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Abstract

If you tell a learning model that you prefer an alternative a over another alternative
b, then you probably expect the model to be monotone, that is, the valuation of a
increases, and that of b decreases. Yet, perhaps surprisingly, many widely deployed
comparison-based preference learning models, including large language models,
fail to have this guarantee. Until now, the only comparison-based preference
learning algorithms that were proved to be monotone are the Generalized Bradley-
Terry models [[10]. Yet, these models are unable to generalize to uncompared data.
In this paper, we advance the understanding of the set of models with generalization
ability that are monotone. Namely, we propose a new class of Linear Generalized
Bradley-Terry models with Diffusion Priors, and identify sufficient conditions on
alternatives’ embeddings that guarantee monotonicity. Our experiments show that
this monotonicity is far from being a general guarantee, and that our new class of
generalizing models improves accuracy, especially when the dataset is limited.

1 Introduction

Preference learning, sometimes known as alignment, has become central to machine learning. In
particular, in recent years, there has been a growing interest to leverage comparative judgments to fine-
tune Al models, using frameworks like Reinforcement Learning with Human Feedback (RLHF) [6]]
or Direct Preference Optimization (DPO) [31] in the context of language models, or linear models in
the context of applications ranging from trolley dilemmas to food donation [, [20]. These models
are now deployed at scale. In parallel, learning preferences from comparisons with mathematical
guarantees also fits in social choice theory, contributing to developing more transparent social medial,
as advocated recently by “prosocial media” [39], with a direct application for collaborative scoring
of social media content [[16, [17], consensus-driven polling [34], or recommender system based on
explicit preference such as [11]], among others.

Yet, bizarre aspects of these preference learning algorithms are regularly observed. A common but
striking observation is that, when updating a model based on a comparison judging that an item a is
preferable to an item b, the probability of a can decrease [28 33} 2]]. In fact, most deployed learning
algorithms fail to guarantee monotonicity: the probability or score of an item may be reduced after it
was said to be better than another item.

Perhaps surprisingly, the root cause of this lack of monotonicity is not the nonlinearity of the models.
In fact, we can expose this “bug" with a very basic example. Consider a linear two-dimensional model
with a parameter 3 € R? to be learned: the scores of items a and b are "z, and 3Tz, where z,
and x; are (two-dimensional) vector embeddings. We are given a comparison that favors alternative
a over b, whose embeddings are 2, = (1,0) and x;, = (2,0). Since z,1 < xp1, this comparison will
push 3 towards lower values. But since the score of a according to the linear model is BTa:a = py,
this means that the score of a will also decrease. Thus, including a comparison that favors a over b
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has decreased the score of a. This becomes all the more troubling when there exists an alternative ¢
with embedding z. = (0, 1), whose score remains unchanged.

This example questions whether preference learning algorithms can be trusted. A user who witnesses
a surprising evolution of alternatives’ scores as illustrated above might, understandably, prefer not to
use such an algorithm. Worse yet, if they are nevertheless forced to use the algorithm, they could want
to remove the data they previously provided, because the eventual learned model was deteriorated by
their truthful data reporting. More generally, this may discourage users to report their preferences,
and rather provide tactical preferences in the hope to steer the model towards their goal. This is
reminiscent of tactical or “useful” strategies in voting systems. There exist classes of models which
have a mathematical guarantee of monotonicity, such as (Generalized) Bradley-Terry models [[10];
see also [27]. To the best of our knowledge, existing models with a guarantee of monotonicty fail to
generalize: they cannot predict the score of items that have not been compared. Hence the following
research problem.

Can a generalizing comparison-based preference learning algorithm guarantee monotonicity?

Contributions. Our first contribution is to identify a large class of preference learning algorithms
that leverage both comparisons between alternative pairs, and descriptive information (embeddings)
on individual alternatives, which we call Linear Generalized Bradley-Terry with Diffusion Prior
(Definition [3)). This class extends the (Generalized) Bradley-Terry models [10] by including a linear
mapping of the embeddings—and priors on alternative similarities, thereby allowing preference
generalization to yet uncompared alternatives.

As a second contribution, we provide conditions on the embeddings that guarantee that the learning
algorithm behaves monotonically when new comparisons are provided. As discussed above, this
property is highly desirable and yet hard to guarantee in practice. In particular, we propose a class
of diffusion embeddings that guarantee monotonicity, and for which membership is easy-to-check.
Interestingly, diffusion embeddings yield a very appealing interpretation as heat diffusion dynamics
where comparisons play the role of heat pumps. A direct consequence is that categorical information
(one-hot encoding embedding) yields a monotone learning algorithm. In particular, this class enables
us to provide a positive answer to our research question.

Finally, we evaluate the statistical performance of our learning algorithms through numerical ex-
periments. Our evaluations show that a linear model with good embeddings and diffusion priors
outperforms the classical GBT model [10], in particular with limited amount of data.

Related works. Learning preferences from comparisons has a long history, dating back to Thur-
stone [37], Zermelo [40]], and Bradley and Terry [3]. To handle inconsistent judgments, such
algorithms define a probabilistic model of how latent scoring of alternatives are transformed into
noisy comparisons. Their approach was adapted by [21] and [30] to model the selection of one
preferred alternative out of several proposed ones; see also [23] and [22, Chap. 3].

While the Bradley-Terry model considers binary-valued comparisons, various authors have proposed
extensions to real-valued comparisons, e.g., ranging the interval [—1, 1]. Historically, this started with
the modeling of draws in games like chess [8]]. More recently, [19] proposed the platform Climpact
where users are given pairs of activities, and are asked to evaluate the comparative pollutions of
two activities. They then develop a model based on a quadratic error to turn the comparisons into
evaluations of the amounts of pollution of the individual activities. Their model was then generalized
by [10] in a framework they call Generalized Bradley-Terry (GBT) to turn real-valued comparisons
into scores. All these models however consider that each alternative’s score is an independent latent
variable to be learned. Thus, they fail to generalize to non-evaluated alternatives.

Independent of user-provided comparisons, alternatives usually come with descriptive information.
A natural idea to generalize is then to model an alternative’s score as a parametrized function of
a vector embedding of the description of the alternative; see e.g., [24} (7,41, 9. [12]. Recently, this
trick has been widely used in the context of language models [38} 4], especially through algorithms
like Reinforcement Learning with Human Feedback (RLHF) [6, 35]], Direct Preference Optimization
(DPO) [32]], or Generalized Preference Optimization (GPO) [36]], to name a few. In this paper, we
restrict ourselves to linear models, where an alternative’s score is assumed to be a linear function of
their embedding. Application-wise, we focus on social choice applications, and rule out Supervised



FineTuning applications. Such linear models of preferences trained from comparative judgments
have previously been studied and used, e.g. by [13| 26} 20].

The study of the mathematical guarantees of preference learning algorithms has only emerged recently.
In particular, nonlinear models have been empirically shown to violate monotonicity properties [,
28, 133]]. While [2] proved that nonlinear models nevertheless provide a weak monotonicity guarantee
they call local pairwise monotonicity, they also suggest that these models are unlikely to verify
stronger forms of monotonicity. Conversely, and quite remarkably, [10] proved that the GBT model
guarantees monotonicity for all GBT root laws. Our model extends GBT in several ways.

Paper structure. The rest of the paper is organized as follows. Section [2|introduces the formalism,
formally defines monotonicity, and recalls the GBT model. Section [3|defines the linear GBT model
with diffusion prior, and states our main results. Sectiond]provides the main lines of the proofs of the
main results. Section [5|reports on our experiments. Section [6|concludes.

2 Monotonicity of Scoring Models

In this Section, we set notations, formalize the notion of monotonicity, and recall the Generalized
Bradley-Terry model.

2.1 Notations and operations on datasets

Consider a set A of A alternatives. For simplicity, we let A = {1,2,..., A}. The set ® C R
denotes the set of admissible comparison values, which we assume to be symmetric around zero,
ie. r € R < —r € R. In the classical Bradley-Terry model, we have & = {—1,+1}.
The generalized Bradley-Terry model allows a wider variety of possible comparison values, for
instance R = [—1, 1], or R = R for the uniform and gaussian root laws. A comparison sample is
defined as a triple (a,b,r) where a,b € A are two distinct alternatives, and r € 2R. We assume
(a,b,7) and (b,a,—r) to be equivalent, which we write (a,b,7) ~ (b,a,—7). By also having
(a,b,7) ~ (a,b,r) (and the relation false otherwise), we obtain an equivalence relation. A dataset D
isalist D : [N] — A% x 2R of comparison samples. We write D £ o (A% x R) for the set
of datasets, and |D| the length of a dataset D € D. We now define four parameterized operations
D — D on datasets.

Exchange. For any n € N, EXCHANGE, (D) is the dataset obtained from D by replacing, if it
exists, the n-th entry (a,,, b,, ) with (b, a,,, —r,,) All other entries are left unchanged. Assuming
that preference learning algorithms should interpret these two comparison samples identically, this
operation should not affect training.

Shuffle. For any N € N and any permutation o of [N], SHUFFLEy (D) is the dataset obtained
from D by reordering its IV first elements according to o. Formally, if |[D| > N, then for all n € [N]
we have SHUFFLEN,¢(D), = Dg(y,). Otherwise, D is left unchanged. Assuming that preference
learning algorithms should be invariant to shuffling, this operation should not affect training.

Append. For any comparison sample (a, b, ), APPEND,, ;, (D) is the dataset obtained from D by
appending (a, b, ). Formally, we have |APPEND, 3 -(D)| = |D| + 1, and APPEND, 4 -(D)|p|41 =
(a,b,r). All other entries are the same as in D. An append is said to definitely favor a’ over V' if it
has parameters (a, b, r) ~ (a’,b’, max R). Note that if 2% does not have a maximum, then no append
definitely favors a’ over b'.

Update. For any n € N and comparison r € R, UPDATE,, (D) is the dataset obtained from D by
replacing the comparison of the n-th entry with r. The update is said to favor a over b if either (i)
(an,bn) = (a,b) and r > 1y, or (ii) (ap, b,) = (b,a) and r < r,,. In other words, it favors a over b
if it acts on a comparison sample between a and b, and modifies the comparison r to further favor a.



2.2 Monotonicity

Definition 1 (Favoring a). An operation o favors a if o is a composition of the operations (i)
EXCHANGE, (ii) SHUFFLE, (iii) APPEND that definitely favor a over some other alternative and (iv)
UPDATE that favor a over some other alternative. We write D =<, D’ if there exists an operation o
that favors a such that D' = o(D).

The relation =<, is a preorder. Indeed, =<, is reflexive: any dataset D equals o(D) with o =
UPDATE ,, ,» with n = 1, and = r;. The relation <, is transitive: if D; <, D3 and Dy <, Ds,
then there exists operations 01 and o5 that favor a, such that D; = 01 (D3), and Dy = 05(D3); thus
D; = 01 0 02(D3), where 07 0 09 is an operation that favors a by Definition 1 so that D; <, Ds.
Similarly, we define the preorder <, over R4 by # <, ¢’ if §, < 0!, coordinate-wise. We can now
formally define monotonicity.

Definition 2 (Monotonicity). The preference learning algorithm ALG is monotone when, for every
alternative a € A, ALG : (D, =,) — (RA, <,) is monotone. Equivalently, ALG is monotone when,
for every alternative a € A, D =, D’ implies ALG(D) >, ALG(D’).

Remark 1. In the sequel, all preference learning algorithms that we will consider are neutral [25]],
i.e. they treat all alternatives symmetricallyﬂ For such algorithms, the monotonicity for any single
a € A clearly implies that for all a € A.

2.3 (Generalized) Bradley-Terry and monotonicity

Here we recall the probabilistic model of GBT [[10], slightly adapting it to our dataset formalismE]
Following Bradley and Terry [3], GBT defines a probabilistic model of comparisons given scores.
Specifically, given two alternatives a, b € A having scores 6, and 6y, the probability of observing a
value 7 for the comparison of a relative to b is

p(rwa@b) o8 f(?") ! exp(r : eaeb)a (1)

where 0,0, £ 6, — 0y, is the score difference between a and b, and f is the root law, a probability
distribution on R that describes comparisons when a and b have equal scores.

Given a dataset D = (ay,, by, 7 )ne[n] of IV independent observations following (T), and assuming
a gaussian prior with zero mean and o2 variance for each alternative score 0,, a € A, the standard
Maximum A Posteriori methodology results in the GBT estimator:

1
GBT,,(D) & in— Y 02 . (6 — 1040p- 2
£.0(D) aregeﬂrggn%gzaj ﬁ(é}j@ #(Bacn) = rfacy ®

There, ®; is the cumulant-generating function of the root law distribution f: ®;(6) =

log fm e"?df(r). As soon as f has finite exponential moments, ®; is well-defined and convex;
in particular, (2) is a strongly convex problem with a unique minimizer [10].

We recall below Theorem 2 [10], that guarantees monotonicity of GBT  ,,, when two elements can
only be compared once. The forthcoming Theorem [3] extends the result to situations where two
elements are compared multiple times.

Proposition 1 (Th. 2, [10]). Consider a root law f, a scalar o > 0, and two datasets D, D’ which
contains at most one comparison between any pair (a,b) € A2 Then, for all a, D =, D’ implies
GBT; , (D) >, GBTy , (D/)

Although well behaved in many aspects, the generalized Bradley-Terry model fails to perform
generalization: an alternative a that never appears in D will receive a nil score GBT(D), = 0.
However, in practice, alternatives may (i) admit informative descriptions, and (ii) have known
relationships. This should help guess the score of a yet uncompared alternative, based on the scoring
of similar compared alternatives. We introduce such a learning algorithm in the next Section.

2Formally, ALG(o - D) = o - ALG for all permutations of .4, with the action that applies pointwise to all
apparitions of an alternative a € A.
3In [10], the authors consider datasets that contain at most one comparison per pair of alternatives.



3 Linear GBT with Diffusion Prior

In this Section, we introduce a class of preference learning algorithms that incorporate both user
comparisons and contextual information on the compared elements, and state our main result about
their mathematical guarantees on monotonicity.

3.1 Learning with prior similarities

The GBT,, y model does not include prior knowledge on the structure of the alternatives. For example,
when alternatives represent videos on YouTube, the fact that two videos belong to the same channel
cannot be represented in Equation (2). More generally, Equation (2)) does not encode any prior
similarities between alternatives. Consequently, if an alternative a is never compared with any other,
then, even if a is similar to an alternative b that has a large non-zero score, a will still be assigned a
zero score. In other words, Equation (2)) does not allow us to generalize.

To address this issue, we generalize GBT, f (2) in two directions.

1. (Embeddings) We assume that, to each alternative a € A, corresponds an embedding x,, € RP,
where D is a positive integer. We model the score of alternative a by a linear function of the
embedding:

oa (/6) é xzﬂv
for a parameter 3. Denoting z € RP”*4 the matrix collecting all embeddings, and x40, = 74—
for any a,b € A, the GBT parameter § € R is replaced by a linear function () = 27 3. For
instance, in the context of YouTube, x, could denote a one-hot encoding the content creator
identity; more in Section E}
2. (Similarity) We consider a more general regularization term R(3) of the form

RU)= 5z 260+ 5 () Lath(d) @)

where L is a Laplacian matrix, i.e. such that L., = Zb;éa |Lap| > 0 and Ly = Ly, < 0, for
all a # b. The matrix L can be thought as the Laplacian of a graph encoding (prior) similarities
between alternatives, the weight | L,;| representing the similarity between a and b. Therefore,
the regularization term Y, 6, (8) Las0(3) = 3 > azp [ Lab] (0a(B) — 0,(13))? incentivizes the
model to (a priori) assign similar scores to similar alternatives.

We can now define the class of GBT models that we will study in this paper.

Definition 3 (Linear GBT with Diffusion Prior). Let f be a root law, x be an embedding, o > 0 a
positive constant, and L a Laplacian matrix. The model GBT , ;. 1, is defined as

GBT}oq,(D) £ 2" 6*(D) € RY,
where 3*(D) = arg min £(-|D) minimizes the strongly convex loss function

LPD)=RB) + Y. PpxleyB) — rateyb. (4)

(a,b,r)€D
For conciness, let §*(D) £ GBT ,....(D) = 27 3*(D).

Remark that the original GBT is a special case of Linear GBT with Diffusion Prior with A = D,
z = [ the identity matrix, and L = 0.

Proposition 2. Linear GBT with diffusion prior is neutral, i.e. invariant up to alternative relabeling.
Proof. See Appendix [B|for a formal statement and derivation. [

3.2 Monotonicity and diffusion

We now present our main result (Theorem|I)). We prove that for a special class of embeddings, namely
diffusion embeddings, monotonicity is guaranteed. Diffusion embeddings take their name from the
interplay with (super) laplacian matrices.



Definition 4 (Super-Laplacian matrix). A super-Laplacian matrix A is a symmetric matrix such that
foralla # b, Agq > — Zb;&a Agp and Agp < 0.

Definition 5 (Diffusion embedding). An embedding x is a diffusion embedding if the Gram matrices
Xy = 2Tx + A\ have super-Laplacian inverses X;lfor any A > 0.

Note that if X = 27« is itself invertible with super-Laplacian inverse, then it is a diffusion embedding.
However, this case is restrictive since it implies that D > A.

Theorem 1 (Monotonicity with diffusion embeddings). For any root law f, positive constant o > 0,
diffusion embedding x, and Laplacian matrix L, GBT , ;. 1, is monotone.

Proof. The theorem follows directly from Proposition [3] and Theorem [3] which are provided and
proved in Section 4] O

3.3 Example: one-hot encoding

A one-hot encoding is possible when the alternatives can be arranged into multiple disjoint classes.
For example, if the alternatives represent videos on YouTube, one can partition them by the YouTube
channel they belong to. In that case, the score of an alternative a is defined as 6, = vq(q) + 52 - a,
where d(a) is the channel of a. The score 4(,) represents the score of the channel d(a), while a4
represents a residual score of a, and s is a real constant that controls the scale of the residual score.
Theorem [2]states a one-hot encoding is an example of diffusion embedding. We postpone the proof
to Appendix

Theorem 2 (GBT with one-hot encoding). Let f be a root law, ¢ > 0 a positive constant, L a
Laplacian matrix and s € R. Let x : RP*4 be a one-hot encoding matrix: x4, = 1 if, and only
if, a belongs to d. Then, for any real number s, (x sl )T is a diffusion embedding and the score
GBTy ;4,1 is monotone.

4 The proof

This Section provides the mathematical analysis that builds to the proof of the main result, Theorem|[T}
Section proposes a differential analysis framework for the dataset operations outlined above;
Section [4.2]then provides the proof.

4.1 Differential analysis of dataset operations

The goal of this technical section is to connect the discrete domain of datasets with tools from
differential analysis. Studying the monotonicity (Deﬁnition of 6*(D) requires to compare the loss
functions for datasets that are related by a basic operation. Given that the loss is invariant under
EXCHANGE and SHUFFLE operations on the dataset D, on one hand because of the specific form of
the GBT loss, and on the other because it features a sum of comparison samples of the dataset, the
same invariance holds for 8*. Thus, to prove monotonicity, it suffices to study what happens under
APPEND and UPDATE operations that favor a over b.

Because the loss function is a sum of terms indexed by the elements of the dataset, this relation is
quite simple

‘C(B| APPEND a,b,r(D)) = E(ﬁ|D) + (bf(eaeb(ﬁ)) - Toa@b(ﬂ) (5)

L(3| UPDATE n,T(D)) = L(BID) — (r — 7’71)9%6% (B) (6)

To enable the differential analysis of these operations, we introduce a smooth deformation of the loss
function.

Definition 6 (Smoothed loss). For every A € R, and every operation o of the form APPEND,, j, , oF
UPDATE,, ,, we define the smoothed loss L by

Dy (Oacs(B)) — m0ach(B) if 0 = APPEND, 1,
Lx(BD,0) £ L(BID) + A+ —(r =) - Oa,cp,(B)  if 0= UPDATE,,,, (7

0 otherwise.

Denote also 35(D, 0) = argmin £, (-|D, 0) and 5 (D, 0) = 0(85(D, 0)).



The smoothed loss matches the loss at A € {0,1}, as Lo(8|D,0) = L(8|D) and £1(8|D,0) =
L(Blo(D)). We will leverage this by using the integral expression

1 *
0% (o(D)) — 6 (D) = /0 CZ\A(D,o)d)\. @®)

When A — 63(D,0) is continuously differentiable, this integral expression is well-defined, and
it suffices that the derivative df3,(D,0)/dA be non-negative for the score difference at a to be
non-negative. Lemma [I]states that this derivative is well defined and provides a formula. The proof is
given in Appendix [C]

Lemma 1. Let H = H(0|D) denote the Hessian of E(0|D) = =, , yep Py (bacy), and X =
2,T

o“x* x denote the (scaled) Gram matrix of the embedding x. Then, for any basic operation o and
dataset D, the loss function L (-|D, o) admits a unique global minimizer 55 (D, o), and the inferred
score 0% (D, 0) is a smooth function of A over [0, 00). Moreover,

* if o = UPDATE,, , and D,, >~ (a, b, s), then the score of the alternative a satisfies
*
aos,

o (Do)

—(r—s)- el (I+X(L+H) " Xeqop ©9)

A=p
There, e, denotes the a-th vector of the cartesian basis of R4, 03, denotes the a-th coordinate of
0%, and eqcp = €q — €.
* if o = APPENDy, ; ,, then the score of the alternative a satisfies
des, (D, o)

o5 = (r = ®}(6icy)) - el (1 + X(L+ H + p®}(0ucy) - S™)) " Keaep, (10)

A=p

where S € RAXA is the Laplacian matrix of the graph over the alternatives with a single edge
ab (with weight 1), i.e. S® =S¥ =1, §9% = 89 = _1, and S = 0 otherwise.

We are interested in the sign (positive or negative) of the expressions in Equations (@) and (T0). First,
the factors r — s and r — ®%(0; ;) are easy to understand. If 0 = UPDATE,, , favors a over b then

r — s > 0 by definition. If o = APPEND,, 3 , favors a over b, then r = sup R which is the supremum
of ‘b} [10l Theorem 1].

Therefore, if we want to compare the scores of a and b, the important factor to study is the matrix
(I+X(L+H))'X, where H = H + u®}(04cp) - S°° if 0 = APPEND, ., or H = H if
0 = UPDATE,, , and D,, >~ (a, b, s). We study this matrix in the next section.

4.2 Good embeddings: a sufficient condition for monotonicity

In this Section, we provide a sufficient condition on the embedding for the Linear GBT model
to be monotone (Definition [7] Theorem [3), and provide mathematical properties of this condition
(Proposition [9). Finally, we show that diffusion embeddings meet the above sufficient condition
(Proposition [3).

Definition 7 (Good embeddings). Given a Laplacian matrix Y, an embedding x is Y -good if the
Gram matrix X = x7x satisfies eI (I + XY) "' Xeucp > 0 for all (ab). An embedding x is good if
x is Y-good for all Laplacian matrices Y.

Theorem 3 (Monotonicity with good embeddings). For any root law f, positive constant ¢ > 0,
Laplacian matrix L, and good embedding x, GBT ¢ ; . 1, is monotone.

Before going to the proof, we provide some intuition. Note first that the Hessian H of £(0|D) =
> (abr)eD P 7(6aep) 1s also a Laplacian matrix. Indeed, let G be the weighted graph whose edges
are the pairs (ab) of alternatives that occur in the dataset D, weighted by Gy = Nap - @7 (0acs)
where N, is the number of occurrences of the pair (ab) in D. Since @ is convex, these weights are

nonnegative. Then, a direct calculation shows that H is the graph Laplacian of the weighted graph
G: fora # b, Hy, = Zc;ﬁa NaCCI)/]ﬁ(OaC) and H,, = —Nab@’]ﬁ(ﬁa@b). Therefore, given any prior

Laplacian matrix L, the matrix L + H, where H is defined in section is the Laplacian of a graph

that combines the prior similarities (L) with the similarities inferred from the dataset at hand (ﬁ ).
This observation motivates Definition [7]



Proof of Theorem 3] By Lemmal[I] if, for every operation o, every score function ¢ and every dataset
D, the inequality el (I + X (L + H)) ! Xeauep > 0 holds, then the score 8% (D) derived from the
loss function of Equation (4) is monotone. This is precisely implied by z being good. O

This result motivates a more precise understanding of good embeddings. In the special cases
(A,D) = (2,D) and (A,D) = (A, 1), we have complete characterizations (see Appendix [D)).
In general, however, checking goodness is not straightforward: two embeddings x and y can be
individually good, while their concatenation [ y]T fails to be good (see Propositions [7| and
Appendix [E). Nonetheless, any embedding can be made Y'-good by concatenating it with a sufficiently
scaled identity. We formalize this in Appendix [F]

4.3 Diffusion embeddings are good

Finally, we show that any diffusion embedding is a good embedding. This uses the fact that any
super-Laplacian matrix A satisfies el A=le,op, > 0 for any pair (a, b) € A2. This result has been
proved in [10, Lemma 1] and we provide an alternative proof highlighting the diffusion perspective

Proposition 3. Any diffusion embedding is a good embedding.

Proof. If x is a diffusion embedding, A > 0, and Y is an arbitrary Laplacian matrix, then the matrix
X' +Y, where Xy = 2Tz + A, is super-Laplacian. Consequently, eX (I + X,Y) "' X e, =
el (X' +Y)te, > 0. The claim follows by taking the limit A — 0. O

S Experimental evaluation

In this Section, we provide a numerical exploration of the prevalence of “‘goodness” for random
embeddings, and the statistical error of several preference learning models]*| Appendix @provides
complementary experiments on real-world data.

5.1 Probability of goodness for random embeddings

To illustrate the challenges of achieving good embeddings, we generate random i.i.d. Gaussian
embedding matrices x and evaluate their quality. In Figure[I] we examine a single Gaussian embedding
x (left) and its concatenation with the identity matrix I (right). Our findings indicate that the goodness
of z is more likely for large values of D /A and significantly diminishes when A/D is large. The
concatenation with the identity matrix notably enhances the goodness, aligning with Proposition 0]

5.2 Generative model, metric, and simulations

For each experiment, we consider the ground-truth embedding 7 € RP*4, Laplacian matrix L,
constant o', and root law fT. The ground-truth features are generated as 37 ~ N(0, ()21 +
2T LT(2")T) and 0T = (27)T 3T. We then create a dataset D : [N] — A2 x R by first selecting N
random comparison pairs uniformly. The corresponding random comparisons r are generated using
the root law fT and conditionally to #7. We shall only consider the uniform root law fT = %1[,171]

and set of = 1.

The estimated scores are computed as 6*(D) = GBT 5,5, .(D), where the quadruplet (f, o, z, L)
may or may not align with the ground truth. Since the quality of a score vector is invariant under
constant shifts, we evaluate the error over zero-mean versions of both 67 and 6* (D). More precisely,
we use Monte Carlo simulations to estimate the normalized mean squared error (nMSE), defined as:

I(6*(D) - 6*(D)) — (¢ — 1)

I
67— 677 |

nMSE(fT, o1, 2, LY; f,0, 2, L; N) = nMSE = E

We then analyze how the nMSE evolves with respect to various parameters.

“The code is available at https://github.com/pevab/gbtlab2, and will be made publicly after the
review process. We run experiments on a personal laptop with 16GB of RAM and a 2.10 GHz processor.
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Figure 1: Left pane: Probability that a Gaussian i.i.d embedding z is a good embedding for 2 < A <
15 and 1 < D < 15. Right pane: As for the left pane with embedding [/ x}T.
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Figure 2: Left pane: nMSE as a function of D for A = 25 alternatives and N = 500 comparisons
over 100 seeds. Blue curve with [1 a:]T (full embedding), orange curve with embedding I (classical
GBT), and green curve with embedding x (features only). Right pane: nMSE with respect to the
number of comparisons N for A = 20, D = 10, and 1000 seeds. Blue curve: GBT with one-hot
encoding; Orange curve: GBT. Every curve is displayed with its error bar (using 1.960 /+/n_seeds).

Figure shows the nMSE as a function of D, using data generated with 27 = [I ] T (iid.
Gaussian ), uniform f LT =0,and ot = 1. We compare three models with shared parameters
(f,L,o) = (ff, L, o"), using zf, T (classical GBT), and Z' respectively. The embedding-based
model outperforms others, combining the strengths of classical GBT for small D and feature-based
learning for larger D.

Figure 2B shows the nMSE as a function of the number of comparisons N. Data are generated
with (fT,zt, Lt o1) = (%1[,1’1], 1 g}T]T ,0, 1), where 7 is a one-hot encoding matrix (see

Section [3.3). The results show that one-hot encoding greatly reduces the number of comparisons
needed to reach a given nMSE. This is useful in applications like YouTube score estimation [17]],
where the encoding reflects the channel and enables generalization across alternatives.

6 Conclusion

In this paper, we introduced a new comparison-based preference learning model, namely linear
GBT with diffusion prior. This model not only generalizes to previously uncompared data using
embeddings, but also potentially guarantees monotonicity, depending on the class of embeddings
used. We proved that our model is monotone for various classes of embeddings (one-hot encodings,



diffusion, and good embeddings). To the best of our knowledge, linear GBT with diffusion prior is
the first model that guarantees monotonicity while being able to generalize.

Diffusion embeddings form a class of embeddings (containing one-hot encodings) that yield mono-
tonicity. Our proof techniques relied on an interesting interplay between an algebraic criterion for
monotonicity (Definition[/]) and properties of (super) Laplacian matrices akin to diffusion theory.

Limitations. While improving the understanding of preference learning with guarantees, our theory
currently provides guarantees for diffusion embeddings only. We hope to motivate more work on
preference learning with guarantees, in order to build more trusworthy Al systems, with notable
applications in [39, 16, (17, [34]. Also, we caution against the use of preference learning algorithms
that rely on data collected in inhumane conditions, as is mostly the case today [18} 29} [15,[14]. It is
unclear whether our work can positively contribute to this issue.
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A Experiments on real world data

In this Section, we complete the experiments on synthetic data (Section [5) with experiments on
real-world data [16]. More precisely, we provide numerical evidence for the fact that including a
(diffusion) embeddings improves performance. The code to reproduce experiments is available at
https://github.com/pevab/gbtlab2,

A.1 Experimental set-up

The real-world data contains comparisons between Youtube videos made by various users, from the
Tournesol platform [17]. We selected a subset D of 1000 comparisons from a single user, the one that
has most comparisons. Every comparison is a tuple (a, b, ) where a, b are video identifiers, and r is
the comparison value r, originally an integer between —10 and 10, which we rescale to fitin [—1, 1].

In addition, we associate for each video a, the YouTube channel c it belongs to. We describe this
relation using a one-hot encoding matrix y € RP*": y., = 1 if the video a belongs to the channel
¢, OF Xcq = 0 otherwise. We obtain an embedding = € R(P+N)XN by concatenating y with A1, that

X

is, x = vl
N

We compare two models: (i) GBTy 1 ;o (Which uses embeddings), and (ii) GBT/ 1 1, o (the original
GBT, which does not use embeddings). Both models have the uniform distribution in [—1, 1] as a root
law, f(r) = 11{_1,1(r), and the same Gaussian prior. We do not use any Laplacian regularization.

After training, each model M computes, given a pair (a, b) of video identifiers, the expected compari-
son value defined as

M(a,b) = /r f(r)er b=t dr = @07 — 0;) (1)

where @ is the cumulant-generating function of the root law, and 6* are the scores learned. Given a
validation dataset D, the validation risk of M is given by

L > (M(a,b) — 1) (12)

[Dval (a,b,r) €Dy

A.2 Results

Figure [3] reports the empirical risks of the two models, using a 10-fold cross validation scheme
over the dataset D (1000 comparisons). We observe that the average validation risk of the model
with embeddings is 8.40 - 1073, while that of the model without embeddings is 10.1 - 10~3. Hence,
including the YouTube channel embeddings reduces the risk by 17% on average.

B Proof of neutrality (Proposition [2)

To formalize neutrality, we must define how a permutation 7 of the alternatives acts on the inputs and
outputs of Linear GBT with Diffusion Prior. We define the actions as follow:

(t-D),=7-Dy, (13)

7 (a,b,r) = (7(a), 7(b), 1), (14)
(7 0)a = 0r(a), (15)

(T 2)a = Tr(a), (16)

(7 L)ab = Lr(a)r(v)- (17)

Neutrality is formalized by the equality

VT, 7'_1 . GBvao',Tu'E,T-L oT = GBTf,UﬂU»L' (18)
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Figure 3: Validation risks of GBTy 1 , o (with embeddings, on the left) and GBTy 1 ;o (Without
embeddings, on the right), estimated using 10-fold cross validation. The box plots report the minimum,
1st quartile, median, 3rd quartile and maximum. Outliers are also shown.

We indeed have
(7 GBIy e 07(D)), = (GBTprrs (7 D)), 19
= (T : ‘r)zll(a)ﬁ;,a,r-z,r-l/(’r : D) = xzﬁ;,a,T-z,T-L(T : D) (20)
o1 1
=z} arg;mn 552 1815 + 3 Z(‘TZ(a)ﬁ)LT(a)T(b) (z14)8)
ab
+ Y (@ ) s B) — () g B @1
(a,b,r)eD
o1 1
— o argmin o 813 + 5 Y @EALav@hB) + Y (25@leyf) — rate8)  @2)
B a’t! (a,b,r)eD
=24 8} 5.0.0(D) = (GBTf 4, 1.(D)), - (23)

C Proof of Lemmal(ll

We consider the case of 0 = APPEND,, ;, .. The case o = UPDATE,, , with D,, ~ (a, b, s) is proved
similarly. The loss functions £ (3|D, 0) and L(3|D) differ by A(® ¢(0acs(8)) — rbacs(5)). The
term 6,0, being linear in 3, its Hessian is zero. On the other hand, the Hessian of ® ;(6,c) is simply
the Laplacian ® (04e0) - 5% of the graph with a single edge ab with weight 7 (Oacp). Writing

H* = H + A} (0ac0) - S, (24)
we obtain the Hessian of the loss
1 1
HsLy(BD,0) = x(L + HMaT + 1= 1 (25)
Therefore, the loss £(5|D,0) is strictly convex, and admits a global minimizer 55 (D, 0). To
simplify notations in this proof, we write *(\).

We want to use the implicit function theorem to analyze how 8*(\) varies with A. For that, consider
the gradient of the loss £ (3|D, o)

F(B,)) = VgL(Bloa(D)) = V5L(BID) + A+ (2 (0act) — r)zeacs (26)
with domain R x R and codomain RZ.

Fix some p € R. The Jacobian of F'(3, \) with respect to 3, evaluated at A = p, is given by

JsF(B,p) = %I + (L + H")2" (27)

g
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which is invertible. Moreover, since 5* (1) is a minimizer, we have F(8*(u), 1) = 0.

Hence, the implicit function theorem states that there exists an open neighborhood U of p, and a
smooth function v : U — RP such that

Y(p) = B* () (28)
YA €U, F(y(A\),A\) =0 (29)

The latter equality implies that v(A) = 8*(\) for all A\ € U. Consequently, 5*(\) and 6*(\) =
2T 3%(\) depend smoothly on \. In addition, the implicit function theorem also gives an expression
for the Jacobian J, 8%, evaluated at

InB* () = —(JgF) LI\F (30)
— (r— B(6ey) - (;I+x(L+H“)xT> . 31)

Finally, note that
) = o0 (8" (1) - B 1) 32

1 ~1
= (r—®%(0;05)) - zT <O‘21 + (L + H”)xT) Teaob (33)

Let M = L+ H*,and X = 0?27 z. Using Woodbury’s identity (I+UV)~! = I-U([I+VU)"1V,
we derive

—1

<1QI+33(L+H“);UT> =o?(I +c*xMa™)™? (34)

g
=% —o'aM(I + oz a M) ta” (35)

1 —1

z? (21+x(L+H)xT) r=X-XM(I+XM)"*X (36)

g
=(I—-XMI+XM)""X (37)
=(I+XM)"'X (38)

Thus,

D) = (= @ (0300)) - (I + 0% (L + H))o* aeqen, (39)

The result follows.

D Good Embeddings for A =2or D =1

We can fully characterize goodness in lowest dimensional regime, either with only two alternatives or
with an embedding on a single feature.

Definition 8. We say that a matrix M is max-diagonally dominant if M, > Mgy, for any (ab).

Proposition 4. An embedding with Gram matrix X = [CCL [ﬂ is monotonicity proof if and only if
—vab < ¢ < min(a, b).

T is positive semidefinite, a, b > 0 and det(2T2) = ab—c? > 0

Proof. We first observe that, since x

This implies in particular that ¢ > —+/ab, which is the desired lower bound.

Two-dimensional Laplacian matrices are of the form Y = § _11 _11} with 6 > 0, which

can be chosen as being equal to 1 without loss of generality. We then have that [ + XY =
1 tﬁ; ¢ 1 i_b e .| After simplification, its determinant is det(I + XY) = 1+a+b - 2c.
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This quantity is strictly positive for ¢ < 1F2+2 which is always the case for as ¢* < ab. Hence, the

matrix is invertible and we have, after computation,
1 a+ab—c® c+ab—c?
l+a+b—2c|c+ab—c® b+ab—c.

Then, M is max-diagonally dominant if and only if a > c et b > ¢, as expected. Finally, this shows
that the embedding x is Y-good for any Y, hence good. O

M=(T+XY)'X = (40)

We now focus on the case A = 2, for which we obtain a complete characterization of the goodness.
Proposition 5. Consider the GBT model with embedding © = [, 7] € RP*? and root law f.
Then, the model is good if and only if, for any (a,b) € A% x, = xp or Lz, < min(||x,||?, ||2p]]?)-
The latter is equivalent to

s 1) < ol loul) = anceos (min (24, F25) ) e om2l )

sl llzall

T, Tp
lzallllzsll

T
where o(xq, xp) = T2

is the angle between x, and xy,.

Proof. We apply PropositionE]to a=2z2,b= 2} and ¢ = x,2p. Then, the goodness is equivalent
to 2,2, < min(zZ,x7). This relation is true for z, = x3, and 2,2, < 0. Otherwise, we have
0 < 24, zp. The relations z,2, < 22 and z,2;, < x7 implies that z;, < x, and x, < x; respectively,
leading to a contradiction. Finally, the goodness is equivalent to z, = z; or z, and z; have different

signs.

For the D dimensional case, the same observation holds with a = ||z, b = |lz3||?, and ¢ = 2L,
Then, Proposition [4] implies that the goodness is equ bivalent to z7z, < min(||z,]|?, ||zs]/2). The
angular characterization follows easily. O

We shall see that the goodness is very restricted for D = 1.

Proposition 6. We consider the GBT model with embedding x = [2,]aca € R4, root law f, and
Laplacian matrix L = 0. The model is good if and only if

x=1[u,...,u,—v,...,—0,0,...,0"P =[ula,,—vla,,04,] P (42)
for some u,v > 0 and P a permutation matrix.

Proof. The goodness is equivalent to the fact that, for any (ab), (x,—xp)z, > 0and (zp—x4)xp > 0.

This is equivalent to z,z, < min(z2,z7), i.e. £, = xp or z,2p, < 0. This means that any x, > 0

should have a common value v > 0 and any x; < 0 should have a common value —v < (. Hence,
x, can take only the values u, —v and 0. Permuting the values, we obtain (@2)). O

E Counterexamples for Monotonicity

Proposition 7. There exists good embeddings x1 and x2 such that x = [, :EQ]T is not good.

Proof. For A = 3 and a Gaussian root law (Y = 31 — J), we consider z; and x5 such that

0 0 0 110
X;=10 1 1| and Xo=|1 1 O
0 1 1 0 0 0
1 1 0
Then, X = 272 = 2T + 282y = X; + Xo = |1 2 1|. Then, z; and x5 are good embedding
0 1 1
(e.g. remarking that they are J-blocs matrices and using Theorem. The matrix M = (I+XY)~1X
is given by
13 4 1
M==-14 8 4
811 4 3
and verifies M2 > M;j;. This contradicts Definition [/| and z is not Y-proof for Y = 31 — J,
therefore not good. O
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.- . . T,
Proposition 8. There exists one-hot encodings x1 and xo such that x = [z x2]" is not a good

embedding.

Proof. For A =5, let 1 and =5 be one-hot encoding with Gram matrices

X, = and X, =

OO =
OO =
OO — -
O OO O
_—o oo O
[N NNl
coo RO
—_ = -0 0
—_—_0 0
—_—_—_0 0

Then, z; and x» are good embeddings according to Theorem[2] The Gram matrix of the concatenated

embedding x = [ml] is
T2

21 1 00
1 2 1 00
X=X1+Xo=(11 2 1 1
001 21
00 1 1 2
is not a Y'-good embedding for the Laplacian matrix
2 -1 0 0 -1
-1 4 -1 -1 -1
Y=|10 -1 1 0 0
0 -1 o0 1 0
-1 -1 0 0 2
We indeed have that
0.96 0.70 0.85 0.52 0.67
0.70 0.90 0.95 0.67 0.68
M=(T+XY)'X~ |08 095 148 0.83 0.84
0.52 0.67 0.83 1.08 0.56
0.67 0.68 0.84 0.56 0.93

is such that Ms3 > Moo,

F Results of Section 4.2

We now show that any embedding can be made Y'-good by appending a sufficiently dominant identity
component. This result guarantees that, asymptotically, adding uncorrelated features improves
embedding monotonicity, regardless of the original embedding structure. This can be made in relation
with Figure[I] for which we compare i.i.d. Gaussian  with it’s concatenation with 1.

Proposition 9. For any embedding x and any Laplacian matrix Y, the embedding x) = [I x/ )\]T
is Y -good for any A > 3+/A||zTz| /DiagDom(c?Y") where DiagDom(Y") = min . (I +Y) 7} —
(I+Y), >o.

Proof of Proposition[9) We set M(X,Y) = (I + XY)"'X. The Frobenius norm is such that

IX +Y] < | X||+||Y] and | XY < [|X|||IY|l. Assuming that || X|| < 1 and for Z = (I +
X))t — (I — X), we have
X2
1Z] < IX12 Y 1X)F = = (43)
2 X" = T
The matrix I + X/ is positive definite, hence invertible and we have
MI+X/NY)=T+T+X/NY)HIT+X/N)=(([T+X/N)P+Y)7h @4
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Then, there exist matrices Z and W, that we will control later on, such that

MI+X/\Y)=(I-X/A+Z+Y)! (45)
=(I+Y)'I+(Z-X/NI+Y) ) ! (46)
=I+Y) YT+ Z-X/NI+Y) L +W). (47)

From now, we assume that A > 3v/A|| X ||. In particular, using that h : z 1= is increasing over
(0,1) we have that IXU/x < h(vV/A/3) < h(1/3) = . According to [@3) applied to X/, we

I=X1/A
therefore have | X/ |2 1 X
i - . 48
121l < L— || X/ = 2A -
We also have that XN 11Xy 3IXi
XA =2< 7478 = 7o .

Note that 2501 < 1 since A > 3/A|| X || and we can apply (@3) to evaluate

2
IXA=2) T+ V)PP _AlX/A = 2))?

Il L G s 7 S 1o vz = YA = ZIVAIX = 21)
(50)
< v, (3@X|> . wgﬂxn h(L/2) = wﬂxu 51

where we used |[(X/\ — Z)(I + Y)Y < | X/XA = Z||[|[(I + Y)Y < VA|X/\ — Z|| (since
(I +Y)~! has eigenvalues smaller than 1) and h(1/2) = 1.

Starting again with (43)), we then have

IMI + X/AY) = (I +Y) oo < IM(I+X/AY) = (T +Y) 7 (52)
- 3VA|X||  3VA|X
=z -X/NI+Y) + W]l < QQ L q :

(53)

- @' (54)

Let DiagDom(Y) = ming) (I +Y),+ — (I +Y),,') which is strictly positive since (I +
Y)~! is strictly max-diagonally dominant [10]. We therefore have that, for any A >
3V/A|| X||/DiagDom(Y"),

IM(I+X/\Y) = (I+Y) s < DiagDom(Y)
and therefore M (I + X/)\,Y') is max-diagonally dominant, as expected. O

G Inverse of super-Laplacian

Proposition 10. Let A be a super-Laplacian matrix, then for any nodes a # b in A, we have
6¢1TA71611617 = (Ail)aa - (Ail)ab > 0.
Proof. We prove the result by interpreting the coefficients of A~! as a probability of some sample

path of a discrete-time Markov process on the alternatives. Let D be the diagonal of A, and P the
matrix defined by

A=D(I-P). (55)
The matrix P is a row-sub-stochastic matrix. Explicitly,
_ _ ‘Aab‘
Poq =0, Py = 3 > Pu<l (56)
be A
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Let o be an extra symbol and Ay = AU {e}. Let ke = Aag — D4z, [Aap| > 0. We define a
Markovian random walk on A, by the transition matrix 7":

Aq
T(a) = Py = 122

T(ela) =1—> Pu = An—a, T(ale) =0, T(ele)=1. (57)
bE.A aa

Intuitively, this Markovian process walks over the alternatives according to the weights |A |, and at
each step has a non-zero probability to end in the cemetery e.

Now,
1
-1 _ —1 -1 -1 _ n y—1 -1 _
At =(1-P) DY), A, 7;)(19 DY,.. A ’ZP”“I"'P“H“ATQ'
B (58)
Therefore,
-1 o
Aptka =Y T(arlb)...T(alan 1)T(s|a). (59)

In other words, Al;l K 1s the probability that a is the last alternative to be visited before the random
walk is killed, given that it started at b. Notice that the alternative a may be visited multiple times in
those paths. Actually, any path that starts at b and visits a before being killed can be decomposed as
the gluing of a path that starts at b and reaches a, followed by a path that starts at a and eventually
revisits a as its last step before being killed. Therefore,

Ayt a < DygKa (60)

Since x, > 0, and since A is symmetric, we finally obtain
ALl > AL (61)
O

H Proof of Theorem 2]

Proof. Fix an arbitrary A\ > 0, and let u = s> 4+ \. There exists a permutation matrix P, and an
integer partition A; + - - - + Ay = A, such that

X2 (27 sI) ( ;) F AT (62)
=tz 4 ul (63)
=P. (uI+block_diagonal(JA1, ce JAk)) -p! (64)
= P -block_diagonal(ula, + Ja,, .-, pla, +Ja,)  P7F (65)

where every J 4, is a matrix of size A; x A; with all its entries set to 1. Up to renaming the alternatives,
we can assume, without loss of generality, that P = I.

We notice that the all-one matrix J, say of size A, satisfies J2 = AJ, and

1 1
I+ )—(I——J)=1 66
(w+ )2 (1= ) (66)
Therefore, X is invertible and
1 1 1 1
X-1= block_dlagonal(u (Ia, T HJAI), o (Ia, e HJAk)) (67)

Thus, X ~! is super-Laplacian. This proves that (z s )T is a diffusion embedding. The monotonicity
of GBT} ;. 1. follows from Theorem [T} O
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* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.
If applicable, the authors should discuss possible limitations of their approach to address
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reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
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or scraped datasets)?
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