single-channel inputs, ED adjusts the ResNet to be single channel instead of
repeating the input on three channels as SA does. Second, ED performs maxpool before BatchNorm,
while SA does it after. Then, ED uses a tanh activation before the final linear layer and no output
activation, while the SA uses ReLU as output activation. Finally, a major difference lies in the type of
readout used by the model, as discussed in the following Appendix

The same pre-processing is applied to the input of every model. The pre-processing is dataset-
dependent and corresponds to the following augmentations:

e Cars3D — [resize(64)]
CLEVR — [resize(128)]

e dSprites — [resize(64), gaussBlur(kernel=(23,23), sigma=(0.1,0.3)]

I-RAVEN — [resize(64), pad(5), randCrop(64), randRotation(360),
gaussBlur (kernel=(41,41), sigma=(0.1,0.3)]

* MPI3D — [resize(64), gaussBlur(kernel=(23,23), sigma=0.2]
* Shapes3D — [resize(64), gaussBlur(kernel=(23,23), sigma=0.2]

Figure [T4]includes a conceptual overview of the differences between the different model blueprints
studied in this work. For monolithic models, the same network is used to extract a unique representa-
tion of the input image, which is then fed into the different classification heads that predict logits for
the individual attributes. On the other hand, ED models disentangle the full feature extraction and
feed a representation which, ideally, should only contain information related to a specific attribute.
Attribute invariant networks represent a compromise between the two: an initial part of the feature
extraction is disentangled, but at a certain point, all the representations are concatenated over a new
dimension and processed using the same weights. The advantage of AINSs lies in their parameter
efficiency: the shared weights in the second part of the feature extraction do not need to be replicated
for each attribute, as the model learns a single set of weights shared across different attributes. ED
can be seen as a special case of AINs, where the entire model is disentangled and there are no shared
parameters.
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Monolithic network. Explicitly disentangled network. Attribute invariant network.

Figure 14: Comparison between different architectural blueprints studied in this work.

B.3 Linear and FPE-based readouts for ED

In the Shared Architecture from Madan et al. [9], the prediction of the attributes’ logits is performed
through simple linear readouts on top of the extracted attribute representations. Building on this,
our ED architecture aims to further improve the performance on compositional generalization by
encoding prior knowledge regarding relationships between attributes. Specifically, it encourages the
model to respect the structural similarity of neighboring classes. This enhancement is particularly
valuable for attributes that endow a natural definition of ordering, where the similarity between
adjacent attribute values (e.g., color shades or size increments) should be reflected in the learned
representations. The ED model leverages fractional power encodings (FPE) [60,|61] to encode these
attributes in a structured way, preserving task-relevant patterns in the embeddings and endowing
similarity between representations.

In FPE, an integer attribute ¢ is encoded by binding a random base vector z ~ p(z) (where p(z)
depends on the specific initialization scheme, in our case N(0, 1)), known as a phasor, to itself ¢
times. '

2(i):=2°) =z0..02 (1

We use circular convolution as the binding operation, which can be efficiently computed via the Fast
Fourier Transform (FFT), where binding corresponds to element-wise multiplication in the frequency
domain. This also allows for adjusting the relative distance between encoded values to non-integer
values by multiplying by a parameter o € R:

z(i,a) = F~1(Fz)*! 2

where F and F~! are the Vandermonde matrices representing the discrete Fourier transform and its
inverse.

The distribution of phases in the FPE vectors determines the shape of the kernel in the embedding
space [61]. We leverage a normal distribution, which leads to the kernel induced by the vector product
of the embeddings approximating a Gaussian kernel (shown in Figure[T3). Increasing the variance
of the phase distribution leads to a decrease in kernel width. We adjust the variance of the phase
distribution based on each attribute’s specific characteristics, using a larger variance for ungraded
attributes like type and a smaller variance for graded attributes such as size. This allows the model to
incorporate prior knowledge regarding the relationships between classes, ensuring that the similarity
between attributes’ values is maintained in their corresponding representations and can be eventually
leveraged by the model.

How is this form of initialization implemented in the model? During initialization, a base phasor is
sampled. Based on it, a representation vector for each possible value of each attribute is produced
(following the previously reported methodology). These vectors are then aggregated in a codebook C
and become an invariant component of the model. At inference time, each attribute’s representation
extracted by the model is compared with the corresponding C using cosine similarity, yielding n
different similarity values (one for each attribute’s value). The final prediction is eventually produced
by taking the argmax of these similarity indices, i.e., computing the index of the most similar
representation in C. The model is trained using the cross-entropy loss between the ground-truth
one-hot vector and the vector of cosine similarities.

In practice, FPE readouts perform slightly better than linear readouts on average. The results of an
ablation between the two types of readout are included in Figure[T6] We can observe that, for most
of the datasets, the difference between the two is marginal. However, in the case of dSprites FPE
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Figure 15: Kernel induced by the FPE initialization on the target representations. Computing the
similarity between two attribute values v; and v in the representation space yields the shown
similarity kernel K (v — v9).

readouts significantly improve the results. On the other hand, FPE readouts perform slightly worse
than linear ones on MPI3D.
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Figure 16: Ablation on the difference between linear and kernel-based readouts for the ED model.
The standard deviation is reported across five different random seeds.
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B.4 Model selection

We include here a small ablation on the metric used for model selection in our experiments. Identifying
a robust and consistent selection metric is, indeed, of vital importance to select models that balance
in-distribution (ID) and out-of-distribution (OOD) performances. Ideally, we would like to select a
model that performs well on both ID and OOD settings. However, in the majority of the situations,
there is a trade-off between the two: models that perform well in-distribution generalize poorly in
OOD scenarios, whereas models that perform well OOD are usually underfit ID.

Based on these observations, we investigate three different selection metrics:

¢ In-distribution validation accuracy (ID); this metric is computed on a held-out split
of 10% of the training data (containing only the training combinations of attributes) and
validates in-distribution generalization.

* Out-of-distribution validation accuracy (OOD); this metric is computed on samples from
a subset of combinations of factors (in our experiments, one combination) held out from the
training data, validating compositional generalization.

* Weighted in-out-distribution validation accuracy (WIO), representing a weighted com-
position of ID and OOD selection metrics. In particular, we define valwio = valp + 1/x -
(valpop — 100), where ) is an hyperparameter that allows to balance the relative importance
of the two. In our experiments, we set A = 10 (OOD validation data only marginally
influences the WIO accuracy) to avoid the selection of “under-fit” models that perform well
out-of-distribution but under-perform in-distribution.

We compare the test accuracy achieved by the models selected based on each metric against the best
test accuracy achieved at any point in time during the training by the model (oracle test accuracy).
The comparison is performed using all the training traces from the pair-wise experiments presented in
Section@ including every dataset, model, seed, and attribute combination. The results of this ablation
are included in Figure From these results, we can observe how the in-distribution validation
accuracy is usually a better metric for model selection with an average accuracy delta with the oracle
selection equal to 9.26%. ID is closely followed by WIO, which shows an increase of 0.71% in the
test accuracy delta. Finally, OOD proved to be the worst selection metric among the investigated
ones, with an average A from the oracle selection of 9.97% test accuracy. Hence, in this work, we
opt to use the ID validation accuracy itself to perform model selection. However, we highlight that
the gap between the selected model and the best-performing model on test data is still large (=~ 10%),
which means that significant gains in future works could still be achieved by discovering more robust
and balanced selection metrics.
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Figure 17: Ablation of different model selection metrics.
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C Evaluating pair-wise compositional generalization

In this supplementary section, we include additional results on compositional generalization evaluated
on combinations of only two attributes (pair-wise evaluation). This corresponds to the special case of
the general orthotopic evaluation formulation presented in Section[A:T] where only one orthotope is
excluded from the training data and used for evaluation purposes. Generating the splits corresponds
to projecting the entire dataset onto two dimensions, one for each generative factor, and excluding
the observations corresponding to specific combinations of the factors. The process is shown in
Figure[I8](a) for a fictitious example where the generative factors are shape and color. In practice,
the models are trained to predict only two generative factors g; € G, go € G while being invariant
to all other factors G \ {g1,¢g2}. A general blueprint of the inference pipeline in this setting is shown
in Figure[T8|(b). By definition, pair-wise evaluation is expensive in terms of the number of training
and evaluation runs (scaling quadratically in the number of attribute combinations) since a different
model has to be trained for each combination. However, it maximizes the size of the training split
and evaluates compositionality with a fine granularity on the attributes.
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Figure 18: Pairwise compositional evaluation.

C.1 Experimental setup

Datasets and models. We investigate pair-wise compositional generalization on a subset of the
datasets (dSprites, -RAVEN, Cars3D, Shapes3D, and MPI3D) and the whole range of models studied
in the main paper (monolithic models, such as ResNets, DenseNets, ViT, MLP, ConvNeXt, and a
supervised disentangled model, ED). Contrary to the experiments on orthotopic evaluation, in this
experiments we only considered a subset of the generative factors of each dataset. In particular, we
include:

* Cars3D — elevation, type, orientation;

* dSprites — scale (size), shape;

» [-RAVEN — color, type (shape), size;

* Shapes3D — floor hue, wall hue, obj. hue, scale (size), shape;
* MPI3D — color, background, height, shape, size.

To average out the effect of stochasticity in the training process, we repeat every training run with 5
different seeds and average the results on them. Also in this case, motivated by the ablation in Section
[B4] we use in-distribution validation accuracy (held-out validation set of 10% of the training data) to
perform model selection.

Split difficulty. The pair-wise evaluation setting is equivalent to orthotopic evaluation with fixed
c = 1, considering only a subset of 2 attributes at a time. We fix the percentage of the combinations
excluded during training at 10% and find adaptive attribute-wise thresholds for every dataset and
attribute combination. The adaptive discovery of the attribute-wise threshold is performed using a
constraint satisfaction solver (CSP), which adjusts the exclusion of combinations to match the desired
difficulty fraction closely. Since directly optimizing the number of excluded combinations for each
attribute can lead to imbalanced difficulties, where some attributes are disproportionately affected
by the exclusion process, we add a regularization to the objective function. This regularization term
penalizes large disparities between the relative exclusion sizes of different attributes, thus encouraging
a more evenly distributed difficulty across different attributes.
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C.2 Experimental results

In this section, we report the experimental results of the large-scale evaluation on pair-wise compo-
sitional generalization, obtained training a total of more than 3600 different models. We report the
evaluation results for each dataset, including training accuracy (in-distribution, training data), ID
validation accuracy (in-distribution, held-out data), OOD validation accuracy (composition general-
ization, held-out from the training data), and test accuracy (OOD testing split). The mean accuracy
and the Standard Error of the Mean (SEM, w.r.t. different attribute combinations and seeds) are
reported for each model.

Cars3D The results for the Cars3D dataset are included in Table [3] The explicit disentangle-
ment (ED) model only slightly outperforms all the other baselines in-distribution but significantly
overperforms in both OOD validation (84.24%, 4.2% more than the closest monolithic model) and,
most importantly, test accuracy (73.38%, 13.73% more than the closest monolithic model). The
majority of the models completely memorized the training data (100% accuracy) and converged
in-distribution (95% validation accuracy) but failed to learn a solution that could generalize well to
unseen combinations of the generative factors.

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 4750 572 47.14 578 1251 566 @ 6.11 1.32
ResNet-18 X 99.10 0.17 9585 0.31 6845 10.18 5231 6.56
ResNet-34 X 99.08 0.16 9591 0.32 65.02 9.87 5273 623
ResNet-50 X 99.02 0.18 9568 0.39 7825 896 5721 4.64
ResNet-101 X 99.00 0.18 9567 042 7724 9.07 59.65 4.26
ResNet-101 v 9894 0.14 8248 1.62 4577 10.03 2634 2.17
ResNet-152 X 99.09 0.20 95.15 0.52 7320 9.72 5593 446
ResNet-152 v 99.03 0.16 8347 141 4932 935 28.85 237
DenseNet-121 X 99.12 0.16 96.06 0.29 70.14 9.72 56.21 592
DenseNet-121 v 4896 271 29.11 230 19.07 6.81 6.56 1.21
DenseNet-161 X 99.06 0.19 96.06 0.27 6746 12.14 61.07 6.64
DenseNet-201 X 99.03 0.18 9574 029 69.14 12.16 59.54 6.28
ConvNeXt-small X 98.87 0.22 9403 043 68.15 1001 5141 6.12
ConvNeXt-base X 98.88 0.22 9398 041 6638 9.86 5190 578
WideResNet X 99.05 0.18 9579 043 80.04 879 5944 4.62
ViT X 98.86 0.18 87.68 1.17 4553 1021 31.11 5.01
Swin-tiny X 98.85 0.16 93.10 0.38 6421 848 4396 6.62
Swin-base X 98.80 0.16 9393 0.33 60.76 852 51.32 573
ED X 99.06 0.18 96.37 033 84.24 895 7338 4.62

Table 3: Pairwise evaluation on the Cars3D benchmark.
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dSprites A similar behavior was also observed in the dSprites dataset, whose evaluation results
are reported in Table[d] Compared to the Cars3D, here the in-distribution results for almost every
model reach exactly 100%. This is expected to some extent, since the dataset is much more simplistic
than Cars3D (containing only binary low-resolution images of simple geometric shapes). However,
the failure on compositional OOD data is symmetrically more pronounced: every monolithic model
(with very few exceptions, such as the ResNet-152 and ResNet-50) score exactly 0% on test data. ED,
on the other hand, is then only model whose performances suffer from only a minor drop between
in- and out-of-distribution, achieving an average test accuracy of 84.25%. This impressive drop of
almost every model might be a result of different factors. Firstly, the models could possibly be too
overparametrized for task and have enough capacity for simply memorizing entangled information
about the combinations perfectly, virtually reducing the pressure to learn compositional representation
to zero. Furthermore, in this dataset the only combination studied is the combination of shape and
size attributes, which is notoriously difficult (e.g., also Montero et al. [8] observed it) but in other
datasets is averaged by many other “easier”” combinations of attributes.

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 9846 035 9868 0.35 0.01 0.01 0.00 0.00
ResNet-18 X 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
ResNet-34 X 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
ResNet-50 X 100.00 0.00 100.00 0.00 0.01 0.01 10.79 10.79
ResNet-101 X 100.00 0.00 100.00 0.00 0.01 0.01 0.00  0.00
ResNet-101 v 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
ResNet-152 X 100.00 0.00 100.00 0.00 2.73 273 17.77 11.58
ResNet-152 v 9999 0.00 100.00 0.00 0.00 0.00 000 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
DenseNet-121 v 5931  0.14 5927 0.17 0.63 0.27 0.51 0.16
DenseNet-161 X 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
DenseNet-201 X 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
ConvNeXt-small X 9997 0.01 100.00 0.00 0.00 0.00 000 0.00
ConvNeXt-base X 9998 0.01 100.00 0.00 2.22 2.22 0.00  0.00
WideResNet X 100.00 0.00 100.00 0.00 6.76 4.71 0.09 0.07
ViT X 9142 393 9512 253 0.00 0.00 000 0.00
Swin-tiny X 9895 027 9974 0.08 0.00 0.00 000 0.00
Swin-base X 1794 452 2240 6.11 0.00 0.00 0.00 0.00
ED X 100.00 0.00 100.00 0.00 79.87 19.97 84.25 15.69

Table 4: Pairwise evaluation on the dSprites benchmark.
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I-RAVEN The results for the I-RAVEN dataset are reported in Table 5} Also in this case the
realization of an explicit disentanglement of the generative factors for the forward and backward
passes in the architecture itself proves to be an effective strategy, with ED achieving 100% on both
in-distribution and out-of-distribution samples. Monolithic models, on the other hand, achieve in most
of the cases perfect accuracy in-distribution but fail to score more than 70% on the compositional
generalization split. Contrary to the previous dataset, for this dataset more recent architectures such
as ConvNeXts and Swin Transformers achieve noticeably better results compared to older backbones,
with best accuracies of 68.78% and 62.05% respectively. As in the other datasets, also for -lRAVEN
the pre-training on Imagenet-1k never brings substantial benefit and, in some cases, even prevents
the models from converging on the training data itself. Compared to ResNets, WideResNets and
DenseNets also perform better, achieving at least 7.08% and 12.32% higher accuracy on the test split.

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 95.41 1.05 9933 026 4387 12.18 6.85 2.28
ResNet-18 X 99.97 0.01 100.00 0.00 79.21 10.11 37.67 6.44
ResNet-34 X 99.97 0.01 100.00 0.00 75.10 11.14 40.06 8.49
ResNet-50 X 9998 0.01 100.00 0.00 74.71 10.80 34.96 7.23
ResNet-101 X 9996 0.01 100.00 0.00 86.71 7.69 4741 9.08
ResNet-101 v 9997 0.01 100.00 0.00 61.59 1255 16.36 4.90
ResNet-152 X 99.87 0.05 100.00 0.00 84.77 8.08 4398 10.11
ResNet-152 v 99.97 0.01 100.00 0.00 5542 12.14 9.20 3.31
DenseNet-121 X 99.98 0.01 100.00 0.00 80.03 9.79 59.73 12.11
DenseNet-121 v 76.95 148 72.38 1.65 16.47 2.69 14.44 2.56
DenseNet-161 X 99.99 0.00 100.00 0.00 77.11 10.57 49.01 11.77
DenseNet-201 X 9998 0.01 100.00 0.00 80.90 9.01 2529  10.08
ConvNeXt-small X 99.79  0.07 100.00 0.00 68.65 10.69 68.78 11.57
ConvNeXt-base X 99.41 0.21 100.00 0.00 85.52 6.25 68.75 11.70
WideResNet X 99.83 0.07 100.00 0.00 79.83 10.67 54.49 9.83
ViT X 9956 0.12 9999 0.00 5330 13.03 5793 11.39
Swin-tiny X 99.64 0.06 100.00 0.00 56.60 12.30 58.79 10.20
Swin-base X 93.10 6.34 9358 640 5093 1094 62.09 10.74
ED X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

Table 5: Pairwise evaluation on I-RAVEN.
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Shapes3D The results for the Shapes3D dataset are included in Table@ Yet another time, ED
achieves the best accuracy on the compositional test split, scoring almost perfect accuracy on
generalization data. Monolithic models are also competitive in this benchmark. ConvNeXts, as in
I-RAVEN, achieve the best performance with 93.82% OOD accuracy, closely followed by ResNets
(90.03%) and Swin Transformers (89.02%). In-domain, all the models (except for the pre-trained
DenseNet-121) achieve perfect accuracy (both on training and validation data). Overall, good
performances on this specific benchmark were also observed in previous studies [5].

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 100.00 0.00 100.00 0.00 5598 6.32 2132 293
ResNet-18 X 100.00 0.00 100.00 0.00 8947 4.74 90.03 2.74
ResNet-34 X 100.00 0.00 100.00 0.00 85.58 4.88 80.33 4.16
ResNet-50 X 100.00 0.00 100.00 0.00 83.76 5.52 7647 4.79
ResNet-101 X 9948 0.52 100.00 0.00 79.69 582 70.87 545
ResNet-101 v 100.00 0.00 100.00 0.00 7275 592 6851 4.13
ResNet-152 X 100.00 0.00 100.00 0.00 69.75 6.38 68.99 5.02
ResNet-152 v 100.00 0.00 100.00 0.00 77.18 5.13 69.13 4.49
DenseNet-121 X 9998 0.02 100.00 0.00 89.22 406 8856 294
DenseNet-121 v 7448 283 74.21 2.84 3548 445 4046 2.64
DenseNet-161 X 100.00 0.00 100.00 0.00 86.50 4.89 87.19 3.57
DenseNet-201 X 100.00 0.00 100.00 0.00 86.57 4.89 8542 4.21
ConvNeXt-small X 99.84 0.16 100.00 0.00 9261 359 91.17 4.17
ConvNeXt-base X 99.99 0.00 100.00 0.00 9271 337 93.82 3.08
WideResNet X 100.00 0.00 100.00 0.00 84.54 443 81.10 3.72
ViT X 99.99 0.00 100.00 0.00 87.69 279 7469 3.66
Swin-tiny X 100.00 0.00 100.00 0.00 91.17 425 89.00 4.68
Swin-base X 99.99 0.00 100.00 0.00 9190 392 89.02 4.76
ED X 100.00 0.00 100.00 0.00 9795 2.05 9692 1.77

Table 6: Pairwise evaluation on Shapes3D.
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MPI3D Overall, the results on the MPI3D shown in Table [/] align broadly with those obtained
on the other datasets. The explicit disentanglement model (ED) achieves the best test accuracy,
with a margin of 14.4% from the closest monolithic model. The performance among monolithic
models is heterogeneous. The DenseNet-161 is the best-performing monolithic model (50.28%),
closely followed by the DenseNet-121 (46.58%) and the ResNet-18 (45.53%). ConvNeXts are less
competitive, achieving a best accuracy of only 41.74%, while visual transformers show decisively
inferior performances on this task (both Swin Transformers and ViT). All models, except for the
pre-trained DenseNet-121, converge and score perfect accuracy in-distribution.

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 95.69 0.65 9627 060 050 0.17 3.27 1.66
ResNet-18 X 99.99 0.00 9999 0.00 3065 566 4553 5.76
ResNet-34 X 9998 0.00 9999 000 2462 487 3655 548
ResNet-50 X 9999 0.00 9999 000 2440 506 4140 5.66
ResNet-101 X 9998 0.00 9997 001 1935 447 3503 5.39
ResNet-101 v 99.95 0.01 99.93 0.01 18.71 4.57 1635 3.02
ResNet-152 X 99.96 0.01 99.95 0.02 24.61 522 3490 5.59
ResNet-152 v 99.94 0.01 99.92 0.02 17.71 444 1831 3.80
DenseNet-121 X 9999 0.00 9999 0.00 2776 6.06 4658 6.33
DenseNet-121 v 7879 286 78.83 2.86 2735 448 2592 2.66
DenseNet-161 X 99.99 0.00 100.00 0.00 3095 645 5028 6.71
DenseNet-201 X 99.99 0.00 9999 0.00 29.67 6.18 4544 6.44
ConvNeXt-small X 99.92 0.01 99.96 0.01 30.65 6.14 41.74 6.16
ConvNeXt-base X 98.89 0.72 99.57 027 3067 6.16 39.66 6.31
WideResNet X 9998 0.00 9999 000 2652 538 4124 592
ViT X 98.39 0.23 9876 020 20.01 477 2425 4098
Swin-tiny X 99.87 0.03 9995 0.01 2411 597 3097 529
Swin-base X 99.76 0.04 9992 0.01 2437 587 2632 497
ED X 9998 0.00 9999 0.00 50.66 427 64.68 424

Table 7: Pairwise evaluation on MPI3D.
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C.3 Attribute-level experimental results

In this section, we re-elaborate the results reported in Section [Clusing a different granularity. Rather
than providing an overview of the results at the dataset level, we break down the data to the attributes
combination level to provide additional insights on the generalization performances of the single
attributes. To reduce the clutter and increase interpretability, we group the results by model’s
architecture, plotting the mean test accuracy over the different random seeds, model sizes, and
pre-training. Figure [I9]include these new attribute-level visualizations for each one of the studied
datasets. Different insights can be derived looking at the data from this perspective.
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Figure 19: Pair-wise compositional evaluation with attribute-combination granularity.
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Firstly, we can observe that some combinations of generative factors (e.g., size-height in MPI3D or
size-type in [-RAVEN) are significantly more challenging than others (e.g., object-scale and wall-
scale in Shapes3D). In particular, the failure observed empirically is consistent across the majority of
the models investigated, indicating that the difficulty in generalizing compositionally on them could
be independent from the specific architectures and training techniques used in this work.

Secondly, it stands out that some combinations of generative factors are consistently challenging
across different datasets. This is the case, for example, for the shape-size combination, for which
almost no model architecture can properly generalize across all the datasets that have it (dSprites,
MPI3D, I-RAVEN, and dSprites). Given its consistency across multiple models and datasets, we
speculate that this specific combination of generative factors could be intrinsically harder to classify,
possibly to the causal interactions between the factors as proposed by Montero et al. [8]].

Finally, we can observed that the “strong baseline” considered in this work, the Explicit Disen-
tanglement model, is consistently better than the other models almost on every combination of
attributes. The conclusion that can be drawn from this observation is that disentangling the forward
and backward passes in the generative factor prediction uniformly and consistently increases the
performances on all the investigated generative factors, rather than only improving them on a small
subset of them.

C.4 Impact of learnable activation functions on compositional generalization

As part of the investigation, we also ablate the impact of programmable activation functions on the
model compositional generalization. This ablation stems as an attempt to translate into practice some
of the receipts hinted by Ren et al. [10], in particular the necessity to enforce the composition of
the generation function G, : (F,¢,) — RP and the feature extraction function h : R” — R¥ to
maintain an isomorphism between the generative factors space G and the learned representation
space Z. One possible idea to implement this is to make the feature extraction function as close as
possible to a linear map, hence enforcing quasi-isomorphism on the part of the composite function
on which we have control (k). In practice, we try to replace the activation functions in the building
blocks of different convolutional networks, namely ResNets, DenseNets, and ConvNeXt, with the
programmable activation function PReL U,

PReLU(z) = max(0, z) + amin(0, x),

where a is a learnable vector (one parameter for every input dimension). We hypothesize that the use
of this activation function could represent an additional degree of freedom for the model, which could
choose during training between 1) more expressiveness, given by an hard non-linearity such as ReLU
or 2) a “softer” non-linearity that matches more closely the behavior of a linear activation function.

We empirically validate this hypothesis on a subset of the dataset: Cars3D, I-RAVEN, Shapes3D, and
MPI3D. Figure [20]includes a high-level overview of the results. The plot shows the test accuracy
of different model families, where the standard error of the mean (SEM) is reported considering as
population the different model sizes and random seeds. In the legend, “Standard” and “PReL.U” refer
to the vanilla and the custom implementations of the architectures, respectively. Overall, we can
observe that programmable activation functions are consistently better than the original activation
function (ReLU) for ResNets. On the other hand, the behavior is not consistent for DenseNets
(that also use ReLU in their stacked basic blocks) and seem to be consistently worse in the case of
ConvNeXt (where, on the other hand, the default activation function is GeLU).
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Figure 20: Ablation on activation functions.
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To gain a more complete understanding of the effects of using programmable activation functions, we
break down the results for different models in Table[8] showing the test accuracy difference between
their PReLU and vanilla versions. We can make different observations based on these results. Firstly,
we can see that the main trend observed on the high-level visualization translates consistently to the
individual models. The performance of both ConvNeXt models drops when GeL U functions are
replaced with PReLUs, while for DenseNets the trend is not consistent. On the other hand, ResNets
greatly benefit from these alternative activation functions. We also observe that some models (e.g.,
ResNet-18 and ResNet-50) greatly improve their test scores when PReLU activation functions are
used, showing impressive two-digit gains on the compositional generalization split (+20.86% and
+31.52%, respectively). In Figure 2T} we also report the distribution of the a parameters for different
trained models, which seems to remain close to the initialization value (0.5) in the majority of the
models.

In conclusion, while programmable activation functions yield notable improvements in compositional
generalization for certain models and tasks—particularly in the case of ResNets—the current evidence
does not support the conclusion that they offer a comprehensive panacea to the limitations of
convolutional neural networks in compositional generalization. Moreover, their performance does not
consistently surpass that of other widely used activation functions, such as GeLU in contemporary
vision architectures.

Model I-RAVEN Cars3D Shapes3D MPI3D I

ResNet-18 20.86 293 5.02 8.64 9.36
ResNet-34 9.63 441 11.45 11.04 9.13
ResNet-50 31.52 1.77 13.61 5.01 12.98
ResNet-101 9.15 -3.01 15.64 -1.93 4.96
ResNet-152 2.69 5.02 15.28 -6.49 4.13
DenseNet-121 -21.04 -0.72 -4.01 6.47 -4.82
DenseNet-161 -6.29 1.46 3.18 1.26 -0.10
DenseNet-201 10.27 -2.87 -0.12 7.21 3.62
ConvNeXt-small -3.34 -0.41 0.54 -4.30 -1.88
ConvNeXt-base 3.85 -5.78 -2.99 0.06 -1.22

Table 8: Test accuracy difference between PReLu
and standard models on different datasets. Figure 21: a values distribution.
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C.5 Grokking in compositional generalization for visual representation learning

Grokking is a phenomenon initially observed in the context of neural networks trained on algorithmic
datasets, for which a generalizing solution was learned only with a considerable delay (in terms
of training iterations) compared to a solution that could overfit the training data [27]]. While this
phenomenon is not common in computer vision tasks, Liu et al. [28] observed that it is possible to
emulate grokking behaviors using specific initialization for neural networks’ weights, e.g., initializing
them with large magnitudes. In the same work, the authors also speculate that the emergence of
grokking might be more easily observable when the generalization heavily relies on learning good
representations from scratch. Compositional generalization is, by nature, a task that heavily relies
on this category of tasks. Hence, we design a control experiment to verify whether training with
a sensibly larger number of update steps (up to x240) can lead the model to learn better, more
compositional representations. We restrict the scope of the empirical evaluation to three datasets
(dSprites, I-RAVEN, and Cars3D). Since the aim is limited to investigating whether a grokking
behavior can emerge in any setting, we resort to the pairwise evaluation scheme, selecting only a
few of the most significant generative factor pairs for each dataset. We experiment with a single
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architecture, a ResNet-101 trained from scratch, chosen because of its good performance on the
pair-wise evaluation experiments and its overparametrized regime for the given datasets (43'548'619
parameters). We also adjust some of the hyperparameters of the network, using a higher weight
decay (0.1) and a lower learning rate (0.0001) during training, and use two different random seeds
(reporting for each step the best accuracy achieved among the two seeds).

The results for the different attribute combinations considered in the evaluation for the Cars3D dataset
(orientation-type, orientation-elevation, and elevation-type) are shown in Figure 22} In this dataset,
the number of epochs was increased from 250 to 60k. The training curves clearly show that using a
larger number of update steps, the networks converge to stable, imperfect representations in the best
scenario (e.g., the models trained on the orientation-type combination) and irremediably diverge even
in-distribution in the worst cases (e.g., for the orientation-elevation and elevation-type combinations).
Naturally, the training accuracy always converged to 100%, signaling that the model converged to a
solution that was purely memorizing all the training samples. The same behavior was also confirmed
for the dSprites and I-RAVEN datasets, in Figures 23] and 24 respectively, for which the extension of
the number of training epochs only resulted in a clear divergence of the models.

Overall, these experiments allow us to exclude that the lack of compositionality in the learned
representations is due to an insufficient training of the models. Furthermore, these results also hint
that grokking phenomena are unlikely to be observed in the context of compositional generalization,
despite it being a task where learning well-structured representations is of utmost importance.
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D Extended orthotopic evaluation results

D.1 In-domain comparison between pair-wise and orthotopic

Figure[25|reports the model-wise difference between validation accuracy obtained in the orthotopic
and pair-wise evaluation frameworks. On average, we observe that the two are quite comparable
(1.09% average difference).
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Figure 25: In-distribution (validation) delta accuracy between orthotopic and pair-wise evaluation.

E Additional experiments on Noisy-MPI3d-Real

We design and run an additional experimental validation on the proposed orthotopic evaluation and
ladder of compositional generalization to test their robustness under more realistic conditions (noise
on the labels, unlabeled generative factors). We modify one of the experiments (on MPI3d-real) by
perturbing 2 attribute labels at random in 10% of the training samples to simulate noisy annotations
(i.e., re-introducing €, in the experimental setup). Additionally, we also removed the annotations
of two task-relevant factors (color, x-position) from the training data, effectively morphing them
from task-relevant (G) to task-irrelevant (O) generative factors. With these modifications, we aim to
achieve a more realistic, yet fully controllable, setting with unknown latent generative factors and
random label noise, as would be the case in a real-world dataset.

The results of these experiments are reported in Table 9]

Model c=0 c=1 c=2 =3
Convnext-small 0.0 329 40.1 469
ResNet50 0.0 381 578 752
Swin-tiny 0.0 29.6 456 49.0
AIN 0.0 468 67.6 837
ED 00 71.1 676 832

Table 9: Performance of models across different values of ¢

We can observe that, even in this noisy setting closer to real-world scenarios our main results hold:
the relation between compositional similarity and evaluation difficulty, the superiority of architectures
that explicitly incorporate some inductive bias toward compositionality in their architecture (e.g., ED
and AIN), and the strict increase in generalization accuracy achieved by ED and AINs compared to
monolithic architectures.
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E.1 Extended experimental results

E.1.1 dSprites

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 88.15 868 90.76 698 66.67 3333 0.00 0.00
ResNet-18 X 100.00  0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-50 X 99.83  0.10 99.99 0.00 100.00 0.00 0.00 0.00
ResNet-101 X 99.84  0.04 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-101 v 99.98 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-152 X 99.78 0.17 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-152 v 99.97 0.02 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-201 X 100.00  0.00 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-tiny X 99.88 0.08 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-small X 99.96 0.02 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-base X 99.98 0.01 100.00 0.00 100.00 0.00 0.00 0.00
WideResNet X 99.81 0.10 100.00 0.00 100.00 0.00 0.00 0.00
Swin-tiny X 99.89 0.01 100.00 0.00 100.00 0.00 0.00 0.00
Swin-base X 99.90 0.03 100.00 0.00 100.00 0.00 0.00 0.00
ED X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00

Table 10: ¢ =0

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
MLP X 86.88 1.16 8723 041 9833 1.67 203 0.77
ResNet-18 X 99.98 0.02 100.00 0.00 100.00 0.00 21.43 0.63
ResNet-50 X 99.75 0.10 9995 0.03 100.00 0.00 24.69 2.35
ResNet-101 X 99.03 0.89 9999 0.01 100.00 0.00 2130 3.61
ResNet-101 v 99.93 0.01 9996 0.02 100.00 0.00 8359 0.77
ResNet-152 X 99.57 029 99.99 0.01 100.00 0.00 2835 0.92
ResNet-152 v 99.87 0.06 99.93 0.01 100.00 0.00 940 1.52
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 56.13 13.45
DenseNet-121 v 100.00 0.00 9998 0.00 100.00 0.00 17.87 0.63
DenseNet-161 X 99.99  0.00 100.00 0.00 100.00 0.00 36.13 1.92
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 36.60 1.21
ConvNeXt-tiny X 99.92  0.01 100.00 0.00 100.00 0.00 20.32 3.22
ConvNeXt-small X 99.95 0.02 100.00 0.00 100.00 0.00 33.79 1.16
ConvNeXt-base X 99.93 0.02 100.00 0.00 100.00 0.00 3520 1.31
WideResNet X 99.76  0.11  99.98 0.01 100.00 0.00 2290 4.42
Swin-tiny X 99.44 021 9995 0.01 100.00 0.00 18.99 1.60
Swin-base X 99.53 0.08 99.97 0.02 100.00 0.00 37.73 191
ED X 100.00 0.00 100.00 0.00 100.00 0.00 61.31 0.61

Table 11: ¢ =1
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. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.95 0.04 100.00 0.00 100.00 0.00 98.83 0.89
ConvNeXt-Small X 99.87 0.09 100.00 0.00 100.00 0.00 98.71 1.18
ConvNeXt-Tiny X 9991 0.07 100.00 0.00 100.00 0.00 9431 5.39
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 99.85 0.13
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 9572 1.33
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 99.25 0.29
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 99.34 0.45
ED X 100.00 0.00 100.00 0.00 100.00 0.00 99.57 0.19
MLP X 69.74 150 6932 1.69 9750 250 545 0.77
ResNet-101 X 99.79 0.08 9999 0.00 100.00 0.00 96.99 0.94
ResNet-101 v 99.90 0.01 99.97 0.01 100.00 0.00 89.04 1.65
ResNet-152 X 99.82 0.08 99.99 0.01 99.17 0.83 9524 0.21
ResNet-152 v 99.82 0.05 99.98 0.00 100.00 0.00 8098 5.7
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 86.68 2.75
ResNet-50 X 99.92 0.01 9998 0.01 100.00 0.00 8827 0.78
Swin-Base X 99.63 0.06 99.98 0.01 100.00 0.00 9490 1.19
Swin-Tiny X 99.56 0.18 9998 0.00 100.00 0.00 79.13 1.13
WideResNet X 99.87 0.04 9999 0.00 100.00 0.00 94.13 3.00

Table 12: ¢ = 2

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.97 0.01 100.00 0.00 100.00 0.00 99.89 0.07
ConvNeXt-Small X 99.93 0.01 100.00 0.00 100.00 0.00 99.85 0.08
ConvNeXt-Tiny X 99.96 0.03 100.00 0.00 100.00 0.00 99.43 0.39
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 96.88 1.12
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 99.99 0.01
ED X 99.99 0.00 100.00 0.00 100.00 0.00 97.17 1.64
MLP X 80.07 0.78 78.07 036 97.50 250 0.74 0.07
ResNet-101 X 9991 0.03 99.99 0.01 100.00 0.00 9531 1.47
ResNet-101 v 99.70  0.04 9997 0.00 100.00 0.00 63.09 7.89
ResNet-152 X 99.84 0.02 99.97 0.00 100.00 0.00 89.69 3.37
ResNet-152 v 99.72 0.02 9996 0.01 100.00 0.00 6894 6.08
ResNet-18 X 99.98 0.02 99.99 0.01 100.00 0.00 9787 0.84
ResNet-50 X 99.92 0.04 9999 0.00 100.00 0.00 84.84 0.40
Swin-Base X 99.69 0.04 9997 0.01 100.00 0.00 6037 2.11
Swin-Tiny X 99.77 0.02 9997 0.00 100.00 0.00 50.13 1.49
WideResNet X 99.61 0.08 99.99 0.00 100.00 0.00 8272 6.63

Table 13: ¢ =3
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E.1.2 I-RAVEN

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.68 0.24 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-Small X 99.39  0.20 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-Tiny X 99.84 0.06 100.00 0.00 8345 16.55 0.00 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-121 v 94.08 590 9536 4.64 92,17 7.83 0.00 0.00
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-201 X 99.99  0.00 100.00 0.00 100.00 0.00 0.00 0.00
ED X 99.99  0.01 100.00 0.00 100.00 0.00 0.00 0.00
MLP X 91.72 1.82 97.74 0.62 5536 29.36 0.00 0.00
ResNet-101 X 99.96 0.03 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-101 v 98.62 1.13 9588 4.08 79.12 14.87 0.00 0.00
ResNet-152 X 99.98 0.01 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-152 v 97,78 220 9339 6.61 7539 1424 0.00 0.00
ResNet-18 X 99.98 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-50 X 99.83  0.08 100.00 0.00 100.00 0.00 0.00 0.00
Swin-Base X 99.05 033 9997 0.01 84.52 1548 0.00 0.00
Swin-Tiny X 99.50 0.08 99.94 0.02 100.00 0.00 0.00 0.00
WideResNet X 99.95 0.02 100.00 0.00 100.00 0.00 0.00 0.00

Table 14: ¢ =0
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. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.39  0.31 100.00 0.00 100.00 0.00 4240 4.81
ConvNeXt-Small X 99.60 0.17 100.00 0.00 100.00 0.00 4486 222
ConvNeXt-Tiny X 99.15 0.53 100.00 0.00 100.00 0.00 3736 2.89
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 3.76 1.69
DenseNet-121 v 99.94 0.01 100.00 0.00 100.00 0.00 230 0.84
DenseNet-161 X 99.99  0.00 100.00 0.00 100.00 0.00 6.79 0.85
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 594 048
ED X 100.00 0.00 100.00 0.00 100.00 0.00 76.12 2.70
MLP X 95.11 0.64 98.80 042 100.00 0.00 6.75 1.62
ResNet-101 X 99.87 0.08 100.00 0.00 100.00 0.00 34.10 222
ResNet-101 v 99.97 0.00 100.00 0.00 100.00 0.00 7.65 1.39
ResNet-152 X 99.73  0.20 100.00 0.00 100.00 0.00 40.14 293
ResNet-152 v 99.89  0.04 9999 0.0l 100.00 0.00 536 1.17
ResNet-18 X 99.99  0.00 100.00 0.00 100.00 0.00 11.30 2.80
ResNet-50 X 99.82  0.09 100.00 0.00 100.00 0.00 28.14 4.84
Swin-Base X 97.79 038 99.85 0.02 66.67 3333 1998 0.73
Swin-Tiny X 99.01 047 9990 0.04 7047 29.53 28.03 245
WideResNet X 99.89  0.08 100.00 0.00 100.00 0.00 34.04 525

Table 15: c=1

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ConvNeXt-Small X 33.09 33.09 3333 3333 3333 3333 274 274
ConvNeXt-Tiny X 3245 3245 3333 3333 3333 3333 141 1.41
DenseNet-121 X 99.99  0.00 100.00 0.00 100.00 0.00 12.04 0.96
DenseNet-121 v 99.96  0.01 100.00 0.00 9577 423 414 071
DenseNet-161 X 99.93  0.05 100.00 0.00 100.00 0.00 1438 1.70
DenseNet-201 X 99.99  0.01 100.00 0.00 100.00 0.00 9.60 1.66
ED X 100.00 0.00 100.00 0.00 100.00 0.00 9624 3.58
MLP X 29.98 2998 32.84 3284 3333 3333 236 236
ResNet-101 X 99.89 0.06 100.00 0.00 100.00 0.00 59.41 5.58
ResNet-101 v 99.96  0.01 99.99 0.01 100.00 0.00 6.95 0.61
ResNet-152 X 99.83  0.08 100.00 0.00 100.00 0.00 63.83 16.22
ResNet-152 v 99.96 0.01 100.00 0.00 91.12 888 5.70 1.04
ResNet-18 X 99.99  0.01 100.00 0.00 100.00 0.00 17.54 1.20
ResNet-50 X 99.81 0.17 100.00 0.00 100.00 0.00 4145 5.12
Swin-Base X 65.75 32.88 66.54 3327 66.67 33.33 4.01 3.96
Swin-Tiny X 98.80 0.27 99.85 0.10 100.00 0.00 193  0.82
WideResNet X 33.31 3331 3333 3333 3333 3333 1573 1573

Table 16: ¢ = 2
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E.1.3 Cars3D

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 9824 0.07 89.10 0.06 100.00 0.00 0.00 0.00
ConvNeXt-Small X 9822 0.10 87.67 120 100.00 0.00 0.00 0.00
ConvNeXt-Tiny X 98.23 0.08 87.90 1.39 66.67 3333 0.01 0.01
DenseNet-121 X 99.51 033 9446 0.41 100.00 0.00 0.00 0.00
DenseNet-121 v 99.82 0.02 60.88 0.65 66.67 3333 0.00 0.00
DenseNet-161 X 99.52 024 9533 0.44 100.00 0.00 0.00 0.00
DenseNet-201 X 99.17 028 94.60 0.41 100.00 0.00 0.00 0.00
ED X 99.85 0.02 94.89 0.41 100.00 0.00 0.00 0.00
MLP X 30.51 2.68 2643 190 66.67 33.33 0.00 0.00
ResNet-101 X 9948 025 93,50 0.23 66.67 33.33 0.00 0.00
ResNet-101 v 99.56 0.11 7090 0.65 66.67 33.33 0.00 0.00
ResNet-152 X 99.74 0.05 9439 0.52 100.00 0.00 0.00 0.00
ResNet-152 v 9949 0.02 7578 043 66.67 33.33 0.00 0.00
ResNet-18 X 99.85 0.02 9437 0.60 100.00 0.00 0.00 0.00
ResNet-50 X 99.64 0.12 93.86 0.34 100.00 0.00 0.00 0.00
Swin-Base X 98.27 0.06 91.87 0.94 100.00 0.00 0.00 0.00
Swin-Tiny X 98.27 0.07 91.01 0.17 100.00 0.00 0.00 0.00
WideResNet X 9942 033 94.01 048 100.00 0.00 0.00 0.00

Table 17: ¢ =10
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. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 98.81 0.07 87.21 0.50 3333 3333 30.08 1.35
ConvNeXt-Small X 98.73 0.05 86.28 0.18 3333 3333 2741 054
ConvNeXt-Tiny X 98.68 0.04 86.32 0.07 3333 3333 2590 1.17
DenseNet-121 X 99.64 0.27 9224 0.85 100.00 0.00 38.13 0.83
DenseNet-121 v 99.85 0.03 5495 1.38 3333 3333 638 059
DenseNet-161 X 99.89 0.02 9391 0.65 100.00 0.00 40.37 1.15
DenseNet-201 X 99.58 0.23 93.83 0.57 100.00 0.00 38.77 0.61
ED X 9991 0.01 94.62 0.59 100.00 0.00 46.70 0.98
MLP X 4758 2.19 41.82 2,58 3333 3333 453 1.87
ResNet-101 X 99.48 0.32 9290 094 66.67 3333 3501 194
ResNet-101 v 99.51 0.15 67.39 047 66.67 3333 10.15 1.05
ResNet-152 X 99.33 0.28 92.04 0.81 66.67 3333 3430 097
ResNet-152 v 99.60 0.06 69.24 1.13 100.00 0.00 11.29 0.59
ResNet-18 X 99.89 0.03 92.88 0.51 100.00 0.00 3390 1.84
ResNet-50 X 99.43 0.27 9242 129 100.00 0.00 39.20 2.36
Swin-Base X 98.81 0.00 90.79 0.57 100.00 0.00 3330 0.92
Swin-Tiny X 98.84 0.03 90.47 0.28 100.00 0.00 31.13 0.59
WideResNet X 99.69 0.12 93.77 0.87 100.00 0.00 39.89 1.89

Table 18: c =1

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 98.75 0.05 80.87 0.03 66.67 3333 38.65 0.63
ConvNeXt-Small X 98.82 0.03 79.17 022 66.67 3333 3487 140
ConvNeXt-Tiny X 98.75 0.11 80.87 1.13 100.00 0.00 35.06 0.53
DenseNet-121 X 99.87 0.01 9197 038 66.67 3333 57.88 0.83
DenseNet-121 v 99.88 0.02 4480 1.60 3333 3333 774 044
DenseNet-161 X 99.87 0.01 93.03 0.13 6667 3333 6133 1.78
DenseNet-201 X 99.39 0.25 91.70 021 66.67 3333 58.06 0.81
ED X 99.89 0.02 92,53 0.19 66.67 3333 7125 1.34
MLP X 35,50 3.17 28.13 203 0.00 0.00 316 074
ResNet-101 X 99.84 0.06 90.90 0.30 66.67 3333 4798 1.71
ResNet-101 v 99.62 0.06 57.00 2.05 3333 3333 1454 1.21
ResNet-152 X 99.84 0.06 90.87 043 66.67 3333 4798 0.82
ResNet-152 v 99.39 0.13 58.87 0.95 100.00 0.00 14.80 0.16
ResNet-18 X 99.66 0.23 90.77 0.33 100.00 0.00 51.00 0.19
ResNet-50 X 99.85 0.07 91.17 049 100.00 0.00 5149 1.09
Swin-Base X 98.85 0.02 86.60 0.76 66.67 3333 46.09 1.50
Swin-Tiny X 98.81 0.08 8430 0.81 66.67 3333 3990 0095
WideResNet X 99.62 0.16 90.73 030 66.67 3333 51.11 0.88

Table 19: ¢ = 2
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E.1.4 Shapes3D

) Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.99  0.01 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-Small X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ConvNeXt-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ED X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
MLP X 99.61 0.37 99.99 0.01 100.00 0.00 0.00 0.00
ResNet-101 X 99.97 0.03 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-101 v 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-152 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-152 v 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
ResNet-50 X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00
Swin-Base X 99.98 0.01 100.00 0.00 100.00 0.00 0.00 0.00
Swin-Tiny X 99.99  0.00 100.00 0.00 100.00 0.00 0.00 0.00
WideResNet X 100.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00

Table 20: ¢ =0

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.99  0.01 100.00 0.00 100.00 0.00 88.47 1.21
ConvNeXt-Small X 99.79  0.21 100.00 0.00 100.00 0.00 87.21 0.42
ConvNeXt-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 88.47 0.38
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 79.90 0.48
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 6227 1.76
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 78.74 0.76
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 81.14 0.59
ED X 100.00 0.00 100.00 0.00 100.00 0.00 96.09 2.65
MLP X 99.86 0.14 9997 0.03 100.00 0.00 6875 6.20
ResNet-101 X 99.59 041 9999 0.01 100.00 0.00 80.08 4.93
ResNet-101 v 100.00 0.00 100.00 0.00 100.00 0.00 67.56 3.77
ResNet-152 X 100.00 0.00 100.00 0.00 100.00 0.00 7447 5.86
ResNet-152 v 100.00 0.00 100.00 0.00 100.00 0.00 6530 4.98
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 8547 0.71
ResNet-50 X 100.00 0.00 100.00 0.00 100.00 0.00 86.63 1.81
Swin-Base X 99.96 0.02 100.00 0.00 100.00 0.00 83.37 1.46
Swin-Tiny X 99.98 0.00 100.00 0.00 100.00 0.00 83.72 0.48
WideResNet X 100.00 0.00 100.00 0.00 100.00 0.00 8145 3.95

Table 21: ¢ =1
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Train ID Val OOD Val Test
AVG SEM AVG SEM AVG SEM AVG SEM

Model Pretrained

ConvNeXt-Base X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
ConvNeXt-Small X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
ConvNeXt-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 99.99 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 9991 0.02
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 8544 2.66
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 99.55 0.19
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 99.93 0.01
ED X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
MLP X 99.95 0.04 9999 0.01 100.00 0.00 79.78 6.39
ResNet-101 X 100.00 0.00 100.00 0.00 100.00 0.00 99.14 0.60
ResNet-101 v 100.00 0.00 100.00 0.00 100.00 0.00 91.60 0.38
ResNet-152 X 100.00 0.00 100.00 0.00 100.00 0.00 98.82 0.80
ResNet-152 v 100.00 0.00 100.00 0.00 100.00 0.00 86.64 2.08
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 99.98 0.01
ResNet-50 X 100.00 0.00 100.00 0.00 100.00 0.00 99.68 0.13
Swin-Base X 99.97 0.01 100.00 0.00 100.00 0.00 99.86 0.12
Swin-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 99.99 0.01
WideResNet X 100.00 0.00 100.00 0.00 100.00 0.00 99.97 0.01
Table 22: ¢ = 2
Model Pretrained Train ID Val OOD Val Test
AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
ConvNeXt-Small X 99.98 0.01 100.00 0.00 100.00 0.00 100.00 0.00
ConvNeXt-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 99.98 0.01
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 86.57 2.14
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 99.99 0.00
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 99.98 0.01
ED X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
MLP X 99.29 024 9997 0.02 100.00 0.00 6190 647
ResNet-101 X 100.00 0.00 100.00 0.00 100.00 0.00 99.54 0.29
ResNet-101 v 100.00 0.00 100.00 0.00 100.00 0.00 87.05 0.97
ResNet-152 X 100.00 0.00 100.00 0.00 100.00 0.00 99.74 0.16
ResNet-152 v 100.00 0.00 100.00 0.00 100.00 0.00 89.38 1.95
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 99.96 0.01
ResNet-50 X 100.00 0.00 100.00 0.00 100.00 0.00 99.56 0.19
Swin-Base X 99.97 0.01 100.00 0.00 100.00 0.00 99.98 0.02
Swin-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 99.97 0.01
WideResNet X 100.00 0.00 100.00 0.00 100.00 0.00 99.89 0.09

Table 23: ¢ =3
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Train ID Val OOD Val Test
AVG SEM AVG SEM AVG SEM AVG SEM

Model Pretrained

ConvNeXt-Base X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
ConvNeXt-Small X 100.00  0.00 100.00 0.00 100.00 0.00 100.00 0.00
ConvNeXt-Tiny X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
DenseNet-121 X 100.00  0.00 100.00 0.00 100.00 0.00 100.00 0.00
DenseNet-121 v 100.00 0.00 100.00 0.00 100.00 0.00 9498 131
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
DenseNet-201 X 100.00  0.00 100.00 0.00 100.00 0.00 100.00 0.00
ED X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
MLP X 99.57 0.22 9998 0.01 100.00 0.00 55.03 14.76
ResNet-101 X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
ResNet-101 v 100.00 0.00 100.00 0.00 100.00 0.00 9823 0.58
ResNet-152 X 100.00 0.00 99.99 0.01 100.00 0.00 100.00 0.00
ResNet-152 v 100.00 0.00 100.00 0.00 100.00 0.00 9697 0.27
ResNet-18 X 100.00  0.00 100.00 0.00 100.00 0.00 100.00 0.00
ResNet-50 X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
Swin-Base X 99.94  0.05 100.00 0.00 100.00 0.00 100.00 0.00
Swin-Tiny X 100.00  0.00 100.00 0.00 100.00 0.00 100.00 0.00
WideResNet X 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

Table 24: ¢ = 4
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E.1.5 MPI3D

Train ID Val OOD Val Test
AVG SEM AVG SEM AVG SEM AVG SEM

Model Pretrained

ConvNeXt-Base X 99.53 0.05 99.51 0.06 100.00 0.00 0.00 0.00
ConvNeXt-Small X 99.46 0.16 99.67 0.02 100.00 0.00 0.00 0.00
ConvNeXt-Tiny X 99.33  0.21 99.54 0.09 100.00 0.00 0.00 0.00
DenseNet-121 X 99.13 040 98.68 0.21 100.00 0.00 0.00 0.00
DenseNet-121 v 99.66 0.07 97.32 0.37 100.00 0.00 0.00 0.00
DenseNet-161 X 99.61 0.07 98.80 0.20 100.00 0.00 0.00 0.00
DenseNet-201 X 99.29 0.19 98.53 046 100.00 0.00 0.00 0.00
ED X 99.57 0.12 99.33 0.23 100.00 0.00 0.00 0.00
MLP X 11.25 2.68 1493 2.68 0.00 0.00 0.00 0.00
ResNet-101 X 98.90 0.32 99.18 0.25 100.00 0.00 0.00 0.00
ResNet-101 v 98.83 047 9691 046 100.00 0.00 0.00 0.00
ResNet-152 X 98.87 0.26 9851 0.28 100.00 0.00 0.00 0.00
ResNet-152 v 98.79 0.32 96.87 0.32 100.00 0.00 0.00 0.00
ResNet-18 X 99.28 0.24 98,55 0.06 100.00 0.00 0.00 0.00
ResNet-50 X 98.71 0.35 98.84 0.11 100.00 0.00 0.00 0.00
Swin-Base X 98.60 0.08 99.59 0.02 100.00 0.00 0.00 0.00
Swin-Tiny X 98.65 0.34 99.52 0.05 100.00 0.00 0.00 0.00
WideResNet X 99.13 0.08 99.53 0.09 100.00 0.00 0.00 0.00
Table 25: ¢ =0
Model Pretrained Train ID Val OOD Val Test
AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.32  0.14 99.70 0.04 100.00 0.00 39.32 1.30
ConvNeXt-Small X 99.65 0.02 99.66 0.01 100.00 0.00 37.99 0.95
ConvNeXt-Tiny X 99.50 0.03 99.63 0.08 100.00 0.00 36.88 0.17
DenseNet-121 X 99.73 0.03 99.72 0.03 100.00 0.00 54.92 1.02
DenseNet-121 v 99.59 0.04 9795 0.63 100.00 0.00 2345 0.63
DenseNet-161 X 99.77 0.04 99.81 0.03 100.00 0.00 5790 1.01
DenseNet-201 X 99.66 0.02 99.54 0.07 100.00 0.00 53.85 2.56
ED X 99.67 0.00 99.66 020 100.00 0.00 70.76 0.24
MLP X 16.06 335 18.60 293 16.67 1667 139 0.36
ResNet-101 X 99.30 0.17 9936 0.08 100.00 0.00 4249 191
ResNet-101 v 99.43 0.08 9832 0.24 100.00 0.00 27.66 1.23
ResNet-152 X 99.59 0.03 99.28 0.14 100.00 0.00 4589 0.46
ResNet-152 v 9896 0.19 98.29 0.10 100.00 0.00 24.59 0.68
ResNet-18 X 99.43 021 9929 0.30 100.00 0.00 4159 2.16
ResNet-50 X 99.38 0.02 99.54 0.16 100.00 0.00 4547 1.69
Swin-Base X 99.29 0.06 99.70 0.02 100.00 0.00 37.02 0.39
Swin-Tiny X 98.98 029 99.69 0.06 100.00 0.00 34.79 1.64
WideResNet X 99.31 0.09 9949 022 100.00 0.00 4696 1.17

Table 26: ¢ =1
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. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.55 0.12 99.77 0.04 100.00 0.00 56.93 0.79
ConvNeXt-Small X 99.42 0.13 99.76 0.06 100.00 0.00 54.68 1.70
ConvNeXt-Tiny X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DenseNet-121 X 99.75 0.05 99.63 0.04 100.00 0.00 60.32 049
DenseNet-121 v 99.51 0.01 98.96 0.04 8333 16.67 39.66 1.49
DenseNet-161 X 99.81 0.02 99.83 0.04 100.00 0.00 58.53 1.72
DenseNet-201 X 99.61 0.14 99.51 0.08 100.00 0.00 54.18 0.16
ED X 99.62 0.02 99.85 0.02 100.00 0.00 66.83 0.72
MLP X 26.23 250 28.81 230 0.00 0.00 6.95 1.98
ResNet-101 X 98.82 0.74 99.40 0.33 100.00 0.00 50.14 149
ResNet-101 v 9547 0.68 93.21 1.24 100.00 0.00 2743 1.33
ResNet-152 X 99.60 0.07 99.56 0.10 100.00 0.00 48.13 3.54
ResNet-152 v 99.26 0.04 99.22 0.21 100.00 0.00 4574 0.82
ResNet-18 X 99.66 0.04 99.78 0.06 100.00 0.00 5556 2.18
ResNet-50 X 99.54 0.06 99.51 0.06 100.00 0.00 51.50 2.14
Swin-Base X 99.17 0.18 99.74 0.04 100.00 0.00 5148 0.27
Swin-Tiny X 99.31 0.06 99.79 0.01 100.00 0.00 50.50 2.10
WideResNet X 99.69 0.08 99.67 0.01 100.00 0.00 5577 1.52

Table 27: ¢ = 2

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.56 0.07 99.84 0.00 100.00 0.00 87.22 1.16
ConvNeXt-Small X 99.56 0.08 99.77 0.03 100.00 0.00 86.17 0.64
ConvNeXt-Tiny X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DenseNet-121 X 99.65 0.07 99.85 0.04 100.00 0.00 9691 0.60
DenseNet-121 v 99.63 0.13 9894 0.20 100.00 0.00 73.12 2.14
DenseNet-161 X 99.79 0.07 9991 0.01 100.00 0.00 96.68 0.14
DenseNet-201 X 99.57 0.14 99.78 0.05 100.00 0.00 9583 0.63
ED X 99.67 0.03 99.78 0.01 100.00 0.00 97.85 0.02
MLP X 2778 213 2949 225 0.00 0.00 13.67 1.26
ResNet-101 X 98.86 0.18 99.03 0.14 100.00 0.00 89.53 0.07
ResNet-101 v 63.79 3197 6099 30.84 50.00 28.87 4285 23.64
ResNet-152 X 9930 023 9949 0.12 100.00 0.00 90.01 2.60
ResNet-152 v 99.22 0.18 99.17 0.21 100.00 0.00 82.02 045
ResNet-18 X 99.61 0.07 99.71 0.10 100.00 0.00 9495 0.12
ResNet-50 X 99.61 0.09 99.54 0.10 100.00 0.00 9490 0.77
Swin-Base X 99.20 0.29 99.82 0.01 100.00 0.00 86.60 0.25
Swin-Tiny X 9942 0.04 99.84 0.01 100.00 0.00 8435 1.02
WideResNet X 99.65 0.07 99.60 0.12 100.00 0.00 9449 0.29

Table 28: ¢ = 3
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. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.67 0.02 99.76 0.02 100.00 0.00 61.03 0.93
ConvNeXt-Small X 99.52 0.03 99.75 0.03 100.00 0.00 60.54 1.14
ConvNeXt-Tiny X 99.57 0.09 99.73 0.03 100.00 0.00 60.01 1.44
DenseNet-121 X 99.53 0.05 99.63 0.06 100.00 0.00 68.48 2.83
DenseNet-121 v 99.67 0.09 99.09 0.17 100.00 0.00 5573 0.29
DenseNet-161 X 99.70 0.05 99.82 0.04 100.00 0.00 71.66 0.79
DenseNet-201 X 99.26 0.12 99.38 0.07 100.00 0.00 68.16 1.51
ED X 99.57 0.16 99.69 0.11 100.00 0.00 75.08 1.89
MLP X 2095 095 2622 143 16.67 16.67 447 0.80
ResNet-101 X 9724 0.80 98.21 0.11 100.00 0.00 59.55 2.96
ResNet-101 v 99.19 0.12 99.21 0.12 100.00 0.00 56.79 0.15
ResNet-152 X 99.42 0.18 99.69 0.05 100.00 0.00 63.05 245
ResNet-152 v 99.07 0.16 98.45 044 100.00 0.00 53.67 222
ResNet-18 X 99.71 0.06 99.64 0.01 100.00 0.00 6552 1.22
ResNet-50 X 99.55 0.19 99.70 0.03 100.00 0.00 5649 3.67
Swin-Base X 99.26 0.14 99.75 0.03 100.00 0.00 58.23 225
Swin-Tiny X 99.51 0.01 99.78 0.02 100.00 0.00 56.19 2.28
WideResNet X 99.50 0.04 99.75 0.03 100.00 0.00 61.60 0.65

Table 29: c =4

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.59 0.03 99.83 0.03 100.00 0.00 93.94 0.93
ConvNeXt-Small X 99.56 0.06 99.75 0.02 100.00 0.00 91.69 0.99
ConvNeXt-Tiny X 99.59 0.09 99.79 0.02 100.00 0.00 91.60 0.24
DenseNet-121 X 99.71 0.08 99.74 0.02 100.00 0.00 98.39 0.15
DenseNet-121 v 99.63 0.06 98.67 0.27 100.00 0.00 86.63 0.96
DenseNet-161 X 99.73 0.04 99.65 0.11 100.00 0.00 97.87 0.34
DenseNet-201 X 99.64 0.04 99.66 0.03 100.00 0.00 96.85 042
ED X 99.65 0.07 99.63 0.03 8333 16.67 97.08 0.58
MLP X 22,59 385 27.18 153 3333 16.67 9.58 1.62
ResNet-101 X 95.64 1.82 9486 1.63 66.67 16.67 89.20 3.04
ResNet-101 v 99.29 0.13 98.89 0.13 100.00 0.00 8566 0.24
ResNet-152 X 99.64 0.06 99.61 0.10 100.00 0.00 97.50 0.50
ResNet-152 v 99.15 0.16 99.03 0.03 100.00 0.00 86.53 0.78
ResNet-18 X 99.70  0.07 99.60 0.09 100.00 0.00 96.03 0.25
ResNet-50 X 99.48 0.15 9946 0.18 100.00 0.00 95.06 0.22
Swin-Base X 99.42 0.11 99.80 0.01 100.00 0.00 89.63 1.24
Swin-Tiny X 99.42 0.10 99.78 0.01 100.00 0.00 92.54 0.32
WideResNet X 99.39 0.11 99.77 0.05 100.00 0.00 96.98 0.40

Table 30: ¢ =5
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E.1.6 CLEVR

. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 91.38 857 9256 744 3879 3097 0.00 0.00
ConvNeXt-Small X 71.54 2846 72.82 27.18 3347 3326 0.00 0.00
ConvNeXt-Tiny X 99.99  0.01 100.00 0.00 66.67 33.33 0.00 0.00
DenseNet-121 X 100.00 0.00 100.00 0.00 79.58 11.45 0.00 0.00
DenseNet-121 v 100.00 0.00 100.00 0.00 56.87 2845 0.00 0.00
DenseNet-161 X 100.00 0.00 100.00 0.00 9342 6.58 0.00 0.00
DenseNet-201 X 100.00 0.00 100.00 0.00 80.81 16.19 0.00 0.00
ED X 100.00 0.00 100.00 0.00 99.30 0.70 0.00 0.00
MLP X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ResNet-101 X 100.00 0.00 100.00 0.00 69.61 1540 0.00 0.00
ResNet-101 v 100.00 0.00 100.00 0.00 35.82 28.14 0.00 0.00
ResNet-152 X 100.00 0.00 100.00 0.00 33.29 3329 0.00 0.00
ResNet-152 v 100.00 0.00 100.00 0.00 2490 1328 0.00 0.00
ResNet-18 X 100.00 0.00 100.00 0.00 9427 5.11 0.00 0.00
ResNet-50 X 100.00 0.00 9998 0.02 6546 3273 0.00 0.00
Swin-Base X 99.96  0.01 100.00 0.00 70.62 29.03 0.00 0.00
Swin-Tiny X 99.97 0.01 100.00 0.00 71.70 27.18 0.00 0.00
WideResNet X 100.00 0.00 100.00 0.00 84.31 1221 0.00 0.00

Table 31: ¢ =0

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.99  0.00 100.00 0.00 9995 0.05 2295 3.71
ConvNeXt-Small X 9998 0.01 9999 001 9995 0.05 2205 2.66
ConvNeXt-Tiny X 99.98 0.01 100.00 0.00 99.08 047 2353 1.75
DenseNet-121 X 100.00 0.00 100.00 0.00 93.08 6.85 2594 3.19
DenseNet-121 v 100.00 0.00 100.00 0.00 8546 13.72 444 0.89
DenseNet-161 X 100.00 0.00 100.00 0.00 99.91 0.09 2829 1.28
DenseNet-201 X 100.00 0.00 100.00 0.00 99.91 0.09 2634 2.03
ED X 100.00 0.00 100.00 0.00 100.00 0.00 5398 1.46
MLP X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ResNet-101 X 100.00 0.00 100.00 0.00 9444 556 3596 2.70
ResNet-101 v 100.00 0.00 100.00 0.00 77.50 2250 15.18 2.56
ResNet-152 X 100.00 0.00 100.00 0.00 100.00 0.00 39.40 2.89
ResNet-152 v 100.00 0.00  99.99 0.01 88.62 576 16.14 3.56
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 24.68 1.86
ResNet-50 X 100.00 0.00 100.00 0.00 99.95 0.05 34.08 9.28
Swin-Base X 99.92 0.05 99.94  0.01 99.72 0.16 11.05 2.80
Swin-Tiny X 99.97 0.01 99.92 0.02  98.76 124 11.80 1.78
WideResNet X 100.00 0.00  99.99 0.01 100.00 0.00 31.77 1.64

Table 32: ¢c =1
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. Train ID Val OOD Val Test

Model Pretrained

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.97 0.01 100.00 0.00 99.95 0.05 3736 424
ConvNeXt-Small X 99.99 0.01 100.00 0.00 99.80 0.13 4526 1.13
ConvNeXt-Tiny X 99.99 0.01 100.00 0.00 99.95 0.05 4195 257
DenseNet-121 X 100.00 0.00 100.00 0.00 100.00 0.00 49.86 2.71
DenseNet-121 v 100.00 0.00 100.00 0.00 98.39 1.61 2728 0.59
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 48.90 5.80
DenseNet-201 X 100.00 0.00 100.00 0.00 100.00 0.00 48.77 2.16
ED X 100.00 0.00 100.00 0.00 100.00 0.00 78.54 2.88
MLP X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ResNet-101 X 99.99 0.01 100.00 0.00 100.00 0.00 4795 1.10
ResNet-101 v 100.00 0.00 100.00 0.00 98.19 1.81 40.73 1.81
ResNet-152 X 99.99 0.01 100.00 0.00 100.00 0.00 5579 4.08
ResNet-152 v 99.99 0.01 99.99 0.00 94.67 533 3682 298
ResNet-18 X 100.00 0.00 100.00 0.00 100.00 0.00 4545 0.90
ResNet-50 X 100.00 0.00 100.00 0.00 100.00 0.00 5598 8.86
Swin-Base X 99.92 0.04 99.84 0.01 99.86 0.08 29.86 1.06
Swin-Tiny X 9993 0.02 99.80 0.05 99.07 0.93 2923 052
WideResNet X 100.00 0.00 100.00 0.00 9990 0.10 45.12 1.37

Table 33: ¢ = 2

Model Pretrained Train ID Val OOD Val Test

AVG SEM AVG SEM AVG SEM AVG SEM
ConvNeXt-Base X 99.98  0.01 99.99 0.00 82.14 17.86 85.69 0.99
ConvNeXt-Small X 67.06 3292 6736 3264 66.67 3333 5439 27.46
ConvNeXt-Tiny X 66.94 33.02 67.14 3285 66.67 33.33 51.16 25.79
DenseNet-121 X 100.00 0.00 100.00 0.00 99.80 0.20 87.99 2.1
DenseNet-121 v 100.00  0.00 99.99 0.01 63.47 31.86 4391 2.04
DenseNet-161 X 100.00 0.00 100.00 0.00 100.00 0.00 8235 0.73
DenseNet-201 X 100.00 0.00 100.00 0.00 9949 0.51 8581 596
ED X 100.00 0.00 100.00 0.00 100.00 0.00 9470 0.63
MLP X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ResNet-101 X 100.00 0.00 99.99 0.00 98.84 1.16 86.15 3.33
ResNet-101 v 100.00 0.00 9998 0.00 8594 14.06 45.01 10.02
ResNet-152 X 100.00 0.00 100.00 0.00 9388 6.12 7859 230
ResNet-152 v 100.00 0.00 100.00 0.00 70.06 2994 56.03 1.0l
ResNet-18 X 100.00 0.00 100.00 0.00 99.60 033 71.67 6.57
ResNet-50 X 100.00 0.00 100.00 0.00 99.54 046 8129 270
Swin-Base X 99.95  0.01 99.76 0.02 81.44 1856 7149 251
Swin-Tiny X 99.90 0.03 99.66 0.06 6737 32.63 6674 3.14
WideResNet X 100.00 0.00 100.00 0.00 100.00 0.00 82.37 3.06

Table 34: ¢ =3
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F Symmetries and invariances

The success of DNNs in vision tasks was initially driven by the insight that shift-invariance is
a fundamental symmetry in the image domain. Based on this insight, convolutional layers were
designed to satisfy shift-invariance by construction, and the incorporation of these layers significantly
simplifies the optimization process in CNNs by restricting the search space to solutions that adhere
to these symmetries. Indeed, for any sample x € X, if f is shift-invariant, then f(g.x) = f(x) for
any shift g € &, which implies that observing either x or g.x is equivalent from the perspective of
f- This kind of equivalence has two important implications: (i) there is no advantage in observing
both, which makes f inherently more sample efficient, and (ii) if f correctly classifies the training
sample x, f will automatically generalize to unseen test samples under the transformation g.x, thus
improving its generalization performance. Following a similar principle, Attribute Invariant Networks
structurally embed attribute invariance to achieve compositional generalization.

G Proof of attribute invariances in gradient updates

The structure of AINs allows the optimization of each encoder h; to be be sensitive to group actions
related to attribute ¢, while being invariant to group actions of any other attribute, as illustrated in the
following theorem.

Theorem G.1 (Attribute invariances in gradient updates). Let (x,y) be a sample, and let f;(x) be
an AIN’s logit corresponding to attribute j. Then, for every group action g € &;:

* ifj # i, then Vi, L(y;, f;(x)) = Vi, L(y;, f5(g.x)) =0

* if j =i, then V, L(yi, fi(x)) # Vi, L(yi, fi(9.:x))

Proof. (Part 1: j # ) Let us use the chain rule to compute the gradient of f;(x) w.r.t. the encoder h;:

_ 0L(y;,9(z;)) 9g;(z;) Om(q;)
Vi £y J5()) = dg;(z;)  dm(q;) Ohi(x)
om(q;)

Since q; Lh;, then Z7=w8 = 0. As a result, V. L(y;, fj(x)) = 0. Following the same procedure

th;‘c<yja f](gx)) =0.
(Part 2: j = 4) For any X’ = g.x, the corresponding ground truth label y; # y; by definition. As a

result, Vi, L(yi, fi(X)) # Vi, L(yi, fi(g.x)). =
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