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ABSTRACT

Point cloud registration (PCR) has been an important research subject for many
years but remains an open problem, presenting numerous challenges. The stability
of existing registration methods is often inadequate, particularly in scenarios with
low overlap. This issue primarily arises from the insufficient distinctiveness of
extracted point cloud features, leading to ambiguous matches and the proliferation
of outliers. To address these bottlenecks in point cloud registration, it is crucial
to fully leverage the color information of the point clouds to discern point corre-
spondences effectively. However, excessive control over color may disrupt the
spatial structure of the point cloud, making it essential to find a balance between
the aggressiveness and stability of color integration. To tackle these challenges,
we propose UPC-PCR, which unlocks the potential of color information while
maintaining stability. Specifically, we design a Curvature-Color Fusion Module
(CCF) to initialize distinctive features. Additionally, to balance color aggressive-
ness, we enhance the geometric structure by introducing a Centroid Angular (CA)
embedding for superpoint structure encoding, which is particularly effective in
low-overlap scenes. While CCF and CA ensure the distinctiveness of point features,
the aggressive use of color in the feature enhancement process may still introduce
errors. Therefore, we develop a robust estimator equipped with Feature-based
Compatibility Hypergraph Convolution (FCH) to learn higher-order compatibility
of correspondences and effectively filter out outliers. Evaluation across multiple
datasets has demonstrated the state-of-the-art performance of UPC-PCR, achieving
registration recalls of 98.4%/90.4% on Color3DMatch/Color3DLoMatch.

1 INTRODUCTION

Point cloud registration (PCR) is an important yet challenging area in the fields of 3D vision and
robotics (Choy et al., 2019; Bai et al., 2020; Huang et al., 2021; Qin et al., 2022; Bai et al., 2021b;
Zhang et al., 2023). The objective of PCR is to estimate a rigid transformation that aligns the two
input point clouds. Classical PCR algorithms include Iterative Closest Point (ICP) and its variants
(Besl & McKay, 1992; Rusinkiewicz & Levoy, 2001; Men et al., 2011; Joung et al., 2009), which
minimize the Euclidean distance between corresponding points through iterative refinement. However,
when the initial pose is inaccurate, these methods often converge to local optima.

In recent years, there has been rapid development in learning-based methods, particularly those based
on feature matching (Ao et al., 2023; Huang et al., 2021; Yang et al., 2022; Yu et al., 2021; 2023b;
Qin et al., 2022), leading to significant improvement in registration accuracy. These methods typically
utilize neural networks to extract point-wise features and establish correspondences, followed by
robust estimators (Bai et al., 2021b; Zhang et al., 2023; Yao et al., 2023; Fischler & Bolles, 1981)
to compute the final transformation. To extract prominent local neighborhood information, some
methods (Yew & Lee, 2022; Qin et al., 2022; Yu et al., 2023a;b; Chen et al., 2023) utilize down-
sampling techniques to obtain hierarchical points, from dense points to superpoints. Then, they apply
positional embedding (Yang et al., 2022) to superpoints to encode structural information and input
them into a transformer to obtain superpoint features.

However, despite improvements in registration performance, it remains insufficient for achieving
stable registration in real-world complex scenarios, particularly in challenging situations with low
point cloud overlap. To overcome the bottlenecks in PCR, some methods have begun to utilize color

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

information to assist in the registration process. FCGF (Choy et al., 2019) first explored a learning-
based color-assisted PCR method. However, due to the potential disruption of the spatial structure
by color information, it did not achieve satisfactory performance. Other methods perform 2D-3D
multi-modal learning to eliminate feature ambiguity, such as using image features to enhance point
cloud features (Zhang et al., 2022; Yu et al., 2023b; El Banani & Johnson, 2021; Yuan et al., 2023;
Wang et al., 2022). However, their multi-modal information interaction is indirect and insufficient,
so the potential of color is not fully unlocked. Furthermore, ColorPCR (Mu et al., 2024) achieves a
breakthrough in registration performance through multi-stage geometric-color fusion. Since color
can disrupt the structure of point cloud, it chooses a relatively conservative approach of multi-step
geo-color fusion, which imposes certain limitations on the utilization of color power. To fully
Unleash the power of color for PCR, we propose a Curvature-Color Fusion Module (CCF) to provide
high-specificity and geometry-stable dense point features.

Due to the similar structure of overlapping regions, efficient positional embedding plays a crucial role
in overlap detection (Min et al., 2021; Yang et al., 2022). We adopted this technique to simultaneously
enhance geometric features for balancing the effect of color information. After superpoint matching
and point matching, we obtain correspondences. Although sufficient correct correspondences are
included to estimate rigid transformations, the existing robust estimators are not powerful enough
to filter out the errors introduced by color. Therefore, we propose a Feature-based Compatibility
Hypergraph Convolution (FCH) to retrieve the high-order compatibility between correspondences,
which can stably filter out errors and help generate promising hypotheses.

In summary, we propose a method, named UPC-PCR, which fully unlocks the potential of color
to break the bottlenecks in PCR. UPC-PCR enables seamless feature flow in the entire registration
process, which results in high registration accuracy, even when the overlap between point clouds
is low and the geometric structures are similar. Evaluations on multiple datasets have consistently
demonstrated the state-of-the-art performance of UPC-PCR. Specifically, it achieves registration
recalls of 98.4%/90.4% on Color3DMatch/Color3DLoMatch (Mu et al., 2024) datasets. In summary,
our main contributions are four-fold:

• We design a Curvature-Color Fusion Module (CCF) to initialize point features. CCF
preliminarily extracts structure-color features. It significantly eliminates feature ambiguity
and lays the foundation for accurate correspondences.

• We propose a structural-aware Centroid Angular (CA) embedding to encode structural
information and enhance the geometric features.

• We design a Feature-based Compatibility Hypergraph Convolution (FCH) as a bridge
between the preceding network and transformation estimator, sufficiently detecting the
high-order correlation between correspondences and successfully rejecting erroneous corre-
spondences.

• UPC-PCR fully unleash the power of color and leads to a breakthrough in PCR, especially in
challenging scenarios, where the overlap between two point clouds is low and the geometric
structure is highly similar.

2 RELATED WORK

Learning-based PCR methods. Compared to earlier ICP algorithm (Besl & McKay, 1992) and
its variants (Rusinkiewicz & Levoy, 2001; Men et al., 2011; Joung et al., 2009; Korn et al., 2014),
learning-based PCR methods have achieved notable success recently. They (Zeng et al., 2017; Deng
et al., 2018b;a; Saleh et al., 2020; Ao et al., 2021; Choy et al., 2019) may employ neural networks to
learn local descriptors for 3D correspondence search. Or they (Li & Lee, 2019; Bai et al., 2020; Huang
et al., 2021) utilize neural networks to detect keypoints to assist the registration process. CofiNet (Yu
et al., 2021) utilizes a coarse-to-fine approach to estimate correspondences, while GeoTransformer
(Qin et al., 2022) refines the coarse-to-fine process, further improving registration performance.

2D-3D multi-modal learning. 2D-3D multi-modal learning has been employed in various 3D vision
tasks, including instance segmentation (Hou et al., 2019) and object detection (Qi et al., 2020), etc.
Some methods (El Banani & Johnson, 2021; El Banani et al., 2021; Zhang et al., 2022; Wang et al.,
2022; Yuan et al., 2023) have started to use features from 2D images to assist the 3D PCR process.
For example, PEAL (Yu et al., 2023b) uses 2D priors to calibrate 3D anchor points in overlapping
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Figure 1: (a) Overview. (b) Curvature-Color Fusion (CCF). (c) Positional embedding. (d) Feature-
based Compatibility Hypergraph Convolution (FCH). UPC-PCR takes two color point clouds as
input. It first fuses point-wise color and curvature to obtain initial features, and perform hierarchical
feature extraction with KPConv-FPN. Then, positional embedding is utilized to encode the structural
information of superpoints, followed by a transformer to obtain superpoints’ features. Then we follow
a a coarse-to-fine matching process to obtain correspondences with matching scores. Ultimately, we
utilize corresponding points’ features to initialize the FCH for feature aggregate. Based on precise
vertex features, hypotheses can be generated and selected to determine the final transformation.

regions, successfully improving registration accuracy. However, their utilization of 2D images is
not sufficient, and cannot eliminate feature ambiguity effectively. Recently, ColorPCR (Mu et al.,
2024) has proposed a multi-stage geometric-color fusion method for colored point cloud registration,
achieving significant breakthrough in PCR performance. Our method follow this way and fully
unleash the power of color information, enhancing feature distinctiveness.

Positional embedding. Relative positional encoding has been proposed in tasks such as machine
translation (Shaw et al., 2018) and has been introduced in PCR. For example, DoPE (Min et al., 2021)
utilizes relative positional encoding to iteratively optimize a joint-origin. GeoTransformer (Qin et al.,
2022) uses distance and angle encoding to represent the positional information between any two
points. Similarly, OIF-PCR (Yang et al., 2022) performs an iterative process to optimize reference
points for positional encoding.

Robust Transformation Estimator. After obtaining correspondences, a robust estimator is needed for
transformation estimation. Traditional methods such as RANSAC (Fischler & Bolles, 1981) perform
global random exploration. Recently, MAC (Zhang et al., 2023) proposes to loose the maximum
clique constraint and retrieve maximal cliques, and FastMAC (Zhang et al., 2024) accelerates its
runtime. Also, some deep robust estimators (Bai et al., 2021b; Yao et al., 2023) have been developed.
They use neural networks to reject outliers. However, all these methods are disconnected from the
preceding network and perform transformation estimation separately. Instead, UPC-PCR proposes
to bridge the two stages with features by leveraging FCH. It retrieves high-order consistency in
correspondences, constructing a comprehensive registration network.

3 METHOD

3.1 PROBLEM STATEMENT

Given source colored point cloud P = {pi ∈ R3|i = 1, ..., N} with Pc = {pci ∈ [0, 1]3|i =
1, ..., N} and target colored point cloud Q = {qi ∈ R3|i = 1, ...,M} with Qc = {qci ∈ [0, 1]3|i =
1, ...,M}, the objective of point cloud registration (PCR) is to estimate a rigid transformation
T = {R, t}, where R ∈ SO(3) and t ∈ R3. By applying the transformation on P , the two point
clouds can be aligned. The process of estimating the optimal transformation can be defined as solving
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the following optimization problem:

min
R,t

∑
(p̄i,q̄i)∈C̄

∥R · p̄i + t− q̄i∥22, (1)

where C̄ is the ground-truth correspondence set between P and Q.

3.2 PIPELINE

For ease of description, we provide the following symbol explanations. Taking the source colored
point cloud as an example, We perform a down-sample process on dense points P ∈ R|P|×3 to
get the multi-level points, from P̃ ∈ R|P̃|×3 to the superpoints (patches) P̂ ∈ R|P̂|×3, where
|P̂| < |P̃| < |P|. The representation for the target colored point cloud Q is similar.

Fig. 1 illustrates the pipeline of UPC-PCR. We follow prior works (Sun et al., 2021; 2019; Yu
et al., 2021; Qin et al., 2022) to perform registration with a coarse-to-fine process (i.e. from patch
correspondences to point correspondences). We first calculate the curvature of raw points generated
from depth images, and get the point-wise color from their corresponding RGB images. Then
we utilize the Curvature-Color Fusion Model (CCF) to initialize dense points features (Sec. 3.3),
followed by the backbone KPConv-FPN (Thomas et al., 2019; Lin et al., 2017) for hierarchical
feature extraction. Next, we apply positional embedding (Sec. 3.4) on superpoints and feed them
to a Transformer (Qin et al., 2022) to obtain superpoint features F̂P and F̂Q. Based on these
features, patch correspondences can be estimated (Qin et al., 2022). Then an optimal transport layer
(Sarlin et al., 2020) is used to obtain the point correspondences from the patch correspondences. To
sufficiently retrieve high-order compatibility between correspondences and filter out outliers, we
utilize the point-pair features from F̃P and F̃Q to initialize a correspondence hypergraph. Then the
Feature-based Compatibility Hypergraph Convolution (Sec. 3.5) can efficiently aggregate vertex
features for promising initial hypotheses generation. Finally, we follow Hunter (Yao et al., 2023) to
perform local exploration on the initial hypothesis to alternatively generate transformations, followed
by final transformation selection.

3.3 CURVATURE-COLOR FUSION MODEL

Feature initialization has been proven critical in colored point cloud registration (Zhang et al., 2022).
However, inappropriate multi-modal fusion methods cannot effectively eliminate feature ambiguity.
Therefore, we propose the CCF model to explicitly initialize point-wise features. We follow (Rusu
& Cousins, 2011) to compute curvature. For each point pi in the colored point cloud P , with its
r-radius neighborhood denoted as B3

r = {x ∈ R3 | ∥x∥ ≤ r}, we compute its covariance matrix
C ∈ R3×3:

C =
1

N − 1

N∑
i=1

(pi − p̄)(pi − p̄)T , (2)

where N is the number of points in the neighborhood and the division by N − 1 in the formula aims
to obtain an unbiased estimate. p̄ is the mean of the points in the neighborhood, i.e., p̄ = 1

N

∑N
i=1 pi.

Then we calculate the eigenvalues λ1 < λ2 < λ3 of the covariance matrix C. The final curvature can
be computed by k = λ1

λ1+λ2+λ3
.

For points color, since the raw 3DMatch dataset (Zeng et al., 2017) is composed of RGB-D images,
color can be simply acquired from RGB images. ColorPCR (Mu et al., 2024) preprocessed the
3DMatch in this way and achieved Color3DMatch, where every point contains an RGB value. We
utilize Color3DMatch and follow ColorPCR to convert RGB into the HSV color system. Finally, we
simply concatenate the curvature and the color, and employ a multi-layer perception to fuse them and
adjust the feature dimension to match the following network modules.

3.4 POSITIONAL EMBEDDING

Since the local features of point clouds may not be prominent, relying solely on KPConv-based
feature extraction is insufficient to eliminate feature ambiguity. By introducing positional embedding,
spatial consistency can be preserved and therefore improve the registration performance (Min et al.,
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2021; Yang et al., 2022; Qin et al., 2022). Given two pairs of corresponding points under ground-truth,
denoted as (px,qa) and (py,qb), where px,py ∈ P and qa,qb ∈ Q, we adopt three types of
embedding to encode the geometric structure of the superpoints based on structural properties they
have. The embeddings are named Pair-wise Distance (PD) embedding (Qin et al., 2022), Triplet-wise
Angular (TA) embedding (Qin et al., 2022)), and Centroid Angular (CA) embedding. And we use the
sum of them as the final embedding.

(1) Pair-wise Distance (PD) Embedding rD (Qin et al., 2022). It is based on the structural property
that for correspondence pairs (px,qa) and (py,qb), we have ∥px − py∥ = ∥qa − qb∥. Denoting
the three-dimensional Euclidean distance between (px,qa) as d = ∥px − qa∥, we have rD =
F ( d

σd
)WD, where F is a sinusoidal function (Vaswani et al., 2017) and σd is a hyperparameter

used to tune the sensitivity on distance variations. WD ∈ Rdt×dt is the corresponding projection
matrix, where dt is the output dimension of F . Notably, ColorPCR (Mu et al., 2024) introduce
color information by multiplying d with the hue difference between px and qa (named hue-PD) and
achieved an improvement. For more details, refer to our ablation experiments in Sec. 4.3.

(2) Triplet-wise Angular (TA) Embedding rA (Qin et al., 2022). For any xi among the ka nearest
neighbors of px, forming an angle ∠ixy, the largest ∠ixy = ∠jab, where j is the index of the
largest angle in the neighborhood of qa. Based on this property, we denote ∠ixy as ai, and its TA
embedding can be computed as rA = maxxi

[F ( ai

σa
)WA], where σa is a hyperparameter used to tune

the sensitivity on angular variations and WA ∈ Rdt×dt is the corresponding projection matrix.

Figure 2: Centroid An-
gular embedding for ex-
tremely low overlap sce-
narios.

(3) Centroid Angular (CA) Embedding rCA. We specially design CA
to assist in the extremely low overlap registration cases, as shown in
Figure 2. For any two points p, q in the overlapping regions, they
can form centroid angles ∠pc1q and ∠pc2q with centroids c1 and c2.
Denoting α = maxpq ∠pc1q and β = maxpq ∠pc2q, we claim that
any centroid angle in the overlapping region is less than θ = max{α, β}.
When θ is sufficiently small, the CA embeddings of the overlapping region
are approximately equal. To validate this hypothesis, we conduct detailed
ablation experiments (Sec. 4.3) and test UPC-PCR under extremely low
overlap conditions (Figure 3). The experimental results confirm our
assumption. Denoting any centroid angle as Ca, then its CA embedding
can be computed as rCA = F ( Ca

σca
)WCA, where σca is a hyperparameter used to tune the sensitivity

and WCA ∈ Rdt×dt is the corresponding projection matrix.

3.5 FEATURE-BASED COMPATIBILITY HYPERGRAPH CONVOLUTION

Although CCF and CA can effectively detect many correct correspondences in most cases, they
inevitably introduce additional errors. Therefore, we design a hypergraph convolution to learn
higher-order compatibility among correspondences for outlier rejection. The hypergraph we utilize
here can be denoted as G = (V,E), where V represents the set of vertices, and E represents the
set of hyperedges. In V , each vertex vi = (pi,qi) is a correspondence (i.e. a pair of corresponding
points) predicted in the previous module, with the correspondence matching scores denoted as
M = {mi|mi ∈ [0, 1], 1 ≤ i ≤ N}, where N is the number of correspondences.

A hypergraph can be represented as an incidence matrix H . If H(i, j) = 1, it indicates that the
hyperedge ej connects vertex vi; otherwise, H(i, j) = 0. The degree of vertex vi and hyperedge ej

are defined as D(vi) = Σ
|E|
j=1H(i, j) and D(ej) = Σ

|V |
i=1H(i, j). Compared to graphs, Hypergraphs

allow hyperedges to connect more than one vertices, which satisfy compatibility. By using the
hypergraph convolution for vertex feature aggregation, the high-specificity features from the preceding
network can be fused with spatial consistency, which can facilitate more accurate initial hypotheses.

We still use the symbols introduced in Sec. 3.4 and take the correspondences vi = (px,qa) and
vj = (py,qb) as examples. The compatibility between them can be computed by Cij = 1− ( d

σc
)2,

where d = |∥px − py∥ − ∥qa − qb∥| and σc is a hyperparameter for tuning the sensitivity of
the compatibility. Then, we introduce the compatibility of hyperedges. For hyperedge ek, its
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compatibility can be computed as:

Ck = Σ
|V |
i=1Σ

|V |
j=i

H(i, k) ·H(j, k) · Cij
D(ek)

. (3)

Each vertex will induce a hyperedge, and for the hyperedge induced by vertex vi, it will connect to
the top kc vertices with the highest compatibility to vi. In this way, we complete the construction of
the compatibility hypergraph. Next, we introduce a hypergraph convolution similar to (Yao et al.,
2023) to perform vertex feature aggregation. For any vertex (correspondence) vi = (px,qa), features
fx ∈ F̃P and fa ∈ F̃Q from backbone are used for hypergraph initialization. Specifically, the feature
of this vertex vi can be initialized by concatenating fx and fa.

The feature aggregation process can be represented as follows. For any hypergraph convolution layer
l, the feature of vertex vi at layer l is denoted as Fl

i ∈ Rdl , it can be updated as

F̂l
i = Σ

|V |
j=1αijmjF

l
jW

l, (4)

where Wl ∈ Rdl × Rdl+1 is corresponding projection matrix, mj is the matching score of vj and
αij measuring the correlation between vi and vj can be computed as:

αij =
1√

D(vi)D(vj)
Σ

|E|
k=1

H(i, k) ·H(j, k) · Ck
D(ek)

. (5)

Through this aggregation process, spatial consistency propagates from hyperedges to vertices. Then
we compute the inlier confidence Sl of layer l by successively applying an MLP and sigmoid
function on F̂l. To normalize the features, we compute the weighted mean µl = Σ

|V |
i=1S

l
iF̂

l
i/Σ

|V |
i=1S

l
i

and standard deviation σl =
√

1
|V |Σ

|V |
i=1(F̂

l
i − µl)2 of them. The normalized features of layer l

is computed as F
l
= (F̂l − µl)/σl. Finally, The feature of next layer Fl+1 can be calculated by

applying a ReLU function on F
l
. In the rest steps, we follow (Yao et al., 2023) to estimate the

transformation, including Initial Hypotheses Generation based on Non-Maximum Suppression (Lowe,
2004), Preference-Based Local Exploration, and Distance-Angle Based Hypothesis Selection.

3.6 LOSS FUNCTIONS

To train our model, the loss functions we use include overlap-aware circle loss (Loc) and point
matching loss (Lp) from GeoTransformer (Qin et al., 2022), spectral matching loss (Lsm) proposed
in PointDSC (Bai et al., 2021b), and classification loss (Lclass) introduced in Hunter (Yao et al.,
2023). The final loss can be obtained through a weighted sum of the four loss components. Notably,
we find that using a two-stage approach can yield a slight performance improvement compared to
end-to-end training, as detailed in Sec. 4.3.

4 EXPERIMENTS

We evaluate the performance of UPC-PCR on the colored point cloud datasets
Color3DMatch/Color3DLoMatch (Zeng et al., 2017; Huang et al., 2021; Mu et al., 2024),
as well as the ScanNet (Dai et al., 2017a). In Color3DMatch, the overlap between colored point cloud
pairs exceeds 30%, while in COlor3DLoMatch, it ranges from 10% to 30%. ScanNet is a large-scale
dataset comprising 1513 scenes, and each scene contains RGB-D images and ground-truth camera
poses.

4.1 COLOR3DMATCH AND COLOR3DLOMATCH

Metrics. Similar to prior works (Huang et al., 2021; Qin et al., 2022; Yu et al., 2023b; Mu et al.,
2024), we evaluate five metrics including the Inlier Ratio (IR), which measures the proportion of
correctly estimated point correspondences during registration (with residuals less than a distance
threshold of 0.1m under the ground truth transformation); Feature Matching Recall (FMR), which
assesses the proportion of point cloud pairs with IR greater than a threshold (5%); and the most
crucial metric, Registration Recall (RR), defined as the proportion of point cloud pairs correctly

6
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Table 1: Results on Color3DMatch and Color3DLoMatch. #Samples in the table represents the
number of the selected correspondences. The "color source" column in the table indicates the origin
of the color. "concatenate color" indicates that the method does not use color and we introduce color
to them in a simple concatenation (refer to appendix) manner to facilitate fair comparison; "RGB-D
images" signifies that the method employs images to assist in point cloud registration; "colored PC"
indicates that color comes from colored point cloud. The best scores are in bold.

#Samples color source Color3DMatch Color3DLoMatch
5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%)↑

Predator (Huang et al., 2021) condatenate color 97.5 97.8 97.4 97.2 96.6 77.8 78.5 79.8 79.1 78.7
CoFiNet (Yu et al., 2021) condatenate color 99.1 98.9 99.1 99.0 99.2 85.8 86.2 86.1 86.4 86.5
GeoTransformer (Qin et al., 2022) condatenate color 98.7 98.6 98.9 98.7 98.9 90.2 90.3 90.1 90.2 90.2
PCR-CG (Zhang et al., 2022) RGB-D images 97.4 97.5 97.7 97.3 97.6 80.4 82.2 82.6 83.2 82.8
PEAL (Yu et al., 2023b) RGB-D images 99.0 99.0 99.1 99.1 98.8 91.7 92.4 92.5 92.9 92.7
ColorPCR (Mu et al., 2024) colored PC 99.5 99.5 99.5 99.5 99.5 96.5 96.5 97.0 97.0 96.7
UPC-PCR (ours) colored PC 99.8 99.8 99.8 99.8 99.8 96.3 96.5 96.5 96.8 96.7

Inlier Ratio (%)↑

Predator (Huang et al., 2021) condatenate color 52.4 53.4 52.8 50.8 46.5 21.6 23.6 24.8 24.4 23.1
CoFiNet (Yu et al., 2021) condatenate color 54.1 55.5 56.2 56.5 56.3 27.8 29.6 30.6 30.9 31.1
GeoTransformer (Qin et al., 2022) condatenate color 75.8 76.3 77.2 84.2 87.4 44.5 46.7 47.9 53.4 58.8
PEAL (Yu et al., 2023b) RGB-D images 72.4 79.1 84.1 86.1 87.3 45.0 50.9 57.4 60.3 62.2
ColorPCR (Mu et al., 2024) colored PC 75.0 80.5 84.7 86.5 87.8 51.2 56.6 63.1 66.0 68.0
UPC-PCR (ours) colored PC 71.4 77.6 82.4 84.5 86.0 47.2 53.1 59.8 62.8 65.1

Registration Recall (%)↑

Predator (Huang et al., 2021) condatenate color 90.7 90.6 89.6 90.8 84.8 60.1 61.8 62.6 62.8 58.2
CoFiNet (Yu et al., 2021) condatenate color 90.8 91.5 91.3 91.1 90.5 65.2 66.3 65.5 66.0 65.5
GeoTransformer (Qin et al., 2022) condatenate color 94.3 93.7 93.7 93.9 93.4 81.7 81.2 80.8 80.4 80.1
PCR-CG (Zhang et al., 2022) RGB-D images 89.4 90.7 90.0 88.7 86.8 66.3 67.2 69.0 68.5 65.0
PEAL (Yu et al., 2023b) RGB-D images 94.6 93.7 93.7 93.9 93.4 81.7 81.2 80.8 80.4 80.1
ColorPCR (Mu et al., 2024) colored PC 96.7 96.5 97.0 96.4 96.5 88.9 88.5 88.1 86.5 85.0
UPC-PCR (ours) colored PC 98.3 98.4 98.0 97.6 97.0 90.4 90.1 89.5 87.0 85.6

registered (with a transformation error RMSE less than a threshold of 0.2m). We also evaluate the
Relative Rotation Error (RRE) and Relative Translation Error (RTE), which measure the quality of
the estimated transformation.

Comparison with recent methods. We compare UPC-PCR with recent state-of-the-art methods,
including, Predator (Huang et al., 2021), CoFiNet (Yu et al., 2021), GeoTransformer (Qin et al.,
2022), PCR-CG (Zhang et al., 2022) PEAL (Yu et al., 2023b) and ColorPCR (Mu et al., 2024). The
comparison results are shown in Table 1. We report the FMR, IR, and RR with samples of 250,
500, 1000, 2500, and 5000. The FMR metric reflects the specificity of point-wise features, as only
correspondences with close distances in the feature latent space are correctly identified as inliers.
Therefore, a higher FMR value indicates that the network extracts features more accurately and
identifies a greater number of inliers in most cases. Our UPC-PCR achieves the FMR of 99.8%/96.8%
on Color3DMatch/Color3DLoMatch, demonstrating the significant effect of the proposed curvature-
color fusion model. For IR, because of the aggressive introduction of color, which may disrupt the
spatial structure of point cloud, the IR of our UPC-PCR is lower compared to methods like PEAL (Yu
et al., 2023b) and ColorPCR (Mu et al., 2024). However, the inlier ratio is not directly correlated with
the final registration results (as described in OIF-PCR (Yang et al., 2022)); a relatively high inlier
ratio is sufficient to estimate an accurate transformation from the correspondences. By leveraging the
powerful high-order correlation learning ability of FCH, UPC-PCR can effectively reject outliers,
thereby achieving more accurate registration with higher registration recall (RR). We also investigated
the factors influencing IR, as detailed in Sec. 4.3. Regarding RR, the most important metric, our
UPC-PCR achieves the best performance on both Color3DMatch and Color3DLoMatch, with rates
of 98.4% and 90.4%, respectively. UPC-PCR surpasses previous methods in most samples.

Registration with challenging overlaps. In Table 1, we compare UPC-PCR with recent registration
methods, with results on Color3DLoMatch significantly surpassing previous methods. To further
validate the robustness of UPC-PCR in cases with extremely low overlap, we divide Color3DLoMatch
into four overlap intervals for testing. We compared the results with, CoFiNet (Yu et al., 2021),
GeoTransformer (Qin et al., 2022) and ColorPCR (Mu et al., 2024) using RANSAC with 5000
samples. The experimental results are shown in Figure 3. The FMR plot demonstrates that even with
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Figure 3: Experimental results of UPC-PCR under different low overlaps.

Table 2: Results on ScanNet. In the table, methods Predator, CofiNet and GeoTransformer do not
utilize color originally. We modified them by incorporating color via concatenation (refer to appendix)
and retrained them on Color3DMatch. The "color source" column in the table has the same meaning
as in Table 1.

Method color info
Rotation (deg) Translation (cm)

Accuracy (%)↑ Error (deg)↓ Accuracy (%)↑ Error (cm)↓
5 10 45 Mean Med. 5 10 25 Mean Med.

UR&R (El Banani et al., 2021) (Supervised) RGB-D images 92.3 95.3 98.2 3.8 0.8 77.6 89.4 95.5 7.8 2.3
Predator (Huang et al., 2021) condatenate color 94.9 98.2 99.1 3.2 1.5 65.3 90.1 97.3 7.1 3.9
CofiNet (Yu et al., 2021) condatenate color 95.2 98.4 99.3 2.8 1.4 68.0 91.5 98.0 6.4 3.7
GeoTransformer (Qin et al., 2022) condatenate color 96.6 98.4 99.0 2.7 0.9 81.0 93.6 97.8 6.2 2.4
ColorPCR (Mu et al., 2024) colored PCR 97.4 98.7 99.1 1.9 0.9 83.1 94.9 98.1 4.8 2.3
UPC-PCR (ours) colored PCR 97.4 98.8 99.5 1.8 0.8 83.1 94.4 98.1 4.8 2.2

an overlap as low as 10%-15%, UPC-PCR can effectively extract hierarchical point-wise features,
achieving a 93.2% FMR. When the overlap exceeds 20%, UPC-PCR achieves approximately 99%
FMR, reflecting its powerful ability to eliminate feature ambiguity, and it is hardly affected by the
overlap. From the IR plot, we can observe that under extremely low overlaps, UPC-PCR still achieves
a relatively high inlier ratio, only slightly lower than ColorPCR. In terms of the most crucial metric,
Registration Recall (RR), although the other three methods achieve high accuracy in registration cases
with higher overlaps, when the overlap is low, the accuracy of the methods significantly decreases,
particularly for CofiNet and GeoTransformer. In comparison, ColorPCR performs relatively well,
and our method utilizes color more effectively, consistently outperforming its accuracy. UPC-PCR
demonstrates stable performance and achieves an RR of 81.8%. This experimental result corroborates
the inference in Sec. 3.4 that CCF and CA can effectively assist in identifying overlapping regions
under extremely low overlap conditions.

4.2 SCANNET

To test the generalization performance of UPC-PCR, we used the model trained on Color3DMatch
and directly evaluated it on ScanNet (Dai et al., 2017a). All comparison methods were trained
on Color3DMatch and tested on ScanNet. To ensure a fair comparison, we introduced color to
the methods that do not originally include it (Predator, CofiNet, GeoTransformer), using a simple
concatenation approach, just the same as in Table 6. We use two evaluation metrics, rotation error and
translation error, reporting the mean and median values of the errors. Additionally, we showcase the
method’s accuracy under three different thresholds. We compare our method with recent point cloud
registration methods UR&R (El Banani et al., 2021), Predator (Huang et al., 2021), CofiNet (Yu et al.,
2021), GeoTransformer (Qin et al., 2022) and ColorPCR (Mu et al., 2024). The experimental results
are shown in Table 2.

4.3 ABLATION

As mentioned in Sec. 1, the main contributions of UPC-PCR are the Curvature-Color Fusion Model
(CCF), Centroid Angular (CA) Embedding, and Feature-based Compatibility Hypergraph Convolution
(FCH), which collectively construct a seamless feature flow to achieve robust point cloud registration.
To explore the roles of these components in feature propagation and transformation estimation, we
conducted ablation experiments on them respectively.
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Table 3: Ablation on CCF.

Experiment CCF 3DMatch 3DLoMatch
curvature color PIR (%)↑ FMR (%)↑ IR (%)↑ RR (%)↑ PIR (%)↑ FMR (%)↑ IR (%)↑ RR (%)↑

(a) ✓ ✓ 84.8 99.8 69.7 98.3 57.6 96.3 46.9 90.4
(b) ✓ 88.5 99.8 73.6 98.0 61.9 95.7 51.2 89.1
(c) ✓ 86.4 98.2 70.6 93.1 54.2 87.6 42.9 76.2
(d) 86.2 98.6 70.7 93.9 52.6 87.6 41.9 74.6

(a) with CCF (b) w/o CCF (c) ground truth (c) ground truth

Figure 4: Visualization of feature matching. Given the points in the overlapping region of the source
colored point cloud, figures (a) and (b) visualize the heatmap of the target colored point cloud based
on feature similarity. Figures (c) and (d) illustrate the overlapping region of the ground truth, where
the blue points represent the source and the yellow points represent the target.

Ablation on Curvature-Color Fusion model. UPC-PCR can extract highly specific features. This
heavily relies on the ambiguity elimination in the feature initialization module, CCF. We visualized
the feature extraction results of CCF using heatmaps, as shown in Figure 4. We used CCF to extract
features from two colored point clouds and selected a set of points S from the overlapping region
of the source colored point cloud, determining the maximum similarity of each point in the target
colored point cloud to the points in S. Points with higher feature similarity were assigned a deeper
red color, creating a feature heatmap for the target colored point cloud. As shown in (a) and (b),
when using CCF, many points in the overlapping region exhibit high similarity, while others have low
similarity. This confirms that the features extracted by CCF have high specificity, and the algorithm
assigns higher feature similarity to points in the overlapping region. However, the figure also reflects
that CCF can result in some non-overlapping points being assigned high feature similarity. This is due
to these points having similar colors. This finding aligns with the observed decrease in the inlier ratio
in our experimental results. This is why we designed FCH to search for higher-order associations
among corresponding points, filtering out incorrect correspondences for accurate registration.

Furthermore, we conducted ablation experiments on CCF under the same conditions of Triplet-
wise Angular embedding, Pair-wise Hue-Distance Embedding, Centroid Angular embedding, and
our FCH-based transformation estimator without sampling the correspondences. The experimental
results are shown in Table 3. When (d) does not use the CCF module, there is no incorporation
of feature initialization information, resulting in lower feature specificity and lower RR values. In
experiments (b) and (c), the introduction of feature initialization enhances point-wise features, leading
to significant improvements in various metrics of the network. However, in experiment (a) where
the CCF module is employed, while FMR and RR are further improved, it leads to a decrease in
Patch Inlier Ratio (PIR) and IR. As described in Sec. 3.4, the introduction of aggressive and unstable
information may lead to a decrease in PIR and IR, but the overall registration accuracy is not affected.
Consider the following facts: (1) The introduction of curvature and color relies on the accuracy
of the hardware device and inevitably carries noise. (2) Although CCF strengthens the features of
the majority of points, it also introduces some errors. For example, points that are not originally
correspondences may be erroneously identified as inliers due to high curvature or similar color,
leading to misjudgments in correspondences and thus reducing PIR and IR. However, thanks to the
powerful outlier rejection ability of FCH, UPC-PCR can achieve robust registration.

Ablation on Feature-based Compatibility Hypergraph Convolution. To validate the role of
FCH, we report the experimental results using the FCH-based estimator, RANSAC, LGR (Qin et al.,
2022) as well as deep robust estimators DGR (Choy et al., 2020) and PointDSC (Bai et al., 2021b)
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Table 4: Comparison of FCH with other estimators.

Experiment Estimator RR (%)↑
Color3DMatch Color3DLoMatch

(a) RANSAC 97.5 87.4
(b) LGR 96.9 87.2
(c) DGR (Choy et al., 2020) 92.9 82.4
(d) PointDSC (Bai et al., 2021b) 97.3 87.6
(e) FCH end-to-end 96.6 90.2
(f) FCH 98.3 90.4

Table 5: Ablation on positional embedding.

Experiment Positional Embedding 3DMatch 3DLoMatch
PD PHD TA CA PIR (%)↑ FMR (%)↑ IR (%)↑ RR (%)↑ PIR (%)↑ FMR (%)↑ IR (%)↑ RR (%)↑

(a) ✓ ✓ ✓ 84.8 99.8 69.7 98.3 57.6 96.3 46.9 90.4
(b) ✓ ✓ ✓ 88.7 99.9 72.3 98.3 61.7 97.2 49.2 87.7
(c) ✓ ✓ 83.7 99.8 68.6 98.0 55.8 96.2 45.7 88.6
(d) ✓ ✓ 83.8 99.7 69.2 97.5 55.4 96.3 46.1 87.6
(e) ✓ ✓ 87.5 99.3 72.2 97.3 59.9 95.0 48.8 85.7

in Table 4. Since the preceding networks are the same, we only need to analyze the RR metric. On
the Color3DMatch dataset, since the overlap between two point clouds is high, all estimators can
estimate the transformation relatively well. However, on the Color3DLoMatch dataset, they cannot
perform well. Instead, FCH, which utilizes the high specificity features extracted by the preceding
network and explicitly retrieves high-order compatibility of correspondences, achieves the highest RR
of up to 90.4%. We also observed that compared to end-to-end training of FCH in (e), the two-stage
training (f) can achieve slightly better performance. This might be due to the more significant training
capability of the loss function under the two-stage training scheme.

Ablation on Positional Embedding. Positional embedding has a significant impact on the accuracy
of point cloud registration. To investigate this, we conducted an ablation study on different com-
binations of embeddings, where multiple embeddings are combined with addition. The rest of the
network components remained consistent, including CCF and FCH-based transformation estimator.
The experimental results are presented in Table 5. The listed four types of positional embedding
are Pair-wise Distance (PD) Embedding, Pair-wise Hue-Distance (PHD) Embedding, Triplet-wise
Angular Embedding (TA), and our Centroid Angular (CA) Embedding, respectively. Experiment
(a) corresponds to the embedding method used in UPC-PCR, which achieves the best performance
in most indicators. However, compared to (b)(e), which utilizes PD instead of PHD, (a) exhibits
relatively lower PIR and IR. This confirms our previous hypothesis that although using color and CA
can extract more accurate superpoint features, they may lead to some incorrect correspondences. On
the other hand, though using PD results in relatively higher PIR and IR, its feature ambiguity leads to
lower RR, which is the most important indicator. Experiments (a)(c) validate the role of TA, (a)(b)
verify the effect of PHD, and (a)(d) demonstrate the effect of CA.

5 CONCLUSION

In this paper, we propose UPC-PCR: Unleash the Power of Color for Point Cloud Registration. To
provide more distinctive initial point features, we introduce the Curvature-Color Fusion Model to
explicitly compute and fuse geometric-color information. This significantly enhances the feature
distinctiveness of hierarchical points. To better encode structural information, we propose a Centroid
Angular embedding, which can help detect the correspondences in the overlapping regions in low
overlap registration, thus enhancing the robustness of patch matching. Finally, we design a Feature-
based Compatibility Hypergraph Convolution as a bridge to connect the preceding network and
the transformation estimator. It utilizes the initial features of corresponding points and aggregates
them with the network. By doing this, it retrieves high-order correlations in correspondences and
effectively rejects outliers. UPC-PCR achieves a significant improvement in registration performance
on multiple datasets, and makes it possible to address challenging registration cases in real-world
scenarios with extremely low overlap and insignificant structural characteristics.
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APPENDIX

In this supplementary material, we first provide specific definitions of the performance metrics in
the experiments (Sec. A). Then, we provide a detailed introduction to the datasets for evaluation
(Sec. B), implementation details (Sec. C.1), and network architecture (Sec. C.2). Subsequently, we
conduct a comprehensive evaluation of the model from various perspectives, including assessment of
transformation quality (Sec. D.1), computation time and space overheads (Sec. D.2), and robustness
against noise (Sec. D.3). Then, we analyze error cases encountered during algorithm execution
(Sec. E.1), discuss current limitations, and propose potential improvements for future work (Sec. E.2).
Finally, we present visualizations of registration results (Sec. F.1), including cases from the datasets
and registration results in challenging real-world scenarios (Sec. F.2).

A. EVALUATION METRICS

Inlier Ratio (IR): The Inlier Ratio measures the proportion of point correspondences (pi,qj) ∈ Ĉ
that are within a certain residual threshold under the ground truth transformation T Q

P . Here, Ĉ denotes
the estimated correspondence set between the point clouds P and Q, and T Q

P represents the ground
truth transformation from P to Q. A correspondence pair is considered an inlier if the Euclidean
norm of its residual is less than the threshold τ1 = 10cm. The Inlier Ratio for the point cloud pair P
and Q is computed as:

IR(P,Q) =
1

|Ĉ|

∑
(pi,qj)∈Ĉ

I
[
∥T Q

P (pi)− qj∥ < τ1

]
, (6)

where I[·] is the indicator function that counts the number of correspondences with residuals less than
the threshold τ1.

Feature Matching Recall (FMR): The Feature Matching Recall (Deng et al., 2018a) is used to
evaluate the result of feature matching by determining the fraction of point cloud pairs where the
Inlier Ratio exceeds a given threshold, τ2 = 5%. This metric reflects the probability of accurately
recovering the correct transformation using the estimated correspondence set Ĉ, typically with the aid
of a robust pose estimation algorithm such as RANSAC (Fischler & Bolles, 1981). For a dataset D
containing |D| point cloud pairs, the Feature Matching Recall is defined as follows:

FMR(D) =
1

|D|
∑

(P,Q)∈D

I[IR(P,Q) > τ2], (7)

where I[·] is the indicator function that counts the number of point cloud pairs for which the Inlier
Ratio exceeds the threshold τ2. This metric provides insight into the overall robustness and accuracy
of the feature matching process across the entire dataset.

Patch Inlier Ratio (PIR): The Patch Inlier Ratio (Qin et al., 2022) is a metric that evaluates the
quality of superpoint correspondences by measuring the proportion of matches that show actual
overlap when transformed using the ground-truth transformation. This metric indicates how well the
estimated superpoint correspondences reflect the true geometric relationships. The Patch Inlier Ratio
is calculated as follows:

PIR =
1

|Ĉ|

∑
(p̂i,q̂j)∈Ĉ

I

[
min

p̃∈Ũ(p̂i),q̃∈Ũ(q̂j)
∥p̃− q̃∥2 < τ3

]
, (8)

where τ3 = 5cm is the matching radius. In this context: - Ĉ denotes the estimated set of superpoint
correspondences, - Ũ is the function that up-samples a superpoint to its up-sampling points (i.e.,
Ũ(p̂i) ⊂ P̃), - I(·) is the indicator function that returns 1 if the condition inside is true and 0 otherwise.
This formulation ensures that the metric counts only those correspondences where at least one pair of
up-sampled points from the superpoints is within the matching radius.

Relative Translation and Rotation Errors (RTE and RRE): To evaluate the accuracy of the
estimated transformation T̂ Q

P ∈ SE(3), consisting of the translation vector t̂ ∈ R3 and rotation
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matrix R̂ ∈ SO(3), we calculate the Relative Translation Error (RTE) and Relative Rotation Error
(RRE) with respect to the ground truth transformation T Q

P as follows:

RTE = ∥t̂− t∥, (9)

RRE = arccos

(
trace(R̂TR)− 1

2

)
. (10)

Here, t and R denote the ground truth translation and rotation components in T Q
P , respectively. The

RTE measures the Euclidean distance between the estimated and ground truth translation vectors,
while the RRE quantifies the angular difference between the estimated and ground truth rotation
matrices.

Registration Recall (RR): The Registration Recall (Choi et al., 2015) is a metric used to evaluate
the accuracy of point cloud registration. It measures the fraction of point cloud pairs for which the
Root Mean Square Error (RMSE) is below a certain threshold, denoted as τ3 = 0.2m. For a dataset
D containing |D| pairs of point clouds, the Registration Recall is defined as follows:

RR(D) =
1

|D|
∑

(P,Q)∈D

I[RMSE(P,Q) < τ3], (11)

where I[·] is an indicator function that counts the number of point cloud pairs with an RMSE below
the threshold τ3. The RMSE for each pair (P,Q) ∈ D is calculated as:

RMSE(P,Q) =

√√√√ 1

|C|

∑
(pi,qj)∈C

∥T Q
P (pi)− qj∥2, (12)

where C represents the ground truth correspondences and T Q
P denotes the estimated transformation.

This metric provides an indication of the precision of the registration process across the entire dataset.

B. DATASETS

3DMatch (Zeng et al., 2017) combines datasets from previous works such as Analysis-by-Synthesis
(Valentin et al., 2016), 7Scenes (Shotton et al., 2013), SUN3D (Xiao et al., 2013), and RGB-D Scenes
v.2 (Lai et al., 2014), among others. The official benchmark divides the data into 54 scenes for
training and 8 scenes for testing. These scenes are captured in various indoor environments (e.g.,
study rooms, bedrooms, offices, living rooms) using different depth sensors (e.g., Intel RealSense,
Asus Xtion Pro Live, Microsoft Kinect, etc.). We would like to acknowledge the authors of the
3DMatch dataset for making the data available under the MIT License.

Table 6: Raw data in 3DMatch (Zeng et al., 2017) and their licenses.

Datasets License
SUN3D (Xiao et al., 2013) CC BY-NC-SA 4.0
7-Scenes (Shotton et al., 2013) Non-commercial use only
RGB-D Scenes v.2 (Lai et al., 2014) (License not stated)
Analysis-by-Synthesis (Valentin et al., 2016) CC BY-NC-SA 4.0
BundleFusion (Dai et al., 2017b) CC BY-NC-SA 4.0
Halber et al. (Halber & Funkhouser, 2017) CC BY-NC-SA 4.0

Predator (Huang et al., 2021) and ColorPCR (Mu et al., 2024) preprocessed the original 3DMatch
dataset, providing the processed source and target point cloud pairs, as well as the ground truth
transformations. We utilize the preprocessed dataset Color3DMatch from ColorPCR for training
and testing. Specifically, Color3DMatch is preprocessed by mapping the reshaped RGB images and
depth images pixel by pixel enables the retrieval of color information for each pixel. Finally, we can
convert the depth images into point clouds.
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The ScanNet (Dai et al., 2017a) dataset is a large-scale RGB-D video dataset designed for 3D
reconstruction, scene understanding, and semantic segmentation in indoor environments. It includes
over 1,500 scans of diverse indoor scenes, featuring more than 2.5 million RGB-D images. Each
scan is annotated with rich semantic and instance-level labels, covering 20 common indoor object
categories. The dataset provides both raw RGB-D sequences and reconstructed 3D meshes with
texture information, making it a valuable resource for advancing research in computer vision and
robotics. We would like to thank the authors of the ScanNet dataset for providing the data.

C. IMPLEMENTATION

C.1. IMPLEMENTATION DETAILS

During the training and evaluation processes of UPC-PCR, we utilize an Intel (R) Xeon (R) CPU
E5-2640 v4 and an NVIDIA GeForce RTX 3090 GPU for IO operations and computing. PyTorch
(Paszke et al., 2019) serves as the primary implementation framework of UPC-PCR. For training,
we employ the Adam optimizer, initialized with a learning rate of 10−4 and decayed by 5% per
epoch. The batch size is configured as 1, and weight decay is set to 10−6. We employ a matching
radius of 5cm, aligned with the voxel size after down-sampling, wherein point pairs within this
radius are considered part of the overlapping area. We follow the data augmentation proposed in
the methodology (Huang et al., 2021). During training, 128 ground-truth superpoint matches are
randomly sampled, while during testing, 256 matches are sampled.

C.2. NETWORK ARCHITECTURE

The network architecture of UPC-PCR is illustrated in Figure 5, where the three boxes from left to
right represent the Feature-based Compatibility Hypergraph Convolution (FCH), the hierarchical
point feature extraction backbone, and the Transformer structure for superpoint feature extraction.

Backbone. We propose the Curvature-Color Fusion Model (CCF) to initialize dense point features.
For the input colored point cloud, we process it to extract curvature and (h, s, v) values, which are
then fused to obtain the initial dense point features. These dense points with initial features are
subsequently input into the KPConv-FPN (Thomas et al., 2019; Lin et al., 2017) backbone network.
Specifically, we follow the method described in (Thomas et al., 2019) to perform down-sampling
operations to obtain hierarchical down-sampling points. The initial voxel size for the first-level
down-sampling is 2.5cm, and this value is doubled for each subsequent down-sampling. Notably,
We follow GeoTransformer (Qin et al., 2022) by using group normalization with 8 groups after the
KPConv layers.

Superpoint Transformer. After obtaining the initial superpoint features through the backbone
described above, we use a Transformer (Qin et al., 2022) structure to capture more precise superpoint
features. To fully leverage structural information and enhance feature distinctiveness, we employ three
types of positional embeddings: Pair-wise Distance Embedding, Triplet-wise Angular Embedding,
and Centroid Angular Embedding, which are summed together. These embeddings are then used for
self-attention on the superpoint features, followed by cross-attention between the two point clouds.
This process is repeated three times, and finally, a linear layer is used to obtain the final features,
which contain rich semantic information.

FCH. After obtaining the point correspondences, we use the FCH for feature aggregation. Each
correspondence is abstracted as a vertex in a hypergraph. This vertex contains a pair of corresponding
points, and we concatenate the features of these two points to obtain the initial vertex features.
Next, we use the Compatibility HGNN-Conv layer to compute compatibility and perform hyperedge
convolution (Bai et al., 2021a). This convolution process is repeated twice, ultimately resulting in
final features that encapsulate higher-order consistency relationships.
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Figure 5: Network architecture of UPC-PCR.

D. MORE EXPERIMENTS

D.1. BASELINE COMPARISON

In Table 1 and Table 2, we compared our approach with methods such as Predator (Huang et al.,
2021), CofiNet (Yu et al., 2021), and GeoTransformer Qin et al. (2022). However, these methods
do not utilize color information. To facilitate a fair comparison, we concatenated the RGB color
information with the geometric features (XYZ) for feature extraction. After incorporating color, we
trained these methods on Color3DMatch (Zeng et al., 2017; Mu et al., 2024) and then compared them
with UPC-PCR on the Color3DMatch and ScanNet (Dai et al., 2017a) datasets.

D.2. TRANSFORMATION QUALITY

RRE and RTE. We compare the RRE and RTE of UPC-PCR with recent point cloud registration
methods (Huang et al., 2021; Yu et al., 2021; Qin et al., 2022; Zhang et al., 2022; Yew & Lee, 2022;
Yu et al., 2023b; Mu et al., 2024) on Color3DMatch/Color3DLoMatch, and the experimental results
are shown in Table 7. We achieve the second-best RRE and the third-best RTE results on both
Color3DMatch and Color3DLoMatch, slightly behind ColorPCR (Mu et al., 2024) and REGTR
(Yew & Lee, 2022). The experiments in the main text demonstrate that UPC-PCR can achieve
accurate registration in the vast majority of scenarios, even in extremely challenging low-overlap

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Relative Rotation Errors and Relative Translation Errors on 3DMatch/3DLoMatch datasets.

Model Color3DMatch Color3DLoMatch
RRE (°) RTE (m) RRE (°) RTE (m)

Predator (Huang et al., 2021) 2.029 0.064 3.048 0.093
CoFiNet (Yu et al., 2021) 2.002 0.064 3.271 0.090
GeoTransformer (Qin et al., 2022) 1.772 0.061 2.849 0.088
PCR-CG (Zhang et al., 2022) 1.993 0.061 3.002 0.087
REGTR (Yew & Lee, 2022) 1.567 0.049 2.827 0.077
PEAL (Yu et al., 2023b) 1.748 0.062 2.788 0.087
ColorPCR (Mu et al., 2024) 1.492 0.048 2.581 0.075
UPC-PCR (ours) 1.524 0.051 2.665 0.079

Table 8: Comparison of registration recall, runtime and model size.

Model RR (%) Time (s) Model Size (MB)3DMatch 3DLoMatch Model Pose Total

Predator (Huang et al., 2021) 89.0 59.8 0.052 3.241 3.293 56.70
CofiNet (Yu et al., 2021) 89.3 67.5 0.231 1.421 1.652 62.84
GeoTransformer (Qin et al., 2022) 92.0 75.0 0.126 2.193 2.319 37.61
UPC-PCR (ours) 98.4 90.4 0.489 0.094 0.583 38.13

cases. Furthermore, Table 7 shows that UPC-PCR can estimate tight transformations, achieving
high-quality registration outcomes.

D.3. COMPUTING OVERHEAD AND RUNTIME

We evaluate the registration time overhead and model size of UPC-PCR and compare them with recent
methods including Predator (Huang et al., 2021), CofiNet (Yu et al., 2021), and GeoTransformer
(Qin et al., 2022). The experimental results are shown in Table 8. In the table, Model Time refers
to the time taken by the model to estimate correspondences, while Pose Time refers to the time
taken to estimate the final transformation from the correspondences. All three methods compared
with UPC-PCR use RANSAC-50k as the estimator. As shown, UPC-PCR significantly outperforms
the baselines in registration accuracy and, being a RANSAC-free method, it is also extremely fast.
Additionally, its model size is comparable to the smallest, GeoTransformer (Qin et al., 2022). These
results demonstrate the robust overall performance of UPC-PCR.

D.4. ROBUSTNESS UNDER NOISE

Our Curvature-Color Fusion Model (CCF) utilizes color information from point clouds, which are
often generated through RGBD cameras. Due to limitations such as camera resolution, lighting, and
scene overlap, color acquisition often introduces significant noise. To thoroughly verify UPC-PCR’s
robustness to color noise, we conducted noise addition experiments, as shown in Table 9.

We specifically added two types of noise to the point cloud colors (values in the range [0,1]). The first
type involved adding Gaussian noise with a mean of 0 to the dense points, simulating the effects of
lighting, viewing angles, and other factors on the color sampling by RGB cameras. As shown, when
the noise standard deviation is small, the registration performance of UPC-PCR hardly decreases. As
the noise continues to increase, there is a slight performance degradation. Even with a noise standard
deviation as high as 0.5, the network can still achieve good registration, demonstrating UPC-PCR’s
robustness.

The second type of noise involves randomly selecting a certain proportion of dense points and
assigning them completely random color values. This noise simulates the scenario where color
information is incorrectly mapped to points at the wrong depth due to scene overlap. The results in the
table show that when the number of selected points is small, UPC-PCR maintains stable performance.
Notably, even when the proportion is as high as 30%, the model performance only experiences a
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Table 9: The registration results of UPC-PCR under different types of noise.

Noise Type 3DMatch 3DLoMatch
PIR FMR IR RR PIR FMR IR RR

Without noise 84.8 99.8 69.7 98.3 57.6 96.3 46.9 90.4

N(0, 0.0001) 84.8 99.8 69.6 98.2 57.5 96.4 46.9 88.6
N(0, 0.0005) 84.8 99.8 69.6 98.2 57.5 96.4 46.8 89.7
N(0, 0.001) 84.7 99.8 69.6 98.3 57.5 96.3 46.8 90.0
N(0, 0.005) 84.7 99.8 69.3 98.1 57.3 96.4 46.6 89.2
N(0, 0.01) 84.5 99.7 68.9 98.1 57.0 96.5 46.0 88.9
N(0, 0.05) 82.9 99.7 65.7 96.8 54.2 94.4 42.2 84.5
N(0, 0.1) 80.8 99.5 62.3 96.1 50.9 93.2 38.2 82.4
N(0, 0.5) 60.9 95.4 39.0 85.1 28.7 71.9 18.0 55.0

random 0.1% 84.8 99.8 69.7 98.3 57.5 96.4 46.9 89.0
random 0.2% 84.8 99.8 69.6 98.3 57.4 96.4 46.8 88.9
random 0.5% 84.7 99.8 69.4 98.3 57.3 96.4 46.6 89.0
random 1.0% 84.6 99.8 69.1 98.1 57.3 96.5 46.3 90.1
random 2.0% 84.6 99.8 68.8 97.5 57.1 96.1 45.8 89.3
random 5.0% 84.0 99.6 67.4 97.8 56.4 96.1 44.5 88.8
random 10.0% 83.4 99.6 65.7 97.5 55.1 96.2 42.6 86.7
random 20.0% 82.1 99.5 62.8 97.2 52.7 94.5 39.4 83.2
random 30.0% 80.5 99.1 60.0 96.6 50.2 92.1 36.4 82.3

(a) ground truth (b) ground truth (c) UPC-PCR (d) UPC-PCR

Figure 6: An example of UPC-PCR’s limitation.

slight decline. These experiments strongly validate UPC-PCR’s robustness to noise, indicating that it
can achieve reliable point cloud registration even under conditions with significant real-world noise.

E. SHORTCOMINGS AND PROSPECTS

E.1. FAILURE SCENARIOS OF REGISTRATION

Although UPC-PCR significantly enhances the robustness of point cloud registration, mismatches can
still occur in extremely challenging low-overlap scenarios. As shown in Figure 6, subfigures (a) and
(b) represent the ground truth registration results, while (c) and (d) display the mismatches produced
by UPC-PCR. In this scenario, the overlapping regions are primarily concentrated on the white floor
area, with only a small part on top of the sofa. UPC-PCR successfully registers the large floor area
but struggles to identify the overlapping region on the sofa top, resulting in a registration failure.

E.2. LIMITATIONS AND PROSPECTS

UPC-PCR excels in extracting precise point-wise features and retrieving higher-order associations of
correspondences in overlapping regions. However, when the overlap area is extremely small or even
consists of very narrow linear regions (such as the top of the sofa in Figure 6), UPC-PCR struggles
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to detect the corresponding regions. This issue limits the performance of UPC-PCR in extremely
challenging scenarios.

To address the aforementioned issues, we propose the following future directions. One feasible
approach is point cloud completion. For overly extreme low-overlap scenarios, conservative point
cloud completion can be employed to expand the overlap regions, thereby reducing the difficulty of
the point cloud registration model. Another potential method is to incorporate semantic information of
the point cloud. Even if the overlap region is small, the semantic information of the adjacent regions
should be similar. Therefore, explicitly using semantic information can guide the transformation
estimation process.

F. VISUALIZATION

F.1. QUALITATIVE RESULTS

We provide qualitative registration results on the RGBD datasets 3DMatch (Figure 7) and ScanNet
(Figure 8). In both figures, (a) represents the poses of the two input point clouds; (b) shows the ground
truth registration results, with both color and colorless visualizations; (c) shows the registration results
of UPC-PCR.

F.2. REAL WORLD SCENARIOS

We also provide UPC-PCR’s qualitative registration results in real-world settings, including both
indoor and outdoor scenes, as shown in Figure 9. In the figure, (a) represents the target point cloud,
(b) represents the source point cloud, (c) shows the initial poses of the two input point clouds, and (d)
displays UPC-PCR’s registration results.
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(a) Input (b) Ground truth (c) UPC-PCR

Figure 7: Qualitative registration results on Color3DMatch.
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(a) Input (b) Ground truth (c) UPC-PCR

Figure 8: Qualitative registration results on ScanNet.
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(a) Target points (b) Source points (c) Input (d) UPC-PCR

Figure 9: Qualitative registration results in real-world indoor and outdoor scenes.
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