
Under review as a conference paper at ICLR 2023

REVISITING THE ACTIVATION FUNCTION
FOR FEDERATED IMAGE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) has become one of the most popular distributed machine
learning paradigms; these paradigms enable training on a large corpus of decen-
tralized data that resides on devices. The recent evolution in FL research is mainly
credited to the refinements in training procedures by developing the optimization
methods. However, there has been little verification of other technical improve-
ments, especially improvements to the activation functions (e.g., ReLU), that are
widely used in the conventional centralized approach (i.e., standard data-centric
optimization). In this work, we verify the effectiveness of activation functions in
various federated settings. We empirically observe that off-the-shelf activation
functions that are used in centralized settings exhibit a totally different perfor-
mance trend than do federated settings. The experimental results demonstrate
that HardTanh achieves the best accuracy when severe data heterogeneity or low
participation rate is present. We provide a thorough analysis to investigate why the
representation powers of activation functions are changed in a federated setting
by measuring the similarities in terms of weight parameters and representations.
Lastly, we deliver guidelines for selecting activation functions in both a cross-silo
setting (i.e., a number of clients ≤ 20) and a cross-device setting (i.e., a num-
ber of clients ≥ 100). We believe that our work provides benchmark data and
intriguing insights for designing models FL models. The code is available at
https://anonymous.4open.science/r/FL_ACT-160B/.

1 INTRODUCTION

Federated learning (FL) has become a common and ubiquitous paradigm for collaborative machine
learning techniques (Bonawitz et al., 2019; Caldas et al., 2018; Kairouz et al., 2019; Li et al., 2020;
2019; Shokri & Shmatikov, 2015; McMahan et al., 2017; Smith et al., 2017) because it maintains data
privacy. Each client (e.g., mobile devices or the entire business) communicates with the central server
by transferring their trained model but not the data; all local updates are aggregated into a global
server-side model. Although a centralized method enhances generalization by employing a large
amount of training data, the features of the FL methods appear to differ from those of a centralized
method owing to data non-IIDness, client resource capability, and model communication (Kairouz
et al., 2021; McMahan et al., 2017; Zhao et al., 2018).

Most FL studies focus on improving the performance of the global model by applying a new
regularizer in the optimization algorithm. For instance, a proximal term is attached to optimize the
local update to enhance the method’s stability (Acar et al., 2021; Karimireddy et al., 2020; Li et al.,
2021; 2020), and hence the local model does not diverge from the global model. Some studies (Hsu
et al., 2019; Lin et al., 2020; Wang et al., 2020a;b; Yurochkin et al., 2019) improve the aggregation
step of the local models by weight averaging for the server model. When additional public or
synthetic datasets are allowed, the server proofreads the weights of the models by utilizing their data
distribution for balancing (Zhao et al., 2018; Jeong et al., 2018; Goetz & Tewari, 2020; Hao et al.,
2021). Recently, there has been an increasing demand for the personalization of models according
to the client. Jiang et al. (2019) and Fallah et al. (2020) attempt to train personalized models for
each client with a few rounds of fine-tuning rather than focusing on the performance of the server
model. In consideration of system heterogeneity (i.e., clients having different computational and
communication capabilities), Avdiukhin & Kasiviswanathan (2021) mitigate model communication

1

https://anonymous.4open.science/r/FL_ACT-160B/


Under review as a conference paper at ICLR 2023

Neural Network

Linear Operation

Activation

(a) Category of Activation Functions (b) CIFAR-10 (c) CIFAR-100

Centralized Settings FL Settings

Best

Best

Figure 1: (a) Plots of different activation functions. (b), (c) Accuracies on CIFAR-10 and CIFAR-100
according to the different activation functions, respectively. The blue line indicates the performance
of models trained on a single central server. The orange line indicates the performance of models
trained in an FL environment where 20 clients of the total 100 clients participate in the training per
round. We use a model having four convolution layers and one classifier. Here, ‘Linear’ indicates
a model without any activation function. In a single machine that centralizes the training data, the
more up-to-date the activation function used, the better the performance (blue line). In contrast,
interestingly, HardTanh (Collobert et al., 2011) prints the best server accuracy for both CIFAR-10
and CIFAR-100 under heterogeneous scenarios (orange line). A detailed explanation of the activation
functions is provided in Appendix A.

problems by using asynchronous local stochastic gradient descent (SGD), and Horvath et al. (2021)
improve accuracy for heterogeneous resource capacity by using different model sizes per client.

Despite the popularity of FL, some options for federated model optimization remain under-explored.
Designing FL-familiar training recipes is essential to optimizing model performance, but few studies
have attempted to design a new recipe instead of using those intended for a centralized setting.
Charles et al. (2021) present an empirical analysis of the impact of hyperparameter settings for
federated training dynamics from the perspective of a large cohort size. However, FL activation
functions (McMahan et al., 2017; Karimireddy et al., 2020; Li et al., 2019) have rarely been studied,
although activation functions play a crucial role in facilitating generalization and convergence. We
thus raise the seemingly doubtful question: Do activation functions that are popular in centralized
settings also produce good optima in FL?

To answer this question, we conduct a pilot experiment to compare performance in centralized settings
with performance in FL settings. Figure 1 (b) and (c) show the accuracy of neural networks trained
under a centralized setting and an FL setting according to the replacements in the activation function.
Surprisingly, a neural network with Tanh has better accuracy than ReLU, which is a silver bullet in
the field of centralized deep learning field. The problems mentioned above lead us to the intriguing
question:

Do off-the-shelf activation functions that are intended for a centralized setting
also perform appropriately in the FL setting?

In this work, we answer the question with thorough empirical evaluations: the most recently developed
activation functions tend to degrade the performance of the server as the heterogeneity becomes more
severe.

Several considerations (e.g., the total number of clients, client participation, non-IIDness) in selecting
activation functions may significantly improve the selection of activation function. Combining con-
siderations may further boost the model accuracy. We experiment with various activation functions,
including functions that are widely-used and rarely-used in the centralized setting, in various environ-
ments based on CIFAR-10 and CIFAR-100. The experiments identify an interesting phenomenon in
FL, in which applying activation functions like ReLU in stacked convolutional layers demonstrates
low accuracy owing to the shape of the function. We also provide an analysis of the representation
power according to the different activation functions for federated image classification. Our key
contributions are summarized as follows:

• We provide guidelines for selecting activation functions in FL. FL has the following special
considerations: number of clients, participation ratio, and non-IIDness. We provide guide-

2



Under review as a conference paper at ICLR 2023

lines for cross-silo settings (i.e., for a number of clients ≤ 20) and cross-device settings (i.e.,
for a number of clients ≥ 100); the suitability of the activation function depends on the
situation.

• We provide an explanation for the performance degradation (i.e., for the performance differ-
ence between centralized settings and FL settings) of activation functions that are preferred
in a centralized setting. Specifically, we measure similarities in the weight parameters and
representations, and visualize the landscape.

• We empirically show that the HardTanh activation function (Collobert et al., 2011) leads to a
better optimum than other activation functions such as ReLU (Nair & Hinton, 2010), Leaky
ReLU (Maas et al., 2013), and GeLU (Hendrycks & Gimpel, 2016) for a severe non-IID
setting, a low participation rate, and using a large number of clients. Additionally, we
provide benchmark data for activation functions in FL for various models.

2 RELATED WORK

2.1 ACTIVATION FUNCTIONS IN NEURAL NETWORKS

In deep learning, activation functions are inevitable for learning non-linear latent representations; an
input signal is transformed into a non-linear output. Recent evolution has introduced an enhancement
of representation power and lower computational costs. In the main experiments, the following
non-linear activation functions are used: Tanh (LeCun et al., 2015a), HardTanh (Collobert et al.,
2011), ReLU (Nair & Hinton, 2010), Leaky ReLU (Maas et al., 2013), Swish (Ramachandran et al.,
2017), Mish (Misra, 2019), and GeLU (Hendrycks & Gimpel, 2016).

Activation functions have been devised for the gradient exploding/vanishing problem; where the
magnitudes of gradients become either near zero or infinite during backward propagation. A general
choice for activation functions has been ReLU, which enable efficient propagation. On the other side,
ReLU is not differentiable at zero, and it causes a significant number of dying neurons by forgetting
the information during propagation. Recent works (Ramachandran et al., 2017; Misra, 2019) have
achieved smoother optima in centralized learning by designing self-regularized gradients; whereas
those based on FL settings are badlands.

2.2 FL METHODS

Federated optimization methods manage to handle multiple clients without collecting data, and they
use server weights from a central server to coordinate the global model across the network. In
particular, these methods aim to minimize the following objective function:

min
w

f(w) where f(w) =
1

N

N∑
k=1

f (k)(w) (1)

where f (k) is the loss function based on the client k. N is the total number of clients. At each round,
K ≪ N clients are selected from the total number of devices. The selected clients run each local
model using SGD for E number of local epochs, and they ultimately aggregate the selected models at
the server model.

In the FL environment, the global model can be drifted by optimizing the local clients because the
statistical data non-IIDness causes different local optima that are far apart from each other. This is
called client drift (Karimireddy et al., 2020; Khaled et al., 2019; Reddi et al., 2020), and it indicates
the inconsistency between optima. Recently, some works have prevented client drift by designing
aggregation methods; Wang et al. (2020b) present a method of normalized averaging that removes
objective inconsistency, and Zhang et al. (2021) propose a training algorithm for group knowledge
transfer, which allows each client to keep a personalized prediction on the server to assist the local
training of other clients. Federated Averaging (FedAvg (McMahan et al., 2017)) uses the local server
for SGD for E number of epochs. As a result, the selected client k’s weight is updated as wk. To
aggregate the local client models at each round, FedAvg sums and averages for the server model
parameters formulated as:

wt =
1

K

∑
k∈St

wt
k (2)

3



Under review as a conference paper at ICLR 2023

where wt is the server weight of the t-th round, wt
k is the client k’s weight after local training using

wt−1, and St is the client set. McMahan et al. (2017) empirically show the significance of additionally
tuning the hyperparameters in FL training. We present that with respect to the architectural and
operational side. Additional details of related work are explained in Appendix A.

3 EXPERIMENTS

In this section, we compare several activation functions. We categorize the activation functions
into two groups: (1) ReLU, Leaky ReLU, Swish, Mish, and GeLU as recent state-of-the-art (SOTA)
activation functions that are widely used in centralized settings; and (2) Tanh and HardTanh as
Tanh-like activation functions that are not widely used in centralized settings.

3.1 EXPERIMENTAL SETUP

Dataset and non-IID Settings. Two benchmark datasets are employed: CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009). We provide the descriptions of the datasets in Appendix B. To
randomize the non-IID data, we assume that all client training data use class labels according to an
independent categorical distribution of N classes parameterized by the vector q:

qi ≥ 0, i ∈ [1, N ] and
∑

i∈[1,N ]

qi = 1

For the heterogeneous distribution, the Dirichlet distribution (Hsu et al., 2019; Yurochkin et al., 2019),
q ∼ Dir(α) is used, where α is an N -length concentration vector having all elements α > 0, that is,
the prior distribution for N classes controls the heterogeneity of clients.

Models. Our study focuses on compact models that are realistically possible in FL. Therefore, we
mainly use a simple ConvNet having four convolutional layers and one classifier; ConvNet4 refers
to ConvNet with four convolutional layers. The first convolution layer has 64 kernels, and deeper
layers have a larger number of kernels (O’Shea & Nash, 2015). For additional models, which have
shortcut and batch normalization layers, we use Resnet20, Resnet32, Resnet44 (He et al.,
2016), and MobileNetv2 (Sandler et al., 2018). The Details of settings and model architectures of
ConvNet are provided in Appendix B.

Training Details. In this study, we conduct numerical experiments by changing the number of
clients N , the client participation ratio R, and the Dirichlet distribution constant α. We adapt FedAvg
and perform 200 rounds with 5 local epochs using a learning rate of 0.01, with a learning decay of
0.1 at the 50th and 75th round, a weight decay of 1e−4, and a momentum of 0.9. The number of
clients available in different FL settings is limited; in a cross-silo setting, a small number of clients
are available, and a large number of clients are requested in a cross-device. For the cross-silo setting,
we use N = 20 and R = 0.2, which we select 4 clients at each round. For the cross-device setting,
we use N = 100 and R = 0.2, which we select 20 clients at each round.

We mainly demonstrate the training of ConvNet4 on CIFAR-10 heterogeneously distributed by
modifying the α in the Dirichlet distribution and the client participation rate R. In the captions, we
explain each N , R, and α value.

3.2 COMPARATIVE EXPERIMENTS ON THE CHANGES IN ACTIVATION FUNCTIONS

Table 1 shows the result of both centralized and FL settings using CIFAR-10 and CIFAR-100 as the
datasets. With the centralized setting, GeLU shows the best performance, and other recent SOTA
activation functions surpass the Tanh-like activation functions. However, with the FL setting, the
activation functions show a significantly different tendency. HardTanh achieves the highest accuracy.
Furthermore, the recent SOTA activation functions show lower accuracy than Linear using CIFAR-
100 as the dataset. The activation functions show different accuracy drops; only the recent SOTA
activation functions have an accuracy drop near 40, whereas HardTanh and Tanh have 26.21 and
28.42 on CIFAR-10. As a result, we can find that the most popular activation function, ReLU (as well
as recent SOTA activation functions), does not show outstanding performance in an FL setting.

3.3 STRATEGIES FOR SELECTING ACTIVATION FUNCTIONS IN FL

This section presents the experimental results and guidelines for selecting the activation functions
for various FL settings. FL settings have various environmental limitations relative to centralized
settings. There have additional components to consider, such as the number of clients, non-IIDness,
and the participation ratio.

4



Under review as a conference paper at ICLR 2023

Table 1: Server accuracy of ConvNet4 in centralized and FL settings on two datasets (CIFAR-10,
CIFAR-100). Centralized settings are used to train one server model using all training data, and FL
settings are used to train 100 clients with non-IID data. We use R = 0.2, and α = 0.1. For all tables
afterwards we bold the highest accuracy except for Linear.

Activation Function CIFAR-10 CIFAR-100

Centralized Setting FL setting Centralized Setting FL Setting

Linear 73.74±1.54 10.00 46.52±0.31 28.39
Tanh 81.00±0.89 52.58 55.39±0.24 30.75

HardTanh 80.64±0.77 54.43 54.31±0.46 31.76
ReLU 87.01±0.11 48.37 59.75±0.33 23.99

Leaky ReLU 87.30±0.03 48.34 60.28±0.22 24.04
Swish 86.50±0.08 46.16 60.02±0.47 21.55
Mish 86.38±0.29 50.02 60.67±0.03 24.98
GeLU 87.77±0.11 47.46 61.34±0.35 23.26

Table 2: Server accuracy of ConvNet4 with five different number of clients N (10, 20, 50, 100,
200). We use α = 0.1 with R = 0.2.

Activation Function N = 10 N = 20 N = 50 N = 100 N = 200

Tanh 67.14 65.97 55.28 52.58 48.92
HardTanh 67.90 66.53 54.88 54.43 49.64

ReLU 69.26 63.39 52.88 48.37 41.57
Leaky ReLU 69.26 63.67 53.12 48.34 41.65

Number of Clients. For different FL strategies, the number of clients varies. A cross-silo setting
uses fewer than 20 clients, and a cross-device setting use more than 100 clients. The total accuracy
drop grows as the number of clients rises. Table 2 shows the accuracy with different client numbers.
As the number of clients increases, the overall drop in accuracy increases. The Tanh-like activation
functions surpass the recent SOTA activation functions with larger client numbers (20, 50, 100, 200).
Additionally, the accuracy difference between the recent SOTA activation functions and Tanh-like
activation functions gets larger as client numbers increase. Considering the observations for the
number of clients, we hypothesize that as the number of clients increases, recent SOTA activation
functions are increasingly affected and show a more significant accuracy drop.

Non-IIDness. With the Dirichlet distribution parameter α, we can control the IID-ness of data: a
larger value of α indicates lower non-IIDness (lower heterogeneity). Table 3 presents the accuracy
for different values of α. The overall reduction in accuracy rises as non-IIDness does. In most cases,
HardTanh shows the highest accuracy. For 20 clients, the accuracy of the recent SOTA activation
functions surpasses the Tanh-like activation functions at low non-IIDness. The shape of the recent
SOTA activation functions with high non-IIDness causes a severe accuracy drop, which we discuss in
section 4. For 100 clients, the Tanh-like activation functions are virtually unaffected by non-IIDness
and outperforms the recent SOTA activation functions.

The low accuracy of the Tanh-like activation functions at α = 0.01 occurs due to tough training
settings and the Tanh-like activation functions fail to find an optimum, such as Linear. We conduct
an additional experiment for α = 0.01 with learning rate 0.005 to compare the Tanh-like activation
functions and recent SOTA activation functions where the Tanh-like activation functions does not fail
to train. Table 13 in Appendix C shows that Tanh-like activation functions surpass the recent SOTA
activation functions without failure of finding optimum.

Participation Ratio. The participation of clients is limited in FL depending on the environment.
In a cross-silo setting, high participation may be possible, whereas only limited participation is
possible in a the cross-device setting. Table 4 shows the accuracy in FL settings for four different
values of the participation ratio R. As the client participation decreases, the overall accuracy drop
increases. For 100 clients, the Tanh-like activation functions achieve the highest accuracy. With 20
clients, however, there is a noticeably larger accuracy drop as participation decreases for the most
recent SOTA activation functions. As a result, as the participation ratio decreases, the accuracy
of the Tanh-like activation functions reverses recent SOTA activation functions. With increased

5



Under review as a conference paper at ICLR 2023

Table 3: Server accuracy of ConvNet4 with four different Dirichlet constant values α (0.01, 0.1, 1,
10). We use N = 100 and N = 20 with R = 0.2.

Activation Function N = 100 N = 20

α = 10 α = 1 α = 0.1 α = 0.01 α = 10 α = 1 α = 0.1 α = 0.01

Linear 62.48 62.43 10.00 10.00 66.48 66.48 63.54 10.00
Tanh 64.49 64.14 52.58 29.50 70.22 69.55 65.97 27.64

HardTanh 65.27 65.40 54.43 30.09 70.53 70.01 66.53 28.92
ReLU 57.80 56.23 48.37 34.03 75.59 74.21 63.39 34.70

Leaky ReLU 57.85 56.16 48.34 33.92 75.36 74.23 63.67 35.15
Swish 52.62 51.48 46.16 35.65 72.58 71.58 64.57 36.93
Mish 57.30 55.08 50.02 38.94 73.69 72.95 66.47 37.89
GeLU 55.59 54.34 47.46 36.09 75.68 74.41 65.62 37.77

Table 4: Server accuracy of ConvNet4 with four different participation ratiosR (0.1, 0.2, 0.3, 0.4).
We use N = 100 and N = 20 with α = 0.1.

Activation Function N = 100 N = 20

R = 0.4 R = 0.3 R = 0.2 R = 0.1 R = 0.4 R = 0.3 R = 0.2 R = 0.1

Linear 10.00 10.00 10.00 10.00 65.85 66.12 63.54 58.36
Tanh 62.61 61.79 52.58 46.61 69.22 67.75 65.97 62.67

HardTanh 59.45 61.75 54.43 41.90 69.25 68.80 66.53 43.96
ReLU 53.26 50.67 48.37 41.95 71.96 70.17 63.39 54.47

Leaky ReLU 53.17 50.76 48.34 42.05 66.12 70.22 63.67 54.46
Swish 51.72 49.45 46.16 40.00 70.36 67.99 64.57 53.74
Mish 56.67 52.80 50.02 43.37 71.30 69.34 66.47 60.38
GeLU 53.35 50.61 47.46 41.50 72.32 70.10 65.62 54.05

client participation, client drift diminishes and the impact of the current SOTA activation functions’
accuracy reduction decreases.

Different FL settings components affect accuracy when different activation functions are used,
according to the observations above. The number of clients is the most dominant component, and it
interacts with the effect of other components when a small number of clients is used. Therefore, the
Tanh-like activation functions are favorable for a large number of clients, such as in a cross-device
setting. For a cross-silo setting, for a data with high data non-IIDness, and for a low ratio of client
participation, the Tanh-like activation functions are preferred. Conversely, the recent SOTA activation
functions are preferred for a cross-silo setting, for data with low data non-IIDness, and for a high
ratio of client participation.

3.4 ADDITIONAL EXPERIMENT

Table 5: Server accuracy of ConvNet4
using FedProx with the following settings:
N = 100, R = 0.2, and α = 0.1.

Act. Func. Acc.

Linear 48.74
Tanh 45.50

HardTanh 49.16
ReLU 42.19

Leaky ReLU 42.40
Swish 35.79
Mish 39.83
GeLU 36.00

We implement additional experiments with a different
FL method and models. We choose FedProx as the
additional FL method and Resnet20, Resnet32,
Resnet44, and MobileNetv2 as the additional
models. For the additional models, we only use ReLU
and Leaky ReLU from the set of recent SOTA activa-
tion functions. For more experimental results, refer to
Appendix C.

FedProx. As mentioned in section 1, studies to im-
prove the server model in FL add proximal terms to the
local object to enhance the method’s stability so that
the local model rarely differs from the global model.
We choose FedProx (Li et al., 2020) as an additional FL
method because it is the most basic method that improves the server model by adding a proximal term.
The details of FedProx are shown in Appendix A. Table 5 shows the accuracy for different activation
functions using FedProx as a learning algorithm. Similar to FedAvg, HardTanh achieves the best
accuracy, followed by the other Tanh-like activation functions. Proximal terms in local training do
not appear to help prevent accuracy loss.

6



Under review as a conference paper at ICLR 2023

Table 6: Server accuracy of Resnet using four different Dirichlet constants, α (10, 1, 0.1, 0.01),
with a fixed client participation ratio, R = 0.2, and four different client participation ratios, R (0.4,
0.3, 0.2, 0.1) with a fixed Dirichlet constant, α = 0.1. We use N = 100 with CIFAR-10 as the
dataset.

Activation Function α R

α = 10 α = 1 α = 0.1 α = 0.01 R = 0.4 R = 0.3 R = 0.2 R = 0.1

Resnet20

Linear 56.93 56.96 45.73 26.70 52.09 49.35 45.73 38.60
Tanh 59.66 57.42 46.58 26.50 52.92 49.69 46.58 38.83

HardTanh 59.60 57.54 46.19 26.52 53.69 50.16 46.19 39.28
ReLU 56.90 56.95 45.35 25.73 52.54 48.71 45.35 37.53

Leaky ReLU 56.78 56.49 45.18 26.10 52.23 48.38 45.18 37.71

Resnet32

Linear 60.12 56.84 43.01 24.98 49.49 46.15 43.01 37.39
Tanh 60.03 56.81 43.92 25.90 51.03 47.77 43.92 38.24

HardTanh 59.30 57.39 43.99 25.51 50.75 47.73 43.99 38.34
ReLU 58.52 56.34 43.09 26.66 49.42 46.49 43.09 37.87

Leaky ReLU 58.97 56.16 43.42 26.42 49.40 46.81 43.42 37.33

Resnet44

Linear 57.55 55.98 45.14 27.50 51.25 47.78 45.14 39.56
Tanh 57.94 55.54 46.42 27.23 52.89 50.67 46.42 38.19

HardTanh 58.80 57.54 45.98 26.46 53.95 51.23 45.98 38.88
ReLU 56.89 54.23 44.42 26.06 50.31 46.25 44.42 38.57

Leaky ReLU 57.02 53.76 43.97 26.37 50.40 46.84 43.97 37.35

Resnet. Table 6 shows the result of Resnet20, Resnet32, and Resnet44 with four different
values of α and R. The Tanh-like activation functions acheive better accuracy than the recent SOTA
activation functions do. Even when employing models with batch normalization and shortcut layers,
the Tanh-like activation functions outperform the recent SOTA activation functions. For α = 0.01
and using Resnet32 as the model, the Tanh-like activation functions fails to find the optimum and
perform poorly.

MobileNetv2. Table 7 shows the result of MobileNetv2 with four different values of R for
N = 100 and α = 0.1. Tanh-like activation functions surpass recent SOTA activation functions. In
particular, the accuracy of the recent SOTA activation functions is lower than Linear. As the partici-
pation ratio rises, the recent SOTA activation functions surpass the Tanh-like activation functions on
the CIFAR-10 dataset, demonstrating the same result as Table 4.

Table 7: Server accuracy of MobileNetv2 with four different participation ratios,R (0.1, 0.2, 0.3,
0.4). We use N = 100 with α = 0.1.

Activation Function CIFAR-10 CIFAR-100

R = 0.4 R = 0.3 R = 0.2 R = 0.1 R = 0.4 R = 0.3 R = 0.2 R = 0.1

Linear 36.74 36.86 35.86 35.50 15.02 14.76 14.23 13.17
Tanh 33.39 33.64 31.59 31.83 19.20 16.99 14.76 11.19

HardTanh 33.82 32.41 28.91 29.95 18.64 15.91 13.54 9.39
ReLU 36.99 34.21 26.93 20.12 16.71 13.97 8.16 5.17

Leaky ReLU 35.54 33.07 30.69 20.44 16.92 13.84 10.14 5.67

4 ANALYSIS

We present thorough investigations of model behavior and the changes in representation during the
local training to answer the question: Do recent SOTA activation functions have a disadvantage in an
FL setting?

4.1 INVESTIGATION OF WEIGHT PARAMETERS AND LATENT REPRESENTATIONS

The shape of the activation function varies accuracy in FL setting. The activation function selects
important features to pass through each layer, and the model is trained using these features. According
to Figure 2 (a), the number of selected features varies according to the shape of the activation function.
In a conventional centralized setting, a single model can access all the data and select optimal
training features. However, in an FL setting, each client can only access a portion of the data, which
is partitioned in the non-IID condition, and each client trains its model to select features that are
important to itself. This results in a phenomenon known as client drift.

7



Under review as a conference paper at ICLR 2023

(a) Feature Distribution (b) Acc

Linear Tanh HardTanh ReLU
Leaky ReLU Swish Mish GeLU

(a) Feature Distribution (b) Acc

Linear Tanh HardTanh ReLU
Leaky ReLU Swish Mish GeLU

(a) Feature Distribution (b) Centralized Setting Accuracy (c) FL Setting Accuracy

Figure 2: (a) demonstrates the feature distribution of all class 0 images in the CIFAR-10 test
dataset after passing through the first convolution layer and its activation function. After passing the
convolution layer and activation function, we flatten the feature values and draw a distribution. (b)
shows the accuracy of ConvNet in centralized setting with different widths and depths. (c) shows
the accuracy of ConvNet in federated setting with different widths and depths. For all three figures,
we use N = 100, R = 0.2 and α = 0.1.

R
eL

U
H

ar
dT

an
h

Conv1 Layer Conv3 Layer MaxPool

Figure 3: CKA similarity between 10 client using test images of CIFAR-10. Each client’s model is
the model before 100th aggregation. We use N = 100 with R = 1.0 and α = 0.1 for training. We
calculate the CKA similarity using features passing through each layer and its activation function.

During the FL aggregation step, a problem arises where important features for the global optimum
cannot be selected due to client drift. This phenomenon appears to be severe when the recent SOTA
activation functions are used. Due to the shape of their activation functions, the excluded features are
greater in number than for the Tanh-like activation functions, and a severe accuracy drop occurs. In
addition, when heterogeneity increases, selection failure of features using the recent SOTA activation
functions achieves its peak, and this phenomenon reaches its pinnacle. This can be summarized
simply by saying that the Tanh-like activation functions have low sensitivity to the accuracy drop
in the FL aggregation step because they exclude a much smaller number of features than do the
recent SOTA activation functions. In this aspect, deeper models that achieve greater accuracy in a
centralized context perform poorly in a FL situation because they reject a greater number of features
as the model gets deeper. In Figure 2 (c), deeper ConvNets with recent SOTA activation functions in
a FL setting demonstrate a significant reduction in accuracy, whereas Figure 2 (b) demonstrates an
accuracy improvement for deeper Convnets in a centralized setting.

This perspective can be used to explain the empirical results in section 3. A greater number of
clients, a high data non-IIDness, and a low client participation rate all contribute to a high level of
heterogeneity. In Table 2, as the number of clients increases, in Table 3 with N = 20, as the dirichlet
constant decreases, and in Table 4, as the participation rate R decreases, heterogeneity increases, and
as a result, the recent SOTA activation function demonstrates a significant drop in accuracy and is
surpassed by Tanh-like activation functions.

8



Under review as a conference paper at ICLR 2023

R
eL

U

Conv1 Layer

H
ar

dT
an

h

Conv2 Layer Conv3 Layer Conv4 Layer

Figure 4: Weight difference between 10 client selected in Figure 3. We calculate the weight difference
by subtracting each client’s weight from the same layer and normalizing it with L2norm.

To observe how the activation function affects ConvNet4, we perform two additional experimental
studies on heterogeneous local models. For simplicity, we look at 10 clients out of a total of 100
clients. First, we perform centered kernel alignment (CKA) (Kornblith et al., 2019) to measure the
similarity of the output features between different clients. Each client trains the server model for
5 epochs with their own non-IID data. In Figure 3, ReLU has a higher CKA similarity than does
HardTanh in every layer. Because feature selection fails for the server model, as indicated above,
ConvNet4 with ReLU has a smaller feature change than does HardTanh, which indicates a lower
learning ability. Second, we calculate the weight differential to check how similar the clients weights
are to each other. Figure 4 reveals that ConvNet4 with ReLU has a smaller weight difference in each
layer than does HardTanh, and also indicates that ReLU has a limited learning ability.

4.2 ANALYSIS OF LANDSCAPE

We visualize the 2-D landscape of Tanh, HardTanh, ReLU, and Leaky ReLU. Figure 5 shows the
2-D landscape of each activation function. The color bar beside each figure shows the loss difference.
Tanh and HardTanh have a number that is 10, 000 times smaller than ReLU and Leaky ReLU. This
emphasizes that Tanh and HardTanh have a considerably smoother landscape than ReLU and Leaky
ReLU.

Tanh HardTanh ReLU Leaky ReLU

Figure 5: Landscape of ConvNet4 with Tanh, HardTanh, ReLU and Leaky ReLU. We use N = 100,
R = 0.1 and α = 0.01 for training. We draw landscape with 150 levels.

These findings suggest that the sensitivity of the activation functions in the FL aggregation step,
where the accuracy drop occurs, is indicated by the shape of the activation functions. The accuracy
drop reaches its peak as the number of features excluded by an activation function increases, and it
reaches its maximum with severe client drift: a large number of clients, a low client participation
ratio, and high data non-IIDness.

5 CONCLUSION

This study clarifies that the drop in accuracy varies according to the activation function in FL. Our key
finding is that the accuracy of the recent SOTA activation functions drops in an FL setting due to the
shape of the functions, and HardTanh outperforms other activation functions in most environments.
Additionally, we provide guidelines and benchmark data for selecting activation functions in various
FL settings.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary communication
patterns. In International Conference on Machine Learning, pp. 425–435. PMLR, 2021.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On
large-cohort training for federated learning. arXiv preprint arXiv:2106.07820, 2021.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. Journal of machine learning research, 12
(ARTICLE):2493–2537, 2011.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. arXiv preprint
arXiv:2008.04489, 2020.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In International conference on machine learning, pp. 1319–1327. PMLR, 2013.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and H Sebastian
Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature, 405(6789):947–951, 2000.

Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen,
and Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3310–3319, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

10



Under review as a conference paper at ICLR 2023

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I Venieris, and
Nicholas D Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. arXiv preprint arXiv:2102.13451, 2021.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th international conference on
computer vision, pp. 2146–2153. IEEE, 2009.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd on heteroge-
neous data. arXiv preprint arXiv:1909.04715, 2019.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. In Proceedings of the 31st international conference on neural information processing
systems, pp. 972–981, 2017.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pp. 3519–
3529. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015a.

Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun. com/exdb/lenet,
20(5):14, 2015b.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

11



Under review as a conference paper at ICLR 2023

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Citeseer, 2013.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Icml, 2010.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, pp. 1310–1321, 2015.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. arXiv preprint arXiv:1705.10467, 2017.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020a.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020b.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In International
Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learning. Advances in Neural Information Processing
Systems, 34, 2021.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12



Under review as a conference paper at ICLR 2023

Appendix

A RELATED WORK

A.1 ACTIVATION FUNCTIONS IN NEURAL NETWORKS

In deep neural networks, using activation functions is a ubiquitous technique for learning non-linear
latent representations; an input signal is transformed into the non-linear output centered on zero.
Recent evolution occurs along with the enhancement of representation power and the efficiency of
computational costs. In the experiment, we use the following non-linear activation functions:

Tanh. A hyperbolic tangent function that is a smooth zero-centered function. The equation of Tanh
is:

Tanh(x) =
ex − e−x

ex + e−x

It is known that it is zero-centered, but computationally expensive and causes vanishing gradient
problems as neural networks become deeper.

HardTanh. Another variant of Tanh that involves lower computational costs owing to its piece-wise
linearity. It is another variant of the hyperbolic tangent function, which represents computationally
more efficient form of tanh:

HTanh(x) = min(1,max(−1, x))

ReLU. An element-wise threshold operation on each input element where values less than zero are
set to zero or otherwise used as is. The equation of ReLU (Hahnloser et al., 2000; Jarrett et al., 2009;
Nair & Hinton, 2010) is:

ReLU(x) = max(0, x)

ReLU is the abbreviation of Rectified Linear Unit, a modified linear function. When the input value of
ReLU is negative, the gradient of its output value is zero; the model does not learn. ReLU has shown
great performance with Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012; LeCun et al.,
2015b). Since ReLU is computationally cheap, it is still commonly used regardless of numerous
attempts to replace it (Maas et al., 2013; Goodfellow et al., 2013; He et al., 2015; Clevert et al., 2015;
Klambauer et al., 2017; Elfwing et al., 2018).

Leaky ReLU. A variant of ReLU that is designed to prevent the Dying Neuron problem, where
gradients will not be zero at any time during training. The equation of Leaky ReLU (Maas et al.,
2013) is:

LReLU(x) = max(0.01x, x)

It is ReLU multiplied by a tiny constant on the negative part. Due to the small range, the graphs are
drawn almost similarly with ReLU.

Swish. An unbounded function that uses the sigmoid function in its formula. The curve is similar to
ReLU, but has is smooth and non-monotonic. The equation of Swish (Ramachandran et al., 2017) is:

Swish(x) = x · sigmoid(x)

This function shows better accuracy than ReLU in deep neural networks regardless of batch size.

Mish. A self-regularized non-monotonic activation function. The curve is similar to Swish, but it
has a stronger regularization effect and a smoother gradient. The equation of Mish (Misra, 2019) is:

Mish(x) = x · tanh(ln(1 + ex)))

This function has the characteristic of allowing gradients to flow better than the Relu Zero Bound
because it allows some negative numbers.

GeLU. A Gaussian distribution-involved smooth variation on ReLU. It is often used in NLP
tasks and vision tasks with Vision Transformer (Dosovitskiy et al., 2020) models. The equation of
GeLU (Hendrycks & Gimpel, 2016) is:

GeLU(x) = x · 1
2
[1 + tanh[

√
2π(x+ 0.044715x3)]]

GeLU is derived by combining the characteristics of dropout, zoneout, and ReLU.

13



Under review as a conference paper at ICLR 2023

A.2 ALGORITHMS OF FEDERATED LEARNING METHODS

We use both FedAvg and FedProx for federated learning methods. Algorithm 1 shows the algorithm
of FedAvg and Algorithm 2 shows the algorithm of FedProx. FedProx is similar to FedAvg in that it
selects a selection of clients at each round, performs local training, and then averages client’s weight
to generate a global update. However, the difference between FedAvg and FedProx is shown in line 6.
For local training, FedAvg trains each client’s model using SGD with its local data whereas FedProx,
trains each client with additional proximal term, µ

2 ∥w − wt∥2. Using the proximal term which
contributes to the method’s stability by efficiently reducing the impact of variable modifications.

Algorithm 1 Federated Averaging (FedAvg)
1: Input: K, T , η, E, w0, N , k ∈ [1, · · · , N ]
2: for t = 0, · · · , T − 1 do
3: Server selects a subset St randomly which includes number of K devices
4: Server send wt to all selected devices
5: for i = 0, · · · , E − 1 do
6: Selected device k ∈ St updates their local weight wt+1

k using SGD with step-size η
7: end for
8: Selected device k ∈ St sends their local weight wt+1

k back to the server
9: Server aggregates the local weights, wt+1

k , and gets new server weight wt+1 = 1
K

∑
k∈St

wt
k

10: end for

Algorithm 2 FedProx
1: Input: K, T , η, µ, E, w0, N , k ∈ [1, · · · , N ]
2: for t = 0, · · · , T − 1 do
3: Server selects a subset St randomly which includes number of K devices
4: Server send wt to all selected devices
5: for i = 0, · · · , E − 1 do
6: Selected device k ∈ St updates their local weight

wt+1
k ≈ min

w
h(k)(w;wt) = f (k)(w) + µ

2 ∥w − wt∥2 with step-size η

7: end for
8: Selected device k ∈ St sends their local weight wt+1

k back to the server
9: Server aggregates the local weights, wt+1

k , and gets new server weight wt+1 = 1
K

∑
k∈St

wt
k

10: end for

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE

Figure 6 shows ConvNet with five different depth (3,4,5,6, and 7). Each version of ConvNet
has convolution layer corresponding to the number after the model (e.g., ConvNet3 has three
convolution layers and ConvNet7 has seven convolution layers). The details of each convolution
layer is shown in Table 8. ConvNet with varying depth employ convolution layers in the order
shown in Table 8 (e.g., ConvNet3 use Conv1, Conv2, and Conv3 whereas, ConvNet7 use Conv1,
Conv2, Conv3, Conv4, Conv5, Conv6, and Conv7).

B.2 DATASET STATISTICS

We use both CIFAR-10 and CIFAR-100 for our experiments. As shown in Table 9, CIFAR-10 consists
of 60000 images of size 32×32. It is divided into 10 classes, and each class consists of 6000 images.
Also, each class has 5,000 training images and 1,000 test images. CIFAR-100 also consists of 60000
images with a size of 32×43. It is classified into 100 classes, and each class consists of 600 images.
These 100 classes are divided into 20 superclasses, which we do not use in our experiments. Also,
each class has 500 training images and 100 test images.

14



Under review as a conference paper at ICLR 2023

3 x 3 conv, 64

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 128

activation function

3 x 3 conv, 128

activation function

max pool, /2

Image

fc 65536

3 x 3 conv, 256

activation function

3 x 3 conv, 256

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 128

activation function

3 x 3 conv, 128

activation function

max pool, /2

Image

fc 65536

3 x 3 conv, 256

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 128

activation function

3 x 3 conv, 128

activation function

max pool, /2

Image

fc 32768

3 x 3 conv, 64

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 128

activation function

max pool, /2

Image

fc 32768

3 x 3 conv, 64

activation function

3 x 3 conv, 64

activation function

3 x 3 conv, 128

activation function

3 x 3 conv, 128

activation function

max pool, /2

Image

fc 131072

3 x 3 conv, 256

activation function

3 x 3 conv, 256

activation function

3 x 3 conv, 512

activation function

ConvNet3 ConvNet4 ConvNet5 ConvNet6 ConvNet7

Figure 6: The architecture of ConvNet with different number of convolution layers.

Table 8: Setting of each convolution layer in ConvNet. Each version of ConvNet uses the number
convolution layer as much as their version number. (i.e ConvNet3 uses conv1 through conv3 and
ConvNet7 uses conv1 through conv7.)

Layer Number of Input Filter Number of Output Filter Kernel Size Padding

Conv1 3 64 3×3 1
Conv2 64 64 3×3 1
Conv3 64 128 3×3 1
Conv4 128 128 3×3 1
Conv5 128 256 3×3 1
Conv6 256 256 3×3 1
Conv7 256 512 3×3 1

Table 9: Dataset statistics.

Data set Train examples Test examples Class Number Task

CIFAR-10 50,000 10,000 10 Image Classification
CIFAR-100 50,000 10,000 100 Image Classification

C ADDITIONAL EXPERIMENT RESULT

C.1 CONVNET4 RESULT

Experiment results in section 3 fix variables such as N , R, and α. Table 10 shows the result with all
combinations of R and α with N = 20. Table 11 shows the result with all combinations of R and α
with N = 100. Table 12 shows the result using CIFAR-100 as the dataset with all combinations of R
and α with N = 100. Comparing Table 10 and Table 11, we can see that with bigger client number,
the Tanh-like activation function surpasses the recent SOTA activation functions. Additionally, with
more complex dataset (CIFAR-100) shown in Table 12, the Tanh-like activation functions outperform

15



Under review as a conference paper at ICLR 2023

the recent SOTA activation functions with bigger accuracy gap. The low accuracy of the Tanh-like
activation functions using CIFAR-10 as dataset with α = 0.01 occurs due to severe tough training
settings and fails to find the optimum.

To checkout the performance when the Tanh-like activation functions does not fail to find the optimum,
we use an additional setting with learning rate 0.005. Table 13 shows the accuracy of ConvNet4
with fixed dirichlet constant α = 0.01, which the Tanh-like activation functions failed to find optimum
in Table 10 and Table 11. The Tanh-like activation functions surpass the recent SOTA activation
functions in all conditions. In addition, the Tanh-like activation functions surpass the highest accuracy
with dirichlet constant α = 0.01 of the recent SOTA activation functions presented in Table 10 and
Table 11.

Table 10: Server accuracy of ConvNet4 using four different α and four different participation R,
where N = 20. For different dirichlet distribution constant, α = 0.01 is the most non-IID setting and
α = 10 is the most IID setting. Since using Linear at α = 0.01 with participation ratio 0.1, 0.2, 0.3
could not train, leave blank at α = 0.01 → 0.1 with participation ratio 0.1, 0.2, 0.3. The most right
columns show the accuracy drop as non-IIDness increases.

Participation Ratio Activation Function α = 10 α = 1 α = 0.1 α = 0.01 α = 10 → 1 α = 1 → 0.1 α = 0.1 → 0.01

0.1

Linear 64.76 64.48 58.36 10.00 0.28 6.12 -
Tanh 66.83 66.40 62.67 22.44 0.43 3.73 40.23

HardTanh 67.42 66.90 43.96 22.61 0.52 22.94 21.35
ReLU 69.27 67.40 54.47 27.22 1.87 12.93 27.25

Leaky ReLU 69.29 67.39 54.46 28.49 1.90 12.93 25.97
Swish 66.33 64.56 53.74 30.48 1.77 10.82 23.26
Mish 69.00 67.58 60.38 33.13 1.42 7.20 27.25
GeLU 68.52 66.36 54.05 30.71 2.16 12.31 23.34

0.2

Linear 66.48 66.48 63.54 10.00 0.00 2.94 -
Tanh 70.22 69.55 65.97 27.64 0.67 3.58 38.33

HardTanh 70.53 70.01 66.53 28.92 0.52 3.48 37.61
ReLU 75.59 74.21 63.39 34.70 1.38 10.82 28.69

Leaky ReLU 75.36 74.23 63.67 35.15 1.13 10.56 28.52
Swish 72.58 71.58 64.57 36.93 1.00 7.01 27.64
Mish 73.69 72.95 66.47 37.89 0.74 6.48 28.58
GeLU 75.68 74.41 65.62 37.77 1.27 8.79 27.85

0.3

Linear 61.15 67.54 66.12 10.00 -6.39 1.42 -
Tanh 71.95 71.83 67.75 30.01 0.12 4.08 37.74

HardTanh 72.33 71.49 68.80 30.51 0.84 2.69 38.29
ReLU 78.65 77.77 70.17 41.00 0.88 7.60 29.17

Leaky ReLU 78.62 78.13 70.22 41.31 0.49 7.91 28.91
Swish 76.25 75.54 67.99 43.19 0.71 7.55 24.80
Mish 77.32 76.46 69.34 45.16 0.86 7.12 24.18
GeLU 79.19 78.18 70.10 44.98 1.01 8.08 25.12

0.4

Linear 68.65 67.66 65.85 10.00 0.99 1.81 -
Tanh 73.13 73.29 69.22 32.65 -0.16 4.07 36.57

HardTanh 73.33 72.19 69.25 29.93 1.14 2.94 39.32
ReLU 80.36 79.93 71.96 45.38 0.43 7.97 26.58

Leaky ReLU 80.58 79.82 66.12 45.67 0.76 13.70 20.45
Swish 79.01 77.29 70.36 47.83 1.72 6.93 22.53
Mish 79.57 78.59 71.30 52.16 0.98 7.29 19.14
GeLU 81.67 80.62 72.32 48.66 1.05 8.30 23.66

16



Under review as a conference paper at ICLR 2023

Table 11: Server accuracy of ConvNet4 using four different α and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness increases. Since
using Linear at α = 0.01, 0.1 with participation ratio 0.1, 0.2, 0.3, and 0.4 could not train, leave
blank at α = 0.01 → 0.1, α = 1 → α = 0.1 with participation ratio 0.1, 0.2, 0.3, and 0.4.

Participation Ratio Activation Function α = 10 α = 1 α = 0.1 α = 0.01 α = 10 → 1 α = 1 → 0.1 α = 0.1 → 0.01

0.1

Linear 58.24 57.38 10.00 10.00 0.86 - -
Tanh 58.98 57.86 46.61 31.97 1.12 11.25 14.64

HardTanh 59.85 59.62 41.90 30.34 0.23 17.72 11.56
ReLU 51.61 49.73 41.95 28.83 1.88 7.78 13.12

Leaky ReLU 51.60 49.76 42.05 28.90 1.84 7.71 13.15
Swish 47.01 46.28 40.00 29.88 0.73 6.28 10.12
Mish 50.00 49.59 43.37 33.13 0.41 6.22 10.24
GeLU 48.64 48.02 41.50 31.61 0.62 6.52 9.89

0.2

Linear 62.48 62.43 10.00 10.00 0.05 - -
Tanh 64.49 64.14 52.58 29.50 0.35 11.56 23.08

HardTanh 65.27 65.40 54.43 30.09 -0.13 10.97 24.34
ReLU 57.80 56.23 48.37 34.03 1.57 7.86 14.34

Leaky ReLU 57.85 56.16 48.34 33.92 1.69 7.82 14.42
Swish 52.62 51.48 46.16 35.65 1.14 5.32 10.51
Mish 57.30 55.08 50.02 38.94 2.22 5.06 11.08
GeLU 55.59 54.34 47.46 36.09 1.25 6.91 11.37

0.3

Linear 64.66 64.46 10.00 10.00 0.20 - -
Tanh 67.34 66.57 61.79 31.35 0.77 4.78 30.44

HardTanh 68.35 67.86 61.75 29.93 0.49 6.11 31.82
ReLU 62.43 60.38 50.67 37.91 2.05 9.71 12.76

Leaky ReLU 62.62 60.34 50.76 38.02 2.28 9.58 12.74
Swish 58.04 55.88 49.45 39.78 2.16 6.43 9.67
Mish 65.53 62.21 52.80 42.57 3.32 9.41 10.23
GeLU 62.39 59.20 50.61 39.14 3.19 8.59 11.47

0.4

Linear 65.71 65.83 10.00 10.00 -0.12 - -
Tanh 68.83 68.37 62.61 29.49 0.46 5.76 33.12

HardTanh 69.95 69.35 59.45 27.22 0.60 9.90 32.23
ReLU 66.88 64.39 53.26 40.96 2.49 11.13 12.30

Leaky ReLU 67.02 64.60 53.17 41.17 2.42 11.43 12.00
Swish 64.78 60.13 51.72 41.86 4.65 8.41 9.86
Mish 68.96 67.27 56.67 44.41 1.69 10.60 12.26
GeLU 67.59 63.42 53.35 40.99 4.17 10.07 12.36

17



Under review as a conference paper at ICLR 2023

Table 12: Server accuracy of ConvNet4 using CIFAR-100 as dataset and N = 100. The most
right columns show the accuracy drop as non-IIDness increases. Since using Linear at α = 0.01
with participation ratio 0.1, 0.2, 0.3, and 0.4 could not train, leave blank at α = 0.01 → 0.1 with
participation ratio 0.1, 0.2, 0.3, and 0.4.

Participation Ratio Activation Function α = 10 α = 1 α = 0.1 α = 0.01 α = 10 → 1 α = 1 → 0.1 α = 0.1 → 0.01

0.1

Linear 25.94 25.57 22.58 1.00 0.37 2.99 -
Tanh 26.56 26.03 21.81 13.47 0.53 4.22 8.34

HardTanh 29.04 28.66 23.70 14.66 0.38 4.96 9.04
ReLU 21.83 22.67 17.98 10.97 -0.84 4.69 7.01

Leaky ReLU 21.95 22.77 18.12 11.13 -0.82 4.65 6.99
Swish 19.66 20.67 15.41 11.10 -1.01 5.26 4.31
Mish 23.75 23.30 18.42 11.86 0.45 4.88 6.56
GeLU 21.21 21.77 16.65 11.15 -0.56 5.12 5.50

0.2

Linear 31.78 31.89 28.39 1.00 -0.11 3.50 -
Tanh 34.01 34.74 30.75 19.56 -0.73 3.99 11.19

HardTanh 35.68 36.08 31.76 21.93 -0.40 4.32 9.83
ReLU 26.91 27.59 23.99 15.61 -0.68 3.60 8.38

Leaky ReLU 26.93 27.77 24.04 15.68 -0.84 3.73 8.36
Swish 26.39 26.14 21.55 14.57 0.25 4.59 6.98
Mish 29.40 28.89 24.89 16.41 0.51 4.00 8.48
GeLU 27.66 26.73 23.26 15.08 0.93 3.47 8.18

0.3

Linear 35.50 35.32 31.47 1.00 0.18 3.85 -
Tanh 37.68 38.76 34.24 23.11 -1.08 4.52 11.13

HardTanh 39.05 39.40 35.03 24.09 -0.35 4.37 10.94
ReLU 29.81 30.24 27.31 17.92 -0.43 2.93 9.39

Leaky ReLU 29.74 30.26 27.45 17.97 -0.52 2.81 9.48
Swish 29.96 29.53 25.34 17.37 0.43 4.19 7.97
Mish 32.33 32.71 29.19 20.16 -0.38 3.52 9.03
GeLU 30.24 29.77 27.24 17.89 0.47 2.53 9.35

0.4

Linear 37.48 37.53 33.79 1.00 -0.05 3.74 -
Tanh 40.01 40.85 37.13 26.35 -0.84 3.72 10.78

HardTanh 41.69 41.73 37.41 27.44 -0.04 4.32 9.97
ReLU 30.75 31.45 30.55 20.51 -0.70 0.90 10.04

Leaky ReLU 31.05 31.61 30.79 20.61 -0.56 0.82 10.18
Swish 32.54 32.37 27.61 19.45 0.17 4.76 8.16
Mish 34.64 35.94 33.11 22.01 -1.30 2.83 11.10
GeLU 32.37 32.12 29.27 20.73 0.25 2.85 8.54

Table 13: Server accuracy of ConvNet4 with four different client participation R (0.4, 0.3, 0.2, 0.1)
and fixed Dirichlet constant α = 0.01 for additional setting using a learning rate 0.005. We use
N = 20 and N = 100 for the number of clients and CIFAR-10 as the dataset.

Activation Function N = 100 N = 20

R = 0.4 R = 0.3 R = 0.2 R = 0.1 R = 0.4 R = 0.3 R = 0.2 R = 0.1

Linear 10.00 10.00 10.00 10.00 49.63 10.00 10.00 10.00
Tanh 46.30 43.73 40.85 36.96 51.81 47.59 42.14 33.17

HardTanh 47.92 45.06 42.31 38.30 51.86 48.69 42.44 34.06
ReLU 38.02 34.83 30.88 28.66 38.26 35.02 32.39 25.17

Leaky ReLU 38.17 35.15 31.13 28.74 38.53 35.19 32.59 25.32
Swish 36.15 33.72 32.05 28.43 41.93 37.57 33.68 26.32
Mish 39.72 36.94 34.67 30.56 46.11 40.88 36.88 28.32
GeLU 37.24 34.57 32.64 28.46 43.80 39.54 35.47 27.15

18



Under review as a conference paper at ICLR 2023

C.2 RESNET RESULT

Table 14, Table 15, and Table 16 shows the result of Resnet20, Resnet32, and Resnet44 with
all combinations of R and α with N = 100. For all values of R and α, Resnet20 using HardTanh
shows the highest accuracy. According to the existence of shortcut layer’s existence, deeper layer can
use features that the activation function has excluded via a shortcut (He et al., 2016), which helps
to prevent the recent SOTA activation functions’ accuracy drop. As a result, using Resnet32 and
Resnet44, the recent SOTA activation functions have a small accuracy gap with the Tanh-like
activation functions and surpass in some conditions.

Table 14: Server accuracy of Resnet20 using four different α and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness increases.

Participation Ratio Activation Function α = 10 α = 1 α = 0.1 α = 0.01 α = 10 → 1 α = 1 → 0.1 α = 0.1 → 0.01

0.1

Linear 49.01 48.60 38.60 24.63 0.41 10.00 13.97
Tanh 50.68 49.20 38.83 23.82 1.48 10.37 15.01

HardTanh 51.23 49.44 39.28 23.91 1.79 10.16 15.37
ReLU 48.81 48.12 37.53 23.34 0.69 10.59 14.19

Leaky ReLU 48.63 48.15 37.71 23.50 0.48 10.44 14.21

0.2

Linear 56.93 56.96 45.73 26.70 -0.03 11.23 19.03
Tanh 59.66 57.42 46.58 26.50 2.24 10.84 20.08

HardTanh 59.60 57.54 46.19 26.52 2.06 11.35 19.67
ReLU 56.90 56.95 45.35 25.73 -0.05 11.60 19.62

Leaky ReLU 56.78 56.49 45.18 26.10 0.29 11.31 19.08

0.3

Linear 63.17 61.67 49.35 28.25 1.50 12.32 21.07
Tanh 64.63 61.74 49.69 27.90 2.89 12.05 21.79

HardTanh 64.41 61.59 50.16 27.86 2.82 11.43 22.30
ReLU 61.99 61.59 48.71 27.58 0.40 12.88 21.13

Leaky ReLU 61.87 61.34 48.38 27.38 0.53 12.96 21.00

0.4

Linear 66.24 65.30 52.09 30.17 0.94 13.21 21.92
Tanh 68.08 65.05 52.92 28.92 3.03 12.13 24.00

HardTanh 67.90 64.91 53.69 29.51 2.99 11.22 24.18
ReLU 66.10 64.94 52.54 28.28 1.16 12.40 26.26

Leaky ReLU 66.04 64.82 52.23 28.70 1.22 12.59 23.53

Table 15: Server accuracy of Resnet32 using four different α and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness increases.

Participation Ratio Activation Function α = 10 α = 1 α = 0.1 α = 0.01 α = 10 → 1 α = 1 → 0.1 α = 0.1 → 0.01

0.1

Linear 50.06 47.94 37.39 21.95 2.12 10.55 15.44
Tanh 49.55 47.15 38.24 21.61 2.40 8.91 16.63

HardTanh 50.04 47.99 38.34 22.37 2.05 9.65 15.97
ReLU 50.68 48.39 37.87 24.29 2.29 10.52 13.58

Leaky ReLU 50.71 48.57 37.33 23.91 2.14 11.24 13.42

0.2

Linear 60.12 56.84 43.01 24.98 3.28 13.83 18.03
Tanh 60.03 56.81 43.92 25.90 3.22 12.89 18.02

HardTanh 59.30 57.39 43.99 25.51 1.91 13.40 18.48
ReLU 58.52 56.34 43.09 26.66 2.18 13.25 16.43

Leaky ReLU 58.97 56.16 43.42 26.42 2.81 12.74 17.00

0.3

Linear 64.51 62.20 46.15 28.63 2.31 16.05 17.52
Tanh 64.60 61.96 47.77 28.04 2.64 14.19 19.73

HardTanh 63.74 62.20 47.73 28.03 1.54 14.47 19.70
ReLU 64.23 61.58 46.49 28.90 2.65 15.09 17.59

Leaky ReLU 64.20 61.59 46.81 28.49 2.61 14.78 18.32

0.4

Linear 68.45 65.75 49.49 30.28 2.70 16.26 19.21
Tanh 67.75 66.58 51.03 29.41 1.17 15.55 21.62

HardTanh 67.33 66.17 50.75 29.18 1.16 15.42 21.57
ReLU 67.52 65.55 49.72 30.18 1.97 15.83 19.54

Leaky ReLU 67.46 65.71 49.40 30.43 1.75 16.31 18.97

19



Under review as a conference paper at ICLR 2023

Table 16: Server accuracy of Resnet44 using four different α and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness decreases.

Participation Ratio Activation Function α = 10 α = 1 α = 0.1 α = 0.01 α = 10 → 1 α = 1 → 0.1 α = 0.1 → 0.01

0.1

Linear 49.68 47.28 39.56 23.26 2.40 7.72 16.30
Tanh 49.13 46.47 38.19 23.06 2.66 8.28 15.13

HardTanh 49.33 47.10 38.88 23.77 2.23 8.22 15.11
ReLU 48.89 46.38 38.57 22.84 2.51 17.81 15.73

Leaky ReLU 48.77 46.27 37.35 23.05 2.50 8.92 14.30

0.2

Linear 57.55 55.98 45.14 27.50 1.57 10.84 17.64
Tanh 57.94 55.54 46.42 27.23 2.40 9.12 19.19

HardTanh 58.80 57.54 45.98 26.46 1.26 11.56 19.52
ReLU 56.89 54.23 44.42 26.06 2.66 9.81 18.36

Leaky ReLU 57.02 53.76 43.97 26.37 3.26 9.79 17.60

0.3

Linear 63.29 61.20 47.78 30.71 2.09 13.42 17.07
Tanh 64.43 61.27 50.67 29.53 3.16 10.60 21.14

HardTanh 64.31 61.42 51.23 28.84 2.89 10.19 22.39
ReLU 62.79 60.19 46.25 28.41 2.60 13.94 17.84

Leaky ReLU 62.63 59.63 46.84 28.27 3.00 12.79 18.57

0.4

Linear 67.30 65.09 51.25 32.67 2.21 13.84 18.58
Tanh 68.14 64.67 52.89 32.37 3.47 11.78 20.52

HardTanh 67.91 65.02 53.95 31.90 2.89 11.07 22.05
ReLU 66.74 64.20 50.31 30.51 2.54 13.89 19.80

Leaky ReLU 66.41 64.26 50.40 31.03 2.15 13.86 19.37

20


	Introduction
	Related Work
	Activation Functions in Neural Networks
	FL Methods

	Experiments
	Experimental Setup
	Comparative Experiments on the Changes in Activation Functions
	Strategies for Selecting Activation Functions in FL
	Additional Experiment

	Analysis
	Investigation of Weight Parameters and Latent Representations
	Analysis of Landscape

	Conclusion
	Related Work
	Activation Functions in Neural Networks
	Algorithms of Federated Learning Methods

	Implementation Details
	Model Architecture
	Dataset statistics

	Additional Experiment Result
	ConvNet4 Result
	Resnet Result


