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Abstract—Conventional end-to-end visual robotic manipula-
tion learning methods often face challenges related to data ineffi-
ciency and limited generalizability. To mitigate these challenges,
recent works have proposed incorporating equivariance into
their designs. This paper presents a fresh perspective on the
design principles of SE(3)-equivariant methods for end-to-end
visual robotic manipulation learning. Specifically, we examine
the recently introduced concept of Equivariant Descriptor Fields
(EDFs), focusing on four key underlying principles: generative
modeling, bi-equivariance, steerable representation, and locality.
These principles enable EDFs in achieving impressive data
efficiency and out-of-distribution generalizability, even in the
absence of prior knowledge. By comparing EDFs with other
contemporary equivariant methods based on the four criteria,
this paper underscores the importance of these design principles
and aims to establish a guiding framework for future research
on SE(3)-equivariant robotic manipulation.

I. INTRODUCTION

Recently, equivariant methods have gained notable attention
due to their data efficiency, robustness and generalizability.
Incorporating equivariance has shown promising results in
various fields, including protein [15, 11], molecule [12, 4],
3D object segmentation [17, 6], shape reconstruction [1, 2],
and reinforcement learning [27, 18, 31].

For learning manipulation tasks, the prerequisite for numer-
ous demonstrations and rollouts [8, 14, 7, 39, 16] is a critical
weakness. Recent works reveal that incorporating equivariance
can improve data efficiency and generalizability. The SE(2)-
equivariance (planar roto-translation equivariance) has been
used to improve the efficiency of behavior cloning [40, 13, 21]
and reinforcement learning methods [30, 28, 29, 41] for planar
tasks. For highly spatial tasks, the SE(3)-equivariance (spatial
roto-translation equivariance) is required. Neural Descriptor
Fields (NDFs) [23] and their variants [24, 3] leverage this
property to achieve remarkable data efficiency and generaliz-
ability. However, they cannot be end-to-end trained; instead,
they require pre-training and object segmentations.

To overcome this challenge, Equivariant Descriptor Fields
(EDFs) [20] has been proposed. EDFs are end-to-end trainable
models for SE(3)-equivariant visual manipulation learning.

Different from previous SE(3)-equivariant methods, EDFs
are capable of learning manipulation tasks from only a few
demonstrations without requiring any prior knowledge, such
as pre-training and object segmentation.

In this paper, we examine the four key design principles of
EDFs and compare them with other recent works. By doing
so, we seek to offer a novel perspective that can pave the
way for subsequent studies on equivariant methods for robotic
manipulation learning.

II. PRELIMINARIES: REPRESENTATION THEORY

A representation D is a map from a group G to an invertible
matrix GL(N) ∈ RN×N that satisfies D(g)D(h) = D(gh)
for every g, h ∈ G. In particular, any representation of SO(3)
can be expressed as a block-diagonal matrix composed of real
Wigner D-matrices by a change of basis. A real Wigner D-
matrix Dl(R) ∈ R(2l+1)×(2l+1) of degree l ∈ {0, 1, 2, ...} are
orthogonal matrices that are irreducible, meaning that they
cannot be block-diagonalized anymore. Therefore, Wigner D-
matrices constitute the building blocks of any representations
of SO(3). A type-l vector is a (2l + 1)-dimensional vector
that is transformed by Dl(R) under rotation R ∈ SO(3).
Type-0 vectors are invariant to rotations (i.e. scalars) such that
D0(R) = I . On the other hand, type-1 vectors are rotated
according to the 3D rotation matrices, that is, D1(R) = R.

Let O be the set of all possible colored point clouds. A
point cloud is given by O = {(xi, ci) : i ∈ I}, where xi ∈ R3

and ci ∈ R3 are point i’s position and color. A type-l vector
field f : R3 × O → R2l+1 generated by O ∈ O is SE(3)-
equivariant if Dl(R)f(x|O) = f(gx|g · O), ∀g = (p,R) ∈
SE(3), x, p ∈ R3, O ∈ O and g ·O = {(gxi, ci) : i ∈ I}.

III. EQUIVARIANT DESCRIPTOR FIELDS:
THE FOUR KEY MODEL PROPERTIES

In what follows, we will delve into EDFs and compare
them with other equivariant models, focusing on the four
key principles, viz., generative modeling, bi-equivariance,
steerable representation and locality (see Table I).



TABLE I: Comparison of recently proposed equivariant methods for robotic manipulation learning.

Method Bi-Equivariance Locality Steerable Generative End-to-end
Left Equiv. Right Equiv. Representations Modeling Training

Transporter Networks [40] SE(2) Translation ○␣ Invariant × ○␣
Equivariant Transporter Networks [13] SE(2) SE(2) ○␣ Equivariant × ○␣
Equivariant RL (SAC/DQN) [28, 29, 30] SE(2) Z2 ○␣ Equivariant × ○␣
NDFs [23] SE(3) × × Invariant × ×
L-NDFs [3] SE(3) × ○␣ Invariant × ×
R-NDFs [24] SE(3) SE(3) × Invariant × ×
EDFs [20] SE(3) SE(3) ○␣ Equivariant ○␣ ○␣

A. Generative Modeling

In practice, expert demonstration policies for robotic manip-
ulation tasks are rarely unimodal. To illustrate this, consider a
mug-picking task. The human expert may occasionally choose
to grasp the mug by the rim and at other times by the handle.
To properly learn such multimodalities, generative modeling is
required for the policy distributions [19] (see Fig. 1). As shown
in Fig. 1, naively regressing or discretizing the policy results in
suboptimal policy distributions. On the other hand, generative
models such as energy-based models (EBMs) and diffusion
models capture the behavior more accurately. EDFs utilize
EBMs’ approach to model the policy distribution, enabling
both end-to-end training and sampling. This is in contrast
to the energy minimization method used by NDFs variants
[23, 24, 3], which requires frozen pre-trained networks.

The EDFs’ energy-based policy conditioned by the point
cloud observations of the scene Oscene and the grasped object
Ograsp is defined on the SE(3) manifold as

P (g|Oscene, Ograsp) =
exp[−E(g|Oscene, Ograsp)]

Z

where Z =

∫
SE(3)

dg exp[−E(g|Oscene, Ograsp)],
(1)

where E is an energy function which will be defined later.

B. Bi-equivariance

To successfully perform object picking tasks, it is crucial
for the end-effector pose to be equivariant to changes in the
initial pose of the target object within the scene. To illustrate
this scene equivariance, consider a task in which the end-
effector pose g

WE
∈ SE(3) in the world frame W should

be inferred from the observation of the scene Oscene. Here,
g
WE

:= (p
WE

, R
WE

) ∈ SE(3) denotes the specification of the
configuration of the end-effector frame E relative to W . Now,
consider a new world frame W ′. The reference frame change
∆g

W
= g

W ′W ∈ SE(3) induces the following transformations
in the scene observation and end-effector pose.

Oscene
W ′ = ∆g

W
·Oscene

W = g
W ′W ·Oscene

W

g
W ′E = ∆g

W
g
WE

= g
W ′W gWE

The corresponding equivariant probabilistic policy1 P against
∆g then must satisfy

P (∆g
W
g
WE

|∆g
W

·Oscene
W ) = P (g

W ′E |O
scene
W ′ )

1The equivariant probabilistic policy implies invariance of the conditional
probabilities when the state and action are equivariantly transformed

Obs. o p(a|o)  MSE  

Discretized EBM. Diffusion

Fig. 1: Comparison of behavior cloning methods: Generative models (EBM and Diffu-
sion) accurately capture multimodal behaviors of the oracle policy p(a|o) compared to
regression (MSE) or discretized methods. Reproduced with authors’ permission [19].

Since the perturbation ∆g
W

appears on the left side of g,
we refer to this scene equivariance as left equivariance. We
illustrate left equivariance in Fig. 2.

However, as it turns out, left equivariance alone is insuf-
ficient to successfully perform object placing tasks. Unlike
picking tasks, which only require observing the scene, placing
tasks also requires the observation of the grasp, which adds
another layer of complexity to the problem. Furthermore,
the grasp pose inferred by a pick policy learned from a
few expert demonstrations may not be optimal. As a result,
the grasped object may be in a pose that has never been
shown by the expert demonstrations. Hence, object placing
tasks require another type of equivariance, namely the grasp
equivariance. Consider the same object pose B being grasped
in two different manners, respectively E and E′. Let Ograsp

E be
the observation of the object grasped by an end-effector with
frame E. We assume that frame B is attached to the grasped
object such that g

EB
is the pose of B relative to frame E. A

transformation of the grasped object pose due to a change ∆g
between end-effector frames E and E′, as shown in Fig. 3,
induces the transformed observation relative to frame E′:

Ograsp
E′ = ∆g

E
·Ograsp

E = g
E′E ·Ograsp

E .

To keep the relative pose between the scene and the grasped
object invariant for equivariance of the probabilistic policy, the
end-effector pose must be transformed by ∆g

E
such that

g
WB

= g
WE

g
EB

=g
WE′ gE′B =g

WE′ gE′E gEB
=g

WE′∆gE
g
EB

⇒ g
WE′ = g

WE
∆g−1

E

A probabilistic policy P under such an equivariance requires

P (g
WE

∆g−1
E

|Oscene
E ,∆g

E
·Ograsp

E )=P (g
WE′ |Oscene

E′ , Ograsp
E′ )
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Fig. 2: The left equivariance illustrates that the target pose is equivariant to the
transformation of the scene, as such the perturbation ∆g is on the left of g.

Notice that such a grasp equivariance is a right equivariance
since the inverse of the perturbation ∆g−1

E
appears on the

right side of g. We illustrate the right equivariance in Fig. 3.
Combining both the left and right equivariances, we finally
define bi-equivariance [20] as follows.

P (g|Oscene, Ograsp)=P (∆g
W
g|∆g

W
·Oscene, Ograsp)

=P (g∆g−1
E

|Oscene,∆g
E
·Ograsp)

(2)

Among SE(2)-equivariant methods, Transporter Networks
[40] and recently proposed equivariant reinforcement learn-
ing methods [28, 29, 30] are left equivariant, but not fully
right equivariant (only translation equivariant). On the other
hand, Equivariant Transporter Networks [13] incorporate full
SE(2) bi-equivariance, thereby achieving significant increase
in data efficiency over Transporter Networks. Among SE(3)-
equivariant methods, Neural Descriptor Fields (NDFs) [23]
and Local Neural Descriptor Fields (L-NDFs) [3] are uni-
equivariant methods. Since NDFs and L-NDFs assume a
fixed placement target pose, bi-equivariance is not required.
However, to solve more general tasks such as object rear-
rangement tasks, bi-equivariance becomes essential. Relational
Neural Descriptor Fields (R-NDFs) [24] are a bi-equivariant
method for object rearrangement tasks. However, pre-trained
NDFs and a human annotated object keypoint are required to
equivariantly align query points for the training.

On the other hand, EDFs [20] directly infer query points us-
ing an SE(3)-equivariant query density model that can be end-
to-end trained. EDFs achieve bi-equivariance for the policy in
(1) with a bi-equivariant energy function E(g|Oscene, Ograsp).
The specific design of this energy function will be introduced
subsequently.

C. Steerable Representation

To achieve robust equivariant manipulation, a model must
utilize symmetric feature representations from the observa-
tions. Steerable representations are proficient in representing
these features due to their orientation sensitivity [33] (see
Fig. 4). Moreover, due to continuous expressions, steerable
representations acquire rigorous information compared to the
discretization methods and demonstrate better precision as
evidenced by [1].

Importantly, compared to rotation invariant features, steer-
able features are superior in encoding the orientations of local
geometries. To encode orientation information using rotation
invariant features, they must be spatially distributed, breaking
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Fig. 3: The right equivariance implies that the target pose is equivariant to the grasp
state, in which the perturbation ∆g is located on the right of the g.

locality. For example, the color vector (red, green, blue) is
such a rotation invariant feature. To determine the rigid-body
orientation, at least three non-collinear points of different
colors are required. Conversely, one can represent orientation
with only a single point, using rotation equivariant, or steerable
features. Thus, orientation information can be localized into a
single point, better capturing the local geometry. This makes
the learned features more generalizable and less sensitive to
disturbances.

Transporter Networks [40] and Neural Descriptor Fields
variants [23, 24, 3] utilize rotation invariant feature fields to
obtain equivariance (e.g., Feature map of CNNs can be thought
of as 2-dimensional feature fields). Alternatively, Huang et al.
[13], Wang et al. [30, 28, 29] utilize the steerable features of
the Cn group (discretized SO(2) group), thereby significantly
improving data efficiency.

An EDF φ(x|O) is defined as the concatenation of N
SO(3)-steerable vector fields that are SE(3)-equivariant

φ(x|O) =

N⊕
n=1

φ(n)(x|O)

where φ(n)(x|O) : R3×O → R2ln+1 is an SE(3)-equivariant
type-ln vector field generated by O. Therefore, φ(x|O) is
transformed according to g = (p,R) ∈ SE(3) as

φ(gx|g ·O) = D(R)φ(x|O)

=

Dl1(R) · · · ∅
...

. . .
...

∅ · · · Dln(R)

φ(x|O)

where D(R) is a block diagonal of Wigner D-matrices.
The SE(3) bi-equivariant energy function for the EBM in

Eq. (1) can be constructed with EDFs as

E(g|Oscene, Ograsp) =∫
R3

d3x ρ(x|Ograsp)∥φ(gx|Oscene)−D(R)ψ(x|Ograsp)∥2

(3)

where φ(x|Oscene) is the key EDF, ψ(x|Ograsp) is the query
EDF, and the ρ(x|Ograsp) is the query density, which are all
SE(3)-equivariant and learnable neural fields.

D. Locality

For a robotic manipulation model to be robust, it must be
able to pick and place objects in previously unseen poses.



Fig. 4: Visualization of type-l features (l = 0, 1, 2, ...) for a sphere (top), airplane
(middle), and table (bottom). Higher-type features are sensitive to the orientations of local
geometries such as planes and corners. Reproduced with the authors’ permission [1].

If the model can learn local geometric structures that are
shared across different objects, it would greatly increase its
generalizability. For example, if a model was trained to pick a
mug by holding the rim, the similarities in the local geometric
features can be utilized to grasp other objects by the rim.
Consequently, locality is critical for generalizability and data
efficiency. Recent studies in various fields such as robotics
[3], point cloud segmentation [6], and shape reconstruction [1]
highlight the importance of incorporating locality in equivari-
ant methods.

Another benefit of imposing locality to equivariant methods
is that the target object does not require to be segmented from
the backgrounds. For unsegmented observations, only equiv-
ariance to the target object is desired, and the equivariance
to backgrounds must be suppressed. We name this property
as local equivariance, in contrast to global equivariance (see
Fig. 5). However, naively applying Eq. (2) can only guarantee
global equivariance. Therefore, special care must be taken in
designing methods to respect the locality of the tasks so as to
obtain local equivariance.

For example, Transporter networks and their variants [40,
21, 13] naturally exploit the locality of convolutional neural
networks. Therefore, Transporter Networks and their variants
can be used without object segmentation pipelines or any other
object centric assumptions. On the other hand, NDFs [23] and
R-NDFs [24] rely on centroid subtraction methods to achieve
translational equivariance. Due to the highly non-local nature
of centroid subtraction, these methods require the target object
to be segmented from the background.

EDFs utilize a Tensor Field Network (TFN) [25] model for
the final layer and SE(3)-transformers [10] in other layers.
These methods rely on spatial convolutions, enabling the easy
acquisition of locality by using convolution kernels with finite
support. This is in contrast to the Vector Neurons [5] method
that were used for NDFs and R-NDFs.

We provide more details on the training, sampling, and the
implementation details in Appendix A. Mathematical proofs
can be found in the original paper of EDFs [20].

IV. EXPERIMENTAL RESULTS

To evaluate the EDFs’ generalization performance with
other methods, Ryu et al. [20] conducted experiments with a
mug-hanging task and a bowl/bottle pick-and-place task. The
objective is to pick a mug or bowl/bottle and place it on a
randomly posed hanger or plate. For the evaluation, multiple
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Fig. 5: The difference of global equivariance and local equivariance. The global
equivariance represents the translation of the whole scene, while the local equivariance
denotes the translation of the target object.

scenarios including unseen poses, unseen distracting objects,
and unseen instances in randomized poses were used.

First, EDFs were compared with SE(3) Transporter Net-
works [40], which are the extensions to the original Trans-
porter Networks that regress additional degrees of freedom
(height, roll, pitch). Table II of Appendix B shows that
EDFs out-preform Transporter Networks in all three tasks.
By comparing the results, EDFs turn out to be more robust
than Transformer Networks, illustrating the significance of the
SE(3)-equivariance when it comes to highly spatial tasks.

In comparing EDFs to NDFs [23], it was necessary to
account for some of NDFs’ limitations such as the fact
that NDFs require segmentations and a fixed pose of the
placement target. Thus, EDFs were compared against an NDF-
like constructed baseline model, which uses only the type-
0 descriptor features. From Table III of Appendix B, EDFs,
which use higher type descriptors, surpass the performance of
the NDF-like model. Additional experimental descriptions and
results can be found in Appendix B and the original paper [20].

V. CONCLUSION

We introduce EDFs and emphasize the importance of the
following four properties: 1) generative modeling, 2) bi-
equivariance, 3) steerable representations, and 4) locality; in
order to synthesize noteworthy equivariant robotic manipula-
tion learning models. We demonstrate the effectiveness and
the generalization of EDFs in inferring the target pose in spite
of previously unseen instances, unseen poses, and distracting
objects using only a few demonstrations.

For future research, it could be beneficial to integrate
SE(3)-equivariant shape reconstruction and SLAM methods
[38, 1, 2, 9] with EDFs to overcome incomplete and noisy
point cloud observations. Expanding EDFs to trajectory-level
problem is also an important issue. For kinematic and dy-
namic trajectory planning, one might consider incorporat-
ing guided diffusion methods [26] and geometric impedance
control framework [22] respectively. Lastly, to improve the
speed of the MCMC sampling required for EDFs, techniques
such as amortized sampling [36, 32] and cooperative learning
[34, 35, 37] could be explored.
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APPENDIX

A. Equivariant Descriptor Fields

For a thorough understanding of the EDFs [20], we re-
produce the training, sampling, and implementation details in
this section. We denote the learnable parameters as θ. Further
details and proofs can be found in the original paper [20]. The
overview of the methodology is illustrated in Fig. 6.

a) Training: For the training of the energy-based
model Eq.1, the gradient of the log-likelihood at the demon-
strated target end-effector pose gtarget is be approximated as

∇θ logPθ(gtarget|Oscene, Ograsp) ≈
−∇θEθ(gtarget|Oscene, Ograsp)

+
1

N

N∑
n=1

[∇θEθ(gn|Oscene, Ograsp)]

where gn ∼ Pθ(gn|Oscene, Ograsp) is the n-th negative
sample, which is sampled from the model.
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Fig. 6: A) The query points and the query EDF are generated from the grasp point cloud Ograsp. Each query point is assigned with the corresponding query descriptor, which is
the field values of the query EDF at the query points. The type-0 descriptors are visualized as colors and type-1 descriptors as arrows. The higher descriptors are not visualized.
B) Similarly, the key EDFs are generated from Oscene. C) The query descriptors are transformed and matched to the key descriptors to produce the energy value. As shown in
the visualization, the lower energy case has a better alignment of the query and the key descriptors, while the high energy case fails to do so. MCMC methods are used to sample
end-effector configurations according to their energy (lower energy means exponentially higher probability). Reproduced and modified with the authors’ permission [20].

b) Sampling: Energy-based models typically do not al-
low direct sampling. Therefore, Ryu et al. [20] utilize Monte-
Carlo Markov Chain (MCMC) methods to sample end-effector
poses from Eq.1. In particular, two-stage sampling strategy is
used. First, the Metropolis-Hastings algorithm(MH) is used to
rapid explore the workspace. Next, the Langevin dynamics on
the SE(3) manifold is employed. The samples gained from
MH are used as the initial seeds for the Langevin dynamics.
In the quaternion-translation parametrization, the differential
equation for the langevin dynamics on the SE(3) manifold is

dz =

(
dĥ
dv

)
= −LLT∇zE(z) dt+

√
2Ldw

L =

[
LSO(3) 04×3

03×3 I3×3

]

LSO(3) =
1

2


−h2 −h3 −h4
h1 −h4 h3

h4 h1 −h2
−h3 h2 h1


where z = (ĥ, v) ∼= S3×R3 ⊂ R7 is the quaternion-translation
parameterization of SE(3) with ĥ = h1 + h2 î+ h3 ĵ + h4 k̂.

c) Implementation: As mentioned in Section III-D, Ryu
et al. [20] employed the SE(3)-Transformers [10] and Tensor
Field Networks (TFNs) [25] for the implementation of the
two EDFs φ(x|Oscene) and ψ(x|Ograsp) in Eq. 3. For the
tractability of the integral in Eq. 3, Ryu et al. [20] modeled
the equivariant query density field ρ(x|Ograsp) as weighted
sum of query points Q ∈ RNQ×3 such that

ρθ(x|Ograsp) =

NQ∑
i=1

[
wθ (x|Ograsp) δ(3) (x−Qi;θ (O

grasp))
]

(4)

where Qi;θ (O
grasp) is the query point model that infers

the position of the i-th query point from Ograsp, and
wθ (x|Ograsp) is an equivariant scalar field that bestows the

weight to each query points. Here, δ(3) =
∏3

i=1 δ(xi) denotes
the Dirac-delta function on R3. Instead of using separate
model for Qi;θ (O

grasp), Ryu et al. [20] used Stein Variational
Gradient Descent (SVGD) method to equivariantly draw query
points from wθ(·|O). Note that wθ(·|O) can be considered as
a special case of EDFs with only a single type-0 descriptor.
Therefore, SE(3)-Transformers and TFNs can be utilized for
the implementation.

With Eq. 4, the integral in the energy function Eq. 3 can be
written as a tractable summation form as follows

Eθ(g|Oscene, Ograsp)

=

NQ∑
i=1

wi;θ ∥φθ(g Qi;θ|Oscene)−D(R)ψθ(Qi;θ|Ograsp)∥2

where Qi;θ = Qi;θ (O
grasp) and wi;θ = wi;θ (Qi;θ|Ograsp).

B. Experimental Results

This section reproduces the details on the experiments from
Ryu et al. [20] that were conducted to compare EDFs with
prior methods. The mug-hanging, and bowl/bottle pick and
place tasks were employed for comparison. The models were
trained with ten demonstrations for each task where the cup,
bowl, and bottle were positioned upright as shown in Fig. 7.
For evaluation, the models were given various scenes with an
unseen instance, in a random posture, with various distracting
objects nearby, as shown in Fig. 8.

First, Table II compares EDFs with the state-of-the-art
end-to-end visual manipulation method, Transporter Networks
[40]. Specifically, the SE(3)-extended version of the original
Transporter Networks (SE(3)-TNs) proposed in [40] is used.
SE(3)-TNs directly regress the additional three degrees of
freedom (height, roll, pitch) of the planar Transporter Net-
works. Therefore, despite its name, SE(3)-TNs are SE(2)-
equivariant methods. For each of the three tasks, four different
scenarios were tested: 1) the target object is an unseen target
instance, 2) the target instance is positioned in a random



Fig. 7: The scenes that are used to train the methods. For each demonstration, there are
either a cup, bowl, or bottle pose only upright in random locations. Reproduced with the
authors’ permission [20].

Fig. 8: The scenarios that are given to evaluate the models. New instances are given that
were not seen during training, and they are positioned in random postures. In addition,
there are several distracting objects around the target instance. Reproduced with the
authors’ permission [20].

orientation, 3) the target instance is surrounded by various
unseen distracting objects, and finally 4) all of the three unseen
conditions are combined.

As can be seen in Table II, EDFs significantly outperform
Transporter Networks in all of the four unseen scenarios.
Especially, Transporter Networks completely fail when the
target object is provided in previously unseen poses (Scenario
1), due to the lack of the spatial SE(3)-equivariance. For
example, as shown in Fig. 9-A, Transporter Networks fail to
pick the target instance when positioned in an unseen pose
and anticipate to grab the instance as if it were positioned
upright as it was during training. On the other hand, EDFs
successfully infer appropriate end-effector poses in all of the
cases, evidencing the importance of the SE(3) bi-equivariant
modeling.

Next, Ryu et al. [20] conducted another experiment to
validate the importance of steerable representations. For the
comparison, an ablated model without steerable representa-
tions that is analogous to NDFs variants [23, 24, 3] was used.
Notably, unlike these previous works [23, 24, 3], this ex-
periment did not use category-level pre-training, necessitating
greater generalization capabilities for the model to successfully
pick-and-place unseen object instances. The results are sum-
marized in Table III. The ablated model utilizes only the type-
0 descriptors, which are invariant to rotations. Therefore, as
illustrated in Fig.9-B, the ablated method struggles to correctly
infer the orientations of the target poses for previously unseen
instances. In contrast, EDFs utilize higher descriptors, hence
are capable of accurately inferring the target poses. The exper-
imental results show that steerable representations are crucial
for improving the orientational accuracy and generalizability
of inferred pick-and-place poses.

Lastly, Ryu et al. [20] conducted an experiment to assess
the robustness of EDFs under significant multimodality in
the demonstrations. In this experiment, EDFs were trained
with three different demonstration sets for mug-hanging task:

A) B)

Fig. 9: A) Transformer Networks exhibit the inability to pick the target instance that
is posed in an unseen posture due to their lack of SE(3)-equivarince. B) NDF-like
models, which only use the type-0 descriptors, fail to place the cup on the hanger due to
the lack of orientational sensitivity of the target instance. Reproduced with the authors’
permission [20].

1) unimodal, low-variance demonstrations (only picking a
specific point on the mug), 2) diverse but consistent demon-
strations (multimodal, but always picks by the rim of the mug),
and 3) diverse and inconsistent demonstrations (multimodal,
picking the mug by either the rim or the handle). The re-
sults are summarized in Table IV. Comparing the results of
training demonstration set 1 (unimodal) and 2 (multimodal
and consistent), we observe that EDFs are robust to the
multimodality in the demonstrations. Furthermore, the exper-
imental results suggest that EDFs actually benefit from the
diversity of multimodal demonstrations. This can be attributed
to the nature of generative models, that are flexible enough
to leverage diverse pick-and-place strategies. Moreover, this
generative nature of EDFs allows them to be tolerable to highly
inconsistent demonstrations. As can be seen in the results for
demonstration set 3 (multimodal and inconsistent), EDFs are
shown to be robust to inconsistency in the demonstrations.

These comprehensive experiments reveal the importance of
the four criteria in designing equivariant methods for end-to-
end visual robotic manipulation. Further experimental results
and explanations can be found in the original paper [20].



TABLE II: Pick-and-place success rates in various out-of-distribution settings. Reproduced with authors’ permission [20].

Mug Bowl Bottle

Pick Place Total Pick Place Total Pick Place Total
Unseen Instances
SE(3)-TNs [40] 1.00 0.36 0.36 0.76 1.00 0.76 0.20 1.00 0.20
EDFs (Ours) 1.00 0.97 0.97 0.98 1.00 0.98 1.00 1.00 1.00
Unseen Poses
SE(3)-TNs [40] 0.00 N/A 0.00 0.00 N/A 0.00 0.00 N/A 0.00
EDFs (Ours) 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95
Unseen Distracting Objects
SE(3)-TNs [40] 1.00 0.63 0.63 1.00 1.00 1.00 0.96 0.92 0.88
EDFs (Ours) 1.00 0.98 0.98 1.00 1.00 1.00 0.99 1.00 0.99
Unseen Instances, Arbitrary
Poses & Distracting Objects
SE(3)-TNs [40] 0.25 0.04 0.01 0.09 1.00 0.09 0.26 0.88 0.23
EDFs (Ours) 1.00 0.95 0.95 0.95 1.00 0.95 0.95 1.00 0.95

TABLE III: Success rate and inference time of the ablated model and EDFs. All the evaluations are done in the unseen instances, poses & distracting objects setting. Reproduced
with authors’ permission [20].

Mug Bowl Bottle

Descriptor Type Pick Place Total Pick Place Total Pick Place Total
NDF-like (Type-0 Only)
Inference Time 5.7s 8.6s 14.3s 6.1s 9.9s 16.0s 5.8s 17.3s 23.0s
Success Rate 0.84 0.77 0.65 0.60 0.95 0.57 0.66 0.95 0.63
EDFs (Type-0∼3)
Inference Time 5.1s 8.3s 13.4s 5.2s 10.4s 15.6s 5.2s 11.5s 16.7s
Success Rate 1.00 0.95 0.95 0.95 1.00 0.95 0.95 1.00 0.95

TABLE IV: Success rate of EDFs for mug-hanging task with different demonstrations. Reproduced with authors’ permission [20].

Low Var. & Unimodal Grasps Diverse and Consistent Grasps Diverse and Inconsistent Grasps
(Rim Only) (Handle & Rim)

Setup Pick Place Total Pick Place Total Pick Place Total
Unseen Poses (P) 1.00 0.96 0.96 1.00 1.00 1.00 1.00 0.99 0.99
Unseen Instances (I) 0.99 0.90 0.89 1.00 0.97 0.97 1.00 0.92 0.92
Unseen Distractors (D) 1.00 1.00 1.00 1.00 0.98 0.98 0.96 0.99 0.95
Unseen P+I+D 0.99 0.83 0.82 1.00 0.95 0.95 0.90 0.89 0.80


	Introduction
	Preliminaries: Representation Theory
	Equivariant Descriptor Fields:The Four Key Model Properties
	Generative Modeling
	Bi-equivariance
	Steerable Representation
	Locality

	Experimental Results
	Conclusion
	Appendix
	Equivariant Descriptor Fields
	Experimental Results


