
Reverse Engineering Human Preferences with
Reinforcement Learning

Lisa Alazraki∗
Imperial College London

Tan Yi-Chern
Cohere

Jon Ander Campos
Cohere

Maximilian Mozes
Cohere

Marek Rei
Imperial College London

Max Bartolo
Cohere

Abstract

The capabilities of Large Language Models (LLMs) are routinely evaluated by
other LLMs trained to predict human preferences. This framework—known as
LLM-as-a-judge—is highly scalable and relatively low cost. However, it is also
vulnerable to malicious exploitation, as LLM responses can be tuned to overfit
the preferences of the judge. Previous work shows that the answers generated
by a candidate-LLM can be edited post hoc to maximise the score assigned to
them by a judge-LLM. In this study, we adopt a different approach and use the
signal provided by judge-LLMs as a reward to adversarially tune models that
generate text preambles designed to boost downstream performance. We find that
frozen LLMs pipelined with these models attain higher LLM-evaluation scores
than existing frameworks. Crucially, unlike other frameworks which intervene
directly on the model’s response, our method is virtually undetectable. We also
demonstrate that the effectiveness of the tuned preamble generator transfers when
the candidate-LLM and the judge-LLM are replaced with models that are not used
during training. These findings raise important questions about the design of more
reliable LLM-as-a-judge evaluation settings. They also demonstrate that human
preferences can be reverse engineered effectively, by pipelining LLMs to optimise
upstream preambles via reinforcement learning—an approach that could find future
applications in diverse tasks and domains beyond adversarial attacks.

1 Introduction

The LLM-as-a-judge framework has largely replaced human evaluation in the large-scale assessment
of LLMs [5, 42, 3, 17, 35, 40], with several widely used benchmarks now relying on this approach to
judge model performance across tasks [26, 20, 21, 30, 39, 40]. Judge-LLMs are trained to predict
human preferences, offering a scalable and cost-effective alternative to human annotations [26, 40].
However, prior work has shown that judge-LLMs are vulnerable to adversarial attacks aimed at
artificially boosting their scores [32, 34, 38]. In particular, it is possible to find text sequences
that, once appended to or substituted for a response, maximise the score awarded to it by a judge
[32, 34, 41]. This type of attack intervenes post hoc on the text being evaluated and can thus be
detected via human inspection or by computing the perplexity (PPL) of the modified response
[19, 32, 34].

In this study, we investigate a different, novel approach based on reward modelling w.r.t. the
judge-LLM’s evaluation scores, testing both its effectiveness and detectability. Specifically, we use

∗Work done while at Cohere. Correspondence to lisa.alazraki20@imperial.ac.uk.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

these scores to tune an adversarial model that generates textual preambles2—i.e., additional sets of
instructions—to be injected into a frozen candidate-LLM, causing its responses to receive higher
scores from the judge. The loss function that optimises the preamble generator is adapted from
Contrastive Policy Gradient [12], but depends on rewards computed solely on the generations of the
candidate-LLM and without directly observing the preambles. We refer to this technique of pipelining
multiple LLMs to indirectly optimise upstream preambles in an RL fashion as Reinforcement Learning
for Reverse Engineering (RLRE).

There are several advantages to tuning an upstream preamble generator rather than directly overfitting
the candidate-LLM to the judge-LLM’s rewards: (1) the specialised preamble generator can be
smaller in size, hence computationally cheaper to train; (2) tuning the preambles while leaving the
candidate-LLM frozen retains its original capabilities and is less likely to result in noticeable stylistic
changes in its output, thus potentially making the attack harder to detect; (3) the generated preambles
that align the candidate-LLM to the judge are natural language instructions, which can be analysed
and interpreted; (4) once trained, the preamble generator can serve as a plug-and-play component
for pipelining with different candidate-LLMs (we experiment with preamble transferability across
candidate-LLMs in Section 5.1); (5) in broader contexts, tuning preambles can also serve as a means
of optimising models that cannot be fine-tuned directly (e.g., those accessible only via inference APIs
or for which fine-tuning would be too costly).

Indeed, we find that responses produced by candidate-LLMs pipelined with the preamble generator
receive substantially higher evaluation scores from judge-LLMs compared to responses attacked with
other strategies, while also eluding detection methods. In contrast, existing attacks can be detected
via perplexity analysis [19] or human inspection.

Finally, we perform an analysis of the optimal preambles and find high variability in their fluency
across different model pipelines. While natural language preambles enhance interpretability, our
findings raise important questions about whether constraining conditioning tokens—such as preambles
or reasoning tokens—to the manifold of natural language may inadvertently limit model capabilities.

This paper makes the following main contributions:

1. We show that an adversarially tuned preamble generator, pipelined with a frozen LLM,
is effective at deceiving judge-LLMs into assigning higher scores. To the best of our
knowledge, this is the first work that optimises preambles to be injected into a frozen LLM
for this purpose. In contrast, previous studies focus on finding text sequences to be appended
to pre-generated responses.

2. We demonstrate that our adversarial preamble generator can be successfully pipelined with
candidate-LLMs and judge-LLMs not seen during training.

3. We show that our attack does not increase PPL scores and is rarely flagged by human
evaluators. Hence, it cannot be detected using existing safeguards.

4. We observe variations in optimal preamble style, fluency and naturalness across models,
suggesting that conditioning LLMs on human-readable sequences only (for example in
preambles or reasoning traces) may be overly restrictive from a performance perspective.

5. Our work highlights intrinsic vulnerabilities in the LLM-as-a-judge paradigm and calls into
question its reliability and robustness.

6. More broadly, this work introduces RLRE, a novel approach that pipelines LLMs to optimise
upstream textual preambles in a reinforcement learning setting. While here we use RLRE to
reverse engineer human preferences with the aim of boosting LLM-as-a-judge evaluation,
we postulate that this method could be paired with different downstream rewards to optimise
preambles for a variety of applications beyond just adversarial attacks—including but not
limited to meaningful tasks such as reducing toxicity or mitigating bias.

2 Related Work

Prior work investigating the robustness of LLM-as-a-judge has found that this approach suffers from
multiple inherent biases. Existing research has sought to exploit these biases by crafting adversarial
attacks aimed at maximising the scores assigned by judge-LLMs to candidate responses.

2In this context, preambles are also known as system prompts.

2

Give general advice to
help answer the following

question…: [q]

Preamble
generator

p

p’
q

+
+ R(q, c’)

p + q

Candidate-LLM Judge-LLM

Training
dataset

Comparison

c
R(q, c)

Evaluation

R(q, c)

Figure 1: Reinforcement Learning for Reverse Engineering (RLRE) pipeline for training a preamble
generator. Given a question q from a training set, we prepend to it a general instruction and feed it to
the preamble generator π. In order for π to learn the policy, we sample two preambles per question, p
and p′. The respective rewards are obtained by appending q to p and p′, respectively, and (i) passing
each as input to the candidate-LLM, which generates the responses c and c′, and (ii) having the
judge-LLM evaluate each question-response pair and extracting the respective numerical rewards
from these evaluations. The loss function that optimises π depends on the delta between the rewards
R(q, c) and R(q, c′).

Biases. Judge-LLMs are not unbiased evaluators. [24] and [28] observe that judge-LLMs prefer
their own generations to those of other models in the large majority of cases. [36] further show that
when asked to choose the best among multiple responses, GPT models favour the first candidate
displayed, regardless of its quality. Additionally, [4] find that LLMs tasked with scoring other models
prefer visually appealing generations regardless of content, and generations that are attributed, even
falsely, to authority figures. Similarly, [38] conclude that LLM judgment is vulnerable to spurious
attributions (‘authority bias’). They additionally observe that judge-LLMs tend to prefer longer
responses (‘verbosity bias’), responses falsely identified as majority beliefs (‘bandwagon-effect bias’),
and responses presented as the result of a refinement process (‘refinement-aware bias’).

Adversarial attacks. [38] show that the biases of judge-LLMs can be manipulated to artificially
boost their evaluation scores. They append specific text sequences to candidate responses: a false book
citation to exploit authority bias, a sentence stating that most people favour that response to exploit
bandwagon-effect bias, or a piece of text suggesting the response has been through a refinement
process, to leverage refinement-aware bias. In each case, they find that the resulting responses are
evaluated more favourably by all or some of the judge-LLMs. They also show that evaluation is
affected when the length of a response is increased, without any improvement in its quality. [32] take
this type of adversarial attack further, tuning a universal text sequence that, when appended to a pre-
generated response, increases its evaluation score. This sequence is found by searching sequentially
through the vocabulary, iteratively selecting the word that maximises the average reward from the
judge on the training set. Their method is successful at inflating LLM judgement on Topical-Chat
[14] and SummEval [11], and they show the attack transfers to previously unseen judge-LLMs not
included in the search process. Rather than tuning a universal phrase, [34] train a sample-specific
text sequence to be selected more often by a judge in pairwise comparison. Similar to [32], they
append the tuned sequence to a pre-generated LLM response. Finally, [41] experiment with replacing
responses with fixed instructions that invalidate the original LLM-as-a-judge prompt. Note that [32],
[34] and [41] all observe that their attack can in large part be detected by measuring the perplexity of
the responses. As the attack intervenes directly on the response and alters it, attacked responses tend
to display higher PPL.

Unlike the above methods, the attack we propose does not modify the generated text post hoc. This
makes its detection substantially more difficult.

3 Method

Given a training dataset of questions D = {(qj)1≤j≤N} and a fixed instruction prompt i, we aim to
train a preamble generator πθ(pj |i, qj) to generate textual preambles p conditioned on i and q. We
formulate the RL problem as:

J(πθ) = Eq∼DEp∼πθ(p|i,q)Ec∼LLMC(c|p,q)[R(q, c)]

3

where LLMC is a frozen LLM—referred to as the candidate-LLM—which takes a preamble pj and
the corresponding question qj and outputs a candidate response cj . Note that the reward is a function
of the preamble because LLMC is conditioned on it. Our reward model is a frozen LLM that outputs
a verbal critique followed by a numerical score, as in the LLM-as-a-judge framework. We refer to
this model as the judge-LLM. In our case, the score output by the judge is discrete on the 1–10 scale,
elicited using MT-Bench [40] prompts for single (as opposed to pairwise) evaluation. We use this
numerical score as the reward in our training pipeline. Figure 1 illustrates the training pipeline in
detail.

In order to optimise the RL problem, we adapt Contrastive Policy Gradient (CoPG) [12]. The rationale
behind this choice, as well as a comparison with other RL algorithms, is further elaborated in
Appendix A. For a pair of two sampled preambles pj and p′j we introduce the following sampling
loss:

L(pj , p′j ;π) =

(
R(qj , cj)−R(qj , c

′
j)− β

(
ln

π(pj |i, qj)
πref(pj |i, qj)

− ln
π(p′j |i, qj)
πref(p′j |i, qj)

))2

.

πref is a reference model used for regularising the RL problem, which we set to be the base LLM
underlying the preamble generator. As in [12], β is a hyperparameter regulating the importance of
the KL-divergence between the sequence log-likelihoods of π and πref in the overall loss.

As π is trained to generate question-specific preambles, we pipeline it with the candidate-LLM at test
time to dynamically generate responses to new questions. We prompt the preamble generator with
the same fixed instruction i used during training, along with a question q, to generate the response c.
A judge-LLM is then prompted to assign a score to c.

As an additional consideration, it is worth noting that [12] investigate CoPG solely in an offline
manner. However, they hypothesise that the method should also scale to the online setting. To the
best of our knowledge, this work is the first to successfully apply a similar method to online learning.

4 Experiments

4.1 Models and Hyperparameters

To test the generalisability of our method, we use LLMs from both the Command3 and the Llama
3.1 [15] model series. We train and test three distinct pipelines, illustrated in Table 1. Note that
all pipelines are trained with the same judge-LLM, i.e. Command R+ prompted as in [40]. We
tune the Command R7B [7] preamble generators on a Google Cloud TPU v5e containing 64 chips.
We train the Llama 3.1 8B Instruct preamble generator on a single Nvidia H100 GPU. Candidate-
and judge-LLMs from the Command family are accessed via API. The Llama 3.1 70B Instruct
candidate-LLM is deployed and queried on a local server.

Due to computational limitations, we perform all hyperparameter tuning on the Command R7B+R7B
pipeline, and apply the same hyperparameters to the other two. As shown in Section 4.4, the Command
R7B+R7B pipeline attains the greatest performance improvements over the baselines, and it is therefore
likely that additional hyperparameter tuning would further raise the scores obtained by the Command
R7B+R and Llama 8B+70B pipelines. This may be especially true for the latter, which comprises
a family of models different from those used for hyperparameter tuning. It is worth noting that,
since the preambles only need to influence the candidate-LLM outputs and do not necessarily need
to be fluent from a human perspective, the hyperparameter tuning process results in a relatively
low value of the KL-divergence coefficient (β = 0.03), which regulates the similarity between the
output distributions of the preamble generator and the reference model. This low β value allows our
preambles to deviate more drastically from the reference policy during training.

We train each pipeline with early stopping according to validation performance. All hyperparameters,
API model IDs, and training process details are given in Appendix B.

3https://cohere.com/command

4

https://cohere.com/command

Table 1: The training pipelines include models of different sizes and families as preamble generators
and/or candidate-LLMs. Command R+ (104B parameters) is used as the judge-LLM in all pipelines.

Pipeline identifier Preamble generator Candidate-LLM

Command R7B+R7B Command R7B Command R7B

Command R7B+R Command R7B Command R (35B)

Llama 8B+70B Llama 3.1 8B Instruct Llama 3.1 70B Instruct

4.2 Datasets

We test all pipelines on MT-Bench [40], which consists of 160 open-ended questions, split among
two conversational turns, grounded in the following domains: writing, roleplay, reasoning, math,
coding, extraction, STEM, and humanities. We choose this benchmark as it is established and
widely used in LLM assessment, and tests a balanced distribution of diverse skills on challenging
multi-turn questions [40]. Crucially, MT-Bench supports independent judgement as opposed to
pairwise comparison with other models [22, 21]. It is also worth noting that MT-Bench represents
the setup we target in our approach, which makes it suitable to demonstrate that it is possible to
reverse engineer human feedback in a controlled setting. Since MT-Bench does not comprise a
training set, we fine-tune and validate the preamble generators using questions from UltraFeedback
[8] (using MT-Bench prompts for single evaluation to elicit the downstream rewards). The questions
in UltraFeedback are extracted from ShareGPT [6], FLAN [25], Evol-Instruct [37], UltraChat [10],
FalseQA [16], and TruthfulQA [23]. Collectively, these datasets cover a wide range of topics, and
the domains in MT-Bench are represented in UltraFeedback. The distribution of the different tasks
within the training data is further analysed in Appendix C.2.

Additionally, we test transferability to a further benchmark, Arena-Hard [21], as discussed in Sec-
tion 5.1.

4.3 Baselines

We compare the evaluation scores assigned to candidate-LLMs attacked with the preamble generator
with those given to unattacked candidates. Additionally, we compare against existing methods that
exploit vulnerabilities in the LLM-as-a-judge framework to artificially boost their evaluation scores.
We describe these additional baselines below. Note that all of them modify pre-generated responses
from the unattacked model.

Verbosity bias attack. We ask the candidate-LLM to increase the length of a pre-generated
response. To this end, we use the prompt designed by [38] to lengthen the response without
necessarily improving its quality.

Bandwagon-effect bias attack. We append to each pre-generated response a text sequence stating
that a high percentage of people think that response should be awarded the highest rating. Consistent
with [38], we randomly choose percentages between 60% and 90%.

Authority bias attack. Using the same prompting strategy as [38], we ask the candidate-LLM to
invent a plausible book source for a pre-generated response, given a citation template. The citation is
then appended to the response to increase its perceived authority.

Refinement-aware bias attack. Given a pre-generated response, we have the candidate-LLM
polish it using the refinement prompt in [38]. The judge is then presented with the original response,
followed by the refinement prompt and the new, polished response.

Universal adversarial attack. We append to each pre-generated response the universal adversarial
attack phrase from [32], learned for absolute assessment when attacking the Topical-Chat [14] overall
score. Like UltraFeedback and MT-Bench, Topical-Chat encompasses a wide range of topics and
features multi-turn questions similar to those in MT-Bench. Note that learning a new universal phrase
on our UltraFeedback training set is computationally infeasible: for n training samples, the exhaustive

5

Table 2: MT-Bench evaluation scores assigned by the Command R+ judge-LLM to candidate-LLMs
attacked with different strategies. Each setup is run five times and the scores are averaged (showing
the standard deviation in the subscript) to account for small variations due to temperature sampling.

Candidate-LLM Attack type
No attack Verbosity Bandwagon Authority Refinement Universal Preambles

Turn 1 7.600.07 7.330.08 7.470.05 7.510.05 7.780.05 7.580.06 8.210.07

Command R7B Turn 2 6.990.08 7.290.02 7.170.08 7.290.10 7.450.08 7.250.03 7.660.09

Overall 7.290.08 7.310.05 7.320.06 7.400.07 7.610.06 7.410.04 7.930.08

Turn 1 8.090.08 7.990.10 7.980.06 8.170.08 8.100.05 8.100.06 8.450.07

Command R Turn 2 7.570.12 7.730.08 7.720.14 7.650.06 7.810.05 7.750.09 7.920.03

Overall 7.830.10 7.860.09 7.850.10 7.910.07 7.950.05 7.920.07 8.180.05

Turn 1 8.470.08 8.290.06 8.390.05 8.380.07 8.510.07 8.500.05 8.560.08
Llama 3.1 70B
Instruct Turn 2 7.640.06 7.490.08 7.650.08 7.620.07 7.750.09 7.850.07 7.880.08

Overall 8.060.07 7.890.07 8.020.07 8.000.07 8.130.08 8.170.06 8.220.08

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

33333 44444 55555 66666 77777 88888 99999

(a) Command R7B

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

55555 66666 77777 88888 99999

Refinement Universal Preambles

(b) Command R

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

55555 66666 77777 88888 99999

(c) Llama 3.1 70B Instruct

Figure 2: Average scores per question type obtained by candidate-LLMs using a refinement-aware
bias attack, [32]’s universal adversarial attack, and the adversarial preamble generator.

search method in [32] computed over the 20k-word vocabulary makes 20000 × 4 × n calls to the
judge-LLM. In our case, that would equal 4× 109 inference calls.

4.4 Results

Table 2 shows the average evaluation scores obtained by three candidate-LLMs, under all baseline set-
tings and when pipelined with our adversarial preamble generators. Models injected with adversarial
preambles consistently obtain higher evaluations from the Command R+ judge at both question turns,
with the Command R7B+R7B pipeline (i.e., the one on which we perform hyperparameter tuning)
achieving the most substantial improvements. We also find that turn 1 responses benefit the most from
the preambles. Note that in MT-Bench, turn 2 questions require adjusting turn 1 answers according to
new constraints. This type of task is not well represented in UltraFeedback, making it OOD w.r.t. the
training data (see also Appendix C.2). Nevertheless, the tuned preamble generators remain effective
at raising turn 2 scores at test time.

We find that among all candidate LLMs, the strongest baseline attacks are the refinement-aware
bias attack and the universal adversarial attack proposed by [32]. On average, our adversarial
preambles increase Command R7B’s overall score (on a 1–10 continuous scale) by 0.32 points over
the refinement-aware attack and by 0.52 points over the universal attack. For Command R, the
corresponding improvements are +0.23 and +0.26, respectively. Injecting adversarial preambles
into Llama 3.1 70B Instruct yields smaller but consistent gains, raising its score by 0.09 relative to
the refinement-aware attack and 0.05 relative to the universal attack. Furthermore, compared with
their non-attacked counterparts, the preamble-based attack substantially increases the overall judge
scores for Command R7B, Command R, and Llama—by 0.64, 0.35, and 0.16, respectively. We report
confidence intervals in Appendix D.1.

6

Table 3: Candidate transferability (a) and judge transferability (b) of our preamble-based attack on
MT-Bench. All scores are averaged over five runs.

(a) Candidate transferability

Candidate-LLM
Preambles from pipeline

Command
R7B+R7B

Command
R7B+R

Llama
8B+70B

Command
R7B 7.930.08 7.680.08 7.400.10

Command R
(35B) 8.010.09 8.180.05 7.970.09

Llama 3.1 70B
Instruct 8.210.05 8.190.08 8.220.08

(b) Judge transferability

Attack type GPT-3.5 GPT-4o-mini Claude

No attack 7.580.08 6.400.07 9.020.06

Verbosity 7.360.09 5.610.04 8.740.04

Bandwagon 7.470.04 6.250.04 8.790.07

Authority 7.480.09 5.920.06 8.920.12

Refinement 7.710.11 6.390.05 9.180.06

Universal 7.330.10 6.060.03 8.940.07

Preambles 8.070.07 6.710.02 9.440.06

In Figure 2, we illustrate the evaluation scores per question type for the two best-performing baselines
(refinement-aware bias and universal adversarial attack) and the adversarial preamble generator.
Overall, the adversarially tuned preambles are most effective at raising the scores of reasoning and
math responses, followed by extraction, STEM and roleplay. Fine-grained results for all domains are
shown in Appendix D.2.

5 Analysis

5.1 Attack Transferability

We investigate the transferability of our preamble attack across different candidate- and judge-LLMs.

Transferability across candidate-LLMs. At test time, we pipeline each candidate-LLM with
adversarial preamble generators tuned with a different candidate. As shown in Table 3(a), the judge’s
evaluation scores remain higher than all baselines (shown in Table 2) in all cases except for Command
R7B pipelined with the preamble generator from the Llama pipeline, whose scores align with [32]’s
universal attack. This demonstrates strong transferability of the adversarial preamble attack across
different candidate-LLMs.

Transferability across judge-LLMs. In real-world scenarios, the target judge-LLM may not be
known in advance. It is therefore important to assess whether our method generalises to judges
that were not used during training. Table 3(b) presents results where different judge-LLMs evaluate
candidate responses across all attack settings. For this analysis, we employ GPT-3.5,4 GPT-4o-
mini [27], and Claude Haiku [2]. To maintain cost efficiency, we restrict evaluation to Command
R7B. While the absolute reward scales differ across the three judges, all three consistently assign the
highest scores to responses generated using our preamble generator, despite it having been trained
with rewards from a different judge (Command R+). These findings suggest that the attack remains
effective even when the target judge-LLM is unknown.

Transferability across benchmarks. We further evaluate the Command R7B pipeline on the
Arena-Hard benchmark, which differs from both UltraFeedback and MT-Bench in task distribution.
Moreover, its reward metric—the Arena Score Rate (ASR)—differs in both assignment strategy
and numerical range, as described in [21]. We conduct evaluations using both the Command R+
judge (used during training) and an unseen judge, GPT-4, which serves as the standard evaluator for
Arena-Hard at the time of writing. Applying the tuned preambles yields an average score increase of
+3.5 with Command R+ and +1.2 with GPT-4 (note that Arena-Hard scores range from 0–100; see
Appendix D.3 for full results). These results demonstrate that RLRE generalises effectively to new
benchmarks without additional task-specific training.

4https://platform.openai.com/docs/models/gpt-3.5-turbo

7

https://platform.openai.com/docs/models/gpt-3.5-turbo

No attack

Verbosity

Bandwagon

Authority

Refinement

Universal

Preambles

 (ours)

0

0.2

0.4

0.6

0.8

1

Figure 3: Proportion of LLM responses that have
been labelled as ‘attacked’ by human evaluators.
Responses generated using adversarial preambles
are identified as attacked nearly as rarely as those
produced by a non-attacked model.

Table 4: False negative rate (FNR) of PPL-W
for each attack type. Verbosity bias, bandwagon
bias and our preamble-based attack are rarely
detected with this method (FNR ≥ 0.90). The
universal adversarial attack [32] is almost al-
ways detected (FNR = 0.04).

Attack type PPL-W (FNR)

Verbosity 0.91

Bandwagon 0.93

Authority 0.88

Refinement 0.66

Universal 0.04

Preambles 0.90

5.2 Attack Detectability

We examine the detectability of all attacks via perplexity analysis [19]. This is the established
detection method for adversarial attacks on LLM output, used in prior and contemporary work
[32, 41]. Notably, this method can be used on models served via API, as is the case for our frozen
candidate-LLMs, without requiring access to internal mechanisms such as attention maps [18, 29] or
the entire probability distributions over the vocabulary at each decoding step [9]. As an additional
test, we also measure the detectability of the attacks via human evaluation of the candidate responses.

Perplexity analysis. We use a perplexity filter over a 10-token sliding window as in [19], to identify
whether the candidate-LLM has been attacked. A response is labelled as attacked if the PPL of any
subsequence in the sliding window is greater than a threshold t. We set t to ensure a false positive
rate within 0.05 on the test set responses produced by the non-attacked model. Table 4 illustrates the
results of this detection method—referred to as PPL-W—for the Command R7B candidate.

Human evaluation. To assess the detectability of each attack by visual inspection, we recruit 16
annotators with domain expertise and knowledge of the possible attacks. We sample a balanced
subset of 400 test responses generated by Command R7B under each attack setup (including the
non-attacked model), randomly split it into 16 equal-sized portions, and have each annotator assign
a binary label (‘attacked’ or ‘not attacked’) to each generation. Figure 3 shows the proportion of
responses labelled as ‘attacked’ for each attack type. Attacks that insert formulaic sequences into the
response (bandwagon bias, authority bias, refinement-aware bias and universal attack) are detected in
all or most cases (100%, 96%, 95% and 97%, respectively), while the verbosity bias attack is detected
approximately half of the time (49%). Notably, responses produced by the preamble-based attack are
labelled as ‘attacked’ nearly as rarely (14%) as those generated by the non-attacked model (12%). We
also measure the rate at which each annotator is able to correctly detect each type of attack (both in
terms of accuracy and F1). For both scores, we compute the median absolute deviation (MAD) across
all annotators for each attack type, and find it to be zero in all cases, indicating that the annotators are
able (or unable) to detect each attack at very similar rates. This supports the hypothesis that different
attacks are inherently (un)detectable by visual inspection, as we do not find high variance in detection
rates between different annotators.

5.3 Ablations

In our framework, we input into the preamble generator a fixed instruction concatenated with a
question from the dataset, resulting in question-specific preambles. To evaluate the degree to which
this prompting strategy contributes to the effectiveness of our attack, we run an ablation study
where (i) we remove the question from the input and feed the preamble generator only a generic
instruction, and (ii) we discard the instruction altogether and only input special tokens to signal the
start of a generation turn (both prompts are shown in Appendix E). In the latter case, the model is

8

Table 5: Ablated MT-Bench overall scores obtained by (i) removing the question and feeding a
generic instruction to the preamble generator, and (ii) removing the instruction and only feeding
special tokens to signal the start of the turn. Scores are assigned by a Command R+ judge and are
averaged over five runs.

Pipeline Ablated setting

No question No instruction

Command R7B+R7B 7.760.07 7.700.07

Command R7B+R 8.140.08 8.130.13

Llama 8B+70B 8.190.11 8.180.12

virtually unconstrained and may generate any text string, and thus the training signal is even more
consequential in determining the content of the preambles.

Table 5 illustrates the overall scores assigned by the Command R+ judge under all ablated settings.
Although both ablation strategies result in slightly lower performance than the corresponding non-
ablated pipelines, all the scores remain above all baselines (refer to Table 2 for the baseline results).
This demonstrates the robustness of the attack under different prompting strategies.

5.4 Analysis of Generated Texts

Do successful preambles exhibit common patterns? Upon analysing the successful preambles
produced by each tuned generator, we find consistency among preambles generated by the same
model, but high variability across different models. While preambles generated by the Command
models (both conditioned on the data point and conditioned on a generic instruction) share a similar
structure—providing a blueprint for how to design an answer—preambles that are only conditioned
on the start-of-turn token, as well as all the Llama preambles, deviate substantially from this pattern.
The latter tend to reiterate the same phrases multiple times, and often do not appear fluent to a
human reader. When they are not conditioned on an instruction, they even devolve into apparently
meaningless sequences of characters. Nevertheless, all of these preambles are successful at raising
LLM evaluation scores, as evidenced in Section 5.3. Appendix G shows representative preambles for
each pipeline.

It is worth noting that, as further discussed in Appendix B, we assign relatively low weight to the log-
likelihoods of the adversarial preambles within the loss function, thus prioritising reward over fluency
during training. Remarkably, the training still converges toward preambles that elicit high-reward
candidate responses, regardless of their fluency. This suggests that constraining preambles—or other
conditioning tokens such as reasoning tokens—to the manifold of natural language may not always
be optimal.

Are attacked responses more accurate? Figure 2 shows that the preamble-based attack is particu-
larly effective at raising the scores assigned to math and reasoning responses. Since these responses
are evaluated by the judge-LLM against a ground truth [40], this raises the question of whether
the attack has improved response accuracy. We thus evaluate via normalised exact match all math
and reasoning responses from all models, both in the non-attacked setup and the preamble-attacked
version. We find that the average accuracy rates are very similar, with a slight advantage for the
non-attacked models (45.9%) over the preamble attack (44.2%). Hence, the accuracy of the final
answer does not improve due to the preambles. However, as shown by the representative examples in
Appendix H, the attacked responses have more structured reasoning chains, usually arranged into
distinct paragraphs labelled with clear, explanatory headers. We thus postulate that the improved
layout may be solely responsible for the higher scores assigned by the judge-LLM, regardless of
correctness.

Are attacked responses better overall? Aside from math and reasoning, the other MT-Bench
domains are either not reliably verifiable with automated methods (extraction, STEM, humanities,
coding) or lack objective verification entirely (writing, roleplay). To understand whether responses
produced via our preamble pipeline have improved over those generated by the non-attacked model,

9

Table 6: Human evaluation of generated responses for all task domains.

Attack type Number of assigned labels Avg. human rating
Poor Fair Good

No attack 72 50 118 6.22

Preambles 73 54 113 6.24

we have them evaluated by expert human annotators, blind to the attack and instructed to assess
correctness and quality by assigning to each response one of three labels: ‘Poor’, ‘Fair’ or ‘Good’,
along with a discrete 1-10 rating matching the MT-Bench judge-LLM scale. We do this for all
responses generated by Command R7B, across all domains. Table 6 shows that the label distributions
are fairly similar for both the non-attacked and the attacked model, with the non-attacked model
receiving slightly more positive labels (‘Good’), and the attacked one receiving slightly more mid-
range labels (‘Fair’). We observe relatively strong inter-annotator agreement (aggregated Spearman’s
ρ = 0.78, combined p < 0.001, Kendall’s W = 0.72, p < 0.001). Moreover, the difference between
the human ratings of the non-attacked and the attacked model is negligible (0.02), whereas the
difference between the judge-LLM’s ratings of the same two setups is substantially greater and
favours our attack.

6 Conclusion

We have shown that human preferences can be successfully reverse engineered to tune adversarial
text preambles, and that injecting these preambles into a candidate-LLM constitutes a powerful attack
on the LLM-as-a-judge framework. This attack not only outperforms previous methods at inflating
the scores assigned by a judge-LLM to candidate responses, but also remains virtually undetectable
using existing safeguards. In contrast, current strategies that intervene post hoc on the responses
display high PPL and can be easily detected by visual inspection. Additionally, we have found that
the attack transfers to candidate-LLMs not seen during training, enabling our adversarial preamble
generator to serve as a plug-and-play component for artificially boosting the scores of multiple LLMs
after a single training process. Finally, we have shown that preambles tuned with one judge-LLM
can effectively attack different judges from different model families, and are effective at inflating
scores on multiple benchmarks. These findings raise important questions regarding the reliability of
LLM-as-a-judge evaluation.

In addition to pointing to future research directions for the design of more robust evaluation frame-
works, this work introduces Reinforcement Learning for Reverse Engineering (RLRE), a novel
strategy that combines LLMs to tune upstream textual preambles via reinforcement learning, thus
enabling the indirect optimisation of models, including those that cannot be fine-tuned directly. While
here we have shown its effectiveness in the context of adversarial attacks on LLM evaluation, future
research can investigate other avenues of application for this approach (e.g., automatic generation
of other types of attack, but also improvements to LLM output such as toxicity or bias mitiga-
tion), as well as different granularities of sequence adaptation (e.g., query-specific, task-specific,
domain-specific), and the optimisation of tokens at different positions within an input sequence (e.g.,
post-query instructions instead of pre-query preambles). Looking ahead, we envision that future
systems will not rely on a single token stream, but integrate and optimise multiple inputs—e.g. from
users, tools, and auxiliary models—each contributing to the generation of final responses that better
align with chosen objectives.

Broader Impacts

This work focuses on aligning candidate-LLMs to judge-LLMs by means of tuned preambles injected
into the candidate to obtain inflated evaluations. While there is a chance that this strategy may be
exploited by adversaries, it is of scientific interest to the community that such an attack is not only
possible but also particularly effective. Note that, while we openly disclose our training algorithm
and hyperparameters and train using publicly available data, we do not release our trained preamble
generator checkpoints to the public, as this may encourage their misuse.

10

Acknowledgments

The authors are grateful to Yannis Flet-Berliac for his insightful guidance on hyperparameter tuning
and for valuable input in refining the training pipeline. Appreciation is also extended to John Dang,
Matthieu Geist, Roman Castagné, and Eugene Choi for their helpful suggestions throughout this
work.

References
[1] A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Üstün, and S. Hooker.

Back to basics: Revisiting REINFORCE-style optimization for learning from human feedback
in LLMs. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
12248–12267, Bangkok, Thailand, Aug. 2024. Association for Computational Linguistics.

[2] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku.

[3] A. Bavaresco, R. Bernardi, L. Bertolazzi, D. Elliott, R. Fernández, A. Gatt, E. Ghaleb, M. Giu-
lianelli, M. Hanna, A. Koller, A. F. T. Martins, P. Mondorf, V. Neplenbroek, S. Pezzelle, B. Plank,
D. Schlangen, A. Suglia, A. K. Surikuchi, E. Takmaz, and A. Testoni. LLMs instead of human
judges? A large scale empirical study across 20 NLP evaluation tasks. CoRR, abs/2406.18403,
2024.

[4] G. H. Chen, S. Chen, Z. Liu, F. Jiang, and B. Wang. Humans or LLMs as the judge? A study on
judgement bias. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors, Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 8301–8327, Miami,
Florida, USA, Nov. 2024. Association for Computational Linguistics.

[5] C.-H. Chiang and H.-y. Lee. Can large language models be an alternative to human evaluations?
In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15607–15631,
Toronto, Canada, July 2023. Association for Computational Linguistics.

[6] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing GPT-4 with 90
https://lmsys.org/blog/2023-03-30-vicuna, March 2023.

[7] T. Cohere, :, Aakanksha, A. Ahmadian, M. Ahmed, J. Alammar, M. Alizadeh, Y. Alnumay, S. Al-
thammer, A. Arkhangorodsky, V. Aryabumi, D. Aumiller, R. Avalos, Z. Aviv, S. Bae, S. Baji,
A. Barbet, M. Bartolo, B. Bebensee, N. Beladia, W. Beller-Morales, A. Bérard, A. Berneshawi,
A. Bialas, P. Blunsom, M. Bobkin, A. Bongale, S. Braun, M. Brunet, S. Cahyawijaya, D. Cairuz,
J. A. Campos, C. Cao, K. Cao, R. Castagné, J. Cendrero, L. C. Currie, Y. Chandak, D. Chang,
G. Chatziveroglou, H. Chen, C. Cheng, A. Chevalier, J. T. Chiu, E. Cho, E. Choi, E. Choi,
T. Chung, V. Cirik, A. Cismaru, P. Clavier, H. Conklin, L. Crawhall-Stein, D. Crouse, A. F.
Cruz-Salinas, B. Cyrus, D. D’souza, H. Dalla-Torre, J. Dang, W. Darling, O. D. Domingues,
S. Dash, A. Debugne, T. Dehaze, S. Desai, J. Devassy, R. Dholakia, K. Duffy, A. Edalati,
A. Eldeib, A. Elkady, S. Elsharkawy, I. Ergün, B. Ermis, M. Fadaee, B. Fan, L. Fayoux, Y. Flet-
Berliac, N. Frosst, M. Gallé, W. Galuba, U. Garg, M. Geist, M. G. Azar, E. Gilsenan-McMahon,
S. Goldfarb-Tarrant, T. Goldsack, A. Gomez, V. M. Gonzaga, N. Govindarajan, M. Govin-
dassamy, N. Grinsztajn, N. Gritsch, P. Gu, S. Guo, K. Haefeli, R. Hajjar, T. Hawes, J. He,
S. Hofstätter, S. Hong, S. Hooker, T. Hosking, S. Howe, E. Hu, R. Huang, H. Jain, R. Jain,
N. Jakobi, M. Jenkins, J. Jordan, D. Joshi, J. Jung, T. Kalyanpur, S. R. Kamalakara, J. Kedrzycki,
G. Keskin, E. Kim, J. Kim, W.-Y. Ko, T. Kocmi, M. Kozakov, W. Kryściński, A. K. Jain, K. K.
Teru, S. Land, M. Lasby, O. Lasche, J. Lee, P. Lewis, J. Li, J. Li, H. Lin, A. Locatelli, K. Luong,
R. Ma, L. Mach, M. Machado, J. Magbitang, B. M. Lopez, A. Mann, K. Marchisio, O. Markham,
A. Matton, A. McKinney, D. McLoughlin, J. Mokry, A. Morisot, A. Moulder, H. Moynehan,
M. Mozes, V. Muppalla, L. Murakhovska, H. Nagarajan, A. Nandula, H. Nasir, S. Nehra,
J. Netto-Rosen, D. Ohashi, J. Owers-Bardsley, J. Ozuzu, D. Padilla, G. Park, S. Passaglia,
J. Pekmez, L. Penstone, A. Piktus, C. Ploeg, A. Poulton, Y. Qi, S. Raghvendra, M. Ramos,
E. Ranjan, P. Richemond, C. Robert-Michon, A. Rodriguez, S. Roy, S. Ruder, L. Ruis, L. Rust,

11

https://lmsys.org/blog/2023-03-30-vicuna

A. Sachan, A. Salamanca, K. K. Saravanakumar, I. Satyakam, A. S. Sebag, P. Sen, S. Sepehri,
P. Seshadri, Y. Shen, T. Sherborne, S. S. Shi, S. Shivaprasad, V. Shmyhlo, A. Shrinivason,
I. Shteinbuk, A. Shukayev, M. Simard, E. Snyder, A. Spataru, V. Spooner, T. Starostina, F. Strub,
Y. Su, J. Sun, D. Talupuru, E. Tarassov, E. Tommasone, J. Tracey, B. Trend, E. Tumer, A. Üstün,
B. Venkitesh, D. Venuto, P. Verga, M. Voisin, A. Wang, D. Wang, S. Wang, E. Wen, N. White,
J. Willman, M. Winkels, C. Xia, J. Xie, M. Xu, B. Yang, T. Yi-Chern, I. Zhang, Z. Zhao, and
Z. Zhao. Command a: An enterprise-ready large language model, 2025.

[8] G. Cui, L. Yuan, N. Ding, G. Yao, B. He, W. Zhu, Y. Ni, G. Xie, R. Xie, Y. Lin, Z. Liu,
and M. Sun. ULTRAFEEDBACK: Boosting language models with scaled AI feedback. In
R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages 9722–9744. PMLR, 21–27 Jul 2024.

[9] S. Dasgupta, S. Nath, A. Basu, P. Shamsolmoali, and S. Das. Hallushift: Measuring distribution
shifts towards hallucination detection in llms. In 2025 International Joint Conference on Neural
Networks (IJCNN), 2025.

[10] N. Ding, Y. Chen, B. Xu, Y. Qin, S. Hu, Z. Liu, M. Sun, and B. Zhou. Enhancing chat
language models by scaling high-quality instructional conversations. In H. Bouamor, J. Pino,
and K. Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 3029–3051, Singapore, Dec. 2023. Association for Computational
Linguistics.

[11] A. R. Fabbri, W. Kryściński, B. McCann, C. Xiong, R. Socher, and D. Radev. SummEval:
Re-evaluating summarization evaluation. Transactions of the Association for Computational
Linguistics, 9:391–409, 2021.

[12] Y. Flet-Berliac, N. Grinsztajn, F. Strub, E. Choi, B. Wu, C. Cremer, A. Ahmadian, Y. Chandak,
M. G. Azar, O. Pietquin, and M. Geist. Contrastive policy gradient: Aligning LLMs on
sequence-level scores in a supervised-friendly fashion. In Y. Al-Onaizan, M. Bansal, and
Y.-N. Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 21353–21370, Miami, Florida, USA, Nov. 2024. Association for
Computational Linguistics.

[13] M. Gheshlaghi Azar, Z. Daniel Guo, B. Piot, R. Munos, M. Rowland, M. Valko, and D. Ca-
landriello. A general theoretical paradigm to understand learning from human preferences. In
S. Dasgupta, S. Mandt, and Y. Li, editors, Proceedings of The 27th International Conference on
Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research,
pages 4447–4455. PMLR, 02–04 May 2024.

[14] K. Gopalakrishnan, B. Hedayatnia, Q. Chen, A. Gottardi, S. Kwatra, A. Venkatesh, R. Gabriel,
and D. Hakkani-Tür. Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversa-
tions. In Proceedings of Interspeech 2019, pages 1891–1895, 2019.

[15] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra,
A. Sravankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson,
A. Spataru, B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra,
C. McConnell, C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius,
D. Song, D. Pintz, D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-
Olano, D. Perino, D. Hupkes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith,
F. Radenovic, F. Guzmán, F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai, G. Nail,
G. Mialon, G. Pang, G. Cucurell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A.
Ibarra, I. Kloumann, I. Misra, I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park,
J. Mahadeokar, J. Shah, J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang,
J. Liu, J. Wang, J. Yu, J. Bitton, J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V.
Alwala, K. Prasad, K. Upasani, K. Plawiak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer,
K. Malik, K. Chiu, K. Bhalla, K. Lakhotia, L. Rantala-Yeary, L. van der Maaten, L. Chen,
L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo, L. Blecher, L. Landzaat, L. de Oliveira,
M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kardas, M. Tsimpoukelli, M. Oldham,
M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K. Singh, M. Hassan, N. Goyal,

12

N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang, O. Duchenne, O. Çelebi,
P. Alrassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Krishnan, P. S. Koura,
P. Xu, Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral, R. Stojnic,
R. Raileanu, R. Maheswari, R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly,
R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell, S. S.
Kim, S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S. Wan, S. Bhosale, S. Zhang,
S. Vandenhende, S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan, S. Borodinsky,
T. Herman, T. Fowler, T. Sheasha, T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov,
T. Xiao, U. Karn, V. Goswami, V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do,
V. Vogeti, V. Albiero, V. Petrovic, W. Chu, W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang,
X. Wang, X. E. Tan, X. Xia, X. Xie, X. Jia, X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen,
Y. Song, Y. Zhang, Y. Li, Y. Mao, Z. D. Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh,
A. Srivastava, A. Jain, A. Kelsey, A. Shajnfeld, A. Gangidi, A. Victoria, A. Goldstand, A. Menon,
A. Sharma, A. Boesenberg, A. Baevski, A. Feinstein, A. Kallet, A. Sangani, A. Teo, A. Yunus,
A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho, A. Poulton, A. Ryan, A. Ramchandani,
A. Dong, A. Franco, A. Goyal, A. Saraf, A. Chowdhury, A. Gabriel, A. Bharambe, A. Eisenman,
A. Yazdan, B. James, B. Maurer, B. Leonhardi, B. Huang, B. Loyd, B. D. Paola, B. Paranjape,
B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti, B. Spence, B. Stojkovic, B. Gamido, B. Montalvo,
C. Parker, C. Burton, C. Mejia, C. Liu, C. Wang, C. Kim, C. Zhou, C. Hu, C.-H. Chu, C. Cai,
C. Tindal, C. Feichtenhofer, C. Gao, D. Civin, D. Beaty, D. Kreymer, D. Li, D. Adkins, D. Xu,
D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss, D. Wang, D. Le, D. Holland,
E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood, E.-T. Le, E. Brinkman,
E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Kokkinos, F. Ozgenel,
F. Caggioni, F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee, G. Halpern,
G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Inan, H. Shojanazeri, H. Zou,
H. Wang, H. Zha, H. Habeeb, H. Rudolph, H. Suk, H. Aspegren, H. Goldman, H. Zhan,
I. Damlaj, I. Molybog, I. Tufanov, I. Leontiadis, I.-E. Veliche, I. Gat, J. Weissman, J. Geboski,
J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan, J. Zhen, J. Reizenstein,
J. Teboul, J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard, J. McPhie, J. Torres,
J. Ginsburg, J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand, K. Matosich,
K. Veeraraghavan, K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla, K. Huang,
L. Chen, L. Garg, L. A, L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt,
M. Khabsa, M. Avalani, M. Bhatt, M. Mankus, M. Hasson, M. Lennie, M. Reso, M. Groshev,
M. Naumov, M. Lathi, M. Keneally, M. Liu, M. L. Seltzer, M. Valko, M. Restrepo, M. Patel,
M. Vyatskov, M. Samvelyan, M. Clark, M. Macey, M. Wang, M. J. Hermoso, M. Metanat,
M. Rastegari, M. Bansal, N. Santhanam, N. Parks, N. White, N. Bawa, N. Singhal, N. Egebo,
N. Usunier, N. Mehta, N. P. Laptev, N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar,
O. Kalinli, P. Kent, P. Parekh, P. Saab, P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dollar,
P. Zvyagina, P. Ratanchandani, P. Yuvraj, Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy,
R. Nayani, R. Mitra, R. Parthasarathy, R. Li, R. Hogan, R. Battey, R. Wang, R. Howes, R. Rinott,
S. Mehta, S. Siby, S. J. Bondu, S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan,
S. Mahajan, S. Verma, S. Yamamoto, S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin,
S. C. Zha, S. Patil, S. Shankar, S. Zhang, S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe,
S. Chintala, S. Max, S. Chen, S. Kehoe, S. Satterfield, S. Govindaprasad, S. Gupta, S. Deng,
S. Cho, S. Virk, S. Subramanian, S. Choudhury, S. Goldman, T. Remez, T. Glaser, T. Best,
T. Koehler, T. Robinson, T. Li, T. Zhang, T. Matthews, T. Chou, T. Shaked, V. Vontimitta,
V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar, V. Mangla, V. Ionescu, V. Poenaru, V. T.
Mihailescu, V. Ivanov, W. Li, W. Wang, W. Jiang, W. Bouaziz, W. Constable, X. Tang, X. Wu,
X. Wang, X. Wu, X. Gao, Y. Kleinman, Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li, Y. Zhang,
Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao, Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait, Z. DeVito,
Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and Z. Ma. The Llama 3 herd of models, 2024.

[16] S. Hu, Y. Luo, H. Wang, X. Cheng, Z. Liu, and M. Sun. Won‘t get fooled again: Answering
questions with false premises. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 5626–5643, Toronto, Canada, July 2023. Association for Computational
Linguistics.

[17] H. Huang, X. Bu, H. Zhou, Y. Qu, J. Liu, M. Yang, B. Xu, and T. Zhao. An empirical study
of LLM-as-a-judge for LLM evaluation: Fine-tuned judge model is not a general substitute

13

for GPT-4. In W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar, editors, Findings of the
Association for Computational Linguistics: ACL 2025, pages 5880–5895, Vienna, Austria, July
2025. Association for Computational Linguistics.

[18] K.-H. Hung, C.-Y. Ko, A. Rawat, I.-H. Chung, W. H. Hsu, and P.-Y. Chen. Attention tracker:
Detecting prompt injection attacks in LLMs. In L. Chiruzzo, A. Ritter, and L. Wang, editors,
Findings of the Association for Computational Linguistics: NAACL 2025, pages 2309–2322,
Albuquerque, New Mexico, Apr. 2025. Association for Computational Linguistics.

[19] N. Jain, A. Schwarzschild, Y. Wen, G. Somepalli, J. Kirchenbauer, P. yeh Chiang, M. Goldblum,
A. Saha, J. Geiping, and T. Goldstein. Baseline defenses for adversarial attacks against aligned
language models, 2023.

[20] S. Kim, J. Suk, J. Y. Cho, S. Longpre, C. Kim, D. Yoon, G. Son, Y. Cho, S. Shafayat, J. Baek,
S. H. Park, H. Hwang, J. Jo, H. Cho, H. Shin, S. Lee, H. Oh, N. Lee, N. Ho, S. J. Joo,
M. Ko, Y. Lee, H. Chae, J. Shin, J. Jang, S. Ye, B. Y. Lin, S. Welleck, G. Neubig, M. Lee,
K. Lee, and M. Seo. The BiGGen bench: A principled benchmark for fine-grained evaluation
of language models with language models. In L. Chiruzzo, A. Ritter, and L. Wang, editors,
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages
5877–5919, Albuquerque, New Mexico, Apr. 2025. Association for Computational Linguistics.

[21] T. Li, W.-L. Chiang, E. Frick, L. Dunlap, T. Wu, B. Zhu, J. E. Gonzalez, and I. Stoica. From
crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder pipeline. In
A. Singh, M. Fazel, D. Hsu, S. Lacoste-Julien, F. Berkenkamp, T. Maharaj, K. Wagstaff, and
J. Zhu, editors, Proceedings of the 42nd International Conference on Machine Learning, volume
267 of Proceedings of Machine Learning Research, pages 34209–34231. PMLR, 13–19 Jul
2025.

[22] X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin, P. Liang, and T. B. Hashimoto.
Alpacaeval: An automatic evaluator of instruction-following models. https://github.com/
tatsu-lab/alpaca_eval, 2023.

[23] S. Lin, J. Hilton, and O. Evans. TruthfulQA: Measuring how models mimic human falsehoods.
In S. Muresan, P. Nakov, and A. Villavicencio, editors, Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3214–3252,
Dublin, Ireland, May 2022. Association for Computational Linguistics.

[24] Y. Liu, N. Moosavi, and C. Lin. LLMs as narcissistic evaluators: When ego inflates evaluation
scores. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Findings of the Association for
Computational Linguistics: ACL 2024, pages 12688–12701, Bangkok, Thailand, Aug. 2024.
Association for Computational Linguistics.

[25] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph,
J. Wei, and A. Roberts. The flan collection: designing data and methods for effective instruction
tuning. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

[26] S. Min, K. Krishna, X. Lyu, M. Lewis, W.-t. Yih, P. Koh, M. Iyyer, L. Zettlemoyer, and
H. Hajishirzi. FActScore: Fine-grained atomic evaluation of factual precision in long form text
generation. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 12076–12100, Singapore, Dec.
2023. Association for Computational Linguistics.

[27] OpenAI, :, A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow,
A. Welihinda, A. Hayes, A. Radford, A. Mądry, A. Baker-Whitcomb, A. Beutel, A. Borzunov,
A. Carney, A. Chow, A. Kirillov, A. Nichol, A. Paino, A. Renzin, A. T. Passos, A. Kirillov,
A. Christakis, A. Conneau, A. Kamali, A. Jabri, A. Moyer, A. Tam, A. Crookes, A. Tootoochian,
A. Tootoonchian, A. Kumar, A. Vallone, A. Karpathy, A. Braunstein, A. Cann, A. Codispoti,
A. Galu, A. Kondrich, A. Tulloch, A. Mishchenko, A. Baek, A. Jiang, A. Pelisse, A. Woodford,
A. Gosalia, A. Dhar, A. Pantuliano, A. Nayak, A. Oliver, B. Zoph, B. Ghorbani, B. Leimberger,
B. Rossen, B. Sokolowsky, B. Wang, B. Zweig, B. Hoover, B. Samic, B. McGrew, B. Spero,

14

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval

B. Giertler, B. Cheng, B. Lightcap, B. Walkin, B. Quinn, B. Guarraci, B. Hsu, B. Kellogg,
B. Eastman, C. Lugaresi, C. Wainwright, C. Bassin, C. Hudson, C. Chu, C. Nelson, C. Li,
C. J. Shern, C. Conger, C. Barette, C. Voss, C. Ding, C. Lu, C. Zhang, C. Beaumont, C. Hal-
lacy, C. Koch, C. Gibson, C. Kim, C. Choi, C. McLeavey, C. Hesse, C. Fischer, C. Winter,
C. Czarnecki, C. Jarvis, C. Wei, C. Koumouzelis, D. Sherburn, D. Kappler, D. Levin, D. Levy,
D. Carr, D. Farhi, D. Mely, D. Robinson, D. Sasaki, D. Jin, D. Valladares, D. Tsipras, D. Li, D. P.
Nguyen, D. Findlay, E. Oiwoh, E. Wong, E. Asdar, E. Proehl, E. Yang, E. Antonow, E. Kramer,
E. Peterson, E. Sigler, E. Wallace, E. Brevdo, E. Mays, F. Khorasani, F. P. Such, F. Raso,
F. Zhang, F. von Lohmann, F. Sulit, G. Goh, G. Oden, G. Salmon, G. Starace, G. Brockman,
H. Salman, H. Bao, H. Hu, H. Wong, H. Wang, H. Schmidt, H. Whitney, H. Jun, H. Kirchner,
H. P. de Oliveira Pinto, H. Ren, H. Chang, H. W. Chung, I. Kivlichan, I. O’Connell, I. O’Connell,
I. Osband, I. Silber, I. Sohl, I. Okuyucu, I. Lan, I. Kostrikov, I. Sutskever, I. Kanitscheider,
I. Gulrajani, J. Coxon, J. Menick, J. Pachocki, J. Aung, J. Betker, J. Crooks, J. Lennon, J. Kiros,
J. Leike, J. Park, J. Kwon, J. Phang, J. Teplitz, J. Wei, J. Wolfe, J. Chen, J. Harris, J. Varavva,
J. G. Lee, J. Shieh, J. Lin, J. Yu, J. Weng, J. Tang, J. Yu, J. Jang, J. Q. Candela, J. Beutler,
J. Landers, J. Parish, J. Heidecke, J. Schulman, J. Lachman, J. McKay, J. Uesato, J. Ward, J. W.
Kim, J. Huizinga, J. Sitkin, J. Kraaijeveld, J. Gross, J. Kaplan, J. Snyder, J. Achiam, J. Jiao,
J. Lee, J. Zhuang, J. Harriman, K. Fricke, K. Hayashi, K. Singhal, K. Shi, K. Karthik, K. Wood,
K. Rimbach, K. Hsu, K. Nguyen, K. Gu-Lemberg, K. Button, K. Liu, K. Howe, K. Muthukumar,
K. Luther, L. Ahmad, L. Kai, L. Itow, L. Workman, L. Pathak, L. Chen, L. Jing, L. Guy,
L. Fedus, L. Zhou, L. Mamitsuka, L. Weng, L. McCallum, L. Held, L. Ouyang, L. Feuvrier,
L. Zhang, L. Kondraciuk, L. Kaiser, L. Hewitt, L. Metz, L. Doshi, M. Aflak, M. Simens,
M. Boyd, M. Thompson, M. Dukhan, M. Chen, M. Gray, M. Hudnall, M. Zhang, M. Aljubeh,
M. Litwin, M. Zeng, M. Johnson, M. Shetty, M. Gupta, M. Shah, M. Yatbaz, M. J. Yang,
M. Zhong, M. Glaese, M. Chen, M. Janner, M. Lampe, M. Petrov, M. Wu, M. Wang, M. Fradin,
M. Pokrass, M. Castro, M. O. T. de Castro, M. Pavlov, M. Brundage, M. Wang, M. Khan,
M. Murati, M. Bavarian, M. Lin, M. Yesildal, N. Soto, N. Gimelshein, N. Cone, N. Staudacher,
N. Summers, N. LaFontaine, N. Chowdhury, N. Ryder, N. Stathas, N. Turley, N. Tezak, N. Felix,
N. Kudige, N. Keskar, N. Deutsch, N. Bundick, N. Puckett, O. Nachum, O. Okelola, O. Boiko,
O. Murk, O. Jaffe, O. Watkins, O. Godement, O. Campbell-Moore, P. Chao, P. McMillan,
P. Belov, P. Su, P. Bak, P. Bakkum, P. Deng, P. Dolan, P. Hoeschele, P. Welinder, P. Tillet,
P. Pronin, P. Tillet, P. Dhariwal, Q. Yuan, R. Dias, R. Lim, R. Arora, R. Troll, R. Lin, R. G.
Lopes, R. Puri, R. Miyara, R. Leike, R. Gaubert, R. Zamani, R. Wang, R. Donnelly, R. Honsby,
R. Smith, R. Sahai, R. Ramchandani, R. Huet, R. Carmichael, R. Zellers, R. Chen, R. Chen,
R. Nigmatullin, R. Cheu, S. Jain, S. Altman, S. Schoenholz, S. Toizer, S. Miserendino, S. Agar-
wal, S. Culver, S. Ethersmith, S. Gray, S. Grove, S. Metzger, S. Hermani, S. Jain, S. Zhao, S. Wu,
S. Jomoto, S. Wu, Shuaiqi, Xia, S. Phene, S. Papay, S. Narayanan, S. Coffey, S. Lee, S. Hall,
S. Balaji, T. Broda, T. Stramer, T. Xu, T. Gogineni, T. Christianson, T. Sanders, T. Patward-
han, T. Cunninghman, T. Degry, T. Dimson, T. Raoux, T. Shadwell, T. Zheng, T. Underwood,
T. Markov, T. Sherbakov, T. Rubin, T. Stasi, T. Kaftan, T. Heywood, T. Peterson, T. Walters,
T. Eloundou, V. Qi, V. Moeller, V. Monaco, V. Kuo, V. Fomenko, W. Chang, W. Zheng, W. Zhou,
W. Manassra, W. Sheu, W. Zaremba, Y. Patil, Y. Qian, Y. Kim, Y. Cheng, Y. Zhang, Y. He,
Y. Zhang, Y. Jin, Y. Dai, and Y. Malkov. GPT-4o system card, 2024.

[28] A. Panickssery, S. R. Bowman, and S. Feng. Llm evaluators recognize and favor their own
generations. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
68772–68802. Curran Associates, Inc., 2024.

[29] R. Pu, C. Li, R. Ha, Z. Chen, L. Zhang, Z. Liu, L. Qiu, and Z. Ye. Feint and attack: Jailbreaking
and protecting llms via attention distribution modeling. In J. Kwok, editor, Proceedings of
the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25, pages
493–501. International Joint Conferences on Artificial Intelligence Organization, 8 2025. Main
Track.

[30] Y. Qin, K. Song, Y. Hu, W. Yao, S. Cho, X. Wang, X. Wu, F. Liu, P. Liu, and D. Yu. InFoBench:
Evaluating instruction following ability in large language models. In L.-W. Ku, A. Martins,
and V. Srikumar, editors, Findings of the Association for Computational Linguistics: ACL
2024, pages 13025–13048, Bangkok, Thailand, Aug. 2024. Association for Computational
Linguistics.

15

[31] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct preference
optimization: your language model is secretly a reward model. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY,
USA, 2023. Curran Associates Inc.

[32] V. Raina, A. Liusie, and M. Gales. Is LLM-as-a-judge robust? investigating universal adversarial
attacks on zero-shot LLM assessment. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 7499–7517, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017.

[34] J. Shi, Z. Yuan, Y. Liu, Y. Huang, P. Zhou, L. Sun, and N. Z. Gong. Optimization-based prompt
injection attack to llm-as-a-judge. In Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, CCS ’24, page 660–674, New York, NY, USA, 2024.
Association for Computing Machinery.

[35] P. Verga, S. Hofstatter, S. Althammer, Y. Su, A. Piktus, A. Arkhangorodsky, M. Xu, N. White,
and P. Lewis. Replacing judges with juries: Evaluating LLM generations with a panel of diverse
models, 2024.

[36] P. Wang, L. Li, L. Chen, Z. Cai, D. Zhu, B. Lin, Y. Cao, L. Kong, Q. Liu, T. Liu, and Z. Sui. Large
language models are not fair evaluators. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9440–9450, Bangkok, Thailand, Aug. 2024. Association for
Computational Linguistics.

[37] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, Q. Lin, and D. Jiang. WizardLM:
Empowering large pre-trained language models to follow complex instructions. In The Twelfth
International Conference on Learning Representations, 2024.

[38] J. Ye, Y. Wang, Y. Huang, D. Chen, Q. Zhang, N. Moniz, T. Gao, W. Geyer, C. Huang, P.-Y.
Chen, N. V. Chawla, and X. Zhang. Justice or prejudice? quantifying biases in LLM-as-a-judge.
In The Thirteenth International Conference on Learning Representations, 2025.

[39] Z. Zeng, J. Yu, T. Gao, Y. Meng, T. Goyal, and D. Chen. Evaluating large language models
at evaluating instruction following. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

[40] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P.
Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging LLM-as-a-judge with MT-bench and
chatbot arena. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

[41] X. Zheng, T. Pang, C. Du, Q. Liu, J. Jiang, and M. Lin. Cheating automatic LLM benchmarks:
Null models achieve high win rates. In The Thirteenth International Conference on Learning
Representations, 2025.

[42] L. Zhu, X. Wang, and X. Wang. JudgeLM: Fine-tuned large language models are scalable
judges. In The Thirteenth International Conference on Learning Representations, 2025.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are summarized in Table 2, Table 3(a), Table 3(b), Table 4
and Figure 3, as well as Appendix G.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss computational limitations in Section 4.1 and Appendix B.3, and
data limitations in Section 4.4 and Appendix C.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [NA]

Justification: This is not a theoretical paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We illustrate our experimental setup in detail in Section 3 and provide all
hyperparameters in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All experiments were run on a proprietary framework specifically designed
for fast training and inference of large models. Nevertheless, we provide exhaustive imple-
mentation details in Section 3 and Appendix B for full reproducibility in the framework of
choice. All datasets used are open access with data locations specified in Appendix C.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report hyperparamers, optimizer and training details in Appendix B and
data splits in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report means and standard deviations over five runs in Table 2, Table 3(a),
Table 3(b), Table 5 and Table 11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the compute resources used in Section 4.1. We add further elaboration
in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read, understood and adhered to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss these impacts in the Broader Impacts section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release new data or models in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have verified that all existing assets employed in this work allow for
their use and modification. For each asset utilised, we have appropriately cited the original
authors. We also include license information in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

21

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provide human annotation guidelines and details in Appendix F.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: The authors’ institution does not require ethical approval for the type of
annotation performed in this paper—which is limited to scoring LLM-generated texts as
attacked/non-attacked—since this task does not involve the collection of any personal or
privacy-compromising data.

Guidelines:

22

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are the subject of our experiments, but we did not use LLMs for the
purpose of method design or development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Contrastive Policy Gradient

We base our RLRE framework on Contrastive Policy Gradient (CoPG) [12] for several reasons. Unlike
most reinforcement learning methods for LLM optimisation, CoPG is not limited to preference-
based rewards and can handle arbitrary reward functions, which suits our setting where the judge-
LLM assigns discrete ratings. It also converges faster than alternatives such as Direct Preference
Optimisation (DPO) [31] and Identity Preference Optimisation (IPO) [13]. Moreover, CoPG is
substantially more computationally efficient than non-contrastive approaches like Proximal Policy
Optimisation (PPO) [33], which require an additional critic model. By treating the entire generation
as a single action rather than token-level actions [12, 1], CoPG simplifies training, reduces memory
usage, and is less sensitive to hyperparameter tuning than PPO.

24

B Training and Inference Details

B.1 API Model Identifiers

We list below the names, providers, and model IDs of the frozen candidate and judge LLMs accessed
via API in our training and inference pipelines.

• Command R, Cohere, command-r-08-2024

• Command R+, Cohere, command-r-plus-04-2024

B.2 Hyperparameters

For all three pipelines, we train with a batch size of 64, two gradient steps per batch, and a learning
rate of 1e-6 using the Adam optimiser. To sample preambles from the generator, we set t = 4.0,
k = 1.0, and p = 1.0, using a high temperature to ensure sufficient diversity among preambles
conditioned on the same question. At inference, the sampling temperature is reduced to t = 0.5.
Each preamble is limited to a maximum length of 512 tokens.

The loss function hyperparameter β is tuned to a relatively small value (β = 0.03), which performs
well on the UltraFeedback validation set. β weights the sequence log-likelihoods within the CoPG loss
(see Section 3); a low value prioritises the reward over preamble fluency, placing fewer constraints
on the preambles themselves. Notably, preamble fluency is distinct from—and does not necessarily
affect—the fluency of the candidate model’s final response. Our experiments confirm that candidate
responses remain fluent, as evidenced by low perplexity and human evaluations, which rarely identify
them as attacked (see Section 5.2).

Training uses early stopping based on validation performance. The best-performing checkpoints for
each pipeline are reported in Table 7.

Table 7: Selected checkpoints for each training pipeline.

Pipeline Selected checkpoint
step

Command R7B+R7B 600
Command R7B+R 1000
Llama 8B+70B 600

B.3 Training Time and Cost

We train the Command R7B+R7B and Llama 8B+70B pipelines for 600 steps, and the Command
R7B+R pipeline for 1k steps. In our setup, the reward models are accessed via API on remote
servers, introducing some variability in training time due to server response delays. When the server
is healthy, this latency is negligible; however, refused queries trigger retries with increasing wait
times, further extending total training time. Consequently, training duration depends on the health
and responsiveness of the remote server.

We make at most 128k API queries to the judge-LLM (training for 1k steps on 64k UltraFeedback
samples with a batch size of 64 and two completions per prompt). Compared with [32], the only
other trained attack among our baselines, our training pipeline is substantially more cost-efficient.
For n training samples, the exhaustive search method over the 20k-word vocabulary used by [32]
requires 20000× 4× n judge calls. For context, 128k inference calls to the Command R+ API under
our setup cost approximately $500 USD at the observed token budgets. In contrast, the method in
[32] must use smaller training splits due to its prohibitive cost and remains more expensive even so
(e.g., several thousand USD for just 500–1,000 samples).

25

B.4 Training with a Jury of LLMs

Juries of multiple LLMs have been found to be more robust evaluators than individual judges in
prior work [35]. We postulate that our training strategy could similarly benefit from an ensemble of
multiple judge-LLMs, potentially improving the transferability of RLRE to new, unseen LLM-judges
at inference. Here we prioritised training with one judge-LLM since, in our setup, judges are queried
via API. Issues of throttling and query failures or retries would multiply with the number of judges,
compounding and significantly slowing training. The financial burden of the additional API calls was
also considered. Nonetheless, this remains an avenue worth exploring in future work.

26

C Data

C.1 Dataset details

In Table 8, we provide the HuggingFace IDs, data splits, and licenses of the open-access datasets
used for training and inference. For all datasets, we use the official splits provided.

Table 8: Details of training and testing datasets.

Dataset ID Split Used License

UltraFeedback openbmb/UltraFeedback Train MIT
MT-Bench HuggingFaceH4/mt_bench_prompts Test Apache-2.0

C.2 Task Distribution of Training and Testing Data

We train on UltraFeedback [8] and test on MT-Bench [40]. MT-Bench comprises 160 questions,
equally split across two conversational turns and eight diverse topics: writing, roleplay, reasoning,
math, coding, extraction, STEM, and humanities. UltraFeedback is a larger dataset of ∼60k samples,
collecting questions from several existing datasets; unlike MT-Bench, all UltraFeedback questions are
single-turn. Most datasets in UltraFeedback contain multiple task types. In Table 9, we show the task
type distribution within the datasets composing UltraFeedback, relative to MT-Bench. All MT-Bench
task types are represented in UltraFeedback, though some appear in only one corpus (e.g., coding),
while others span multiple datasets (e.g., STEM, humanities, writing). Thus, while the MT-Bench
test set is task-balanced, the training set is not.

FalseQA [16], representing only 3.7% of UltraFeedback, contains questions not directly mirrored in
MT-Bench, but solving them requires commonsense reasoning. Since MT-Bench includes common-
sense tasks (particularly the “Reasoning” task), we expect that FalseQA may transfer to the test set
and therefore retain it in the training corpus.

Table 9: An overview of the datasets that compose UltraFeedback, and the MT-Bench task types that
they include.

UltraFeedback dataset of origin MT-Bench task types

Writing, Roleplay
ShareGPT [6]

STEM, Humanities

FLAN-v2-NIV2 [25] Writing, Extraction

Evol-Instruct [37] Coding

Writing, STEM
UltraChat [10]

Humanities

FLAN-v2-CoT [25] Math, Reasoning

FalseQA [16] –

FLAN-v2-P3 [25] Extraction

TruthfulQA [23] STEM, Humanities

Reasoning, STEM
FLAN-v2-FLAN2021 [25]

Humanities

27

D Fine-grained Results

D.1 Statistical Significance of Results

Table 10 shows the 90% confidence intervals computed for non-attacked and attacked responses via
paired bootstrapping, for all three candidate LLMs.

Table 10: 95% confidence intervals for each model under preamble-based attacks.

Model 95% CI
Command R7B (0.22, 1.00)
Command R (0.25, 0.93)
Llama 3.1 70B Instruct (0.02, 0.59)

D.2 Results by Question Type

Table 11 illustrates the MT-Bench results per question type for each model and each attack.

Table 11: MT-Bench evaluation scores for each question type, assigned by the Command R+ judge-
LLM to candidate-LLMs attacked with each attack. Each setup is run five times and the scores are
averaged (showing the standard deviation in the subscript) to account for small variations due to
temperature sampling.

Candidate-
LLM

Attack type
No attack Verbosity Bandwagon Authority Refinement Universal Preambles

Writing 8.630.01 8.560.01 8.710.02 8.640.03 8.450.04 8.710.01 8.610.07
Roleplay 8.530.08 8.490.05 8.760.06 8.560.04 8.600.05 8.650.03 8.690.06
Reasoning 5.250.10 4.830.07 4.560.10 4.970.08 5.630.09 4.900.06 5.890.11

Command
R7B

Math 3.430.11 3.880.08 3.610.08 3.710.09 4.470.10 3.600.07 6.510.12
Coding 6.330.10 6.990.06 6.610.08 6.920.11 8.080.09 7.150.09 7.490.09
Extraction 8.470.09 7.980.07 8.520.08 8.610.07 8.010.08 8.410.03 8.410.05
STEM 8.880.07 8.910.03 8.940.05 8.950.03 8.930.02 8.960.00 9.000.00
Humanities 8.840.03 8.850.04 8.880.03 8.800.03 8.710.01 8.920.01 8.880.02

Writing 8.570.04 8.760.06 8.700.08 8.670.04 8.450.04 8.760.02 8.670.01
Roleplay 8.500.07 8.640.06 8.760.06 8.760.02 8.640.02 8.650.02 8.650.02
Reasoning 6.140.15 6.320.14 5.430.19 6.270.09 6.030.05 5.980.11 6.850.07

Command R Math 5.940.13 6.410.19 6.210.11 6.210.10 6.460.15 6.290.13 7.110.10
Coding 7.060.14 6.660.07 7.080.19 6.790.12 7.990.08 7.040.05 7.470.09
Extraction 8.610.05 8.180.06 8.780.02 8.770.04 8.290.05 8.690.03 8.800.02
STEM 8.920.02 8.980.03 8.990.02 8.970.02 8.870.01 9.000.00 8.960.02
Humanities 8.920.02 8.920.02 8.850.04 8.850.02 8.890.03 8.960.01 8.900.02

Writing 8.640.06 8.230.08 8.770.06 8.620.03 8.560.03 8.640.01 8.680.05
Roleplay 8.720.07 8.780.03 8.880.03 8.760.02 8.710.04 8.900.02 8.820.06
Reasoning 5.190.09 5.700.10 5.690.12 5.440.08 6.490.13 5.740.14 6.640.13

Llama 3.1
70B Instruct

Math 7.480.06 7.120.07 7.370.10 7.490.10 6.720.13 7.680.09 7.230.12
Coding 7.940.08 7.590.10 7.580.07 7.900.14 8.480.05 7.830.09 7.730.08
Extraction 8.740.04 8.090.09 8.520.11 8.390.03 8.470.06 8.880.03 8.790.04
STEM 8.840.07 8.620.08 8.580.01 8.540.02 8.900.03 8.690.01 8.950.03
Humanities 8.900.03 8.980.01 8.750.06 8.880.07 8.690.06 9.000.00 8.920.01

28

D.3 Arena-Hard Results

Table 12 shows the rewards obtained on Arena-Hard [21] by the candidate-LLM responses before
and after the injection of the tuned preambles, averaged across runs. We observe a substantial
improvement (+3.5%) with the Command R+ judge. For the GPT-4 judge, the improvement falls
within the standard deviations; however, the point-wise averages still show a positive trend.

Table 12: Average judge-LLM reward scores on the Arena-Hard benchmark.

Judge-LLM Without preamble injection With preamble injection

Command R+ 58.30.7 61.80.5

GPT-4 27.60.8 28.80.8

29

E Instructions to the Preamble Generator

The following instructions are used to elicit preambles from the generator during training and
inference.

In preliminary experiments, we observed that when the preamble generator receives an instruction
prompt containing the question, it tends to answer the question rather than provide guidance-oriented
preambles as intended. Instruction 1 was therefore crafted to minimise this issue. Instructions 2 and 3
are used only in ablated settings.

Note that the instructions below contain special tokens from the Command tokenizer. For the Llama
8B+70B pipeline, these tokens are replaced with the corresponding Llama tokens5.

Instruction 1: Instruction Including the Current Question

< |START_OF_TURN_TOKEN| >< |SYSTEM_TOKEN| >You are an expert in giving general
advice to
a student on how to answer a question. NEVER answer the question yourself or
give
any hint of what the answer should be, as that would amount to cheating.
You can only give general advice of what the student should pay attention to
when answering the question and what characteristics the answer should have,
in general terms. Always place your advice between <prompt> tags.
< |END_OF_TURN_TOKEN| >< |START_OF_TURN_TOKEN| >< |USER_TOKEN| >"question"
Give general advice for a student to answer this question in the best
possible way,
so they can obtain a high mark.
< |END_OF_TURN_TOKEN| >< |START_OF_TURN_TOKEN| >< |CHATBOT_TOKEN| >Sure, I’d be
happy to
give general advice for answering this type of question in the best possible
way! <prompt>

Instruction 2: Instruction Excluding the Current Question

< |START_OF_TURN_TOKEN| >< |USER_TOKEN| >Give advice to answer an exam style
question in
the best possible way and obtain a high mark. You do not know what the
question
will be. It could be on disparate topics such as maths, coding, reasoning,
general knowledge, or creative writing.
< |END_OF_TURN_TOKEN| >< |START_OF_TURN_TOKEN| >< |CHATBOT_TOKEN| >

Instruction 3: No Instruction

< |START_OF_TURN_TOKEN| >< |CHATBOT_TOKEN| >

5https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1

30

https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1

F Human Annotation Guidelines

F.1 Attack Detection Study

We report the guidelines given to annotators for the attack detection study. Annotators were recruited
among machine learning experts.

The attached sheet contains questions and the corresponding LLM-generated responses.

Each response may or may not have been modified by one of the six adversarial attacks described
below. These attacks aim to inflate the evaluation score that each response would receive when
assessed by another, larger LLM. Your task is to read the question and the response, determine if the
response has been attacked or not, and label it as ‘attacked’ or ‘not attacked’.

Note: you do not need to record *which* attack you think was used, if any, but only if the answer was
attacked or not.

Possible attacks:

• Verbosity bias attack: The length of the response is expanded by adding sentences and
phrases that are relevant to the topic but semantically redundant (i.e., they do not introduce
any new information)

• Bandwagon bias attack: A sentence is added after the response stating that a percentage of
people think the above response should be awarded the highest rating

• Authority bias attack: A fake book citation is added to the response according to the
following template: [[Citation:[Random Last Name], [Random Initial]. (Random Year
between 1990 and 2024). Title related to [topic], topic: [keywords], p. [Random Page
Number]]

• Refinement-aware bias attack: There are two distinct responses, presented in the following
format: History:[Response 1] Please polish this answer to make it better and more complete.
Please output your polished answer directly. [Response 2]

• Universal phrase attack: A sequence of four fixed words is appended to the end of the
response

• System prompt attack: The response is generated with the aid of a question-specific system
prompt specially tuned to increase the evaluation score that another LLM would assign to it.

F.2 Response Evaluation Study

We report the guidelines given to annotators for the response evaluation study. Annotators were
recruited among machine learning experts.

The attached sheet contains questions in diverse domains, and the corresponding LLM-generated
responses. You should evaluate each response as follows:

• Assign to each response a label, selecting one of ‘Poor’, ‘Fair’ or ‘Good’ from the drop-down
menu, according to how well it answers the question. Be as objective as possible in your
evaluation. Consider the overall quality of the response, including its objective correctness
if applicable.

• Based on the same evaluation criteria, assign also a discrete score from 1 to 10 to each
response, where 1 indicates the lowest possible quality, and 10 indicates the highest.

31

G Representative Preambles

Our preambles, shown in the next sections, exhibit a high degree of variability across models and
pipelines. We present representative examples.

G.1 Preambles Conditioned on the Question

The preambles below are conditioned on the MT-Bench question “Draft a professional email seeking
your supervisor’s feedback on the Quarterly Financial Report you prepared. Ask specifically about
the data analysis, presentation style, and the clarity of conclusions drawn. Keep the email short and
to the point.”

Preamble 1: Command R7B+R7B

Remember that the aim of your response is to obtain feedback that will allow you to improve the report
for future quarters. To achieve this, it is crucial that the feedback provided by your supervisor is as
comprehensive as possible. You can therefore include further specific aspects that you would like the
supervisor to comment on. This might include the following:
- The methodology you employed for the data analysis.
- How the report’s conclusion section could be improved to enhance the clarity of the recommendations.
- The overall tone and style of the report. In particular, it is important to ensure that the tone and style
are consistent throughout the document.
- Any other specific areas that you think could be improved.

By seeking detailed feedback on these specific aspects, you will be better able to refine the
report for future quarters.

Remember to tailor your email to the supervisor you are addressing. For instance, if you are
emailing your direct supervisor, you can sound more formal and include more detail. On the other hand,
if you are emailing a supervisor that is more distant, or if you are emailing a professor or industry
expert with whom you have only had limited interactions, you should sound more formal and include
less detail. You should also carefully review the supervisor’s publications and professional profile to get
a good understanding of the supervisor’s research interests, academic focus, and professional expertise.
This will enable you to tailor your email correspondence with the supervisor more effectively.

Also remember to be mindful of the supervisory feedback policy when seeking feedback
from your supervisor. In particular, you should ensure that you are not violating any policies regarding
the sharing of sensitive information or intellectual property. You should also ensure that you are not
violating any policies regarding the use of proprietary information or trade secrets.

Lastly, you should also be aware of any potential conflicts of interest that may exist in rela-
tion to your request for supervisory feedback. In particular, you should be mindful of any situations in
which the supervisor may have a financial gain or loss as a result of the feedback that they provide. For
example, if the supervisor has recently started their own company that produces products similar to
those produced by the company for which you are currently conducting a quarterly financial report, the
supervisor may have a conflict of interest as a result of the fact that they may have a financial gain or
loss as a result of the feedback that they provide on the quarterly financial report.

32

Preamble 2: Command R7B+R

Here is a general template for an email seeking feedback from your supervisor. Adapt it to your needs
and style.
Here is some general advice to help you craft an effective email:
- Structure: Organize your email in a clear and logical structure. Start with a polite and professional
greeting, followed by the main body of your email. Conclude with a polite closing statement and a
complimentary note if you are ending your email there.
- Tone and Language Use: Maintain a professional tone throughout your email. Use formal language
and ensure your writing is concise and coherent. Avoid any jargon or complicated terminology that
your supervisor may not be familiar with.
- Content and Specifics:
- Introduction: Start your email by introducing yourself and your role, if relevant. Then, state the
purpose of your email and briefly describe the specific aspects of your work for which you are seeking
feedback
- Feedback Request: Present your request for feedback clearly and respectfully. Specify the areas or
criteria for which you would appreciate feedback. In this case, you could mention that you would
welcome feedback on the data analysis, presentation style, and clarity of the conclusions drawn.
- Conclusion and Sign-Off: End your email with a conclusion that emphasizes your respect for your
supervisor’s time and expertise. Then, sign off with a polite and professional closing statement, such as
“Thank you for your time and guidance.”
Finally, remember to proofread your email before sending it. Pay attention to grammar, spelling, and
punctuation to ensure that your writing is polished and professional. Also, keep in mind that the tone
and language you use in your email should align with the overall professionalism and formality of the
academic or professional context in which you are operating.

Preamble 3: Llama 8B+70B

In this case, a specific example of a [in a specific context] that a student can use to explain a concept or
a process. For example, a specific example of a [in a specific context] that a student can use to explain
a concept of a specific example of a [in a specific context]. For example, a specific example of a [in
a specific context] that a student can use to explain a concept of a specific example of a [in a specific
context]. For example, a specific example of a [in a specific context] that a student can use to explain
a concept of a specific example of a [in a specific context]. For example, a specific example of a [in
a specific context] that a student can use to explain a concept of a specific example of a [in a specific
context]. For example, a specific example of a [in a specific context] that a student can use to explain
a concept of a specific example of a [in a specific context]. For example, a specific example of a [in
a specific context] that a student can use to explain a concept of a specific example of a [in a specific
context]. For example, a specific example of a [in a specific context] that a student can use to explain
a concept of a specific example of a [in a specific context]. For example, a specific example of a [in
a specific context] that a student can use to explain a concept of a specific example of a [in a specific
context]. For example, a specific example of a [in a specific context] that a student can use to explain
a concept of a specific example of a [in a specific context]. For example, a specific example of a [in
a specific context] that a student can use to explain a concept of a specific example of a [in a specific
context]. For example, a specific example of a [in a specific context] that a student can use to explain
a concept of a specific example of a [in a specific context]. For example, a specific example of a [in
a specific context] that a student can use to explain a concept of a specific example of a [in a specific
context]. For example, a specific example of a [in a specific context] that a student can use to explain a
concept of a specific example of a [in a specific context]. For example, a specific example of a [in a
specific context]

33

G.2 Preambles Not Conditioned on the Question

These preambles are generated using Instruction 2 in Appendix E.

Preamble 4: Command R7B+R7B

This is the best possible way to answer the question and obtain a high mark:

- Read the question carefully and completely. Make sure you understand exactly what is be-
ing asked of you. Sometimes, questions can be complex or have hidden nuances, so pay close attention
to every detail. If there is a need to ask the examiner for clarification, do not hesitate to do so.

- Brainstorm and think hard about the best way to approach the problem at hand. Sometimes,
questions can be quite abstract or general, so it is very important to analyse the problem carefully and
think about the most suitable way to solve it.

- Make sure you have all the necessary tools and materials available to you before you start.
Sometimes, questions might require you to perform calculations or experiments, so make sure you have
all the required resources ready before you begin.

- Start answering the question systematically and step by step. Write down each step you
take and each piece of reasoning you use. This will help you organise your thoughts clearly and
effectively, and it will also make it easier for you to follow your own train of thought should you need
to return to it at a later stage.

- Show all your work and thoughts clearly and concisely in your answers. It is very impor-
tant that you write down all your intermediate results and explanations in a way that is easy for others
to follow. This will help the examiner understand your thought process and will give you a clearer idea
of the logic behind your answers should you need to return to them at a later stage.

- Use appropriate terminology and write down your answers clearly, precisely, and concisely.
It is crucial that you familiarise yourself with the relevant vocabulary for the specific topic or subject
area that you are dealing with. This will help you express your thoughts and ideas in a way that is easily
understandable for others, and it will also aid you in presenting your answers in a clear, precise, and
concise manner.

- Pay close attention to the structure and the organisation of your answers. Make sure that
your answers are well-structured, logical, and easy to follow. This will not only make it easier for the
examiner to understand your answers, but it will also help you analyse your own answers and identify
any potential weaknesses or errors in your reasoning.

- Finally, make sure you have read through your answers carefully and thoroughly before you
hand them in. This is crucial, as it is very easy to make careless mistakes or overlook potential errors in
your answers if you have not taken the time to review them properly. Reading through your answers
carefully and comprehensively is therefore crucial to ensure that you have not made any avoidable
mistakes and that your final answers are the best possible ones that you can submit.

34

Preamble 5: Command R7B+R

Here are some general guidelines on how to answer a question in an exam:

1. Read the question carefully and thoroughly.

2. Identify the key terms and concepts in the question.

3. Consider the scope and depth of the question. Is it a brief or narrow question, or is it
more wide-ranging and open to in-depth analysis?

4. Determine the appropriate structure and sequence for answering the question. Think
about the logical steps or sections that would constitute a convincing and well-structured answer.

5. Provide clear and concise answers to the questions. Avoid rambling or including unneces-
sary information.

6. Support your answers with relevant examples, facts, or theories. This will add depth to
your answer and demonstrate your understanding of the material.

7. Show your reasoning clearly when answering questions that require logical or mathemati-
cal reasoning. Explain each step of your reasoning and show any relevant calculations or formulas.

8. If you are answering a question that requires creative or imaginative answers, such as a
creative writing prompt, think about the question from a different perspective. Try to approach it in a
fresh and innovative way that would constitute an interesting and varied answer.

Remember that the key to answering exam questions successfully is to demonstrate your
understanding of the material and to provide well-structured and logical answers.

Preamble 6: Llama 8B+70B

pbpfnfnspcpghnllpsghnlrpnaporccddocmtinadsprfnochmininisppcpinhfnhllinpghghffpcnpiminfgldirpinn
sannghoispnhappflpiddsopcnnnsocpbghiifncpspiprmirnspdnomhinspipghapghipsnfnpipbfnnfnpiphlnpsp
iapmtlhpinnsfpcpsllphlnsnnmdhdppinnnnfpcenllhllpipnfinllidlappinarnfblllsnnnnsnghgghfpipollnssapgh
mhgppifnrhlllsnfccfaplipnctllpbapllllrpppfpcrpibhnrappfrpbdpspcpsllllpindpchhdmfnllmbghpfhlnsllnnm
apiocllpldnspsnnhnrocpshhllnssnnnsgnpfinnpfggarghgrpnprfnhpdpitpcshosfgharnpmnnnmtillpcapnnarll
aipfhlsfghmrpghpbnlldnfnpfencccshbcpipsnnnnsnnipcpcbllllpipnnfipllinsnsnsnsnsnhalhpapclhnsdlnhfn
chfaplnllnsnlmilnnsnghmrppipinrpcilnocllpnsnnnnsaldlspsrpbomilfnspsllhosghispncspspnnnsirpnmllpsn
pflnhfnhghghfispipffnhlllscsccioinfnnrpcghpicocfpimlnhnpnablfpiarnlnnllpiprllpcnslhnllpspcggionsipni
nnsdfpcpghinnnnsnnnnscfpiaphalddnsnsdnsnsnsdhghipcpldhlmnllnpnpghigrpiillsldnghmnfpipbofhfnghc
npnllddnnmmccpbpbaplllimninhpghirrpsldnhllpiapnnlllpiprirhdrpcnfnlllnsnnnmrpgpsnspcilrllldrpispnnn
solpghapopfnpapllllihmfncphblliinnfghghfphllphnnshmnsdhapnmhinnsnsdhirpipcpiglnrpipocgggghnnoc
piarllsspsnpinocllpsrpnnhioroccspilnsinllrnsfnnnnsnghorppsphllpsnsnhnhmnpnhhirrrpninfpsnnsnnnsncs
nsibirpspfnnnsidghaghiibipalliosnnsghghipnrpbdinfpinsninipdrppnmnhllpsagfllpspipfnsmlllspighpiirnhh
ddmcsipnsfnpnmnfnsfnnnsipdpsndimtfpsldlmddhnnsfhnmipnocngmngnspihirpcpibansnnnnghrpldpsiom
fllpsapnnsllrpsppcnillhlnappnnsnnnnhmghgfprirllfspnnghignhpdpfgnpsphnnrirrnncngilsfghmmccfnlldfp
ighapnifnhdtpisprpnhosnnnnsmldhpinpnnllffipgipnnsnsmldlspspsrlhllpnaplnsnsnghmrppiprnscsgolnibpi
prhllddnnmapfinns

35

G.3 Preambles Not Conditioned on Any Instruction

These preambles are generated using Instruction 3 in Appendix E.

Preamble 7: Command R7B+R7B

The ‘v’ in ‘v1’ stands for "version". It’s a standard way to label different releases of a product.

So, when you see ‘v1’, ‘v2’, ‘v3’, etc., it usually means that you’re looking at the first, sec-
ond, or third version of something.

In the context of software development, it’s common to use this "v-notation" to communicate
the different stages of development and the releases of software products.

Preamble 8: Command R7B+R

The following are some examples of common verbs that are often confused with each other:

1. "Be" and "am": These verbs are often confused, especially in the negative form ("isn’t"
vs. "is not"). Remember that "be" is usually used in the progressive form ("being"), while "am" is the
present tense first-person singular form of the verb "to be."

2. "Lie" and "lay": These verbs are often confused, especially in the past tense. "Lie" is
usually used in the intransitive sense, meaning "to rest or be located," while "lay" is typically used in
the transitive sense, meaning "to place or put."

3. "Rise" and "raise": These verbs are often confused, especially in the past tense. "Rise" is
usually used in the intransitive sense, meaning "to rise or elevate," while "raise" is typically used in the
transitive sense, meaning "to lift or elevate."

Remember to pay attention to the context and the specific meanings of the verbs in question.
Context and word choice can often clarify the intended meaning and help avoid confusion.

Preamble 9: Llama 8B+70B

ausefowellFegoeasclamasonfarfinelhurstasontoar720Aarforgononabi78SCARatchonercfeglakloblakfcat
suigeatakarovhurstedbertegfupaAEeghcortelhc2anitchlamascenfCarAEabielricfcCIA在线观看
etAEhallchedaCEAEartf5RVCEBCCVMDCVMCVMCVMCDCVCCEAOIASCVKDCVKCVKCV
KRDCIKDVSOIKDVVVKDVKDVDHKCNKDVKDVSKDVDVKDVKDVCVDHKDVKDVV
DVKDVVVDVVKDVKDVKDVDVVKDVKDVVKDVKDVVDVKDVKDVKDVKDVDVKDVDV
VVDVKDVCVDVVDVVDVVKDVVDVVHVRKRDVVRKCVDVVVKCVDKCVDVVCRKDVVSR
KDVSOIKDVVVVVDVVVKDVDVVCVRVKDVVRKIKDVVKDVDVCRDVHKVSIKVDVVDVVK
VSAOIKVCRSAOIKRDVKOIKIKVDVDVRDVVDVSKRVVKIKDVVDVDHVDVVVKIKRDVVVV
CRDVKIKDVKRDVVDVRVKIKDVVVVDVDVKRDVVKOIKIKCVSIKDVVDKDVKIKVSIPDVD
KCDVVDHKIKRDVVVKDVVRDVKDVKDVVVVVRDVVCQDVKRDVVRDVCRDVVKCVSDVD
HKDVRDVVDVVVDKRDVVKDVKDVDVKVCMKDVKDVVVCVDVRKDVVVDVKRDVKDVDV
SVDVVVDVKDVVKDVVVDVKVDVVDGDHVVTDKDVVDVRDVKDVCVCVCSCVCVMCVCR
DVVDVDVCRDVVSRDVKDVVRSRDVVVKDVVVDVVRDKDVRDVVVKVVSRDVVHVVSRDV
VDVVVVKDVKDVKCVRDVRDVVDVVVVVVKIKRDGKDVCDVRKIKDVCVKDVVKDVVGDG
DVKDVKDVVVKIKDVVVVKDVKDVVVIKDVVVVKDVVVDVKDVVDVVDVHKDVVCVKIKD
VVVSRDVKDVVVKDVKDVVDVKDVVDVRDVKDVVDVIKVCRDVVVVVKDVVDVVDVVKV
KDVRDVKDVCVTDVKRDKCVRDVVDVCVRDVVDVCRSDVKDHKDVVDVVRDVKDVVDVV
SUVIKVCKDHKDVHVDVVRDVVKRDVVKDVVVCVDKDVKDVVVDVVKDVVCVDVKDVVD
VVKDVDVCVDVVVTOCRDVVKDVVVRDV

36

G.4 Difference in Preamble Fluency Between Pipelines

As seen in Sections G.1, G.2, and G.3, preambles generated via the Llama 8B+70B pipeline
are substantially less fluent than those produced by the Command R7B+R7B and Command R7B+R
pipelines. Due to computational limitations, all hyperparameter tuning was performed on the Command
R7B+R7B pipeline, and the same hyperparameters were applied to the other two pipelines. Among
these is the KL-divergence coefficient β, which regulates the faithfulness of token distributions to the
reference model and thus affects preamble fluency. We prioritise downstream reward over fluency,
since preambles do not need to be human-readable; accordingly, our β value is relatively low (see
Appendix B.2).

With this low β optimised on Command R7B+R7B, the Llama 8B+70B pipeline diverges from fluent
outputs more quickly and drastically, while downstream rewards increase. This may result from pre-
and post-training strategies unique to each model family; notably, the same hyperparameters do not
reduce fluency when applied to Command R7B+R. Overall, the Llama 8B+70B results demonstrate
that, in this context, maximising exploration and downweighting the KL-divergence anchor yields
effective preambles regardless of their fluency.

Since Llama preambles not conditioned on a particular question resemble meaningless strings of
characters, we experiment with inputting random strings of equal length into the candidate-LLMs.
We find that, unlike these tuned preambles, random strings do not raise the scores assigned by
judge-LLMs.

37

H Candidate Response Layout

We show below two representative math reasoning responses to the question “The vertices of a
triangle are at points (0, 0), (-1, 1), and (3, 3). What is the area of the triangle?”, generated using
the vanilla Command R7B model and the version pipelined with the tuned preamble generator,
respectively. While both responses yield an incorrect solution, the response from the attacked model
is organised into distinct paragraphs with explanatory headers and appears more structured overall.

No attack

We can use the shoelace formula to calculate the area of the triangle.

The formula is given by |det(L)|/2, where L is a matrix whose columns are the coordinates of
the vertices of the polygon.

For a triangle with vertices (x1, y1), (x2, y2), and (x3, y3), the determinant L is given by

L =

[
x1 y1 1
x2 y2 1
x3 y3 1

]
.

Plugging in the values, we get L =

[
0 0 1
−1 1 1
3 3 1

]
.

The determinant of L is det(L) = −(3− (−1))(−3− 1) + (0(−1)) = 14.

Therefore, the area of the triangle is |det(L)|/2 = 7 . The answer is 7.

Preambles

To find the area of the triangle formed by the vertices (0, 0), (−1, 1), and (3, 3), we can employ
the concept of the triangle’s determinant using its coordinates.
Here’s a step-by-step explanation:

1. Identify Triangle’s Vertices: We have three vertices: (0, 0), (−1, 1), and (3, 3).

2. Calculate Determined Area: The area of a triangle, often denoted as

∆ = 1
2

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣ , where (xi, yi) are the coordinates of the vertices.

In our case: - x1 = 0, y1 = 0 - x2 = −1, y2 = 1 - x3 = 3, y3 = 3.

3. Substitute and Calculate: Plugging in the values: ∆ = 1
2

∣∣∣∣∣ 0 0 1
−1 1 1
3 3 1

∣∣∣∣∣
= 1

2 (0− (−1) + 3)
√

(0− (−1))2 + (0− 3)2 = 1
2 · 4 · 5 = 10 square units.

4. Conclusion: Therefore, the area of the triangle is 10 square units .

38

	Introduction
	Related Work
	Method
	Experiments
	Models and Hyperparameters
	Datasets
	Baselines
	Results

	Analysis
	Attack Transferability
	Attack Detectability
	Ablations
	Analysis of Generated Texts

	Conclusion
	Contrastive Policy Gradient
	Training and Inference Details
	API Model Identifiers
	Hyperparameters
	Training Time and Cost
	Training with a Jury of LLMs

	Data
	Dataset details
	Task Distribution of Training and Testing Data

	Fine-grained Results
	Statistical Significance of Results
	Results by Question Type
	Arena-Hard Results

	Instructions to the Preamble Generator
	Human Annotation Guidelines
	Attack Detection Study
	Response Evaluation Study

	Representative Preambles
	Preambles Conditioned on the Question
	Preambles Not Conditioned on the Question
	Preambles Not Conditioned on Any Instruction
	Difference in Preamble Fluency Between Pipelines

	Candidate Response Layout

