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ABSTRACT

In gaming, decision-making diversity reflects the broad spectrum of styles that
players can adopt. Despite the importance of this diversity, finding a universally
applicable metric for it is challenging. To address this, a previous approach intro-
duced the Playstyle Distance—a method for gauging similarity between datasets
using game screens and their corresponding action pairs. This method identifies
comparable states in discrete representations and then computes action distribu-
tion distances. Building on it, we introduce several new techniques. These include
multiscale analysis with varied state granularity, perceptual kernels rooted in psy-
chology, and the utilization of the intersection over union method for efficient data
assessment. These innovations advance playstyle measurement and offer insights
into human cognition of similarity. In experiments across two racing games and
seven Atari games, our metric achieves over 90% accuracy in playstyle classifica-
tion. Remarkably, this requires fewer than 512 observation-action pairs, less than
half an episode in all tested games. We also develop an algorithm for assessing
decision-making diversity using this metric. Our findings illuminate promising av-
enues for real-time game analysis and the evolution of AI with diverse playstyles.

1 INTRODUCTION

The pursuit of diversity in decision-making is one of the intrinsic motivations that drive human
behavior, resulting in individual personality and creativity (Rheinberg, 2020). This is evident in
the context of video games, where decision-making manifests as various playstyles, each reflecting
individual strategies (Bean & Groth-Marnat, 2016). Alongside the pursuit of diversity, another cen-
tral aspect of decision-making focuses on achieving optimal performance. Significant advances in
decision-making performance have been witnessed, especially with the development of Deep Rein-
forcement Learning (DRL) (Russell & Norvig, 2020). The effectiveness of DRL was first showcased
in arcade video games (Mnih et al., 2015). Subsequent applications to board games emphasized its
potential, achieving superhuman skills (Silver et al., 2018). This success expanded into various types
of games, from Agent57’s superhuman agents in Atari games to groundbreaking feats in Dota 2 and
StarCraft II (Badia et al., 2020; Berner et al., 2019; Vinyals et al., 2019). Beyond gaming, DRL
applications extend to robot control (Lillicrap et al., 2016; Andrychowicz et al., 2020) and natural
language processing (Ouyang et al., 2022), among others. These advancements in DRL underscore
the profound impact of evolving decision-making techniques on modern technology.

Yet, while DRL continues to show promise in diverse applications, understanding and analyzing the
playstyles it adopts remains a complex endeavor. Diverse data sources are essential for enhancing
agent strength or efficiency (Fan & Xiao, 2022), just as diverse skill acquisition is vital for agents to
generalize across tasks (Eysenbach et al., 2019). While a robust playstyle metric fosters a spectrum
of playing strategies, it also reveals the inherent challenges in measuring these styles, particularly in
environments without built-in features for playstyle measurement. Consequently, achieving precise
playstyle measurement remains a formidable task (Tychsen & Canossa, 2008).

There are several methods to evaluate playstyles, from heuristic rules design to in-game features
exploration (Tychsen & Canossa, 2008; Bontchev & Georgieva, 2018; Mader & Tassin, 2022). Su-
pervised learning facilitates playstyle discrimination (Brombacher et al., 2017), while unsupervised
clustering offers deeper behavioral insights (Ferguson et al., 2020). Another avenue involves con-
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trastive learning to identify playstyles across samples (McIlroy-Young et al., 2021; Agarwal et al.,
2021). Through these methods, the notion of playstyle can be gauged using distance or similarity
metrics across game datasets, addressing the dynamic and evolving challenges in different scenarios.
The concept is reflected in the work by Lupu et al. (2021), which specifies policy diversity using
action distribution divergence but necessitates parametrized policies for similarity measurements.

The recent innovation by Lin et al. (2021) introduces the Playstyle Distance metric, which stands out
by directly measuring playstyle from in-game observation-action pairs. Unlike common methods
that compare latent feature distributions or rely on parametrized policies, this approach measures
action distribution distances directly from gameplay samples, reducing the reliance on predefined
playstyle data or extensive training sets for learning latent features or policies. Its effectiveness
hinges on the critical role of state discretization. By discretizing observations, this method identifies
comparable states, allowing a direct quantification of action distribution distances for each state,
thereby encapsulating a player’s style. Notably, the case-by-case estimation of states can withstand
disturbances from uncontrollable variables, such as game randomness and interactions with other
players. Consequently, it offers a consistent evaluation of playstyles across different games.

While the Playstyle Distance offers a pivotal advance, our research endeavors to elevate this foun-
dation. We introduce innovative techniques to enrich the playstyle measurement paradigm, building
upon Playstyle Distance. Initially, we leverage multiscale analysis with varied state granularity,
emulating human judgment of similarity from multifaceted attributes and viewpoints (Medin et al.,
1993). We then advocate for the use of perceptual kernels derived from psychophysics (Fechner,
1966) in psychology to achieve a probabilistic similarity value, harmonizing more with human com-
prehension than conventional distance values. Moreover, incorporating the Jaccard index concept
(Murphy, 1996), we transcend the metric past mere intersections, fully harnessing the observed game
dataset to tackle measurement unstability with sparse intersecting samples. These techniques not
only improve precision in playstyle metrics but also shed light on understanding similarity through
the lens of human cognition. From their fusion emerges the novel Playstyle Similarity metric.

To underscore our contributions, our metric’s efficacy is validated across two racing games and seven
Atari games. Remarkably, we attain over 90% accuracy in playstyle classification tasks with under
512 game screens observations and their corresponding action pairs—equating to less than half an
episode in all examined games. In addition, we introduce a framework for measuring decision-
making diversity, showcasing our metric’s applicability. This comprehensive exploration magnifies
its prowess in game analysis and AI training, harmoniously merging playstyle measurement with
human-centric similarity interpretation.

2 BACKGROUND AND RELATED WORKS

In this section, we discuss playstyle metrics in-depth, provide a historical overview, and highlight
the importance of discrete representation in crafting general playstyle metrics.

2.1 PLAYSTYLE AND MEASUREMENT

Establishing a universally accepted playstyle metric is a formidable challenge, as perceptions of
playstyle are influenced by myriad factors and often harbor subjective nuances. Consequently, any
playstyle metric should specify its evaluative parameters transparently to ensure its measurements
are persuasive. Historically, tailored metrics, characterized by heuristic rules or specific in-game
features, often presented the most precise for dedicated case studies. For instance, the study by
Lample & Chaplot (2017) utilized metrics like object counts, kills, and deaths in shooting games.
However, due to their inherent manual nature, these metrics are often domain-specific.

To achieve broader applicability, some researchers have resorted to supervised classification to iden-
tify target styles (Brombacher et al., 2017). However, this method requires labeled training data and
may encounter difficulties in detecting styles that are not present in the training set. Unsupervised
clustering offers a different angle, emphasizing latent feature distances for classification (Ferguson
et al., 2020). But this approach may obscure the semantic meaning of the metrics, particularly when
image data is the primary source. A noteworthy approach is the Behavioral Stylometry proposed
by McIlroy-Young et al. (2021). This metric, crafted for chess playstyle assessment, encodes chess
moves into a game vector, aggregates these vectors to represent a player, and then compares this
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representation against a reference set. Central to this method is the contrastive learning technique,
Generalized End-to-End, employed to differentiate players in training datasets (Wan et al., 2018).

For a more generalized measurement, one could consider measuring the similarity of action policies.
It is common to regularize policy with a prior or given model (Schulman et al., 2015; Garg et al.,
2023). Methods that extend to specify similarity or diversity by comparing the action distribution
of two policies have also been explored (Agarwal et al., 2021; Lupu et al., 2021). Notably, these
methods often require a parametrized policy for comparisons. This limitation is addressed by the
Playstyle Distance metric (Lin et al., 2021). Instead of emphasizing latent features or parametrized
policies, this method focuses on the action distributions of given samples. Observations are dis-
cretized and then leveraged for determining which action samples are comparable. Such a method
resonates with human instinct more, echoing the case-by-case assessment we often deploy.

2.2 FRAMEWORK OF PLAYSTYLE DISTANCE

To delve deeper into the generality and importance of the Playstyle Distance metric in playstyle
measurement, we examine its foundation as follows. A pivotal component of its methodology is the
use of the Vector Quantised-Variational AutoEncoder (VQ-VAE), which specializes in discrete data
representations by mapping continuous encodings to nearest vectors in a predefined codebook. This
integration of neural networks with the nearest neighbor method results in discrete representations
(van den Oord et al., 2017). Building upon VQ-VAE, the Hierarchical State Discretization (HSD) in
Playstyle Distance ensures a concise and hierarchical state space. This is essential for pinpointing
overlapping states while preserving the integrity of observation reconstruction and gameplay details.

Central to this framework is the discrete state encoder, denoted as ϕ. In-game observations o and
their associated actions a are mapped to datasets Mi ∼ Stylei. The encoder ϕ translates these obser-
vations into a compact state representation s, formulated as: Sϕ: ϕ(o) → s. In the initial Playstyle
Distance approach, the hierarchical encoder ϕ possesses the capability to generate multiple discrete
states. However, the foundational literature employs a singular state space for computations. The
reasoning for this choice and the potential to harness additional states are delved into in Section 3.

From state s, action distributions are deduced using a sampling distribution: {a|(o, a) ∈ M,ϕ(o) →
s} ⇒ πM (s). Here, π represents the policy, depicting action distributions for a given state. Sub-
sequently, the distances between these distributions are determined using the metric D(πX , πY ),
where the 2-Wasserstein distance (W2) serves as the standard (Vaserstein, 1969). Recognized for
measuring the minimum ’effort’ to transform one distribution into another, the Wasserstein distance
is apt for policy comparisons, analogous to quantifying the ’effort’ to transition between playstyles.

The essence of this metric can be succinctly captured as:

dϕ(MA,MB) =
dϕ(MA|MB)

2
+

dϕ(MB |MA)

2
,

where dϕ(MX |MY ) = Eo∼MY ,ϕ(o)∈ϕ(MX)∩ϕ(MY )[D(πX(ϕ(o)), πY (ϕ(o)))]
(1)

To encapsulate, the Playstyle Distance framework presents an advanced method to contrast game-
play styles, reducing the need for predefined heuristics and datasets, thereby increasing the applica-
bility in various games. For a graphical representation of the framework, see Figure 1.

3 DISCRETE STATE PLAYSTYLE METRICS

In this section, we delve into a series of discrete state playstyle metrics derived from Playstyle
Distance. We first address the limitations of Playstyle Distance. We then expand it into a multiscale
approach by leveraging the hierarchical structure of states. Subsequently, we explore converting
the action distribution distance into a perceptual value of similarity rooted in cognitive psychology,
utilizing a perceptual kernel function. Thirdly, we broaden our scope from merely intersection
states to the union of states, aiming for a more stable estimation of all observed data. Concluding
the section, we integrate the strengths of these discrete state playstyle metrics into a comprehensive
metric we term as Playstyle Similarity.
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Figure 1: Illustration of the Playstyle Distance computation using a hierarchical discrete state en-
coder ϕ. The Venn diagram highlights the intersection of discrete states for distance calculation.

3.1 EFFECT OF MULTISCALE STATES

Playstyle Distance underscores the importance of intersection states to ensure stable and precise
distance measurements. Consequently, it resorts to a constrained state space sourced from the HSD
model. A sample count threshold is applied to the intersection state, necessitating at least two
samples in both datasets under comparison; failing which, the state is excluded from the intersection.

Human cognition perceives similarity as a convergence of multiple attributes leading to a holistic
understanding (Goldstone & Barsalou, 1998). Hence, we advocate for employing varied granularity
of discrete states to augment measurement capabilities, analogous to human judgment that varies
from a broad view to intricate details. The HSD model’s design inherently possesses a large state
space for observational reconstruction and the discernment of gameplay nuances. Though the state
space may be large, intersections are not void if observations are sufficiently similar or come from
identical gameplay. It is worth noting that Lin et al. (2021) were able to distinguish intersection
states even with unprocessed screen pixels in Atari games. In a different scenario, when treating
each state as equivalent, we can invariably pinpoint an intersection state. In this context, distance
simply gauges the action distribution over the entirety of the game, akin to traditional methods de-
ploying post-game statistics. Broadly speaking, we can enhance the original state encoder function,
ϕ, evolving it into a state encoder mapping, Φ, wherein Φ is an assemblage of mapping functions,
ϕ ∈ Φ: SΦ : Φ(o) → {ϕ(o) ∈ Sϕ|ϕ ∈ Φ}. Consequently, the projected state of dataset M is
defined as: Φ(M) → {ϕ(o) ∈ Sϕ|o ∈ M,ϕ ∈ Φ}. We can then reinterpret Equation 1 as:

dΦ(MA,MB) =
dΦ(MA|MB)

2
+

dΦ(MB |MA)

2
,

where dΦ(MX |MY ) = Eo∼MY ,
⋃

ϕ∈Φ{ϕ(o)∈ϕ(MX)∩ϕ(MY )}[D(πX(ϕ(o)), πY (ϕ(o)))]
(2)

This reformulated metric demonstrates superior accuracy in playstyle classification tasks in our ex-
periments, even negating the need for a sample threshold count. This improvement is likely due
to the metric’s integration of hierarchical discrete states of varying granularity, which dilutes the
impact of outliers during distance computation and leverages more useful details. Furthermore, the
adoption of a multiscale state space effectively mitigates the trade-off between a compact intersec-
tion space and the preservation of intricate information details. This balance becomes crucial in
complex games or those that require a vast state space to encode trajectory data.

3.2 PERCEPTION OF SIMILARITY

One potential shortcoming of the Playstyle Distance metric stems from the nature of distance itself.
While distance is a common metric for determining similarity, a larger distance value conveys pri-
marily that two entities are different, without giving much insight into the degree of their similarity.

Human cognition has been observed to exhibit the Magnitude Effect, suggesting diminished sensi-
tivity to larger stimuli (Kahneman & Tversky, 1979). This is in line with the Weber–Fechner Law
in psychophysics, where the relationship between stimulus and perception is logarithmic; as the
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magnitude of stimuli increases, sensitivity diminishes (Fechner, 1966). Drawing from the concept
of similarity, we can infer that a smaller distance provides more definitive information about the
similarity. As distance grows, the distinction becomes vaguer. Therefore, we argue for a metric that
reflects higher sensitivity to smaller distances, emulating human perceptual behavior.

We propose a probability-based model for similarity. In this model, greater similarity (i.e., smaller
distance) corresponds to a probability closer to 100%, while lesser similarity (larger distance) ap-
proaches 0%. This proposed probability function aligns with the logarithmic human perceptual
sensitivity to differences. Specifically, we use the exponential kernel to describe the probability of
similarity, with the mapping function given by P (d) = 1

ed
. This choice relates to the radial basis

function kernel (Vert et al., 2004), and this perceptual kernel is the if and only if kernel under our
assumptions from human cognition and probability. We provide a proof in Appendix A.1.

This exponential transformation can also be found in the Bhattacharyya distance and coefficient
(Bhattacharyya, 1946). The Bhattacharyya coefficient BC(P,Q) measures the similarity between
two probability distributions P and Q, and it is related to the overlapping region between these
two distributions. It is defined as BC(P,Q) =

∫
X

√
P (x)Q(x)dx. The Bhattacharyya distance,

derived from the coefficient, is DB(P,Q) = −ln(BC(P,Q)), and the inversion is BC(P,Q) =
exp(−DB(P,Q)). Thus, a new playstyle metric PS∩

Φ(MA,MB) defined with probability of simi-
larity based on Equation 2 is as follows:

PS∩
Φ(MA,MB) =

∑
s∈Φ(MA)∩Φ(MB) P (DM

Φ (πMA
(s), πMB

(s)))

|Φ(MA) ∩ Φ(MB)|

=

∑
s∈

⋃
ϕ∈Φ ϕ(MA)∩ϕ(MB) P (DM

Φ (πMA
(s), πMB

(s)))

|
⋃

ϕ∈Φ ϕ(MA) ∩ ϕ(MB)|

(3)

DM
Φ (πX , πY ) =

D(πX , πY )

D
M,X

Φ

,

where D
M,X

Φ =

∑
m∈M−X

∑
s∈

⋃
ϕ∈Φ ϕ(X)∩ϕ(m) D(πX , πm)∑

m∈M−X |
⋃

ϕ∈Φ ϕ(X) ∩ ϕ(m)|

(4)

The metric has been simplified by adopting a uniform average distance instead of an expected value.
This not only streamlines calculations but also underscores the significance of encoder granularity.
In particular, an intricate encoder with a vast state space may be accorded greater weight, especially
if the intricate encoder reveals more intersection states. Such a methodological tweak, while of-
fering computational simplicity, doesn’t compromise the quality of the outcomes, as evidenced by
Lin et al. (2021). Moreover, by adjusting the distances with an average value, D

M,X

Φ , we ensure
the expected distance converges to 1, consistent with our probabilistic framework (Appendix A.1).
Collectively, our revamped metric provides a probabilistic lens to interpret similarity, firmly rooted
in cognitive theory and tailored for human comprehension. There is more discussion about the role
of the distance metric in Appendix A.2.1, including the implications of adopting different metrics.

3.3 BEYOND INTERSECTION

Before delving into our proposed final metric, it’s pertinent to revisit the foundational concept of
the Playstyle Distance: the intersection of states. The intuitive approach of identifying comparable
states before gauging policy similarities runs into problems when the intersecting samples are lim-
ited. A smaller intersection could yield unstable or insufficient samples for measuring playstyles.
Such a small intersection can be indicative of two scenarios. First, the distinct state-visiting distribu-
tions could signify different playstyles. Alternatively, uncontrollable factors, external to playstyles,
may be involved, indicating the necessity for a more extensive sampling.

A prudent approach would assess the proportion of intersecting samples relative to the total observed
samples. In the realm of collection comparison, the Jaccard index (Murphy, 1996), also known as
Intersection over Union, emerges as a prevalent similarity metric. Notably, this method assumes no
consideration of action distribution. The Jaccard index can serve as an effective playstyle metric
under specific conditions. It is particularly apt when observational data clearly delineates playstyle
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(a) TORCS (b) RGSK (c) Atari (d) Playstyle Classification Task
Figure 2: Three game platforms and the illustration of playstyle classification tasks.

distinctions. For instance, in deterministic environments where states can be distinctly segmented
by varying actions, the Jaccard index appears to be a fitting metric. However, complications arise
when every state is visited or certain states recur due to game rules. The task of distinguishing
different playstyles based solely on observations becomes considerably challenging. This is evident
in single-state games, such as K-arm bandits (Sutton & Barto, 2018), where discerning playstyles
based only on states becomes an impractical endeavor.

Despite potential challenges, our empirical findings suggest that the Jaccard index serves as a robust
metric, especially when the state space is large and the randomness in game is low. The incorporation
of the Jaccard index into a playstyle metric with a multiscale state space is expressed in Equation 5:

JΦ(MA,MB) =
|Φ(MA) ∩ Φ(MB)|
|Φ(MA) ∪ Φ(MB)|

=
|
⋃

ϕ∈Φ ϕ(MA) ∩ ϕ(MB)|
|
⋃

ϕ∈Φ ϕ(MA) ∪ ϕ(MB)|
(5)

3.4 PLAYSTYLE SIMILARITY

Throughout our exploration, we have derived and discussed various playstyle metrics. Collating
these insights, we introduce a comprehensive metric termed as the Playstyle Similarity. Defined as
PS∪

Φ(MA,MB), it synthesizes our earlier discussions into a singular metric as illustrated below:

PS∪
Φ(MA,MB) = JΦ(MA,MB)× PS∩

Φ(MA,MB)

=

∑
s∈Φ(MA)∩Φ(MB) P (DM

Φ (πMA
(s), πMB

(s)))

|Φ(MA) ∪ Φ(MB)|

=

∑
s∈

⋃
ϕ∈Φ ϕ(MA)∩ϕ(MB) P (DM

Φ (πMA
(s), πMB

(s)))

|
⋃

ϕ∈Φ ϕ(MA) ∪ ϕ(MB)|

(6)

What makes this metric novel is its unique treatment of intersection states. While the Jaccard index
assigns a uniform weight (of 1) to each intersecting state regardless of the similarity between the
action distributions, our approach infuses a more nuanced probability-based weighting. The values
range between 0 and 1, increasing proportionally with similarity. This modification overcomes the
potential limitation of using the Jaccard index for playstyle metrics.

Furthermore, our approach ensures a consistent interpretation of zero values. For states not part of
the intersection, where the distance between action distributions is maximal (approaching infinity),
they can be understood as entirely dissimilar.

4 EXPERIMENT SETTINGS

In this section, we explain the specifics of our experimental setup, focusing on the datasets, source
of models, and our playstyle classification methodology.

4.1 GAME PLATFORMS, DATASETS, AND MODEL SOURCE

Our study encompasses three distinct game platforms, as depicted in Figure 2a, 2b, and 2c:
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1. TORCS: This is a racing game with stable controlled rule-based AI players (Yoshida et al.,
2017). The datasets derived from TORCS include a total of 25 playstyles based on driving
speed and noise characteristics. Each observation consists of a sequence of 4 consecutive
RGB images with a size of 64× 64. The action space is 2-dimensional and continuous.

2. RGSK - Racing Game Starter Kit: This racing game, available on the Unity Asset Store
(Juliani et al., 2020), showcases human players. From RGSK, we have data from a total of
24 players, exhibiting individual playstyles. Each observation from this game comprises 4
consecutive RGB images of size 72× 128, with 27 discrete actions.

3. Atari games with DRL agents: The dataset spans 7 different Atari games (Bellemare
et al., 2013) from this platform. Each game includes 20 AI models, all of which demon-
strate varied playstyles. These AI models originate from the DRL framework, Dopamine
(Castro et al., 2018). Each observation involves 4 consecutive grayscale images of resolu-
tion 84× 84. The action space is discrete and varies depending on the game.

It is crucial to clarify that our research did not involve the training of new AI models. Instead, we
leveraged three pretrained encoder models and corresponding datasets for each game, provided by
Lin et al. (2021). The code and associated resources are available in their official release. 1

4.2 PLAYSTYLE CLASSIFICATION AND STATE SPACE LEVELS

Our playstyle classification adheres to a specific methodology. As depicted in Figure 2d, we start
with a target dataset N , sampled from a playstyle Stylen. We then compare this to multiple refer-
ence datasets M , each sampled from different playstyles Style. We perform 100 rounds of random
subsampling for each playstyle; our primary performance metric for this task is the accuracy of
playstyle predictions. If dataset N exhibits the highest similarity to a reference dataset Mi, it sug-
gests that Stylen = Stylei. It’s worth noting that the reported accuracy represents an average,
derived from results obtained using the three distinct encoder models.

Regarding the discrete state space levels, three tiers have been considered:

1. Space size 1, a basic mapping with state space 1, which maps all observations identically.
2. Space size 220, as suggested by Playstyle Distance.
3. Space size 25664∼144 or 256res, a level trained by HSD for the base hierarchy, depending

on the resolution res of convolution features from game screens.

5 RESULTS AND DISCUSSION

In this section, we assess the efficacy of our proposed methods. Initially, we show that a mul-
tiscale state space can enhance the accuracy of Playstyle Distance without relying on a sample
count threshold to preserve the quality of distance measurement. Subsequently, we contrast several
baselines, illustrating that probabilistic methods for measuring similarity outperform distance-based
approaches. Lastly, we incorporate all observed data to evaluate metrics across all platforms.

5.1 MULTISCALE STATE SPACE EFFICACY

To evaluate the efficacy of the proposed multiscale state space and to compare it fairly with Playstyle
Distance, we primarily focus on the TORCS and RGSK platforms. Each sampled dataset from the
given playstyles consists of 1024 observation-action pairs. Furthermore, we compare the sample
threshold count t of intersecting states. In this context, an intersecting state requires a minimum of
t samples in both datasets being compared for a more stable action distribution estimation.

We restrict our comparison to the multiscale version of Playstyle Distance, as defined in Equa-
tion 2. This equation is analogous to the original, as given by Equation 1, except that it uses
only one discrete state space. For the multiscale variant which employs three discrete state
spaces—{1, 220, 256res}—we utilize the label mix for simplification. The results presented in Ta-
ble 1 clearly indicate that employing a multiscale discrete state space not only delivers superior
results but also obviates the need for a sample threshold count for intersecting states.

1https://paperswithcode.com/paper/an-unsupervised-video-game-playstyle-metric
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1 220, t=2 220, t=1 256res, t=2 256res, t=1 mix, t=2 mix, t=1

TORCS 35.16 70.68 60.83 4.60 60.76 74.77 75.05
RGSK 80.14 78.39 93.43 5.62 26.58 88.51 94.21

Table 1: Playstyle accuracy (%) when employing various discrete state spaces in the multiscale
version of Playstyle Distance, with a sample threshold count t for intersecting states.

(a) TORCS (b) RGSK
Figure 3: Comparison of Efficacy: Probabilistic vs. Distance Approaches. The plot illustrates the
relationship between accuracy (Y-axis) and size of the sampled observation-action pairs (X-axis).

5.2 PROBABILISTIC VS. DISTANCE APPROACHES

In addition to introducing the multiscale discrete state space, another key contribution of our work
is the proposal to use probabilistic similarity from a perceptual perspective rather than employing a
negative distance as a measure of similarity. To elucidate the benefits of this modification, we study
the relationship between accuracy and dataset size of the sampled observation-action pairs. These
pairs are examined under a single discrete state space {220}, without employing a sample count
threshold, to provide a clear evaluation of the transformation from distance to similarity. Further
comparisons with different discrete state spaces can be found in Appendix A.2.

We evaluate several metrics in this comparison:

• Playstyle Distance: −dΦ
• Probabilistic similarity PS∩

Φ , denoted as Playstyle Intersection Similarity.
• A variant of PS∩

Φ that employs the Bhattacharyya distance in place of the 2-Wasserstein
distance, termed as Playstyle Inter BD Similarity, or PS∩BD

Φ .
• The Bhattacharyya coefficient version, which omits the scaling coefficient before the per-

ceptual kernel 1
ed

, labeled as Playstyle Inter BC Similarity, or PS∩BC
Φ .

Results presented in Figure 3 suggest that probabilistic similarity tends to yield more promising
results compared to distance-based similarity. Among the methods, the 2-Wasserstein distance with
perceptual kernel and Bhattacharyya coefficient are better candidates than distance similarity.

5.3 FULL DATA METRIC EVALUATION

In this section, we perform a comprehensive evaluation of various metrics, including leveraging full
data with union operations. The evaluation methodology mirrors the one presented in Section 5.2,
but widens the scope beyond just racing games and adopts a multiscale state space.

Given the page limitations of the main paper, detailed results for each Atari game have been moved
to the Appendix A.3.1. Instead, leveraging the consistent observation and action space shared across
Atari games, we propose a unified Atari console playstyle evaluation. This evaluation views each AI
model’s gameplay on individual games as distinct playstyles, yielding 7× 20 unique playstyles. As
for the discrete state space, we factor in a single shared state mapping in addition to two hierarchical
discrete encoders from the seven games; thus, there are totally 1+7× 2 discrete state encoders. For
actions, rather than aligning their semantics across games, we simply expand the action set to the
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(a) TORCS (b) RGSK (c) Atari Console
Figure 4: Playstyle Metric Evaluation in TORCS, RGSK, and Atari Console. The plots showcase
the efficacy of different metrics in the context of the ”Full Data Metric Evaluation” subsection.

largest count found in Atari games, which is 18. This is based on the assumption that variations in
game content can be interpreted as different states.

The platforms included in this experiment span TORCS, RGSK, and 7 Atari games. We’re compar-
ing the following metrics:

• Playstyle Distance: −dΦ
• PS∩

Φ , termed Playstyle Intersection Similarity.
• PS∩BC

Φ , termed Playstyle Inter BC Similarity.
• Jaccard index: JΦ, also referred to as the Playstyle Jaccard Index.
• PS∪

Φ , or Playstyle Similarity.
• PS∪BC

Φ , or Playstyle BC Similarity, the union version of Playstyle Inter BC Similarity.

Results displayed in Figure 4 show that the Playstyle Similarity outperforms its counterparts. More-
over, the Jaccard index has proven to be useful in practice. Our combined Atari console evaluation
further underscores the robustness and adaptability of our metric.

Conclusively, our proposed Playstyle Similarity metric shines across all platforms. It’s particularly
impressive that it can identify playstyles with over 90% accuracy with just 512 observation-action
pairs — less than half an episode across all tested games. This suggests the possibility of accurate
playstyle prediction even before a game concludes, paving the way for real-time analysis.

6 CONCLUSION AND FUTURE WORK

In this research, we introduced three techniques to enhance playstyle metrics based on discrete
states: adopting a multiscale state space, using perceptual similarity rooted in human cognition, and
applying the intersection over union approach to observed data. These advancements have been
incorporated into playstyle measurement for the first time and collectively give rise to our novel
playstyle metric, Playstyle Similarity. This metric stands out in terms of accuracy and efficiency,
requiring minimal predefined rules and data. Notably, the integration of a multiscale state space
expands the metric’s applicability, particularly for games that demand intricate state representations,
such as trajectory information. Furthermore, our literature review and theoretical proof about human
perception bridge the gap between AI-driven playstyle similarity metrics and human cognition.

The Playstyle Similarity metric offers significant potential for real-time game analysis and AI train-
ing tailored to specific playstyles, such as human-like behaviors (Fujii et al., 2013) or diversity
measurement. As an example, we propose an algorithm to quantify of the diversity among DRL
models with different stochasticities in Appendix A.4 by measuring the similarity between a new
trajectory and observed trajectories. These insights emphasize that AI development should extend
beyond simple measures like scores or win-loss ratios, encompassing nuanced behavioral patterns.
Additionally, the exploration of diversity within decision-making models becomes more tangible.

In conclusion, although our assessments encompassed games such as TORCS, RGSK, and seven
Atari games, a substantial portion of the gaming universe, spanning various genres and platforms,
remains unexplored. Furthermore, some playstyles can be shared across different games, existing
within semantically consistent game scenarios for game recommendation systems (Fear, 2023). Be-
yond the realm of gaming, playstyle metrics could be pivotal for topics related to decision-making,
such as AI safety (Amodei et al., 2016), revealing vast potential for further exploration.
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Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning (ICML), 2020.

Anthony Bean and Gary Groth-Marnat. Video gamers and personality: A five-factor model to
understand game playing style. Psychology of Popular Media Culture, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
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A APPENDIX

A.1 A PROOF OF THE PERCEPTUAL KERNEL

In the main paper, we claim that P (d) = 1
ed

is the if and only if kernel function (as discussed in
Section 3.2). We will provide a proof of this claim using differential equations.

We make some assumptions about the perceptual kernel. First, P (d) is a function that maps the
distance d between two given action distributions to a probability value describing their similarity.
Since distance is a continuous random variable, we use a probability density function f(d) to de-
scribe the mapping function P (d). We might intuitively think of P (d) as equal to f(d), even though
the probability density value is not the same as the probability value.

Thus, we use a cumulative distribution function F (d) to describe P (d). We redefine a real-valued
random variable D as the distance variable, where d ∈ D, and a random variable X , where x ∈ X ,
and D → X : X(d) = −d. The probability of similarity, denoted as P (X ≤ x), is derived
from the distance value d. Thus, FX(x) = P (X ≤ x), and from the assumptions of similarity,
limx→−∞ FX(x) = 0, and FX(0) = 1. Also, FX(x) can be described with a probability density
function fX(x) as follows:
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FX(x) =

∫ x

−∞
fX(t)dt (7)

The corresponding equation to FD(d) = P (d) becomes:

FD(d) =

∫ ∞

d

fD(t)dt (8)

Additionally, we adopt another assumption from the field of psychophysics known as the We-
ber–Fechner law Fechner (1966). Fechner’s law states that the relationship between stimulus S
and perception p is logarithmic and can be described as a differential equation:

dp = k
dS

S
(9)

Here, k is a constant depending on the sense and type of stimulus.

By integrating the equation, we obtain:

p = k lnS + C (10)

Where C is a constant of integration, and it is defined in Fechner’s law assuming that the perceived
stimulus becomes zero at some threshold stimulus S0, where p = 0, and S = S0. Thus, C can be
calculated as follows:

C = −k lnS0 (11)

Combining Equation 10 and Equation 11, Fechner’s law Fechner (1966) is:

p = k ln
S

S0
(12)

Now, we apply the roles of p and S in our similarity scenario to construct a probability density
function fD(d). We assume that similarity weakens as the distance increases, and there is a finite
maximal similarity when the distance is 0. Additionally, the density value and distance are always
non-negative.

We first assume that p is the density value of similarity and consider Equation 12. There are two
cases:

1. If S represents distance and k is positive, this is incorrect since p approaches −∞ as S → 0.
2. If we change the growth direction of distance so that k is negative, this is still incorrect

since p still approaches ∞ as S → 0.

Considering invert Equation 12 as follows:

S = S0 exp (
p

k
) (13)

Now, we assume that S is the density value of similarity and consider Equation 13. There are two
cases:

1. If p represents distance and k is positive, this is incorrect since S approaches ∞ as p → ∞,
although there is a finite maximal value S0 when p = 0.

2. If we change the growth direction of distance so that k is negative, this seems to be true
since S approaches 0 as p → ∞, there is a finite maximal value S0 when p = 0, and the
density value is always non-negative.
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Finally, we can simplify the equations by assuming, for the sake of simplicity, that S0 equals 1. This
assumption is based on the intuition that the trend of decreasing similarity and increasing distance
is similar around distance 0 in various scenarios:

fD(d) = exp (
d

k
) (14)

Returning to Equation 8, FD(d) can be described as follows:

FD(d) =

∫ ∞

d

fD(t)dt

=

∫ ∞

d

exp (
t

k
)dt

= ( lim
t→∞

k exp (
t

k
) + C ′)− (k exp (

d

k
) + C ′)

= −k exp (
d

k
)

(15)

Considering that the sum of density values must be 1 over (−∞,∞), we rewrite Equation 7 as
follows:

lim
x→∞

FX(x) =

∫ x

−∞
fX(t)dt

=

∫ ∞

−∞
fX(t)dt

= 1

(16)

The corresponding equation to FD(d) = P (d) becomes:

lim
d→−∞

FD(d) =

∫ ∞

d

fD(t)dt

=

∫ ∞

−∞
fD(t)dt

=

∫ 0

−∞
fD(t)dt+

∫ ∞

0

fD(t)dt

= 0 +

∫ ∞

0

fD(t)dt

= 1

=⇒ FD(0) = 1

(17)

Combining Equation 15 and Equation 17:

FD(0) = −k exp (
0

k
)

= −k

= 1

=⇒ k = −1

=⇒ FD(d) = exp(
d

−1
)

=⇒ FD(d) = e
1
d

=⇒ P (d) = e
1
d

(18)
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Therefore, we have verified the claim that P (d) = 1
ed

. If there is a case where S0 ̸= 1, it is
straightforward to derive the equations from Equation 13to 18.

Besides, the expected value of distance is 1 can be obtained by the equations as follows:

E[D] =

∫ ∞

−∞
xfD(x)dx

= 0 +

∫ ∞

0

xfD(x)dx

=

∫ ∞

0

x
1

ex
dx

= ( lim
t→∞

−t− 1

et
+ C ′)− (

−0− 1

e0
+ C ′)

= 0− (−1)

= 1

(19)

This concept of expected value is used to scaling the distance value in different scenarios, as de-
scribed in Section 3.2 with the notation D

M,X

Φ .

A.2 PERCEPTUAL SIMILARITY UNDER DIFFERENT STATE SPACES

There are various methods for generating discrete representations, and the effectiveness of percep-
tual similarity may vary under these representations, especially when combined with our proposed
multiscale state space. In this section, we explore the impact of different state space choices on
perceptual similarity.

A.2.1 BHATTACHARYYA DISTANCE IMPLEMENTATION

In this paper, we also provide some variants of Playstyle Similarity, which use Bhattacharyya dis-
tance or coefficient as an alternative to the 2-Wasserstein metric to assess the difference in playstyle
from a different perspective. Bhattacharyya distance is related to the overlapping region between
two distributions, and it is defined through Bhattacharyya coefficient BC. The value range of BC is
[0, 1], and the corresponding distance DB is DB = −ln(BC). For discrete probability distribution,
it is simple to compute the Bhattacharyya coefficient: BC(P,Q) =

∑
x∈X

√
P (x)Q(x). However,

it is more challenging to calculate for continuous probability distributions, as in the case of ac-
tions in racing games like TORCS, since it involves the integration of probability density functions:
BC(P,Q) =

∫
x∈X

√
p(x)q(x). Thus, we adopt the formulation of multivariate normal distribu-

tions of Bhattacharyya distance (DB) (Bhattacharyya, 1946) as follows, where pi = N (µi,Σi):

DB(p1, p2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln(

detΣ√
detΣ1detΣ2

)DB ,

where Σ =
Σ1 +Σ2

2

(20)

Additionally, we clip the maximum Bhattacharyya distance to 10 to prevent an extremely large
value from affecting the average scaling ( 1

e10 = 0.00004539992 ≈ 0%). The small value ϵ for
dealing with singular matrices in matrix determinant calculation is set to 1e-8. For more detailed
implementations, please refer to the code provided in our supplementary material.

Recalling our earlier discussion, we mentioned that the Wasserstein distance can be likened to the
’effort’ required to transition between different playstyle action distributions (as described in Sec-
tion 2.2). The Bhattacharyya distance, in contrast, isn’t about this ’effort’. Instead, it gauges the
likelihood that two playstyles will result in the same action. This is due to its relation to the over-
lapping regions between two distributions. Thus, while the Playstyle Similarity is built on the idea
of the effort needed to change playstyles, the Playstyle BC Similarity (or its variant Playstyle BD
Similarity) is built on the frequency of identical actions. This distinction might relate to different
roles within a game. For instance, a player in the game might be more concerned with the effort
required to shift playstyles, while an observer might focus more on the actions they witness. Think
of it this way: players exert effort, like moving their fingers to press buttons or manipulate a joystick

15
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(a) TORCS (b) RGSK
Figure 5: Comparison of Efficacy: Using multiscale state space {1, 220, 256res}.

(a) TORCS (b) RGSK
Figure 6: Comparison of Efficacy: Using only the base hierarchy of HSD with state space {256res}.

or even a mental effort to change their belief of playing. The observer, on the other hand, sees only
the outcome of these actions, without much insight into the effort involved.

A.2.2 MULTISCALE STATE SPACE WITH HSD

Figure 5 presents the results of experiments conducted with a multiscale state space {1, 220, 256res}
generated from HSD models, as described in Section 4.2.

The results indicate an improvement in accuracy for TORCS, while there is no clear improvement
in RGSK. Notably, in RGSK, the accuracy of the perceptual kernel with sample sizes 25 to 28

decreases, suggesting that detailed information for distinguishing these styles has a negative effect.
To further investigate, we conducted two ablation studies to understand the effectiveness of the
proposed metrics for playstyle similarity. The first study focuses on using only the base hierarchy
of HSD with a very large state space {256res}, while the second study explores the use of a single-
state state space {1} to assess the metrics. Figure 6 illustrates that the measurement is unstable when
there are few intersecting samples in a very large state space. However, the negative effect of detailed
information is mitigated when considering intersection over union, as shown in Figure 4. Figure 7
shows that even with single state space, this action statistic of dataset can offer some information to
differentiate playstyle, especially in RGSK, where Lin et al. (2021) made thier human players follow
some playstyles closely related to the keyboard actions, such as using nitro system or breaking in
racing games.

A.2.3 DISCRETE REPRESENTATION FROM DOWNSAMPLING

There are several existing methods for generating discrete representations. One conventional method
for image data is downsampling to a lower resolution. While the downsampling parameters often
require tuning for effective processing, it is a straightforward method that does not require training
a neural network model. Previous work by Lin et al. (2021) attempted to use low-resolution down-
sampling as a discretization method, but they encountered challenges due to the lack of intersection
states in their settings.
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(a) TORCS (b) RGSK
Figure 7: Comparison of Efficacy: Using only the single state space {1}.

(a) TORCS (b) RGSK
Figure 8: Evaluation of discrete representations using downsampling, considering intersection states
in TORCS with state space {168×8} and in RGSK with state space {169×16}.

In our experiments, we explore the use of downsampling to create discrete representations with
different state spaces. In TORCS, we map original game screen observations to three levels of state
space:

1. 1: Basic mapping with state space 1, which maps all observations identically.

2. 168×8: Downsampling from 4 × [64,64,3] 256-intensity observations to 1 × [8,8,1] 16-
intensity observations.

3. 168×8×4: Downsampling from 4 × [64,64,3] 256-intensity observations to 4 × [8,8,1]
16-intensity observations.

For RGSK, we similarly map original game screen observations to three levels of state space:

1. 1: Basic mapping with state space 1, which maps all observations identically.

2. 169×16: Downsampling from 4 × [72,128,3] 256-intensity observations to 1 × [9,16,1]
16-intensity observations.

3. 169×16×4: Downsampling from 4 × [72,128,3] 256-intensity observations to 4 × [9,16,1]
16-intensity observations.

The results in Figure 8-10 show that downsampling can be a viable discretization method in some
cases, but overall, the measurement is either unstable or shows no significant difference compared
in these metrics. These results highlight the importance of having discrete representations with high
quality, providing proper granularity for playstyle features.

A.3 MORE RESULTS OF FULL DATA METRIC EVALUATION

In this supplementary section, we delve deeper into the results to provide a comprehensive analysis
of metric evaluations under different state spaces.
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(a) TORCS (b) RGSK
Figure 9: Evaluation of discrete representations using downsampling, considering intersection states
in TORCS with state space {168×8×4} and in RGSK with state space {169×16×4}.

(a) TORCS (b) RGSK
Figure 10: Evaluation of discrete representations using downsampling, considering intersec-
tion states in TORCS with state space {1, 168×8, 168×8×4} and in RGSK with state space
{1, 169×16, 169×16×4}.

A.3.1 INDIVIDUAL ATARI GAME RESULTS WITH MULTISCALE STATE SPACE

Figure 11 shows the relationship between playstyle classification accuracy and sampled dataset
size for the seven Atari games. Playstyle Similarity (PS∪

Φ) and its variant Playstyle BC Similarity
(PS∪BC

Φ ) have nearly the same performance, and Playstyle Jaccard Index (JΦ) can have a decent
result. This evidence justifies that some playstyles, especially in a deterministic environment, can
be differentiated solely with observations, which explains why the work by Eysenbach et al. (2019)
considers states only for diversity.

A.3.2 ATARI GAME RESULTS WITH A SMALLER STATE SPACE

Figure 12 shows the relationship between playstyle classification accuracy and sampled dataset size
for the seven Atari games and the combined version (Atari Console). These results show that met-
rics with intersection over union still perform well in Atari games even with a smaller state space.
Although it seems that Playstyle Jaccard Index is a decent and easy metric, we know that it theoreti-
cally does not work as long as all states are visited in the sampled dataset, as described in Section 3.3.
This potential problem is discussed in more detail in Section A.3.3, where even with a state space of
220, the Playstyle Jaccard Index may not perform well.

A.3.3 TORCS AND RGSK WITH A SMALLER STATE SPACE

In this section, we conducted experiments using a reduced state space of 220 for the two racing
games, TORCS and RGSK, without employing the multiscale technique.

Figure 13 illustrates that the Playstyle Jaccard Index performs the poorest in TORCS and exhibits
slightly inferior performance to Playstyle Similarity and Playstyle BC Similarity in RGSK. This ob-
servation provides valuable insights into the suitability of the Playstyle Jaccard Index for precise
measurements, particularly in scenarios involving randomness (e.g., TORCS players employing dif-
ferent action noises) or where observations exhibit only slight variations (e.g., stable rule-based
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(a) Asterix (b) Breakout

(c) MsPacman (d) Pong

(e) Qbert (f) Seaquest

(g) SpaceInvaders
Figure 11: Playstyle Metric Evaluation in Atari games. The plots showcase the efficacy of different
metrics in the context of the ”Full Data Metric Evaluation” subsection.
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(a) Asterix (b) Breakout

(c) MsPacman (d) Pong

(e) Qbert (f) Seaquest

(g) SpaceInvaders (h) Atari Console
Figure 12: Playstyle Metric Evaluation in Atari games. The plots showcase the efficacy of different
metrics with a 220 state space from HSD models.
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(a) TORCS (b) RGSK
Figure 13: Playstyle Metric Evaluation in two racing games. The plots showcase the efficacy of
different metrics with a 220 state space from HSD models.

AI controllers in TORCS with slightly different target). Further investigation may be warranted to
understand the reasons behind these performance differences.

A.4 DIVERSITY MEASUREMENT IN DRL

This section introduces a novel way of quantifying diversity in decision-making, detailed in Algo-
rithm 1. We leverage models from the DRL framework, Dopamine (Castro et al., 2018), and apply
various levels of stochasticity to illustrate this measure.

Our primary focus is on the first IQN (Dabney et al., 2018) model from Dopamine. This model
should exhibit adaptability to a diverse array of playstyles, thanks to its risk functions and robust
performance capabilities. Simply put, one could consider this model as akin to a proficient Atari
player. To foster diversity, we use the Boltzmann distribution—a popular choice for stochastic
categorical outputs, often referred to as the softmax distribution. By varying temperatures, denoted
as z, and using A to symbolize the advantage function for a given state s, the equation becomes:

π(s) = Softmax

(
A(s)

z

)
(21)

This approach draws inspiration from the work by Fan & Xiao (2022). In reinforcement learning,
the advantage function is a crucial value for selecting actions. An action with a higher advantage
value is generally perceived as better.

Algorithm 1 Measuring Policy Diversity

Input: Policy π, Environment E , Similarity metric M
Input: Similarity threshold t, Number of trajectories N

1: Initialize S (store trajectories) and diverse trajectory count d = 0
2: for i = 1 to N do
3: Generate a trajectory τi ∼ π, E
4: Set is diverse = true
5: for each τj in S do
6: Compute similarity M(τi, τj)
7: if M(τi, τj) ≥ t then
8: is diverse = false
9: break

10: end if
11: end for
12: if is diverse then
13: d = d+ 1
14: end if
15: Store τi in S
16: end for
Output: Return d (diverse trajectory count) and N (total trajectories)
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Four levels of randomness are considered: z ∈ {0.0001, 0.001, 0.01, 0.1}. We expect diversity to
increase with greater randomness. It is very simple to decide the similarity threshold t for Playstyle
Similarity metric, which can be linked to a probability value. Thus, we try t = 0.5 (50% similarity),
t = 0.2 (20% similarity), and t = 0.05 (5% similarity) in seven Atari games with 100 trajectories
each.

The discrete state spaces are defined in {1, 220, 256121}, and the results from three HSD models are
illustrated through shaded curves in the figures. The figures from Figure 14 to Figure 16 demonstrate
the efficacy of our diversity measure.

Notably, games like Seaquest (Figure 17b) exhibit high diversity even at lower randomness levels,
indicating intrinsic complexity in terms of playstyles. In contrast, Qbert (Figure 17a) becomes
more monotonous when the goal is to achieve a higher score in the puzzle game. This observation
suggests another application for our metric: identifying the complexity of game content. The time
complexity of Algorithm 1 is O(N2), given the number of trajectories N . Future research could
investigate more efficient methods, perhaps leveraging approximations or advanced data structures
for quicker similarity checks.

The algorithm we introduce for diversity quantification shifts our understanding of gaming from
the subjective to the quantitative. While various methodologies for measuring diversity exist in
different domains, our approach is particularly apt to video game playing. In addition, recognizing
and quantifying this diversity can inform the development of more adaptive DRL models, thereby
addressing specific challenges in gaming and artificial intelligence. This new metric contributes to
our progress toward models that are not only efficient but also demonstrate a variety of adaptable
strategies, opening up vast avenues for future research.

A.5 UNIFORM OR EXPECTED WEIGHTS FOR DISCRETE STATES IN PLAYSTYLE METRICS

A.5.1 UNIFORM VERSION OF PLAYSTYLE DISTANCE
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⋃
ϕ∈Φ ϕ(MA)∩ϕ(MB) D(πMA

(s), πMB
(s))

|
⋃

ϕ∈Φ ϕ(MA) ∩ ϕ(MB)|
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A.5.2 EXPECTED VERSION OF PLAYSTYLE INTERSECTION SIMILARITY
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(a) Asterix (b) Breakout

(c) MsPacman (d) Pong

(e) Qbert (f) Seaquest

(g) SpaceInvaders
Figure 14: Diversity Measurement of IQN Models in Seven Atari Games (t = 0.5)

23



Under review as a conference paper at ICLR 2024

(a) Asterix (b) Breakout

(c) MsPacman (d) Pong

(e) Qbert (f) Seaquest

(g) SpaceInvaders
Figure 15: Diversity Measurement of IQN Models in Seven Atari Games (t = 0.2)
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(a) Asterix (b) Breakout

(c) MsPacman (d) Pong

(e) Qbert (f) Seaquest

(g) SpaceInvaders
Figure 16: Diversity Measurement of IQN Models in Seven Atari Games (t = 0.05)
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(a) Qbert: A 2D puzzle game where your goal
is to change every cube in a pyramid to a target
color. To do this, control the on-screen charac-
ter, Q*bert, and make it jumps on top of the cube,
avoiding obstacles and enemies.

(b) Seaquest: A 2D survival shooting game. The
player sails a submarine to shoot at sharks and en-
emy submarines to rescue divers swimming in the
water.

Figure 17: Game screens of Qbert and Seaquest.

A.5.3 EXPECTED VERSION OF PLAYSTYLE JACCARD INDEX
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A.5.4 EXPECTED VERSION OF PLAYSTYLE SIMILARITY
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