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ABSTRACT

We study how corruption design—masking and additive noise—affects self-
supervised pretraining of vision models. Although denoising diffusion models
succeed in generation, noise-driven extensions of masked image modeling (MIM)
achieve only marginal gains on recognition tasks, including fine-grained bench-
marks. We thus investigate why this would be the case, seeking effective ways
to combine masking and noising within the corruption-to-reconstruction (C2R)
paradigm. We begin by analyzing prior noise-based MIM approaches, categoriz-
ing them into Substitutive Corruption (masked tokens replaced by noised ones)
and Conjunctive Corruption (masked and noised tokens coexist), and further into
Encoder- or Decoder-style depending on where corruption and restoration occur.
Our study reveals that the literature trends toward a Decoder-style design. In con-
trast, we evaluate an Encoder-style alternative with a focus on transfer. Building
on these analyses, we propose three principles for effective C2R pretraining: cor-
ruption and restoration should occur within the encoder, noise is most effective
when injected at the feature level, and mask reconstruction and de-noising must
be explicitly disentangled to avoid interference. By implementing these findings,
we propose a framework that captures a broader frequency spectrum of repre-
sentations and improves transferability, surpassing MIM by up to 8.1% and recent
noise-driven pretraining methods by 8.0% across diverse recognition benchmarks.
Code is available in the Supplementary Material.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a key paradigm in computer vision, enabling the
pretraining of large-scale models (Dosovitskiy et al., 2020; Liu et al., 2021) on massive unlabeled
datasets and transferring them to diverse downstream tasks (Chen et al., 2020; He et al., 2020; Grill
et al., 2020; Bao et al., 2021; He et al., 2022; Xie et al., 2022). By removing the reliance on costly
annotations, SSL has alleviated the data-hungry nature of foundational models and driven progress in
image classification, semantic segmentation, object detection, and fine-grained recognition (Carion
et al., 2020; Ranftl et al., 2021; Zhu et al., 2020; Zheng et al., 2021; Chen et al., 2021), establishing
itself as a cornerstone of representation learning.

A dominant line of SSL research follows the corruption-to-reconstruction (C2R) paradigm, where
inputs are intentionally corrupted and the model is trained to reconstruct the original data. Masked
image modeling (MIM) exemplifies this strategy (Bao et al., 2021; He et al., 2022; Xie et al., 2022),
masking large portions of input patches to encourage spatial reasoning and semantic understand-
ing. These methods have shown remarkable effectiveness and scalability, achieving state-of-the-art
results on various vision benchmarks (Deng et al., 2009; Zhou et al., 2017; Lin et al., 2014).

Meanwhile, motivated by the success of generative models such as denoising diffusion models (Ho
et al., 2020; Rombach et al., 2022; Ramesh et al., 2021; Saharia et al., 2022), recent works have
explored noise-based C2R pretraining. DiffMAE (Wei et al., 2023) and MaskDiT (Zheng et al.,
2023) extend masking-based pretraining by introducing noise in different ways. DiffMAE (Wei
et al., 2023) replaces masked tokens with noised ones, and MaskDiT (Zheng et al., 2023) further
leverages both; collectively, they illustrate the integration of masking and noising within a unified
pretraining framework. While diffusion models excel in high-fidelity image generation (Dhariwal &
Nichol, 2021), these noise-driven approaches (Wei et al., 2023; Zheng et al., 2023) do not provide
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Figure 1: We plot the KL divergence of attention distributions across heads (small dots) and their
layer-wise means (large dots) for (a) a recent noise-based MIM method (Wei et al., 2023), (b) a
representative MIM method (Xie et al., 2022), and (c) ours. Higher KL divergence indicates broader
frequency coverage. Our method achieves greater diversity than MIM and noise-based baselines,
accounting for its strong performance on recognition tasks, including fine-grained settings.

Figure 2: We visualized the self-attention maps for the image classification token in the final layer
of our model on a fine-grained visual categorization benchmark. The proposed method captures a
range of frequencies by focusing on both key features and fine details within complex scenes.

notable gains over MIM on recognition benchmarks (Wah et al., 2011; Van Horn et al., 2015; 2017;
2018; Krause et al., 2013; Maji et al., 2013; Deng et al., 2009; Zhou et al., 2017; Lin et al., 2014),
spanning both fine-grained recognition and general vision tasks. This indicates that although noise
introduces high-frequency variations, such information is not effectively encoded into transferable
representations for recognition tasks.

In Sec. 3, we systematically analyze why noise-based C2R pretraining yields limited gains. We first
dissect their design choices, categorizing them into two paradigms: Substitutive Corruption, which
replaces masked tokens with noised ones, and Conjunctive Corruption, where masked and noised
tokens coexist. We then classify these paradigms into Encoder- and Decoder-styles depending on
where corruption and reconstruction occur, noting that prior methods are largely Decoder-style.
Building on these analyses, we propose three design principles for effectively unifying masking
and noising: (1) corruption and restoration should occur within the encoder, as the encoder is
what is ultimately transferred to downstream tasks; (2) noise is most effective when injected at
the feature level, particularly in lower encoder layers, where high-frequency details are present;
and (3) masked token reconstruction and de-noising must be explicitly disentangled to avoid
interference, which we enforce by suppressing attention between the two token types.

With these findings, we design a novel pretraining setup that effectively utilizes both masking and
noising. Our approach captures a richer frequency spectrum of image representations as shown
in Figs. 1 and 2, enhancing transferability across a variety of downstream tasks and recognition
benchmarks; CUB-200-2011 (Wah et al., 2011), NABirds (Van Horn et al., 2015), iNaturalist
2017/2018 (Van Horn et al., 2017; 2018), Stanford Cars (Krause et al., 2013), Aircraft (Maji et al.,
2013), ImageNet (Deng et al., 2009), ADE20K (Zhou et al., 2017), and COCO (Lin et al., 2014).
Our method achieves up to 8.1% performance gain over MIM baselines and 8.0% over recent noise-
driven pretraining methods, validating the effectiveness of our design.

To summarize, our contributions are.

• We provide a thorough empirical study on why current noising-based pretraining ap-
proaches (Wei et al., 2023; Zheng et al., 2023) do not provide noticeable gains for recogni-
tion tasks.

• We provide guidelines from our detailed study on how to use corruptions within pretraining.
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• With our findings, we propose a novel pretraining method that outperforms the state-of-
the-art on a wide range of recognition tasks, including fine-grained tasks.

2 PRELIMINARY AND RELATED WORKS

Since the intuitions and findings of our work build upon masked image modeling (MIM) and de-
noising diffusion models, we first revisit these foundations for completeness.

2.1 MASKED IMAGE MODELING (MIM)

The core idea of MIM is to randomly mask a subset of image tokens and train the model to recon-
struct the missing content in a self-supervised manner.

Random masking. Formally, let X ∈ RN×L×D denote the input sequence of image tokens, where
N is the batch size, L the number of tokens per image, and D the token dimension. We define the
mask generation process as M = ΦM(X, γ), where γ is the masking ratio and M ∈ {0, 1}N×L

indicates a mask map. The masking operation generates a corrupted signal Xcor as

Xcor = X ⊙M + θ ⊙ (1−M), (1)

where ⊙ denotes the Hadamard product, and θ is a learnable parameter for masked tokens.

Reconstruction. To learn to reconstruct the original tokens X back from only the visible ones
Xvis, training of MIMs typically relies on mean squared error (MSE). With the token predictions X̂
from MIM framework that takes as input the masked visible tokens Xmasked, we minimize the loss:

LMIM =
1∑

k,l(1−Mk,l)

N∑
k=1

L∑
l=1

(1−Mk,l)∥X̂k,l −Xk,l∥2. (2)

Recent works. MIM approaches (He et al., 2022; Xie et al., 2022; Choi et al., 2024; 2025; Bao
et al., 2021; Yi et al., 2022; Dong et al., 2022; Chen et al., 2024a; Assran et al., 2023) adapt the
concept of Masked Language Modeling (MLM) from NLP. BEiT (Bao et al., 2021) applies MLM-
like pretraining to images using discrete visual tokens generated by a pre-trained dVAE. MAE (He
et al., 2022) focuses only on visible patches in the encoder, predicting masked pixel values through
a decoder. SimMIM (Xie et al., 2022) uses both visible and masked patches in the encoder and
predicts original pixels directly. Recent advances (Choi et al., 2024; 2025) focus on masked tokens
for fast convergence and performance improvement.

2.2 DENOISING DIFFUSION MODEL

Denoising diffusion models are trained by progressively corrupting inputs with Gaussian noise and
learning to denoise them. This is in a similar spirit to MIMs, but unlike MIMs, the theoretical
foundations allow the model to generate new data, hence they are generative (Song et al., 2020).

Forward diffusion. Forward diffusion iteratively adds noise to an input image sequence X ∈
RN×L×D over T time steps. At each time step t, a noise schedule βt ∈ R controls the amount
of noise added, where βt is a scalar that determines the noise level at time step t. The corrupted
representation Xt at step t is then defined as:

Xt =
√
1− βt ·Xt−1 +

√
βt · ϵ, (3)

where ϵ ∼ N (0, I) is the Gaussian noise with a zero matrix 0 and an identity covariance matrix I.
This iterative process gradually diffuses the data towards Gaussian noise as t approaches T .

Denoising. With the corrupted signal, the denoiser then learns to undo this corruption, effectively
allowing the model to traverse back through the diffusion process, that is, transform Gaussian noise
to clean data that follows the data distribution. Specifically, starting from XT , the model learns
to predict the clean image X0 by estimating the intermediate states through a denoising function

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Φdenoise, which is typically parameterized as a neural network. The denoising step at time t can be
represented as:

X̂t−1 = Φdenoise(X
t, t), (4)

where X̂t−1 represents the denoised estimate at time t− 1. Training of Φdenoise(X
t, t) is performed

through various variations of the original DDIM (Song et al., 2020) and DDPM (Ho et al., 2020)
methods, including recent family of Rectified Flow models (Liu et al., 2022), but these approaches
are all essentially focusing on obtaining X̂t−1 estimates in some form that will accurately lead
toward X0 through various solvers (Lu et al., 2022; Karras et al., 2022).

Recent works. Denoising diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Rombach
et al., 2022; Ramesh et al., 2021; Saharia et al., 2022) have gained prominence in generative tasks
for their ability to produce high-quality, detailed images. DDPM (Ho et al., 2020) introduced the
foundational framework, where Gaussian noise is gradually added to an image and then removed
in a reverse process, Improved DDPM (Nichol & Dhariwal, 2021) enhanced this approach with
modifications in noise scheduling and model architecture. LDM (Rombach et al., 2022) further
improved efficiency by operating in a compressed latent space rather than pixel space, allowing
various practical applications.

2.3 PRETRAINING VIA DENOISING

With preliminaries on MIMs and denoising diffusion models, we now review two representative
works that aim to marry the two schools of thought into a single pretraining framework.

DiffMAE. DiffMAE (Wei et al., 2023) combines diffusion-based modeling with MIM. Instead of
replacing masked patches with a learnable token, DiffMAE corrupts them by progressively injecting
Gaussian noise following a predefined schedule αt ∈ R. Given a binary mask M , Gaussian noise
ϵ ∼ N (0, I) is progressively added to the selected tokens over T steps, formulated as:

Xcor = Xv +Xt
n = X ⊙M +

(√
αt ·X +

√
1− αt · ϵ

)
⊙ (1−M). (5)

For clarity, we denote the visible tokens as Xv and the noised tokens as Xt
n. The model then recon-

structs X by denoising the corrupted tokens Xn through an iterative reverse process conditioned on
the visible tokens Xv:

X̂ t−1
n = Φdenoise(X

t
n, Xv, t), (6)

where Φdenoise denotes the denoising function.

MaskDiT. MaskDiT (Zheng et al., 2023) introduces a noise-based pretraining approach that lever-
ages masked transformers for faster training of diffusion models. Unlike DiffMAE, MaskDiT gen-
erates a corrupted input using both noised tokens and masked tokens:

Xcor = Xt
n +Xm =

(√
αt ·X +

√
1− αt · ϵ

)
⊙M + θ ⊙ (1−M), (7)

where θ denotes a learnable parameter for the masked tokens. Similarly, as before, we denote the
noised tokens Xt

n and the masked tokens Xm. The model then learns to reconstruct both the noised
tokens Xt

n and the masked tokens Xm via denoising and reconstruction function Φ:

(X̂n, X̂m) = Φ(Xt
n, Xm, t). (8)

3 AN ANALYSIS OF PRIOR PRETRAINING METHODS

Recent noise-based C2R methods (Wei et al., 2023; Zheng et al., 2023) augment masked image mod-
eling (MIM) by injecting additive Gaussian noise to capture fine-grained detail. Yet, consistent with
the results reported in the prior study (Zheng et al., 2023), our experiments show no notable gains
over MIM baselines (Xie et al., 2022; He et al., 2022) on recognition tasks (Fig. 7). Under matched
pretraining and identical fine-tuning, both variants perform on par with MIM on ImageNet (Deng
et al., 2009) and underperform on FGVC (Wah et al., 2011; Van Horn et al., 2015; 2017; 2018;
Krause et al., 2013; Maji et al., 2013), where fine detail matters most. Simply adding a denoising
stage to MIM does not improve representation quality for recognition. We therefore examine how
masking and noising are combined and where corruption is applied.
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Figure 3: (a) Conjunctive Corruption achieved better performance across datasets, as it consistently
retains a fully masked portion that enhances semantic discriminability. In contrast, Substitutive
Corruption relies on tokens with random noise intensities, which may limit its effectiveness. (b)
Illustration of two corruption paradigms: Substitutive Corruption, where masked tokens are replaced
by noised ones; and Conjunctive Corruption, where masked and noised tokens coexist.

3.1 HOW SHOULD MASKING AND NOISING BE COMBINED?

We first examine how recent methods integrate noising with masking to investigate why they pro-
vide limited gains on recognition tasks. Specifically, we look into the two representative cases of
integrations, DiffMAE (Wei et al., 2023) and MaskDiT (Zheng et al., 2023).

• Substitutive Corruption: masked tokens are replaced with noised tokens;

• Conjunctive Corruption: masked tokens are retained while visible tokens are additionally
noised.

Substitutive Corruption (Wei et al., 2023) employs a noised token alongside a clean visible token,
as specified in (5), and the model focuses on denoising (6). On the other hand, Conjunctive Corrup-
tion (Zheng et al., 2023) utilizes both a masked token and a noised token, as described in (7), and the
model performs both denoising and reconstruction (8). Fig. 3 (b) illustrates these two alternatives.

We evaluated the two corruption methods used in recent baselines (Wei et al., 2023; Zheng et al.,
2023). Fig. 3 (a) presents the transfer learning performance measured after pretraining on ImageNet-
1K (Deng et al., 2009) and fine-tuning across recognition benchmarks (Wah et al., 2011; Van Horn
et al., 2015; 2017; 2018; Krause et al., 2013; Maji et al., 2013), confirming that Conjunctive Corrup-
tion consistently outperforms Substitutive Corruption. We attribute this to the limitation of Substitu-
tive Corruption, which relies solely on noise as a corruption. Since random time sampling often pro-
duces nearly clean inputs, the pretraining task may become trivial and fail to encourage meaningful
semantic learning. In contrast, Conjunctive Corruption always retains masked regions, compelling
the model to jointly solve denoising and reconstruction, encouraging richer feature representations.

3.2 WHERE SHOULD CORRUPTION BE APPLIED?

Beyond the strategy to combine masking and noising, a further key question is where corruption
should be applied. We first categorize MIM paradigms into two types based on the placement of
masked tokens, as illustrated in Fig. 4 (a):

• Encoder-style (Xie et al., 2022; Bao et al., 2021; Yi et al., 2022): masked tokens are
injected into the encoder, and reconstruction is performed across the encoder–decoder.

• Decoder-style (He et al., 2022; Chen et al., 2024a; Dong et al., 2022): masked tokens are
processed only in the decoder, while the encoder learns solely from visible tokens.
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Figure 4: (a) The study of MIM is broadly segmented into two types based on masked token place-
ment: Encoder-style, which reconstructs masked regions within the encoder (Xie et al., 2022; Bao
et al., 2021; Yi et al., 2022; Choi et al., 2024), and Decoder-style, where reconstruction occurs solely
in the decoder (He et al., 2022; Chen et al., 2024a; Dong et al., 2022). The recent noise-based C2R
baselines (Wei et al., 2023; Zheng et al., 2023) build on MAE (He et al., 2022), can be seen as
Decoder-style. (b) We implemented naive Encoder- and Decoder-style C2R frameworks, both with
Conjunctive Corruption. Consistent with our hypothesis, the Encoder-style performs better across
standard and fine-grained tasks, though the gains are modest, suggesting that naive implementations
fall short. We thus further examine how Encoder-style design can more fully exploit its advantages
in Sec. 4.1.

Recent noise-based pretraining approaches (Wei et al., 2023; Zheng et al., 2023) primarily adopt a
Decoder-style design built on MAE (He et al., 2022).

However, it is important to note that only the encoder is transferred for downstream fine-tuning.
This suggests that the placement of corruption and reconstruction may matter and has motivated
MIM baselines to explore Encoder-style designs; accordingly, recent works (Xie et al., 2022; Bao
et al., 2021; Yi et al., 2022; Choi et al., 2024) adopts an Encoder-style design. We therefore study
an Encoder-style variant that applies corruption and reconstruction inside the encoder, such that
noising directly shapes the learned transferable representations. The next section (Sec. 4.1) details
this design and compares it head-to-head with matched Decoder-style baselines.

4 PROPOSED METHOD

Building on the analysis of prior methods, which revealed strengths and limitations of existing de-
signs, we move beyond them and identify three novel design principles to effectively unify masking
and noising. These principles, detailed in the following subsections, are as follows:

• Encoder-style: corruption and restoration should occur within the encoder;
• Feature-level noise: noise is most effective when injected at the feature level; and
• Task disentanglement: masked token reconstruction and de-noising must be explicitly

disentangled.

4.1 CORRUPTION AND RESTORATION SHOULD OCCUR WITHIN THE ENCODER

In most transfer learning pipelines, the encoder is transferred and fine-tuned for downstream tasks,
while the decoder is typically discarded. Consequently, when corruption is applied only at the
latent level and restoration is confined to the decoder, the encoder neither learns to handle corrupted
signals nor explicitly engages in restoration, limiting the relevance of its learned features. In contrast,
introducing corruption and enforcing restoration within the encoder directly couples representation
learning with corruption handling, which, in principle, should promote richer and more transferable
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Figure 5: We introduced noise at encoder blocks 0, 2, 4, and 6. Feature-space injection (blocks 2, 4,
and 6) outperformed pixel-space (block 0) on recognition tasks, with optimal performance at block
2, where high-frequency details are captured.

features. This theoretical motivation forms the basis of our hypothesis that Encoder-style corruption
design offers clear advantages for pretraining. We then evaluated their performance on transfer
learning by pretraining both models on ImageNet-1K (Deng et al., 2009) and fine-tuning them on
the range of recognition tasks and datasets.

Fig. 4 (b) reports the transfer learning performance of each design. We implemented two naive noise-
based frameworks featuring Conjunctive Corruption strategies that differ only in their placement
of corruption. We kept all other factors identical. Consistent with our hypothesis, the Encoder-
style structure performs better than the Decoder-style design across both standard recognition tasks
and fine-grained benchmarks. However, the margin of improvement was smaller than anticipated,
suggesting that a naive implementation alone does not fully reveal its potential. In the following
subsection, we delve deeper into why this is the case and outline how the Encoder-style paradigm
can better realize its advantages.

4.2 NOISE IS MOST EFFECTIVE WHEN INJECTED AT THE FEATURE LEVEL

Much of the success of denoising diffusion models is rooted in the application of noise at the la-
tent (feature) space (Rombach et al., 2022; Chen et al., 2024b). While pixel-space diffusion ex-
ists (Hoogeboom et al., 2024), they need careful strategies on how noise should be applied. As such,
we also suspect this to be the case for pretraining. However, in the naive implementation that we
consider in Sec. 4.1, the Decoder-style method adds noise at the latent space immediately before
the decoder, whereas the Encoder-style approach injects noise in pixel-space, prior to the encoder.
We thus evaluate the Encoder-style setting by adding noise to various blocks within the encoder to
investigate the impact of different noise-addition locations.

In Fig. 5, we conducted experiments by varying the stage at which noise is introduced within the
encoder, specifically at different encoder blocks (blocks 0, 2, 4, and 6). The transfer learning perfor-
mance results for recognition tasks verify that adding noise in feature-space (blocks 2, 4, and 6) is
more effective than in pixel-space (block 0). Additionally, the highest performance observed at ‘en-
coder block 2’ suggests that noise addition is particularly effective when applied in the lower layers
of the encoder, where high-frequency details are captured. This result reveals that the injecting noise
at the feature level is crucial for maximizing the transfer learning potential of the model.

4.3 MASKED TOKEN RECONSTRUCTION AND DE-NOISING SHOULD BE EXPLICITLY
DISENTANGLED

Referring to recent studies of MIM (Choi et al., 2024; He et al., 2022; Dong et al., 2022), Encoder-
style approaches have shown mixed outcomes compared to Decoder-style. A plausible contributor is
that masked tokens are optimized along directions weakly aligned with those of visible tokens (Choi
et al., 2024), which can interfere with updates to visible token representations. Since Conjunctive
Corruption uses masked tokens alongside noisy visible tokens, we hypothesize a similar risk in
noise-based C2R pretraining, where masked tokens may interact undesirably with the encoding of
noisy visible tokens.

To address this, we propose an explicit objective that disentangles the masked token reconstruction
from the de-noising strategy. We introduce disruption loss, a variant of masked token optimization

7
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Figure 6: (a) We propose an explicit objective to disentangle the de-masking task from the de-noising
task, fully harnessing both reconstructions within the encoder. The disruption loss adjusts the weight
distribution of the affinity map, minimizing the influence of masked tokens on noisy visible tokens,
and enhancing performance across both fine-grained and standard recognition tasks. (b) Disruption
loss adjusts the affinity matrix to suppress masked-noised interactions, enforcing disentanglement
between de-noising and mask reconstruction within the encoder.

proposed in MTO (Choi et al., 2024), designed to suppress attention between the two different token
types. Disruption loss leverages per-row sparsities within the affinity matrix, which consists of four
quadrants in Fig. 6 (b) as follows:

A =

[
Amm Amn

Anm Ann

]
, (9)

where Amm represents weights between masked-masked tokens, Amn and Amn represents affinities
between masked-noised tokens, and Ann represents weights among noised tokens. The disruption
loss Ld suppresses the attention of the masked-noised tokens by increasing the entropy of the atten-
tion between masked-masked token in the row unit of the affinity matrix. Thus, Ld recalibrates the
weight distribution of A, minimizing the impact of masked tokens xm on noisy visible tokens xt

n:

Ld = −
∑
i∈N

∑
j

p̃i,j log p̃i,j (10)

where N denotes the index set of masked tokens xt
n, and p̃ is the row-wise softmax of the affinity

entries in A, satisfying 0 < p̃i,j < 1 and
∑

j p̃i,j = 1. The application of Ld reduces interference
between different token types and thus ensures effective task disentanglement between masked token
reconstruction and denoising within the encoder.

The experimental results in Fig. 6 (a) exhibit a performance improvement from this weight ad-
justment on both fine-grained and standard recognition tasks. This demonstrates that explicitly
separating de-masking and de-noising objectives maximizes the transferability of the Encoder-style
approach.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

All experiments in this manuscript were conducted under precisely identical conditions to ensure
accurate analysis. For consistency, we evaluated all methods using official implementations (except
DiffMAE, which we reimplemented due to lack of release) under our hardware configuration (4
× A100 GPUs). Since baselines have been trained in large cluster resources that are not available
to everyone, reproduced results may differ from original papers. Please note that we ensured all
comparisons followed the same setup, with code provided for verification in the Supplementary
Material.
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Figure 7: To ensure statistical significance, we conducted 5 trials with different random seeds, re-
porting the mean (bars) and standard deviation (lines) for each method. The proposed method (Ours)
consistently outperforms representative MIM (Xie et al., 2022; He et al., 2022) and noise-based
methods (Wei et al., 2023; Zheng et al., 2023) across a wide range of recognition tasks, capturing
diverse frequency details as shown in Fig. 1 and Fig. 2, that improve accuracy in FGVC, image
classification, semantic segmentation, object detection, and instance segmentation tasks.

All experiments used ViT-B (Dosovitskiy et al., 2020) as the backbone architecture applying a uni-
fied 400-epoch training schedule. pretraining was performed on the ImageNet-1K (Deng et al.,
2009) classification dataset, followed by fine-tuning on respective downstream task datasets.

5.2 MAIN RESULT

In Fig. 7, we evaluate the proposed method on diverse tasks, including fine-grained visual cat-
egorization (FGVC), image classification, semantic segmentation, object detection, and instance
segmentation, each with task-specific datasets. FGVC datasets (CUB-200-2011 (Wah et al.,
2011), NABirds (Van Horn et al., 2015), iNaturalist 2017 (Van Horn et al., 2017), iNaturalist
2018 (Van Horn et al., 2018), Stanford Cars (Krause et al., 2013), Aircraft (Maji et al., 2013))
demand detailed, fine-grained feature learning to distinguish visually similar classes. In contrast,
standard recognition tasks (ImageNet (Deng et al., 2009)), semantic segmentation (ADE20K (Zhou
et al., 2017)), object detection and instance segmentation (COCO (Lin et al., 2014)) emphasize
broader spatial details at different levels of granularity.

To ensure the statistical significance of the results, we conducted 5 trials with different random seeds
and included the mean and standard deviation for each method in the figure. In the graph, the bars
represent the mean performance, while the lines indicate the standard deviation.

The proposed method (Ours) consistently outperforms representative MIM (Xie et al., 2022; He
et al., 2022) and noise-based methods (Wei et al., 2023; Zheng et al., 2023) across tasks. In FGVC
tasks, our method effectively captures high-frequency, localized features, as also shown in Fig. 1
and Fig. 2, surpassing comparison methods in accuracy. Even in standard recognition tasks, where
spatial detail is key, our method shows favourable gains, highlighting our proposed design enhance
transfer potential and capture diverse frequency information, as demonstrated in Fig. 1. These statis-
tically significant improvements strongly validate the effectiveness and robustness of our approach
over comparison methods.

Ablation studies in the Appendix. Comprehensive ablation studies are provided in the Appendix
below and should be consulted for a complete understanding of our method. They cover various
decoupling frameworks, time-embedding placement, longer pre-training schedules, evaluation on
denoising task, and extended comparisons with related works.

6 CONCLUSION

We have investigated why existing noise-based C2R pretraining yields only limited gains on recogni-
tion tasks. Through systematic analysis, we proposed architectural guidelines that advocate encoder-
style corruption, feature-level noise injection, and explicit disentanglement of masking and noising
objectives. Our framework following these principles captures a broader frequency spectrum and
achieves consistent improvements, surpassing both MIM and prior noise-based methods by signifi-
cant margins across standard and fine-grained benchmarks. We believe that these findings highlight
the importance of corruption design in self-supervised pretraining and open new directions to ex-
ploit generative principles in representation learning. Nevertheless, our analysis is currently limited
to recognition tasks. It would be interesting to broaden the scope of our study to other applications.
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Appendix

A ABLATION STUDY ON DECOUPLING FRAMEWORKS

Figure 8: Comparison of four decoupling frameworks for combining de-noising (dn) and de-
masking (dm) across encoder/decoder: (A) Enc-dn, Dec-dm; (B) Enc-dn+dm with disentangle-
ment (proposed); (C) Enc-dm, Dec-dn; (D) Dec-dn+dm with disentanglement. Under matched
pre-training and fine-tuning on ImageNet and FGVC, results suggest B > C > A > D, indicating a
role for task placement. Encoder-centric placement with explicit separation tends to reduce cross-
objective interference and yield more transferable features, while fully decoder-based training is
weaker on average.

One key finding of this study is the critical role of disentangling de-noising and de-masking tasks
within the encoder, as it is the component transferred during downstream fine-tuning. To maximize
transfer learning potential, our framework explicitly separates these tasks through a disentanglement
objective while keeping them within the encoder. To further investigate this, we evaluated four
decoupling frameworks on fine-grained visual categorization (FGVC) (Wah et al., 2011) and image
classification (Deng et al., 2009) tasks, varying the placement of de-noising and de-masking tasks
across the encoder and decoder.

Specifically, we implemented and analyzed the following four configurations.

• (A) Encoder de-noises, decoder de-masks (Zheng et al., 2023).
• (B) Proposed framework: Encoder de-noises and de-masks with disentanglement loss, en-

suring task separation.
• (C) Encoder de-masks, decoder de-noises.
• (D) Decoder de-noises and de-masks with disentanglement loss, fully shifting both tasks to

the decoder.

The results in Fig. 8 suggest an ordering (B) > (C) > (A) > (D) under our protocol, pointing to
a role for task placement. Framework (B) attains the highest mean score, indicating potential ben-
efits when both objectives reside in the encoder with an explicit separation of responsibilities; a
plausible explanation is reduced cross-objective interference while letting de-noising and mask re-
construction shape transferable features. Comparing (A) and (C) hints that de-masking inside the
encoder can be more helpful than de-noising in our setup, possibly because mask reconstruction
pressures features to encode part-level and semantic cues, whereas denoising can emphasize lower-
level statistics. Framework (D) trails on most benchmarks, consistent with encoder supervision
being more indirect when both objectives sit in the decoder. Overall, we read these trends as sup-
portive of an encoder-centric placement with explicit separation, yielding semantically meaningful
and transferable features across downstream tasks.

B ABLATION STUDY ON TIME-EMBEDDING

In denoising diffusion models, time-embedding plays a crucial role that encodes the temporal in-
formation associated with the noise levels introduced at various steps. Injecting time-embedding
at appropriate points that align with the temporal dynamics of the noise is essential, as it enables
the model to more effectively capture the relationship between the noise levels and the input fea-
tures. Thus, for pre-training, we introduce time-embedding just before the block where noise is
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Figure 9: We evaluated the placement of time-embedding during fine-tuning on FGVC (Wah et al.,
2011) and image classification tasks (Deng et al., 2009). Results show that the placement at block
2, consistent with pre-training, achieves the best performance by aligning temporal encoding with
noise dynamics to retain fine-grained features.

added (block 2) to ensure the optimal alignment between the noise addition process and temporal
information.

To evaluate how well the model utilizes fine-grained features aligned with temporal information
for downstream tasks, we adjusted the placement of time-embedding during fine-tuning and assess
its performance on FGVC (Wah et al., 2011) and image classification (Deng et al., 2009) tasks.
Specifically, we tested time-embedding at four locations: initial embedding (block 0), immediately
prior to noise addition (block 2), and post-noise addition blocks (block 4 and block 6).

In Fig. 9, the results show that placing time-embedding at block 2 achieves the best performance,
followed by block 0, block 4, and block 6. This indicates that using the same time-embedding
placement during fine-tuning as the pre-training (block 2) yields optimal results. The alignment
of temporal encoding with noise dynamics is crucial for retaining the fine-grained features learned
during pre-training.

The placement at block 0 achieves the second-highest performance, as injecting time-embedding
at the initial stage allows the model to incorporate temporal information from the very beginning,
allowing it to guide the extraction of features that are consistent with the progression of noise levels
across the diffusion process. This observation aligns with findings reported in prior diffusion model
studies (Ho et al., 2020; Nichol & Dhariwal, 2021), where early time-embedding helps initialize
representations that remain consistent throughout the network. Blocks 4 and 6 perform worse as
they occur after the noise has already been added and partially processed, making the temporal
information less relevant to the feature refinement for downstream tasks. Late-stage time-embedding
can introduce redundancy by repeating temporal information already captured in earlier layers, or
fail to impact the already-learned representations effectively.

C ABLATION STUDY ON LONGER PRE-TRAINING SCHEDULE

All experiments in the manuscript use a 400-epoch pre-training schedule. To assess schedule length
effects, we also pre-train for 800 epochs and evaluate on FGVC (Wah et al., 2011). Figure 10 reports
our method alongside representative MIM baselines—MAE (He et al., 2022) and SimMIM (Xie
et al., 2022)—under both 400 and 800 epochs. Across methods, extending to 800 epochs yields
consistently higher accuracy, but the improvements are modest relative to the additional compute.
Notably, the relative ranking among methods is largely preserved, with no systematic cross-overs,
suggesting that longer schedules primarily refine existing representations rather than alter induc-
tive biases. Taken together, these results indicate that while longer schedules are beneficial, the
cost–benefit trade-off is weak in this regime and does not change our main conclusions.
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Figure 10: Effect of pre-training schedule length (400 vs. 800 epochs) on FGVC (Wah et al., 2011).
We report our method and MIM baselines (MAE (He et al., 2022), SimMIM (Xie et al., 2022)). Ac-
curacy increases at 800 epochs across methods, and rankings are largely preserved. Longer sched-
ules appear to refine rather than change representations, yielding limited cost–benefit and leaving
our conclusions unchanged.

D EVALUATION ON DENOISING TASK

Figure 11: We qualitatively evaluate our method on denoising tasks, demonstrating its ability to
accurately reconstruct corrupted scenes by capturing fine-grained details and high-level semantics
through effective de-noising and de-masking strategy. (Left: input images with applied noise. Right:
Denoised outputs produced by the proposed model.)

The main manuscript evaluates a broad set of recognition tasks including FGVC, image classifica-
tion, semantic segmentation, object detection, and instance segmentation. Since our approach builds
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on denoising diffusion models, we hypothesize potential benefits on denoising-style downstreams
as well.

To validate this, we provide qualitative results on denoising tasks over ImageNet validation bench-
marks (Deng et al., 2009), as shown in Fig. 11. Our method demonstrates fair predictions even under
heavy noise on the task that requires capturing both fine-grained textures and high-level semantics.
This highlights how our model leverages noise-based learning to understand holistic scene repre-
sentations, enabling it to also excel in generative tasks. The combined de-noising and de-masking
framework further promotes the learning of semantic discriminability, enabling precise reconstruc-
tion of corrupted scenes.

E COMPARISON WITH OTHER RELATED WORKS

E.1 COMPARISON WITH MASKED IMAGE MODELING METHODS

Dataset iBOT (Zhou et al., 2021) Ours

CUB (Wah et al., 2011) 64.1 81.7
NABirds (Van Horn et al., 2015) 65.9 80.9

Table 1: Our comparisons focus on representative MIM baselines (SimMIM and MAE), demon-
strating MIM’s tendency to underperform on FGVC tasks. While a full comparison is unnecessary,
we include iBOT for reference, where our method achieves significantly higher accuracy.

Our main comparisons focus on representative MIM baselines (SimMIM and MAE) to highlight the
overall tendency of MIM to underperform on FGVC tasks. While a complete comparison with all
MIM methods is not essential, we include a comparison of iBOT (Zhou et al., 2021) for reference.
Results are provided in Tab. 1. The results clearly demonstrate that our proposed framework signifi-
cantly outperforms representative MIM methods (Xie et al., 2022; He et al., 2022; Zhou et al., 2021)
in fine-grained visual categorization (FGVC) tasks. Compared to iBOT, a strong representative
of masked image modeling (MIM) approaches, our method achieves remarkably higher accuracy
(17.6% on CUB (Wah et al., 2011), 15.0% on NABirds (Van Horn et al., 2015)), highlighting its
superiority in FGVC. These datasets require capturing subtle differences between visually similar
categories, and our framework excels at learning richer, more transferable representations that better
preserve fine-grained details.

E.2 COMPARISON WITH DENOISING-BASED METHODS

Our work focuses on pre-training methods specifically designed for recognition tasks, such as Diff-
MAE (Wei et al., 2023) and MaskDiT (Zheng et al., 2023). While other denoising-based methods
(e.g., DiT (Peebles & Xie, 2023), MDT (Gao et al., 2023), DiffiT (Hatamizadeh et al., 2024)) exist,
they are not tailored for recognition tasks and showed significantly lower performance in prelim-
inary evaluations. Since our work aims to advance recognition-specific pre-training, not general
denoising techniques, including such comparisons would be misleading rather than informative. In
addition, l-DAE (Chen et al., 2024b) is designed for recognition tasks but lacks publicly available
code, making direct comparison infeasible.

F THE USE OF LLMS

LLMs were used only for minor language improvements. They were not involved in the conception
of the research, experiments, analysis, interpretation, or drafting.
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