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Abstract

Explainable clustering by axis-aligned decision trees was introduced by [33] and
has gained considerable interest. Prior work has focused on minimizing the price
of explainability for specific clustering objectives, lacking a general method to fit
an explanation tree to any given clustering, without restrictions. In this work, we
propose a new and generic approach to explainable clustering, based on spectral
graph partitioning. With it, we design an explainable clustering algorithm that can
fit an explanation tree to any given non-explainable clustering, or directly to the
dataset itself. Moreover, we show that prior algorithms can also be interpreted
as graph partitioning, through a generalized framework due to [44] wherein cuts
are optimized in two graphs simultaneously. Our experiments show the favorable
performance of our method compared to baselines on a range of datasets.

1 Introduction

As machine learning increasingly permeates
daily life and forms the basis for consequential
decision making in the real world, explaining
its outputs in a manner that is interpretable to
humans often becomes imperative. In a recent
influential work, Moshkovitz et al. [33] pro-
posed a model of explainability in clustering.
In their model, a clustering of points in a fea-
ture space R? is explainable if it is described
by a binary decision tree, where each internal
node corresponds to thresholding the points . . . .
along a single coordinate. Thus, the assign- Figure 1: Illustration of explainable c'lusterlng.
ment of points to clusters can be described by Clusters are generated from three gaussians. The
a sequence of individual feature thresholds, ar- dashed lines on the left and the decision tree on

guably making it easy to explain and interpret. the right define the explainable clustering regions,
See Figure 1 for illustration. with some points attributed to the wrong cluster.

Moshkovitz et al. [33] presented the Iterative Mistake Minimization (IMM) algorithm, which takes
as input an already computed k-medians or k-means clustering of the data, called the reference
clustering, and “rounds” into an explainable clustering. It works by fitting the reference clustering
with a decision tree that greedily minimizes wrong point-to-cluster assignments. They proved that the
loss in clustering cost, called the price of explainability, can be bounded as a function of k. This has
led to surge of theoretical work on bounding the price of explainability, culminating in tight bounds
for k-medians and nearly tight bounds for k-means [26, 28, 30, 31, 32, 12,7, 19, 20, 4, 27].

This voluminous body of work has so far mostly focused on k-medians and k-means. These methods
require the reference clustering to be endowed with centroids in order to work. This fails to capture
widely used notions of clustering that do not produce centroids, like kernel k-means or spectral
clustering [39, 10, 46], which one might wish to use as the reference clustering. [15] recently took

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 2: Left: The two-moons dataset admits an explainable clustering with small error. k-Means
clustering will fail to capture the moons if used as reference clustering. Kernel k-means and spectral
clustering capture the moons correctly, and can be rounded to the optimal explainable clustering.
Right: A 3-way clustering example from [33]. The horizontal cut leads to an error-free explainable
clustering if chosen at the first step, but CART will select the error-heavy vertical cut first.

a first step in this direction, introducing the Kernel IMM algorithm, which extends IMM to handle
kernel k-means as the reference clustering, for certain types of kernels.

Ideally, one would want a generic explainable clustering method that can be composed over any
given reference clustering, irrespective of how it was computed, whether it has centroids, or any other
constraint. The only such approach at present is through repurposing classical methods for supervised
classification with decision trees, which predate the definition of explainable clustering by decades.
CART [6, 36] is a method for decision tree learning over a labeled dataset,' which outputs a tree
with nodes corresponding to feature thresholds and leaves corresponding to class labels, with the
aim of minimizing classification errors with respect to supervised labels. Thus, given any reference
clustering, its cluster assignments can be viewed as supervised labels, and CART can be used to
round it into an explainable clustering.

Limitations of current methods. As discussed above, explainable clustering methods that require a
centroid-based reference clustering, like k-means, are unable to handle cluster structures not captured
by centroids. This was the motivation in [15], who gave the example of the classical “two moons”
dataset, depicted in Figure 2 (left). Since k-means fails to capture the moon structure, any explainable
clustering method built on it as the reference will fail as well. On the other hand, kernel k-means
and spectral clustering capture the moons correctly, and can be rounded to the explainable rounding
depicted in the figure, with a small number of errors.

While the Kernel IMM algorithm does not require centroids, it is limited to kernel k-means with
specific kernels, and varies by the specific kernel. Hence, it cannot be used as a generic method.
Furthermore, the method is rather complex, and is evaluated in [15] on datasets of size only up to
hundreds of points, leaving its scalability unclear. Our larger scale experiments indeed show that
Kernel IMM becomes infeasible on bigger data.

The CART algorithm, as mentioned above, can be repurposed for explainable clustering even though
it is not designed for this task. To demonstrate its drawbacks, [33] gave a toy example where CART
fails to find a simple error-free explainable clustering. It is shown in Figure 2 (right), and we revisit
this example in more detail in Section 3.3. There have been some questions whether this failure mode
is representative of behavior on real data, or merely a pathological case not encountered in practice.?
Preliminary small scale results in [15] implied that CART performs well empirically. However, our
larger scale experiments will show that CART indeed suffers low performance on real data.

The upshot is that despite a large body of work, there is no generic method for explainable clustering,
which is oblivious to the type of reference clustering and robust across datasets. This is the gap that
we address in this work.

Our results. We introduce a new approach to explainable clustering, based on spectral graph
techniques. Cheeger’s inequality relates the eigenvalues of a graph to its optimal cut conductance, a
fundamental graph partitioning objective that yields high-quality cuts. This useful fact is widely used

!CART is in fact a family of algorithms for Classification And Regression Trees (hence its name). The
specific form of CART used in explainable clustering is detailed later, in Section 3.3.
2See the peer review discussion for [15] at https://openreview.net/forum?id=FAGtj17H0Ow.
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in algorithms. A geometric consequence of it, stated in Theorem 2.2, relates coordinate cuts in R? to
cut conductances in the graph, provided that the graph usefully captures geometric relations between
the data points in R, This hints at a relevance to explainable clustering.

We use this connection in two ways:

« SPEX-Clique: We may describe any given reference clustering with a graph that contains a clique
over each cluster. Applying the spectral result iteratively to this graph leads to an algorithm that
can round any given reference clustering, without limitations, into an explainable clustering.

« SPEX-kNN: We may also use the spectral result on a graph built directly on the dataset in RY,
like the k-nearest neighbor graph. This leads to a “reference-free” algorithm, which computes an
explainable clustering directly from the data, without using a reference clustering at all.

To gain more insight into existing methods and their relation to ours, we show they are captured by a
generalized graph partitioning framework of non-uniform sparse cuts [44], allowing us to view them
through a unified analytic lens. Namely, prior methods can be seen as different choices of graphs to
describe the reference clustering.

Our experiments on a range of datasets and baseline shed light on the empirical performance of
explainable clustering methods and showcases the advantage of our approach.

1.1 Related Work

Much work has focused on proving multiplicative bounds on the price of explainability for k-medians
and k-means. In deterministic algorithms, IMM [33] achieved O(k) for k-medians and O(k?) for
k-means. [12] improved the k-means bound to O(k log k), with an algorithm we will call EMN.

Randomized methods have enabled better bounds. For k-medians, a sequence of works analyzed
a natural randomized procedure and ultimately obtained a tight bound of (1 4 o(1)) In &k [30, 32,
12, 19, 20]. For k-means, [20] achieved O(k Inln k), which is tight up to the Inln k term. Some
works have also shown better bounds in the low-dimensional data regime [26, 12, 7], and studied the
computational complexity of approximating the optimal explainable clustering [4, 20, 27].

Some works have used modified or extended definitions of tree-based explainable clustering [16, 18,
25, 40, 9, 45, 35]. In particular, [18] generalized the definition far beyond [33], allowing oblique
(hyperplane) cuts that involve multiple coordinates rather than just single coordinate cuts. This greatly
increases the expressive capacity of the resulting clustering—in fact, [18] show it can exactly capture
any reference k-means clustering, without any “price of explainability”—though arguably at the price
of rendering the clustering less explainable. While defining explainability in clustering remains an
open-ended question, in this work we focus on the original explainability model of [33].

In the broader context of explainable machine learning, the model of [33] is an example of an
intrinsically explainability method, where the given model (in this case, the reference clustering) is
approximated by a different model (in this case, the explainable clustering tree) on which structural
explainability constraints are imposed. This is in contrast with post-hoc explainability methods,
which aim to endow the given reference model with explanations without modifying it.

2 Spectral Explainable Clustering

We begin with some necessary background and notation on graph partitioning. Let G(X, E, w) be
an undirected graph. Given a strict non-empty subset S C X, let e (.S, X \ S) denote the sum of
edge weights crossing between S and X \ S, and let vols(.S) denote the sum of weighted degrees of
nodes in S (called the volume of S).

There are two standard notions for quantifying the outer connectivity of S within G (see [46]):

ea(8,X\ S) ec(S, X\ 5)

¢G(S) = T ) d)G(S) = VOIG(S)

oc(9) is called the sparsity of S, while ¥ (S) is called the conductance of S. Both notions have
analogues for considering .S and its complement X \ S as a two-way cut:

ea(S, X\ S) Vo) = ec(S, X\ 9)
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®;(S) is sometimes called the ratio cut objective [47], while W(S) is called the normalized
cut objective [41]. These objectives sometimes appear in the literature slightly differently, with
min{|S], | X\ 5[} and min{volg(S), volg(X \ S)} as their respectlve denominators. These are the
same as Equation (2) up to a factor of 2, since 2 min{s,n — s} < 1.s.(n—s) <min{s,n— s}
for all 0 < s < n, which applies here with n = |X]|, s = |S| in ‘bg<S), and with n = volg(X),
s =volg(S) in T (S).

2.1 The Spectral Approach

Our approach is grounded in the following theorem, which is a generalization of a theorem given in
[11], based on a framework developed by [2, 3], in the context of nearest neighbor search. It relates
coordinate cuts in R? to the Cheeger inequality [1, 8], a fundamental result in spectral graph theory
with a myriad of algorithmic implications. While they stated the theorem specifically for the nearest
neighbor graph of a point set in R%, it holds for general weighted graphs over points in R?, as we
now state. We provide a proof in Section A.

Definition 2.1. Let X C R?. The coordinate cut given by coordinate j € {1,...,d} and threshold
T€Ris S (X):={r € X :2; <7}. The cutis valid if S ;(X) # 0 and S; - (X) # X.

Theorem 2.2. Let X C RY be a set of points, where x € X has coordinates © = (z1,...,14). Let
G(X, E,w) be a graph with vertex set X. Consider two distributions over pairs of points in X :

o D.qj is the distribution over adjacent pairs in G, where a pair x,y € E is sampled with probability
proportional to the edge weight between them.

o D,y is the distribution over all pairs x,y € X, where x and y are sampled independently, each
with probability proportional to its weighted degree in G.

Then, there is a valid coordinate cut j, T such that

Ew»y’VDadj ||:L‘ - y”%
Ef-,y"‘Daon - y”%

\IJG(Sj,T(X)) < \/

Intuitively, the theorem draws a connection between combinatorial graph cuts and geometric proper-
ties of the set of points: if the graph nodes graph are associated with embeddings in R¢, then there is
a “good quality” graph cut, whose conductance is upper-bounded in terms of the squared Euclidean
distances between the node embeddings. Furthermore, that cut is a coordinate cut.

The conductance bound is governed by the ratio of expected squared distances in X according to
two distributions over pairs of points: the numerator samples pairs of points adjacent in G, while the
denominator samples any pair of points. Thus, the ratio (and hence the cut conductance) is smaller
when G captures a geometrically meaningful structure in the dataset, wherein adjacent pairs of points
are expected to be nearer to each other than general pairs of points.

This implies an approach to explainable clustering. Given a reference clustering, we can describe
it with a suitable graph G, and iteratively look for the coordinate cut with minimum conductance
in each node of the decision tree. If the reference clustering is of good quality, in the sense that a
pair of points are expected to be nearer to each other if they are clustered together, then Theorem 2.2
guarantees the existence of a low-conductance cut. At the same time, since the nearness of points in
the same cluster is a “soft” requirement (it only needs to hold in expectation), it renders the theorem
robust to various types of clustering, allowing for unconstrained cluster shapes, outliers, etc.

Another possibility that arises is to dispense with the reference clustering, and construct a graph that
captures nearness/farness directly from the dataset. In Section 2.2 we describe the explainable tree
construction with a general graph, and in Section 2.3 we discuss graph selection.

2.2 [Iterative Tree Construction

Given a graph G (X, E, w) over the dataset X C R?, our task is to construct an explainable clustering
decision tree 7T". Let £ > 0 be the desired number of leaves.

An explainable clustering tree is a decision tree in which every internal node v is associated with a
coordinate j, € {1,...,d} and a threshold 7, € R, inducing the condition z;, < 7, given a point
x € R. The coordinate thresholds associate a subset X,, C X with each node v: the root is associated



with X, and every non-root v with parent u is associated with X, = S;, -, (X, ) if v is the left child
of u, or X, = X, \ Sj, r, (Xy) if it v the right child of u.
Algorithm 1 SPEX

input: Dataset X C R?, graph G(X, F, w), target
number of clusters ¢
output: Decision tree 7" where every internal node
is associated with a coordinate j and threshold
BUILDTREE(X, G, {):

T < initialize a tree with a single node v

Let £(T') denote the set of leaves in T'. They
induce partition of X into clusters, X =
Uyer(T)Xv. We measure the quality of 7" by a
generalization of the normalized cut objective
to multi-way partitions [46]:

Ve(T)= D valXy). @)

veLl(T)

The smaller W(T), the better the partition
induced by its leaves. Note this generalizes the
two-way cut objective U(.S) (Equation (2)),
since W (5) = Y (S) + ver(X \ 9.

To build the tree, we start with T' containing
only a root. As long as 7" does not yet have

J, T + argmin;  CUTSCORE(X, j, )
@ < initialize a maximum priority for the tree
leaves, with priorities given by LEAFSCORE
Q'pU’Sh(Ua X7 jv T)
while 7T has less than ¢ leaves do

v, Xy, Ju, To < Q-pop()

Associate v with the cut j, 7

the requisite number of leaves ¢, we choose
the leaf v to split next to greedily minimize
U (T). Splitting a leaf v with a cut S C X,
replaces the summand ¢ (X, ) in Equation (3)
with ¢ (S)+1a (X, \S), and thus v is chosen
to maximize the reduction in U7 (G) its split
would yield, which is

¢G(Xv)*msin (Ve (S) +Ya(Xu \ S)), 4)

where S ranges over all valid coordinate cuts.
We associate v with the j,, 7, corresponding
to the minimizer .S, split v into two new leaves
along this cut, and repeat. See Algorithm 1.

Split v into two new leaves vy, vr
XUL — Sjvﬂ'v (X'U)
XUL <_ X’u \X’UL
jr, 7L < argmin;  CUTSCORE(X,,,, T)
Jr, TR  argmin; CUTSCORE(X,, j, T)
Q.push(vy, Xop, L L)
Q.push(vR, X’UR7 JR; TR)
return 1’

CUTSCORE(X', j,7) :
if S; - (X)=0orS;.(X)=X then
return co
return ¥ (S; (X)) + v (X, \ S5, (X"))

LEAFSCORE(v, X', 4,7) :
return ¢ (X’) — CUTSCORE(X", j,T)

Note that Algorithm 1 has the flexibility to
produce a tree T' with any desired number of
leaves, regardless of the number of clusters in
the reference clustering. In contrast, centroid-
based methods like IMM, EMN and Kernel IMM are bound to produce the same number of leaves in
T as the number of centroids in the reference k-median or (kernel) k-means clustering, and increasing
the number of leaves requires separate techniques [17, 31, 15]. Increasing the number of leaves is
helpful for attaining a smaller price of explainability due to the increased expressivity of 7', albeit at
the expense of being less explainable due to its bigger size. We discuss this further in Appendix B.
Our main evaluation will focus on producing trees with the same number of leaves as clusters in the
reference clustering.

2.3 SPEX-Clique and SPEX-kNN

To capture a given reference clustering with a graph, there are several natural choices:

o Clique graph: points are adjacent if and only if they are in the same cluster (thus, every cluster
becomes a clique).

« Star graph: if the reference clustering is endowed with centroids, each point can be made adjacent
to its cluster centroid (thus, every cluster becomes a star).

o Independent set (IS) graph: points are adjacent if and only if they are not in the same cluster (thus,
every cluster becomes an independent set). This is the complement of the clique graph. Here, of
course, one would wish to maximize rather than minimize the cut objective.

The clique graph may seem like the most natural choice, and this is indeed the one we make.
Perhaps surprisingly, as we will show in Section 3, when previous methods (IMM, EMN, CART) are
interpreted through this graphical lens, they turn out to correspond to either the star graph or the IS
graph. This directly relates to their limitations, like requiring centroids (in the case of the star graph)
or failing the toy example from Figure 2 (in the case of the IS graph).



Given any reference clustering, using the clique graph as G in Algorithm 1 yields the algorithm we
call SPExX-Clique. We also consider an variant that uses no reference clustering, by constructing the
nearest neighbor graph directly on the points in X. This yields the algorithm we call SPEX-kNN.

2.4 Computational Efficiency

SPEX as well as the baselines we consider share the following high-level structure. In each tree node
u with n,, points, for each coordinate, they sort the points by that coordinate (time O(n,, logn,,)) and
perform a sweep-line procedure that iterates over the n,, — 1 prefix/suffix cuts by moving nodes from
the suffix to the prefix one at a time. As each node is moved, the cut score is updated accordingly (let
S denote the time it takes to update), and eventually the cut with the overall optimal score is selected.
Repeating this for all coordinates takes time O(dn,, (log n, +5)). In each tree level, the sum ), n,
is n for SPEX and CART and n + k < 2n for IMM and EMN, therefore the time per level is
O(dn(logn +.5)). Summing over up to k — 1 levels in the tree, the total time is O(kdn(logn + .5)).

The algorithms may differ on the time S it takes update cut scores during sweep-line. In SPEX-Clique,
we need not store the entire clique graph; rather, we only store point-cluster assignments (O(n)
memory). During sweep-line, we maintain two cluster histograms for the prefix and the suffix (O(k)
memory), from which the cut score can be updated in S = O(1) time. In SPEX-kNN, letting »
denote the number of neighbors per node (note that this is a different parameter than the number of
clusters k), we can store the kNN graph in O(nx) memory and update cut scores in .S = O(k) time.

3 Lens: Non-Uniform Sparse Cuts

While our spectral approach to explainable clustering may seem rather different from previous
methods, in this section we show a generalized graph partitioning framework that captures them in
a unified way. It is based on non-uniform sparse cuts as defined by Trevisan [44], where cuts are
optimized simultaneously in two graphs that share the same set of nodes.

Trevisan [44] defined the Non-Uniform Sparsest Cut problem as follows. Let G(X, E¢, w¢) and
H(X, Ep,wq) be two graphs on the same set of nodes X. The (G, H)-sparsity of a cut (S, X \ S)
is defined as the (normalized) ratio of edges cut in G to edges cut in H:

volc;l(X) €G(S,X\S)
vol;}(X) GH(S,X\S)

The goal in the Non-Uniform Sparsest Cut problem is to find the cut with the smallest ¥ 5 (5).

Ve u(S) =

In [44] it is observed that this generalized graph partitioning problem captures several classical
problems defined on a single graph G as special cases:

o The classical (“uniform”) Sparsest Cut problem, of minimizing ®¢(S) from Equation (2), is the
case of U 1 (S) where H is an unweighted clique over X.

« The Normalized Cut problem, of minimizing ¥ (S) from Equation (2), is the case of U, 1 (.5)
where H is the G-degree weighted clique over X, in which the edge weight in H between every
pair x,y € X is the product of their weighted degrees in G.

« The Minimum s¢-Cut problem is the case of ¥ (.S) where H contains a single edge between a
“distinguished” pair s,t € X.

Here, we further observe that this framework is useful in capturing prior methods for explainable

clustering (or close variants of those methods), as they in fact produce coordinate cuts that minimize

U g (S) with particular choices of graphs G and H, even though neither method is originally given
in terms of graphical sparse cut terms.

o IMM [33] corresponds to G being the star graph over a given reference clustering endowed with
centroids, and H containing a single edge that connects a pair of diametrical (furthest) centroids.

« EMN [12] also corresponds to G being the star graph, but with H being an unweighted clique over
the k cluster centroids.

« CART closely corresponds to H being the independent set (IS) graph over the reference clustering
(see Section 2.3), and G being the H-degree weighted clique.

We now discuss each algorithm in turn, and highlight useful implications of this graph-theortic lens.



3.1 IMM as Non-Uniform Sparse Cut

Given a reference clustering C = (Cy,...,C)) endowed with cluster centroids M =
{p®, ..., u*)}, the IMM algorithm builds a decision tree in which every node wu is associated
with a subset X, C X U M of points and centroids. In each node, it chooses the coordinate cut that
minimizes the number of “mistakes”, i.e., of points placed at a different side of the cut than their
centroid, while separating at least one pair of centroids. Formally, for 2 € X, let u(z) denote the
centroid of the cluster containing x. The cut .S C X, in a node u is chosen by IMM to minimize,

mis,(S)={z €S :p(x) e X, \ StU{z e X, \ S: u(x) € S},

among all coordinate cuts S that satisfy (Y € S and p(9) € X \ S for at least one pair p(9, ) €
M N X,. The construction terminates when each leaf in the tree contains exactly one centroid.

To cast this as non-uniform sparse cut, consider a slightly modified variant of IMM. For each node w,
Let u, " € X, be a pair of centroids at maximal distance among the centroids in M N X,,. Choose
the coordinate cut S C X, that minimizes mis, (S) among those that separate 11", 1i””. This is a subset
of the cuts in the original IMM. For this variant, let G be the star graph over the reference clustering,
and G,, = G[X,] be its restriction to the subset X,, C X U M associated with each tree node w.
Then mis, (S) = eq, (S, Xu, \ 9), since each cut edge marks a point separated from its centroid. Let
H,, be the single edge graph over X, that contains only an edge connecting p’ and p”. Then we
have, egr, (S, X, \ S) = 1if the cut (S, X, \ S) separates i/, "/, and ez, (S, X, \ S) = 0 otherwise.
Thus, minimizing mis,, (S) subject to a cut separating p’, "’ is equivalent to minimizing the ratio
eq, (S, Xy \S)/em, (S, Xy, \ S). This is equal (up to normalization) to the non-uniform cut sparsity,
Ve,.m, (S). Even though this modified IMM considers less cuts than the original IMM, it attains
the same price of explainability for k-medians, by a different proof based on graph partitioning, that
avoids the intricate potential function analysis in [33]. We show this in Section A.3.

3.2 EMN as Non-Uniform Sparse Cut

The EMN algorithm [12] is an improvement of IMM by the following modification: in every tree
node wu, instead of minimizing mis,, (.S), it chooses the threshold coordinate cut S C X, that
minimizes the ratio mis,, (.S)/f,(S), where [12] define f,,(S) = min{|S N M|, |(X, \ S) N M]|}.
As with IMM, letting G,, be the star graph over the reference clustering when restricted to X,,, we
have mis, (S) = eq, (5, Xy \ §). Let H, be the graph with vertex set X,, whose edges form an
unweighted clique over M N X, (the rest of the vertices in X, are isolated in H,,). Then,

er, (8 Xu \ §) = |S N M- [(Xy \ §) N M|.

Recall from Section 2 that 5 fu(S) < mpraxry - e, (S, Xu \ S) < fu(S). Thus, minimizing
the ratio mis, (S)/f.(S) is equivalent, up to a factor of 2, to minimizing the ratio eg,, (S, X, \
S)/em, (S, X, \ S). This is equivalent to minimizing the non-uniform cut sparsity ¢, m, (5).

us

3.3 CART as Non-Uniform Sparse Cut

We first review the CART algorithm in the form used in explainable clustering. The Gini impurity

of a distribution (p1, ..., pr) over k elements is defined as v(p) = Zle pi(1 — p;). Given a point
set X C RY, a reference clustering C = {C4,...,C%), and a subset S C X, we may define a
distribution p¢ (S) over the clusters as pe(S) = (‘SPSC‘HI , |S|g(|72| ey ‘S?S?k‘ ), which corresponds

to sampling a uniformly random point from S and returning its cluster ID. The impurity of .S is
defined as v¢ (S) = v(pe(S)), and the impurity of (S, X \ S) as a two-way cut as,

_IS) sy 4 XASL

Tc(&X\S)—m' c X]

Uc(X \ S)

The CART algorithm builds a decision tree starting with a root node associated with all of X. It
then iteratively chooses a leaf node whose associated subset X’ maximizes score(X’) = ve(X') —
mingcxs YTe(S, X'\ S), where S ranges over all coordinates threshold cuts, and splits that leaf
across that cut. The score captures the impurity reduction gained by splitting X’ along its best cut.
Note how this is analogous to Equation (4) in SPEX.



Table 1: Datasets. *Training set only. TEmbedded with CLIP [37]. *Embedded with SBERT [38].

CIFAR-10" 20Newsgroups® MNIST* Caltech 101 Beans Breast Cancer Ecoli Iris

# Points 50,000 11,314 60,000 8677 13,611 569 336 150
# Dimensions  512f 768* 5121 5121 16 30 7 4
# Classes 10 20 10 101 7 2 8 3
Reference [24] [5] [29] [13] [23] [43] [21] [14]

Now, we show that a small modification to CART is equivalent to a case of non-uniform sparsest cut.
Let H be the independent set graph over the reference clustering C (see Section 2.3). For a subset
S C X, Let ay(.S) denote the sum of edge weights with both endpoints in .S. We can now interpret
the impurity v (S) of a subset S C X as,

k k
1SN Cl 1SN Cl 1 2. ay(S)
ve(S) ;:1 5 5] 5P ;leSﬂCzl(lSl 1SN Cil) 2

Thus, the two-way cut impurity becomes

- 2 aH(S’) 04H<X\S)
T“(S’X\S"u{< S TS )

To proceed, we make the modification of replacing set cardinalities with their volumes in H, as in the
transition from sparsity to conductance in Equations (1) and (2). We get the modified two-way cut
impurity, instead of Equation (5):

N I ap(S)  ag(X\S)
Te(S,X\5) = volg (X) (VolH(S) T ola (X 5)> '

This is precisely (up to normalization terms) the N assoc graph cut objective defined in [41, eq. (3)].>
As they observed, it is directly related to the normalized cut objective, i.e., to the cut conductance:

Uy (S) =2 2aX 7.5 X\ S).

®

Thus, finding a coordinate cut S that minimizes our modified impurity Y is equivalent to maximizing
the usual cut conductance Uy (.S) in H. This, in turn, is equivalent to maximizing the non-uniform
cut sparsity U g ¢ (S), where H is the independent set graph and G is the H-degree weighted clique
over X, since (as observed in [44] and mentioned in the beginning of this section), for this choice of
graphs it holds that Uz (S) = U (.S), up to normalization. Finally, since ¥ 1 (S) = 1/U g ¢ (S5)
by definition, this is equivalent minimizing the non-uniform cut sparsity ¥ g (.9).

This point of view clarifies the failure of CART in Figure 2. The IS graph over a reference clustering
incentivizes cuts that separate pairs of points residing in different clusters, but has no incentive to not
separate points residing in the same cluster, since they are not connected with any edges and hence
have no effect on the cut value. Since CART maximizes cut conductance, it opts to cut the larger
number of edges between the bottom clusters (vertical cut) over the smaller number of edges between
the top cluster and each of the bottom clusters (horizontal cut), which is incompatible with clustering.

4 Experimental Evaluation

We evaluate our methods compared to baselines, on eight public real-world datasets of various sizes
and dimensions, detailed in Table 1. Our code is available online.*

Our algorithms. We focus on two instantiations of our method: SPEX-Clique with spectral clustering
as the reference, and SPEX-kNNwhere the k-NN graph is constructed with £k = 20. Section B
includes additional results for SPEX-Clique with k-means and kernel k-means as the reference
clustering, and for SPEX-kNN with other values of k.

Baselines. We evaluate the following baselines:

*In the notation of [41], azr (S) = assoc(S, S) and volg (S) = assoc(S, X).
*https://github.com/talargv/SpEx
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Figure 3: Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI), higher is better.

« EMN [12], the state of the art for explainable clustering with k-means as the reference clustering.
Note that EMN cannot work with a spectral or a kernel k-means reference clustering, as its
operation requires the reference clustering to have centroids.

« CART, with both k-means and spectral clustering as the reference clustering.

« Kernel IMM [15], which uses kernel k-means as the reference clustering.

Our experiments indicated that Kernel IMM does not scale well, failing to run on the larger scale
datasets. We therefore report its results only for the three smaller scale datasets (Breast Cancer, Ecoli,
Iris), which are the ones used in [15]. See more in Section B.

Evaluation measures. The classes of each dataset are used as groundtruth clusters. To evaluate each
method, we report two standard (and incomparable) measures of clustering agreement between two
clusterings of the same data: Adjusted Rand Index (ARI) [22] and Adjusted Mutual Information
(AMI) [34]. Each is explainable clustering is evaluated for its agreement with the groundtruth
clustering through these measures.

4.1 Results

Main results are reported in Figure 3. Tables 2 and 3 augment them with additional choices of
reference clustering for SPEX-Clique and CART and list ARIs with respect to the reference clustering.
They also contain two synthetic small-scale datasets, R15 and Pathbased, used in [15]. Appendix B
includes additional results.

The results show that SPEX-Clique is the most consistently high-performing algorithm. It outperforms
each baseline in most cases in both evaluation measures, and is never exceeded by more than one
baseline at the same time. SPEX-KNN is highly effective particularly on the low dimensional datasets



Table 2: Results on smaller datasets. Rows are grouped by reference clustering, shown as the first
row in each group. The REF column lists the ARI with respect to the reference clustering (rather than
the ground truth as in ARI column). Best scores per reference clustering are in bold.

R15 Pathbased Ecoli Iris Cancer
Algorithm ARI AMI REF ARI AMI REF ARI AMI REF ARI AMI REF ARI AMI REF
REF: Spectral 993 994 1. 526 .570 1. 711 653 1. 630  .661 1. 743 626 1.
SPEX-KNN 982 987 989 332 410 551 .679 .642 863 450 .647 450 .507 490 562
SPEX-Clique 986 989 993 441 517 .824 662 .621 .847 576 .629 787 .694 588 .785
CART 986 989 993 441 517 .824 672 618 .886 .576 .629 .787 683 560 .811
REF: k-means 993 994 1. 461 543 1. 489 .609 1. 641 .669 1. 491 464 1.
EMN 986 989 993 461 .543 1. 456 .559 .873 .576 .629 772 491 464 1.
SPEX-Clique 986 989 993 461 .543 1. 456 .559 .873 .576 .629 772 491 464 1.
CART 986 989 993 421 507 .897 454 543 840 .576 .629 772 491 .464 1.
REF: Kernel k-means 908  .967 1. 919 .888 1. 538 612 1. 731767 1. 116 228 1.
Kernel IMM 904 962 986 .614 .614 .583 522 560 .848 .732 .788 924 127 241 .93
SPEX-Clique 869 941 951 479 553 450 .529 573 851 732 .788 .924 406 414 511
CART 682 876 .759 479 553 450 500 .558 .824 732 .788 .924 406 414 511

Table 3: Results on larger datasets.

MNIST Caltech 101 Newsgroups Beans Cifar

Algorithm ARI AMI REF ARI AMI REF ARI AMI REF ARI AMI REF ARI AMI REF
REF: Spectral .745  .820 1. 563 .859 1. 431 671 1. 586 .677 1. 712 801 1.

SPEX-KNN 092 338 150 121 497 168 .042 170 .09 574 .690 649 342 434 373
SPEX-Clique 217 384 282 247 521 303 .078 223 189 564 671 743 320 438 394
CART 027 148 .030 -.010 .166 .005 .008 .078 -013 542 .658 705 .036 .169 .035
REF: k-means .364 481 1. 405 822 1. 502 .660 1. 572 .689 1. .636 738 1.

EMN 25 342 42 249 548 416 115 219 163 .563 .688 780 314 402 .387
SPEX-Clique 209 336 403 122 495 195 .098 .249 .128 562 .687 773 288 410 .370
CART 124299 229 -.017 .082 .003 .005 .092 .006 .536 .669 .757 .045 .180 .037

(Beans, Ecoli and Iris).> On these datasets, it outperforms all baselines as well as SPEX-Clique, with
the exception of Kernel IMM on Iris.°

CART performs well on the smaller datasets (confirming similar results reported in [15]), however, it
performs poorly on the larger datasets. Recall that CART is not originally intended for explainable
clustering, but can be repurposed for it since it produces a structurally compatible output (a binary
decision tree with coordinate cuts). In Sections 1 and 3.3, we discussed a toy example from [33] that
demonstrates a failure mode of CART for explainable clustering due to its incompatible objective.
Our experimental results indicate this incompatibility may also impede its performance on real data.

Conclusion and limitations. Prior work on explainable clustering has focused on a few specific
reference objectives, allowing it to prove worst-case approximation bounds tailored to them (cf. Sec-
tion 1.1). SPEX, on the other hand, fills the gap of a generic, reference-oblivious method, currently
lacking in the literature. Thus, while theoretically well-grounded (Theorem 2.2, Section 3), it cannot
offer such bounds. Other methods may be better choices for some specific reference objectives — e.g.,
EMN is known to be near-optimal for k-means, and Tables 2 and 3 indeed show that it is generally
better than SPEX for that reference objective. SPEX is better for data where objectives already
well-studied in explainable clustering (like k-means) fall short, and more versatile objectives (like
spectral clustering) are needed. As future work, it would be interesting to explore if the theoretical
framework we develop can yet lead to formal approximation bounds for some of these objectives.

SThese datasets are of dimension up to 16. The other datasets have dimension at least 30.

%0n Iris, kernel k-means significantly outperforms spectral and k-means as the reference clustering. In
Figure 3, only Kernel IMM uses it a reference. When SPEX-Clique or CART are run on the same kernel k-means
reference, the results they yield are identical to Kernel IMM. These results are included in Section B.
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Impact Statement

This paper is concerned with fitting interpretable explanations to decisions made by machine learning
algorithms, in this case, grouping of individual points into clusters. While explainability in Al is
intended to promote safe and ethical use in machine learning, any deployment of automated systems
in settings consequential to human individuals may have unforeseen consequences. While our work is
not associated with any particular outstanding or new risks, every real-world use of an explainability
mechanism in Al should be used with caution and incorporate human oversight, testing, and other
use case specific safeguards to mitigate any associated risks.

A Proofs

In Section A.1, we provide a proof of Theorem 2.2. In Section A.2, as a concrete demonstration,
we show an application of it that directly relates the k-means reference clustering cost to the graph
conductance in a certain graph that describes the reference clustering. In Section A.3, we provide the
modified IMM analysis discussed in Section 3.1.

A.1 Proof of Theorem 2.2

We restate the theorem:

Theorem A.1 (Theorem 2.2, restated). Let X C R? be a set of points, where x € X has coordinates
x = (x1,...,2q). Let G(X, E,w) be a graph with vertex set X. Consider the following two
distributions over pairs in of points in X :

o D,gq; is the distribution over adjacent pairs in G, where a pair x,y € E is sampled with probability
proportional to the edge weight between them.

o D,y is the distribution over all pairs x,y € X, where x and y are sampled independently, each
with probability proportional to its weighted degree in G.

Then, there is a valid coordinate cut j, T such that

Ew»y’VDadj ||.’L‘ - y”%
Ef-,y"‘Daon - y”%

\IJG(Sj,T(X)) < \/

The proof uses arguments that are standard in spectral graph theory, and follows [11] in a generalized
form (with an arbitrary graph). We include it here for completeness and clarity.

Recall the following standard useful fact,
Fact A.2. Letay,...,a, > 0andby,... by, > 0suchthat,b; > 0. Then
. a4

min

il
A bz

< 721 & < max%.
Zi bi g bz‘
Using it we have,
d
Ez,yNDadj |z — yH% _ Ew,yNDadJ— Zi:1 s — yi|2
Em’y~Dan Hl’ - yH% Ew,yNDau Z?:l |xz _ yi|2
d
_ Zi:l Exvy""Dadj |xl - yi|2

— —d
Zi:l Ez y~Dan |z — yil?

m Ex,yNDadj|iﬂi* — Yix 2 6)
T re{lnd) Ep gy T — yir |2
Let n = |X| be the number of nodes in G. For convenience we arbitrarily label them 1, ..., n so we

can index the entries a vector z € R™ by points in X, so the coordinates of z are (z(x))zex. We do
so similarly for matrices in R™*".

Recall that w(zx,y) is the edge weight between x and y in G. Let dg(x) denote the weighted
degree of 7in G. Let Ag = 3, w(x,y) be the sum of all edge weights. Let Ag € R™*" be its
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weighted adjacency matrix, Ag(z,y) = w(z,y). Let Dg € R™*™ be its diagonal matrix of degrees,
D¢ (z,2) = dg(x). Let Lg = Dg — Ag be its Laplacian matrix. A standard fact in spectral graph
theory is the identity 2" Loz = Y_, , w(z,y)|2(z) — z(y)|? for every z € R™.

Let z,. € R"™ be the vector with entries defined by z.(z) = x;+, where i* € {1,...,d} is the
minimizer from Equation (6). Recalling that D,q; is the distribution over pairs x, y with probability
w(z,y)

mass =%, we have

]EI,yNDadj ‘xl* — Yix

w(z,
=T e e

= D (o)

- Z*TL(;Z* (7)
= AG .

Let H be a weighted clique over X in which the edge weight between every pair z,y € X is

_dg(z) - da(y)
= oA, (8)

This is the G-degree weighted clique over X mentioned in Section 3, except we scale all weights
down by 2A . The weighted degree of = in H is

wH(I7y)

y#£T
da(x
_ Z(G ) ; do(y)
_ ‘ZGA(”;) (2A¢ — dg(z)) since Ag = ;w(w,y) = % ;da(y)
= de(2) - Mg‘i‘?z. ©

Let Ay, Dy and Ly = Dy — Apg be the weighted adjacency matrix of H, its diagonal degree
matrix, and its Laplacian matrix, respectively. Let vg € R™ be the vector of weighted degrees in G,
scaled down by /2Ag:

ve(x) = da(z)
V2AG’
Observe that, by Equations (8) and (9),
2 .
clg(m:)fM ifx=y 0 ifx=y
Dy(z,y) = 2A¢ and Ag(z,y) = z)- .
(7, 9) {0 if oy 7(2,9) dc(é)AdgH(y) ifo#y
Therefore,
Ly =Dy — Ay = Dg — vgvd. (10)

Now, recall that D, is the distribution over pairs x, y, where x and y are i.i.d., each with probability
proportional to its degree in G. Hence,

da(r) da(y)
Ew,yNDa11|$i* — Yi* 2 = Z 2A . 2A . |in* — Yi* 2
T,y G G
1 .
= wu(,y)|z(2) - z(y))? by Equation (8)
28¢ £~
T
Lz
= L oH% (11)
20¢
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Plugging Equations (7) and (11) into Equation (6), we have obtained,

El‘7yNDadj ||£ﬂ - y”% 2. Z;{LGZ* (12)

Eoy~pullz —yl3 = 2ILuz.

Finally, let O and 1 denote the all-0 and all-1 vectors in R”. Let v be the constant v = vgz* / vgl.
Letting
Z =z« — a1,
we have
T~ T T Ug Zx T
vGZ = v (2 —v61) = vgze — —%— vgl = 0. (13)
vel

It is a standard fact that every graph Laplacian L satisfies L1 = 0. Therefore,

Lgzy = Lag(Z+7¢l) = LgZ,
and, using Equations (10) and (13),
Lyz. = Lg(2+961) = Lyz = (Dg — vgv&)z = Dg?.
Plugging these into Equation (12), we obtain

Ew,yNDadj H.%‘ - yH% >9. 2TLG§
Eff»yNDan H:E - yH2 - ZTDqz

(14)

Now we can state the Cheeger inequality for graphs, or rather, a somewhat more general and useful
form of it (see, e.g., [42, Theorem 21.1.3]):

Theorem A.3. Let G(X, E,w) be an undirected weighted graph with n nodes. Let Ag be its
weighted adjacency matrix, vg the vector weighted degrees, D¢ the diagonal matrix of weighted
degrees, and L = Dg — Ag the Laplacian.

Suppose we have a vector 2 € R™ that satisfies 7" vg = 0. Then, there is a threshold 7 € R such
that if we consider the cut S = {x € X : Z(x) < 7}, it satisfies S # 0, S # X, and
2TLgz
iTDgz’

Ua(S) < (15)

Theorem A.3 together with Equation (14) imply a cut with conductance

\IJG(S) < ]Ew,yNDadex_yHg
B El’»yNDan H:E - yH% ’

given by thresholding the coordinates of Z at 7. Recalling that for every x € X it holds that
i(x) = 2(x) — ve = i+ — 73,

the cut S can be equivalently described as S = {x € X : 2;« < 7+~ }. Therefore, it is a coordinate
cut with coordinate +* and threshold 7 = 7 + 7, and Theorem 2.2 is proven. O
Remark A.4. For context, we relate Theorem A.3 to the more familiar form of Cheeger’s inequality.
Let L = D™Y2LsD~1/2 be the normalized Laplacian matrix of G. It is positive semi-definite
and its smallest eigenvalue is 0. Let A be its second smallest eigenvalue, and zg a corresponding
eigenvector. It can be shown that the quotient at right-hand side of Equation (15) is minimized by
choosing = D2z, and that the minimal value it takes is \¢;. Hence the more standard form of
Cheeger’s inequality, U (S) < /2Aq.

A.2 k-Means Example of Theorem 2.2

As a demonstrative example, let us show a special cases of Theorem 2.2, in which a reference
k-means clustering is described by a suitable graph, and observe the conductance bounds it yields.
LetC = {C1,...,C}} be a partition of X into k clusters with corresponding centroids (1, ..., pu().
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In k-means, the centroids are given by cluster means, u(i) = ﬁ Zx co, T Denote the cost of cluster

C; by cost(C;) = > @ — p||2, and the total reference clustering cost by

zeC;
k k ,
cost(C) = Zcost(Ci) = Z Z o — 1|3,
=1 i=1 z€C;

We instantiate Theorem 2.2 with a clique graph with edge weights inversely proportional to their
cluster sizes.

Corollary A.5. In the weighted clique graph where every edge connecting x,y € C; has weight
1/(|C;| = 1), there is a coordinate cut with conductance at most

5 cost(C)
S Py 3

The proof uses the following fact which can be verified by direct substitution.

Fact A.6. For every set of points C with mean . = ‘17' Y s

1
ZII%—#IISZW > eyl

zeC z#yeC

Proof. Denote the weighted clique graph by G(X, X2, w). For this graph:

—— Jixz,yeC;
w(x,y) = {Ocz_l olse v

(Note that if |C;| = 1 then the only node in C; has no incident edges, thus the above setting of edge
weights is well-defined.) Thus, it holds that:

1
Vi,xeC; ; d = — =1
1, T i G(l‘) Z ‘C»Ll_l
yeC;
yF#
Hence, Theorem 2.2 implies the existence of a coordinate cut for which the conductance is at most
w(z,y) — 2
Ep oy I —9ll3 > oeweX S e w@an 1% Y3
Eyynpo |z = yll3 S de(@)dely) |1 12

zyeX 3. rex da()da(y)

k
\71| >ict |ci1|71 > ary Il —yll3
z,yeCi

ﬁ Zaﬁ,yGX Hil? - y”%

% .
_ Tic1 o1 lCi e, o = p D3
Theorem A.6 ﬁ Zx,yEX ||SC - y”%

k )
231 Xwec, Iz — 3

_ g cost(C)
% Zz,yEX H.’,E - y”% .

Note that the denominator term ‘Xi‘ >eyex llz— y||3 is a fixed size for the dataset and is independent
of the reference clustering C. Thus, with an appropriate choice of graph to describe the reference
clustering, Theorem 2.2 yields coordinate cuts with conductance directly related to the reference
clustering cost.
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O
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A.3 IMM Alternative Analysis

In this section we focus on k-medians clustering in the #; norm. For every subset C' C R¢, denote its
median by
med(C') = min ZHx =yl

Rd
=€ zeC

Let C = (C4,...,C) be a reference k-medians clustering of X with respective cluster centroids
p? = med(C;). The k-medians clustering cost of C is defined as

k
cost1(C) = Z Z | — p@];.

i=1x2eC;

Let T1yiv (C) be the explainable clustering tree returned by IMM algorithm. [33] proved the following
theorem:

Theorem A.7. For every reference clustering C with centroids, cost1 (T (C)) < O(k) - costy (C).

In the terminology from Section 1, the “price of explainability” of k-medians clustering is O(k). This
remains the best bound to date for a deterministic algorithm.’

In this section we prove the same theorem for our slightly modified variant from Section 3.1, where it
was cast in terms of minimizing the non-uniform cut sparsity. The goal is demonstrate how the graph
partitioning framework can be used analytically, and present an alternative and arguably simpler
proof for the same price of explainability upper bound. Let Tivm (C) denote the tree returned by our
modified IMM.

Theorem A.8. For every reference clustering C with centroids, costy(Tin (C)) < O(k) - cost1(C).

For the proof, we introduce some notation aligned with [33] for better comparison and readability.
Recall that the IMM algorithm builds an explainable decision tree on both the points X and the
centroids M = { pM ) }, such that each tree leaf contains exactly one centroid, and partition
of X into the k leaves forms the explainable clustering. For every € X, denote by u(z) € M
its centroid in the reference clustering C. For every tree node u, let X* C X and M™ C M be the
subsets of points and centroids, respectively, contained in w, and let Y* = X" U M™. A mistake in u
is a pair x € X, ¢(x) € M™ that are separated by the threshold coordinate cut in u. Let t* denote
the number of mistakes in u. Also, recall the in our modified IMM, in each node u we fix a pair of
centroids p,,, p!! at maximal distance among the centroids in u:

i =il

! " _ .
s = gl =, omin

The proof of Theorem A.8 has two steps, analogous to the proof of Theorem A.7. The first step is
a straightforward consequence of the triangle inequality. The detailed proof appears in [33] and is
omitted here.

Lemma A.9 (Lemma 5.5 in [33]).

cost1 (Tium(C)) < costa (C) + Y tu- [l — pit |-
weTh  (C)

The second step is the more involved part of the proof, and the part where the graph-based analysis
presented here departs from [33].

Lemma A.10 (Lemma 5.6 in [33]). Let H be the height ofTIMM (C). Then,

ST tu Nl — il < H - costy (Tium(€)).
u€Tn (C)

Since Ty (C) has k leaves, its height is at most k, thus Theorems A.9 and A.10 together immediately
imply Theorem A.8.

7As mentioned in Section 1.1, for randomized algorithms, a tight bound of (1 4 o(1)) log k is known.
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Proof of Theorem A.10. Fix anode u in Tiy (C). Let x4_, [a%, bY4] be a bounding box containing

307
all of Y. Define the following distribution D over coordmate cuts j, 7: first, pick j € {1,...,d}
with probability proportional to [b% — a*/|; then, pick T uniformly at random in [a}, b}].

Let G (Y", E) be any undirected graph over Y'*. The probability that an edge zy € F is cut by
(j,7) ~Dis

Z by —ajl o=yl _ e —ylh
o —a|ly [bY —aY] [b* —av|y’
and therefore,
1
E(jry~p [eg(S)m Yu \ Sjir)] = o —aey >z =yl (16)
zycE

Let S, be the set of coordinate cuts (7, 7) that satisfy 7 € [a;, b;]. Let m,(j, 7) denote the number
of mistakes that a cut j, 7 makes (i.e., the number of points in z € X™ such that ¢(z) € M™, but the
cut separates x and c(x)). Recall that our modified IMM chooses the cut j,,, 7, in the node among
the cuts in S, that separate the pair p,, u/, and t,, = My (Ju, Tu)-

Let G(Y"“, E¢) be the star graph on Y, where each z € X" is adjacent to ¢(z) if c(z) € M*,
and is an isolated node otherwise. Observe that m,,(j,7) = eq(S;+, Yy \ Sj-). Let HY™, Ex)
be the graph that contains an single edge between i, 11;,. Observe that e (S} -, Y, \ S; +) equals
1 if the cut j, 7 separates p,, ., and 0 otherwise. We denote this as ey (S;,,Y, \ Sj.) =
1{(j, ) separates p.,, u" }. Therefore,

ty = My (Ju, Tu) = “min my(J,7)
J,TESy:
(4, T) separates u,, , i,
= min
§,TESu 1{ T) separates Ly fn

(7
o ea(Sin Yu \ Sjir)
_JEIEIS eH(S]TaY\S )

< E(J )~ 1€ C (SJ’T’ Y SJ’T)] Theorem A.2
Ejr~p ler (S Yu\ Sjr)]

_ Zayenel” ~ vl Equation (16)
ZzyEE‘H ||£L’ - y”l

= EIGX“ e — (@)l definition of G and H.

([ — willa
Rearranging, t,, - ||, — pi[|1 < > c xu ||z — ¢(2)][1. Since in each level L in the tree the clusters
{X":u € L} form a partition of X, we get

Dot llu =il < Y Mz =@l = Y lle — efx)lh = costa(C).

ueL ucel reX™ zeX
Summing again over the H levels in the tree yields the lemma. O
Note that the ratio W that arises in the proof is the non-uniform cut sparsity ¥ 5 (S; )

from Section 3.

B Additional Experimental Results

Running times. Table 4 contains running time measurements. For reference-based methods
(EMN, CART and SPEX-Clique) we measure the reference clustering step and tree construction step
separately. For SPEX-kNN, we measure the £-NN graph construction step and the tree construction
step separately.

In our experiments, Kernel IMM proved feasible to run only on the smaller datasets (R15, Pathbased,
Iris, Ecoli, Breast Cancer). Each algorithm was allotted three hours to run on each dataset. On the
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Table 4: Runtime comparison of the non kernel k-means based algorithms. Presented times are the
median runtime across five runs. For the Clique and CART algorithms, performance was measured
based on a spectral reference.

Algorithm Beans Iris CIFAR Caltech 101 ~ R15 Pathbased Ecoli Cancer Newsgroups MNIST
Spectral reference 1.8s 22.1ms 1ml2s 7.6s 91.6ms 29ms 34.2ms 34.1ms 8.54s 1minS53s
k-means reference 86.4ms 4.21ms  2.69s 2.1s 10.4ms  4.16ms 5.39ms 7.01ms 1.04s 5.16s
k-NN graph build  1.87s 7.0lms 1m55s 2.23s 19ms  3.57ms 9.31ms 8.03ms 5.79s 2min59s
SPEX-KNN 3.69s 27ms 5m53s 1m48s 93.4ms  22.8ms 85.3ms 90.8ms 2min27s 2min52s
SPEX-Clique 203ms 8.36ms  28.2s Iml2s 17ms  9.65ms 13.3ms 16.3ms 13.2s  39.4s
EMN 13.5s 6.51ms 5ml3s 15m40s 10lms  13.3ms 20.9ms 184ms 7min56s 5min20s
CART 349ms 14.8ms 32.2s 8min51s 72.7ms 9.4ms 33.9ms 31.9ms 39.2s 30s

Table 5: Performance of SPEX-KNN for different k& values. The reference compared in the REF
column is the reference with the same & applied.

Ecoli Iris Cancer
k ARI AMI REF RS AMI REF ARI AMI REF

2 594 571 006 287 370 .020 .681 .603 -.019
5 594 589 640 450 647 895 594 546 .688
10 .682 .648 828 450 .647 514 507 490 547
15 682 .648 854 450 .647 445 507 490 567
20 679 642 863 450 .647 450 507 490 562
50 679 .638 593 .600 .642 756 507 490 532

larger datasets, Kernel IMM either ran out of memory, or failed to complete running within the
allotted time. All other methods finished running within up to 16 minutes (see Table 4). Therefore,
we report results for Kernel IMM only for the smaller datasets.

kNN graph parameters. Table 5 includes additional results for SPEX-KNN, showing how its
performance changes as k (the parameter of the k-NN graph) varies on the Ecoli, Iris and Breast
Cancer datasets.

Number of leaves. As mentioned in Section 2, SPEX can produce a tree with any desired number
of leaves £. Our evaluation so far has focused on the setting ¢/ = k, i.e., the number of leaves in
the output tree is equal to the number of clusters in the reference clustering. To clarify the relation
between k and ¢, viewing the reference clustering as a trained model, k is its number of outcomes
and / is the number of explanations our explainability method can yield. Since each outcome must
have its own separate explanation, we must have £ > k, thus ¢ = k is the “most explainable” setting.
As { increases, the expressiveness of the explainable clustering tree grows and it is better able to
approximate the reference clustering, albeit at the cost of explainability, since now some model
outcomes would have multiple different explanations.

Table 6 includes result with ¢ = 2k for SPEX-Clique, CART-Spectral, CART-k-means, and ExXKMC
[17], which is an extension of IMM to support more leaves (which IMM does not naturally support,
due to its reliance on reference clustering centroids; the same goes for EMN). The results do not
point to a clearly superior method.
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Table 6: Results with £ = 2k leaves.

Ecoli Iris Cancer MNIST Caltech 101 Newsgroups Beans Cifar
Algorithm ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI
SPEX-Clique 469 589 716 739 491 464 197 317 203 565 .088 281 .370 512 309 484
ExKMC 458 582 730 755 491 464 224 328 249 546 .096 263 370 512 323 467

CART-k-means 447 573 716 739 491 464 .031 .177 0 208 026 .148 370 512 144 371
CART-Spectral 434 493 610 .648 .749 .631 .080 .210 0 2214 .006 .104 .608 .695 135 .381

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
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Answer: [NA]
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not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: All uses of existing assets (datasets, as well as images reproduced based on
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