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Abstract

3D point cloud segmentation is essential across a range
of applications; however, conventional methods often strug-
gle in evolving environments, particularly when tasked
with identifying novel categories under limited supervi-
sion. Few-Shot Learning (FSL) and Class Incremental
Learning (CIL) have been adapted previously to address
these challenges in isolation, yet the combined paradigm
of Few-Shot Class Incremental Learning (FSCIL) remains
largely unexplored for point cloud segmentation. To ad-
dress this gap, we introduce Hyperbolic Ideal Prototypes
Optimization (HIPO), a novel framework that harnesses hy-
perbolic embeddings for FSCIL in 3D point clouds. HIPO
employs the Poincaré Hyperbolic Sphere as its embed-
ding space, integrating Ideal Prototypes enriched by CLIP-
derived class semantics, to capture the hierarchical struc-
ture of 3D data. By enforcing orthogonality among proto-
types and maximizing representational margins, HIPO con-
structs a resilient embedding space that mitigates forget-
ting and enables the seamless integration of new classes,
thereby effectively countering overfitting. Extensive evalu-
ations on S3DIS, ScanNetv2, and cross-dataset scenarios
demonstrate HIPO’s strong performance, significantly sur-
passing existing approaches in both in-domain and cross-
dataset FSCIL tasks for 3D point cloud segmentation.

1. Introduction
Recent advancements in deep learning have spurred
progress in data-efficient learning, with semi-supervised
learning (SSL) [62, 69, 71] and few-shot learning (FSL)
[55, 58, 66] emerging as key approaches. SSL utilizes both
labeled and unlabeled data to enhance learning, while FSL
enables generalization from only a few labeled samples per
class. However, both approaches face challenges in real-
world, dynamic environments where models must contin-
uously adapt to new classes while retaining prior knowl-
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Figure 1. Our approach tackles the novel challenge of few-shot
class incremental 3D point cloud segmentation. In each session
S(t), t ≥ 0, our model takes an RGB point cloud of an indoor
scene D(t) as input and performs semantic segmentation. During
the base training session S(0), sufficient examples are available
for each class. In later sessions, only a limited number of labeled
point cloud examples are provided for new classes, introducing
data imbalance and potential overfitting and forgetting risks.

edge—an essential requirement for continual learning (CL)
[1, 4, 8, 11, 32, 48, 56]. Few-Shot Class Incremental Learn-
ing (FSCIL) [1, 13, 24, 28, 30, 39] combines the data ef-
ficiency of FSL with the adaptability of CL, yet remains
underdeveloped for complex tasks such as segmentation in
unstructured 3D data (see Fig. 1).

Point cloud segmentation is pivotal in applications like
autonomous driving and robotics, where it enables precise
object recognition and scene understanding [36, 52, 68].
This task assigns semantic labels to each point within a 3D
structure, facilitating critical decision-making processes.
Current supervised segmentation methods [26, 53, 65, 67]
are highly reliant on extensive labeled datasets, which are
costly and time-intensive to produce [34]. These methods
also assume a fixed set of labels, limiting their adaptabil-
ity in scenarios where new classes emerge unexpectedly.
While FSCIL offers a potential solution, existing methods
[1, 24, 72, 78, 79, 81, 85] struggle to represent the complex,
hierarchical structures typical of point cloud data due to the
limitations of Euclidean embeddings [33, 45, 46].

Capturing hierarchical relationships, such as recogniz-



ing subcomponents within an object, demands a framework
that can accommodate intricate interrelations. This chal-
lenge is intensified in Class Incremental Learning (CIL)
[82, 83], where the model must incorporate new classes
while preserving previously learned representations—a bal-
ance between adaptability and memory known as the
stability-plasticity trade-off. In FSCIL, especially under
data scarcity, this trade-off is often compromised, leading to
overfitting and catastrophic forgetting. Euclidean spaces ex-
acerbate these challenges, as they lack the capacity to model
evolving data scenarios [76, 81].

Hyperbolic geometry [25, 38, 42, 57, 74] provides a
more suitable framework for hierarchical data [45, 84]. Its
negative curvature and exponential volume growth allow it
to mirror tree-like data structures, addressing the stability-
plasticity trade-off [16] and supporting segmentation in un-
structured contexts [27]. Unlike Euclidean spaces, hyper-
bolic space offers exponentially more volume [44] for ac-
commodating incremental classes, thus reducing overlap
and interference (see Fig. 2, Tab. 4). However, efficient op-
timization of embeddings in the hyperbolic space presents
computational challenges when points are near the bound-
ary of the Poincaré ball resulting in vanishing gradient
problems [44], and without careful handling, newly added
classes can still encroach upon the existing embeddings, ag-
gravating plasticity (see Tab. 3). This highlights the need
for an FSCIL framework that uses hyperbolic space em-
bedding hierarchical data in low distortion while ensuring
computational efficiency and managing class overlap.

Our Proposal: To address these challenges, we intro-
duce Hyperbolic Ideal Prototypes Optimization (HIPO),
a novel FSCIL framework tailored for point cloud segmen-
tation. By embedding data within the Poincaré Hyperbolic
Sphere [49], HIPO leverages the unique properties of hy-
perbolic space to capture hierarchical structures and main-
tain consistent feature-classifier alignment across incremen-
tal learning sessions. Through a modified Busemann loss
[7], HIPO arranges ideal prototypes orthogonally within the
hyperbolic space, maximizing class separation and preserv-
ing space for new classes, which minimizes inter-class in-
terference and optimizes the feature space for CIL.

This design takes advantage of hyperbolic space’s ex-
ponential scaling, which aligns naturally with complex hi-
erarchies found in point cloud data [3, 27, 45, 57]. Our
modified Busemann loss incorporates two components: (1)
a prototype alignment term to guide class embeddings to-
wards their respective Hyperbolic Ideal Prototypes, en-
hancing class separability, and intra-class compactness, and
(2) an uncertainty-aware term that penalizes overfitting on
novel classes and preventing vanishing gradient problems.
Together, these components enable HIPO to effectively ad-
dress data scarcity, mitigate catastrophic forgetting, and
support robust FSCIL under episodic shifts, establishing it

Figure 2. Motivation for hyperbolic embeddings: (a) Hyper-
bolic UMAP [40] of the HIPO embedding space, projected to 2D
for the S3DIS dataset [2]. The hyperbolic space’s negative curva-
ture aligns with hierarchical data, enabling a more compact repre-
sentation and clearer class separation than Euclidean space (Dunn
index [18] (↑) for HIPO is 0.69 while for the Euclidean space,
it is 0.35), showcasing better class compactness in our case. (b)
UMAP of the classifier space in the Euclidean hypersphere

as a powerful solution for incremental learning in 3D point
cloud segmentation. Overall, our contributions are:
- We define and address the previously unexplored problem
of FSCIL for 3D point cloud segmentation, encompassing
both in-domain and cross-dataset scenarios.
- We introduce hyperbolic space as a robust embedding
framework for FSCIL in 3D segmentation, effectively cap-
turing hierarchical structures and preserving stable feature-
class relationships across incremental learning sessions.
- We propose a modified Busemann loss with prototype
alignment and uncertainty-aware components to ensure op-
timal feature-classifier alignment with minimized uncer-
tainty in predictions.
- Through extensive experiments on benchmark datasets
S3DIS [2] and ScanNetv2 [17], HIPO demonstrates supe-
rior performance and generalization, setting a new standard
for FSCIL in this domain.

2. Related Works

3D Point-Cloud Semantic Segmentation: Fully super-
vised 3D semantic segmentation has been a well-explored
area, with methods typically requiring dense point-wise la-
bels [26, 52, 53, 65, 67, 77]. A significant advancement was
PointNet [52], which directly processes raw point clouds,
removing the need for voxelization but facing challenges in
capturing local structures. This limitation spurred improve-
ments like PointNet++ [53], which introduced a hierarchi-
cal approach to enhance local feature learning, and DGCNN
[65], which incorporated the EdgeConv module to integrate
neighborhood information for better geometric representa-
tion. More recently, models such as PointTransformer [80]
have integrated self-attention mechanisms, inspired by NLP,
to elevate feature expressiveness and contextual awareness.



Despite these advancements, the dependency on large la-
beled datasets and the assumption of a fixed class set restrict
these methods in practical scenarios where new classes must
be incrementally learned with minimal supervision.

(Few-Shot) Class Incremental Learning: Incremental
learning methods for 3D data have predominantly focused
on classification tasks rather than segmentation [14, 15, 19,
35, 75]. Approaches such as I3DOL [19] and L3DOC [35]
mitigate catastrophic forgetting in 3D object classification
through memory and attention mechanisms, yet they strug-
gle as labeled supervision diminishes over time. Few-Shot
Class Incremental Learning (FSCIL) [61] has emerged as a
more flexible solution, enabling models to learn new classes
incrementally with minimal labeled data. Representative
methods like CEC [76] use graph-based task linking, while
FACT [81] and ALICE [50] create adaptable feature spaces
through clustering and cosine similarity. However, these
techniques rely on Euclidean embeddings, which have lim-
ited capability to represent hierarchical structures intrinsic
to 3D data, and frequent classifier updates introduce compu-
tational overhead [76]. Open-world semantic segmentation
(OWSS) [5, 9] is a related area that focuses on dynamically
detecting unknown classes at inference, though our focus
on incrementally adding known classes during training sets
our approach apart from OWSS.

Hyperbolic Representations for Hierarchical Data:
Hyperbolic geometry has shown promise for hierarchical
data representation, with foundational work by Sarkar et
al. [57] and Nickel et al. [49] introducing hyperbolic neu-
ral networks and Riemannian optimization methods. Hy-
perbolic embeddings have demonstrated substantial benefits
for capturing semantic hierarchies across applications, in-
cluding image embeddings [27] and FSCIL for image clas-
sification [16]. In 3D data, recent research has shown that
hyperbolic representations can model complex part-whole
relationships effectively. Montanaro et al. [45] applied hy-
perbolic regularizers to encode hierarchical structures in 3D
objects, while Hu et al. [25] leveraged hyperbolic geometry
to represent latent structures in point clouds.

Our approach leverages hyperbolic embeddings to tackle
FSCIL challenges in segmentation, improving adaptabil-
ity, preserving hierarchies, and ensuring computational effi-
ciency in the point cloud domain.

3. Problem Definition & Methodology

Let D represent a sequence of training datasets
{D(0), D(1), . . . , D(T )}, where each D(t) =

{(P (t)
k ,M

(t)
k )

|D(t)|
k=1 } corresponds to a training session

S(t), t ∈ {0, 1, . . . , T}. The initial session dataset D(0)

serves as the base, while T denotes the total number of
incremental sessions. In each session S(t), P (t)

k represents
a point cloud sample, and M

(t)
k provides its labels within

the label space C(t) = {c(t)1 , c
(t)
2 , . . . , c

(t)

|C(t)|} where c
(t)
i is

the i-th class in the incremental session t.
The base session S(0) typically contains an abundant

number of samples per class in the label space C(0). How-
ever, in each subsequent incremental session S(t), t > 0,
only a limited number of labeled point clouds P

(t)
k ∈

Rm×d0 are provided, where m is the number of points per
sample and d0 is the feature dimension. Following previ-
ous works [1, 24, 72, 78, 79, 81, 85], we assume |D(t)| =
N × K, where N is the number of classes, and K is the
number of samples per class, following an N -way K-shot
setting ∀ t > 0. We assume C(t) to be disjoint from previ-
ous sessions, i.e., C(t) ∩ C(t′) = ∅ , ∀ t′ < t.

During each incremental session, only the current dataset
D(t) is accessible, with data from previous sessions unavail-
able for training. For evaluation in session t, the model is
tested across all classes encountered up to that session, cov-
ering the label space

⋃t
i=0 C

(i). A solution to the FSCIL
problem must jointly address uncharted catastrophic forget-
ting, data imbalance, and class overfitting judiciously.

3.1. Preliminaries
This section mentions the essential backgrounds needed for
the proposed framework Hyperbolic Ideal Prototypes Op-
timization (HIPO). We extensively use the concepts of the
Poincaré ball model and its associated Möbius addition, ex-
ponential map, and the geodesic distance. We detail their
definition and discuss their formulae in the Sup. Mat.

In the Poincaré ball model of hyperbolic geometry, all
the points at the boundary of the Poincaré ball represent
points at infinity. We initialize a group of classifier proto-
types at the boundary of the Poincaré ball termed Ideal Pro-
totypes, following [23], for each of the n individual classes.
Assuming u1, u2, · · · , un to be the Ideal Prototypes for
n classes, they form the boundary of the n-dimensional
Poincaré ball of curvature c, Bn

c , following [23]:

In = {u ∈ Rn : u2
1 + u2

2 + . . .+ u2
n = 1} (1)

Since Ideal Prototypes are points at an infinite geodesic
distance from all other points in Bn

c , we use the Busemann
function [7] as a distance measure since computing direct
infinite geodesic distance is non-trivial [23].

The pre-assigned Ideal Prototypes form an optimal ge-
ometric structure by fixing the target throughout the incre-
mental learning. However, as already pointed out, optimiz-
ing Ideal Prototypes in the Poincaré model to address FS-
CIL in 3D point cloud segmentation remains unexplored.

3.2. Discussing HIPO

Our model introduces a fixed alignment strategy for feature-
classifier relationships in FSCIL, tailored for the hierarchi-
cal nature of data such as 3D point clouds. Traditional Eu-
clidean embeddings suffer from compaction [50, 76, 81]



Figure 3. HIPO Overview: We show the changes in the Poincaré ball during the initial three sessions in the 3-2T FSCIL setting (three
base classes, two incremental classes per session) for the S3DIS dataset [2], designed to easily visualize the working of HIPO. Hyperbolic
Ideal Prototypes are optimally positioned to increase the margin of semantically similar classes (LHIP). As an example, the chair class gets
positioned farther from sofa than from table or clutter. We align representations of the newly introduced classes with their corresponding
ideal prototypes (LAlignment) regularized by a modified Busemann function (LUncertainty). Training is conducted using LHIPO across sessions.

and distortion as new classes are added, leading to over-
lap and forgetting. Hyperbolic space, with its negative cur-
vature and exponential volume, provides a natural fit for
preserving hierarchical structures while minimizing inter-
class interference. To address catastrophic forgetting, our
model anchors feature-classifier relationships within hyper-
bolic space, ensuring stable alignment between features and
classifier prototypes. This fixed alignment prevents the drift
of previously learned embeddings as new classes are in-
troduced, preserving the original classifier prototype posi-
tions and maintaining consistency across incremental ses-
sions. By leveraging hyperbolic geometry, our approach
enables efficient class separation, robust memory retention,
and adaptability, making it well-suited for FSCIL in high-
dimensional, unstructured data settings. Our method has
two main stages:

- Defining Ideal Prototypes: We initialize ideal pro-
totypes for each class on the boundary of Bn

c , positioning
them mutually orthogonal and at maximal distances to en-
hance discriminative power, especially among classes with
similar characteristics (see Sec. 3.2.1). This fixed config-
uration allows a dedicated space for each class, preventing
the embedding drift observed in Euclidean spaces.

- Efficient Projections onto Poincaré ball Bn
c : In Hy-

perbolic embedding space, mean class features are obtained
by computing Fréchet [20] means over the feature embed-
ding for the training examples belonging to the classes. In-
stead of directly computing class features on the Poincaré
ball—an intensive task[63]—we obtain the feature vectors
in Euclidean space for every class in each session and then
project them into hyperbolic space using exponential map
exp0(.) [45] (see Sec. 3.2.2). The hyperbolic classifier head
H(.) consisting of a Möbius layer M (also known as hy-
perbolic feed forward layer [22]), takes the output of the

exponential layer as input and projects mean class features
to Bn

c . The Poincaré ball addresses few-shot learning using
the sample mean prototype as the class representation.

Our framework consists of a point-level classification
branch, combining a feature extractor E(.) and hyperbolic
classifier head H(.), and is trained with two key strategies:

Feature-Classifier Alignment: For each session t ≥ 0,
we align the hyperbolic sample mean features (see Eqn. 4)
with the Hyperbolic Ideal Prototypes of their respective
classes using alignment loss, LAlignment. We define LAlignment
using Busemann function B and introduce a regularization
term, quantifying uncertainty of the class features, to pre-
vent feature collapse around the ideal prototypes, effec-
tively reducing interference with previously seen classes
(see Sec. 3.2.3) and vanishing gradient problems [44].
Point-Level Classification: The hyperbolic classifier H(.),
consisting of a Möbius layer M followed by softmax [45],
processes the output of exp0(E(.)), with a cross-entropy
loss for 3D point cloud segmentation. The joint objective
combines this alignment loss LAlignment and cross-entropy
loss LCE as follows:

LHIPO = LAlignment + LCE (2)

This approach ensures robust feature-classifier align-
ment across incremental learning sessions, addressing
catastrophic forgetting in 3D point cloud segmentation by
preserving both old and new class representations in a
rehearsal-free manner. The process is illustrated in Fig. 3,
and Algorithm 1 and a table summarizing the important
variables used, mentioned in the Sup. Mat., supplement
these discussions.
3.2.1. Hyperbolic ideal prototypes positioning
Building upon the goal of maintaining stable feature-
classifier alignment, our framework pre-assigns classifier



prototypes on the boundary of Bn
c to define a structured

classifier space prior to backbone training. To achieve maxi-
mal margin separation between classes, we introduce induc-
tive biases by assigning each class a Hyperbolic Ideal Pro-
totype, distributing these prototypes as uniformly as possi-
ble across the Poincaré ball. Inspired by Mettes et al. [41],
we incorporate semantic class knowledge to enforce distinct
separations, particularly for closely related classes, such as
“chair” and “sofa”. To further enhance semantic cohesion,
we utilize the CLIP framework [54] due to its robust seman-
tic representations [31, 73] in comparison to embeddings
like word2vec [43], Glove [51] etc. By querying CLIP’s
frozen text encoder with the prompt “A photo of a
[class]”, we obtain text embeddings S = {s1, . . . , sn}
for each of the n predefined classes. Leveraging the home-
omorphism between hyperbolic space Bn

c and the hyper-
sphere Sn [23], we maximize separation between nearest
neighboring embeddings in Sn and enforce mutual orthog-
onality among Ideal Prototypes to mitigate conflict between
new and prior knowledge. To achieve this, inspired by
RankNet [6], we formulate a Hyperbolic positioning loss,
LHIP, optimizing the ideal prototypes positions as:

LHIP =
1

|M |
∑

(i,i′ ,i′′ )∈M

−W̄ii′ i′′ logWii′ i′′−

(1− W̄ii′ i′′ ) log(1−Wii′ i′′ ) (3)

where M represents all class triplets, and W̄ii′ i′′ =
Jcos θsi,si′ ≥ cos θsi,si′′ K denotes triplet ranking order,

with Wii′ i′′ = e
o
ii

′
i
′′

1+e
o
ii

′
i
′′ and oii′ i′′ = cos θui,ui

′ −
cos θui,ui

′′ , where ui,ui′ ,ui′′ are ideal prototypes for the

corresponding classes i, i
′

and i
′′

respectively.
Following Mettes et al. [41], LHIP optimizes the proto-

types’ placement on Bn
c by aligning the hyperbolic proto-

types with semantic ranking. This optimization establishes
a classifier structure that facilitates inter-class separability
and mutual orthogonality. Hyperbolic space’s exponen-
tially larger embedding capacity [44] further ensures that
new classes integrate seamlessly without distorting existing
embeddings, promoting robust feature organization across
learning episodes.

3.2.2. Hyperbolic class prototype projection
We model the hierarchical complexity in 3D point clouds
using a hyperbolic manifold representation, which pre-
serves nuanced class relationships with minimal distortion.

At each session t ≥ 0, we apply the feature extractor

E(.; θ) on input point clouds {(P (t)
k )

|D(t)|
k=1 } to obtain fea-

ture vectors v in Euclidean space. To avoid the computa-
tional cost of calculating Fréchet means directly in hyper-
bolic space [63], we compute class-mean feature vectors in
Euclidean space and project them onto the hyperbolic man-
ifold Bn

c using exp0 and M as follows:

v
(t)
k = E(P (t)

k ; θ), ∀k ∈ {1, . . . , |D(t)|}

v(c
(t)
i ) =

1

|D(t)|

|D(t)|∑
k=1

v
(t)
k 1[M

(t)
k = c

(t)
i ]

z(c
(t)
i ) = M(exp0(v(c

(t)
i )))

(4)

where i = {1, . . . , |C(t)|} and θ denotes learnable pa-
rameters. Here, z(c(t)i ) represents the hyperbolic prototype
for each class c(t)i ∈ C(t) within the open ball Bn

c = {x ∈
Rn : c∥x∥ < 1}. This projection process ensures cohe-
sive, low-distortion representations of class structures as the
model adapts incrementally to new classes.

3.2.3. Uncertainty-aware Busemann learning
Previous works [12, 21, 27] highlight the utility of hy-
perbolic distance from any point to the origin OB in Bn

c

as a measure of uncertainty, providing motivation to uti-
lize the hyperbolic manifold for robust segmentation. In
our approach, we align class prototypes with Ideal Proto-
types placed at infinity on the hyperbolic boundary. To
refine this alignment, we penalize the uncertainty of pro-
jected class features z(c

(t)
i ), represented by their distance

dB(z(c
(t)
i ),OB), thereby preventing embedding drift from

OB and ensuring stability.
These Ideal Prototypes lie at an infinite geodesic dis-

tance from all points within Bn
c , making direct prototypi-

cal learning impractical. We address this with the Buse-
mann function B introduced in [7]. Ghadimi et al. [23] pro-
vides a closed-form expression for measuring such infinite
geodesic distances. Let ui be the Ideal Prototype for class
c
(t)
i from the set In, and γut

i
a geodesic ray towards ut

i, with

zti = z(c
(t)
i ). The Busemann function B for a hyperbolic

embedding zti ∈ Bn
c relative to ut

i is defined as:

But
i
(zti) = lim

q→∞

(
dB(γut

i
(q), zti)− q

)
(5)

In the Poincaré ball Bn
c , this simplifies to:

But
i
(zti) = log

∥ut
i − zti∥2

1− ∥zti∥2
. (6)

We also incorporate hyperbolic distance as an uncer-
tainty measure for class prototypes in Bn

c , which integrates
into our loss function as in [23]. The alignment loss intro-
duced in Eq. 2 is defined as:

LAlignment = LB + ϕLUncertainty (7)

where Busemann loss LB = But
i
(zti), uncertainty loss

LUncertainty = dB(z
t
i ,OB) and ϕ is the strength of the reg-

ularization effect of uncertainty loss.
The overall loss function in Eq. 2 can be formulated as:

LHIPO = LB + ϕLUncertainty + LCE



At test time, we employ only the point-level classifica-
tion branch to segment 3D point clouds.

4. Experimental Evaluations
Datasets: We evaluate our method on two widely used
benchmarks, S3DIS [2] and ScanNetv2 [17], to assess both
in-domain and cross-dataset FSCIL performance. These
datasets incorporate large-scale coloured 3D point clouds
of indoor spaces which introduce semantics. See Sup. Mat.
for additional dataset details. For cross-dataset FSCIL, we
create a transition dataset from ScanNetv2 to S3DIS, us-
ing ten classes from ScanNetv2 as the base and introduc-
ing eight new classes from S3DIS in incremental sessions.
Following a strict disjoint setup as in [10], each session in-
cludes only novel classes. The number of introduced classes
varies per session to assess resilience to catastrophic for-
getting, which escalates with more incremental sessions in
point cloud recognition [60].
Evaluation metrics: We assess model performance using
three standard metrics for incremental learning[70]: Aver-
age Incremental Accuracy (AIA) , which tracks average
accuracy across tasks learned sequentially; Last, the ac-
curacy after the final task; and Average Forgetting Rate
(F (T )

Last), which measures performance decline on learned
tasks after adapting to the last task. Finally, we report mean
Intersection-over-Union (mIoU)1 to evaluate segmentation
performance. See Sup. Mat. for detailed metric definitions.
Architecture: Our backbone model employs PointTrans-
former [77], leveraging recent advances in point cloud
recognition, with a Hyperbolic Classifier head H(.) for seg-
mentation. We train HIPO using the Riemannian SGD
optimizer, facilitated by geoopt [29] for hyperbolic opera-
tions. Training is conducted on both D(0) and incremental
datasets D(t), t > 0 with a batch size of 16, AdamW opti-
mizer [37], initial learning rate of 0.001, and weight decay
of 0.0001 over 100 epochs. Architecture diagram and fur-
ther hyper-parameter details are available in the Sup. Mat.
Competitors: We compare our method against vari-
ous baselines representing distinct FSCIL approaches.
For regularization-based methods, we include LwF with
Teacher Adaptation [59], and for optimization-based
methods, we include C-FSCIL [24]. We also evaluate
against regularization-based FSCIL methods specifically
designed for 3D point cloud tasks, such as LGKD [72],
SDCOT [79], and 3DPC-CISS [70], which have shown
effectiveness with the PointTransformer [77] architecture.
Comparative results are provided in Tables 1 and 2. Addi-
tionally, we adapt BiDist [78], CLOM [85], TEEN [64],
FACT [81], and ALICE [50] using the DGCNN [65] back-
bone for FSCIL in 3D point cloud segmentation. We report
the results with the DGCNN [65] backbone in Table 5.

1We use accuracy and mIoU interchangably.

Figure 4. Qualitative visualization of model performance:
Comparing FSCIL for 3D point cloud segmentation results of our
method (HIPO) and other baselines for S3DIS dataset [2]. We
observe that even with a few-shot setup, our model performs rea-
sonably well in segmenting out small parts like walls, counters,
etc., compared to other methods [70, 79].

4.1. Discussing the main results

Table 1 presents a detailed comparison of our proposed
method, HIPO, against several baseline methods on the
S3DIS [2] and ScanNetv2 [17] datasets across various eval-
uation settings. HIPO consistently outperforms the cur-
rent state-of-the-art approach, 3DPC-CISS [70], achieving
an average improvement of +2.57% mIoU on S3DIS and
+2.12% on F(T )

Last. This improvement underscores the
effectiveness of HIPO’s hyperbolic, uncertainty-aware ar-
chitecture, which mitigates catastrophic forgetting by re-
ducing misalignment between features and prototype repre-
sentations from earlier sessions. When compared to other
baselines, such as LGKD [72] and C-FSCIL [24], HIPO
shows substantial gains across all metrics. For instance, in
the 10-3T scenario, HIPO achieves 33.40% mIoU on the
Last metric, significantly higher than LGKD’s 20.02% and
C-FSCIL’s 25.02%. This consistent superiority highlights
HIPO’s resilience against forgetting, particularly in incre-
mental sessions with larger class increments, where other
methods struggle to retain performance. Furthermore, while
SDCOT [79] and LwF [59] suffer from high forgetting rates,
HIPO effectively maintains stable performance across in-
cremental tasks, with a F(T )

Last rate as low as 17.70% in
challenging scenarios, compared to SDCOT’s 30.83%. This
robustness can be attributed to HIPO’s hyperbolic embed-



4-3T 7-3T 10-3T Average
Last(↑) AIA(↑) F(T )

Last(↓) Last(↑) AIA(↑) F(T )
Last(↓) Last(↑) AIA(↑) F(T )

Last (↓) Last(↑) AIA(↑) F(T )
Last(↓)

LwF [59] 4.33 22.05 23.62 8.60 21.80 19.80 21.30 34.05 25.50 11.41 25.30 22.97
C-FSCIL [24] 9.06 27.90 25.11 20.01 31.92 17.86 25.02 35.36 20.68 18.03 31.06 21.88
LGKD [72] 12.24 31.80 25.94 19.76 30.41 15.97 20.02 32.71 25.38 17.34 31.64 22.43
SDCOT [79] 5.30 28.42 30.83 12.00 29.46 26.20 23.80 35.30 23.00 13.70 31.06 26.67

3DPC-CISS [70] 25.70 40.50 19.73 24.20 34.50 15.45 29.60 38.20 17.20 26.50 37.73 17.46

HIPO 30.60 43.87 17.70 29.40 36.80 11.10 33.40 40.25 13.70 31.13 40.30 14.16

10-2T 10-5T 15-5T Average
Last(↑) AIA(↑) F(T )

Last (↓) Last(↑) AIA(↑) F(T )
Last (↓) Last(↑) AIA(↑) F(T )

Last (↓) Last(↑) AIA(↑) F(T )
Last (↓)

LwF [59] 1.70 10.75 10.86 1.05 17.53 24.72 5.06 21.38 32.64 2.60 16.55 22.74
C-FSCIL [24] 7.12 15.94 10.58 11.12 24.18 19.59 11.50 23.58 24.15 9.25 21.23 18.11
LGKD [72] 6.02 15.60 11.50 9.55 25.52 22.45 11.10 23.83 25.46 8.22 21.65 19.80
SDCOT [79] 0.50 9.56 10.88 0.40 17.83 26.15 1.30 19.50 36.40 0.73 15.63 24.47

3DPC-CISS [70] 6.20 13.13 8.32 8.10 22.30 21.30 12.20 24.95 25.50 8.83 20.12 18.37

HIPO 8.50 17.13 10.36 14.65 27.22 18.85 11.90 24.45 25.10 11.68 22.27 18.12

Table 1. Comparison with literature on the S3DIS [2] (top table) and ScanNetv2 [17] (bottom table) datasets, using the PointTransformer
backbone [77] in a 5-shot setting. CIL mIoU (%) is reported. “M -NT” indicates that M is the number of classes in the base session S(0),
while N is the number of classes introduced in each incremental session S(t), t > 0. The highest performance in each column is shown in
bold, with the second-highest results underlined. HIPO performs superior compared to other baselines in different incremental settings.

Average
Last (↑) AIA (↑) F(T )

Last (↓)

LwF [59] 8.78 22.60 23.94
C-FSCIL [24] 13.55 25.02 19.72
LGKD [72] 15.63 25.56 17.51
SDCOT [79] 19.22 29.29 17.52

3DPC-CISS [70] 19.95 29.16 16.01

HIPO 20.60 29.81 16.05

Table 2. SOTA comparison on ScanNetv2 → S3DIS dataset. We
compute the average of 10-4T and 10-8T with PointTransfomer
backbone [77] in 5-shot setting. HIPO achieves superior Last and
AIA values with comparable F(T )

Last values, highlighting better
domain adaptability than other methods.
ding space, which aligns naturally with hierarchical struc-
tures, thereby enhancing inter-class separation and intra-
class compactness over time.

Moreover, Fig. 4 provides qualitative comparisons,
where HIPO demonstrates marked improvements over lead-
ing baselines, particularly in accurately segmenting chal-
lenging structures such as walls and counters. Further anal-
yses and results are available in the Sup. Mat.

4.2. Main ablation analysis
Cross-dataset class-incremental segmentation: To fur-
ther assess the effectiveness of our proposed modules,
we conduct cross-dataset incremental segmentation experi-
ments (ScanNetv2 → S3DIS). Detailed setup information is
in Sup. Mat. As shown in Table 2, the cross-dataset setting
introduces a notable increase in forgetting due to domain
shift. However, the results underscore HIPO’s robustness
in managing such domain shifts effectively, with improve-
ments of 0.65% in Last and 0.52% in AIA metrics.
Ablation studies on penalty in Busemann loss: We pro-

vide a comprehensive ablation study on the regularization
constant ϕ introduced in Eq. 7. The regularization strength
is varied from ϕ = 0 to ϕ = 1 in intervals of 0.25 for
S3DIS [2] (4-3T, 7-3T, 10-3T) and ScanNetv2 [17] (10-
2T, 10-5T, 15-5T). As shown in Table 3, our findings cor-
roborate prior work [23]: without a penalty (ϕ = 0), sam-
ples are overly drawn towards the Ideal Prototypes, result-
ing in overconfident predictions and lower AIA on test data
Dtest in addition to vanishing gradient problems [44]. Con-
versely, a high penalty (ϕ = 1) increases inter-class confu-
sion, also leading to lower AIA on Dtest. Our final chosen
results, highlighted in bold in Table 3, reflect the optimal
balance for ϕ.

Comparison of metrics at different curvatures: Follow-
ing [47], we experimented with curvature values of c =
0.0001 and c = 0.001 to implement traditional Euclidean
architectures (Poincaré Ball with zero curvature; very small
Poincaré ball curvature values are chosen as curvature c = 0
is numerically unstable [27]) for the S3DIS [2] (4-3T, 7-3T,
10-3T) and ScanNetv2 [17] (10-2T, 10-5T, 15-5T) setups.
Table 4 shows that our HIPO with a Poincaré Ball curva-
ture of c = −1.00 consistently outperforms its Euclidean
counterpart across most settings. This finding demonstrates
that Riemannian geometry leverages the hierarchical struc-
ture of point clouds more effectively than Euclidean space,
suggesting further exploration in this domain.

Sensitivity to the different number of training samples
in each incremental episode: To assess the impact of data
availability on model performance, we gradually increase
the number of samples per class (shot) from one to all avail-
able examples and analyze the Last mIoU and F(T )

Last re-
sults for different shot values in Fig. 5. Our findings indi-



Datasets Settings ϕ = 0.00 ϕ = 0.25 ϕ = 0.50 ϕ = 0.75 ϕ = 1.00

AIA↑ F(T )
Last↓ AIA↑ F(T )

Last↓ AIA↑ F(T )
Last↓ AIA↑ F(T )

Last↓ AIA↑ F(T )
Last↓

S3DIS [2] 4-3T 42.87 17.70 43.40 17.86 43.27 18.23 43.87 17.70 43.22 18.96
7-3T 36.13 11.60 36.46 11.20 36.80 11.10 36.70 11.10 36.06 12.10
10-3T 39.95 14.30 40.25 13.70 40.10 14.00 40.07 14.05 40.05 14.10

ScanNetv2 [17] 10-2T 16.75 10.51 16.85 10.50 16.90 10.08 17.13 10.36 16.91 10.76
10-5T 27.08 18.87 27.13 18.87 27.22 18.85 27.21 18.85 27.16 18.92
15-5T 24.25 25.50 24.45 25.10 24.05 25.90 23.95 26.10 24.00 26.00

Table 3. Different penalty values in Busemann loss in 5-shot incremental segmentation across the S3DIS [2] dataset and ScanNetV2 [17]
dataset, highlighting the regularization benefits introduced by the hyperbolic distance of the projected class prototypes from the origin.

Datasets Settings c = −1.00 (Ours) c = 0.0001 c = 0.001

AIA↑ F(T )
Last↓ AIA↑ F(T )

Last↓ AIA↑ F(T )
Last↓

S3DIS [2] 4-3T 43.87 17.70 42.95 19.93 43.23 17.38
7-3T 36.80 11.10 36.23 11.60 36.86 11.05
10-3T 40.25 13.70 40.20 13.80 40.22 13.75

ScanNetv2 [17] 10-2T 17.13 10.36 16.54 10.25 16.98 10.18
10-5T 27.22 18.85 27.16 19.00 26.83 19.92
15-5T 24.45 25.10 24.40 25.20 24.20 25.60

Table 4. Comparison for different curvature values in 5-shot in-
cremental segmentation across S3DIS [2] and ScanNetV2 [17]
datasets. This highlights the superior stability-plasticity trade-off
of hyperbolic embedding space with negative curvature, where
small positive curvature approximates Euclidean space.
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Figure 5. mIoU improves and forgetting reduces with more
training examples.Our proposed method outperforms the top-2
baseline methods ([70, 79]) in terms of Last mIoU and forgetting
mitigation in the 10-2T setting (Full-data: fully supervised training
in incremental fashion).

cate that catastrophic forgetting is particularly severe with
limited data; however, our method substantially reduces for-
getting compared to other baselines. Notably, increasing the
number of training examples significantly mitigates forget-
ting for HIPO, while it exacerbates forgetting for SDCOT.
Experiments with a different backbone: Besides Point-
Transformer [77], we evaluate our model with the back-
bone of DGCNN [65]. Unlike current SOTA FSCIL meth-
ods—BiDist [78], CLOM [85], TEEN [64], FACT [81],
and ALICE [50]—which perform well with DGCNN but
degrade with PointTransformer, our method remains effec-
tive across both architectures. As shown in Table 5, our
approach achieves consistent gains with DGCNN, outper-

Method Last (↑) AIA (↑) F(T )
Last (↓)

LwF [59] 9.45 26.75 24.41
C-FSCIL [24] 20.22 30.64 22.15
LGKD [72] 18.63 29.16 15.75
SDCOT [79] 22.75 24.54 19.94
CLOM [85] 21.18 34.67 18.83
TEEN [64] 22.71 33.90 15.37
FACT [81] 24.27 26.70 21.26
3DPC-CISS [70] 22.03 24.74 19.36
BiDist [78] 27.70 39.14 15.85

HIPO 29.90 39.86 13.87

Table 5. Performance comparison on the S3DIS dataset [2] using
the DGCNN backbone [65] in the 5-shot setting. Reported metrics
include Last, F(T )

Last, and AIA for 4-3T and 7-3T settings. HIPO

outperforms all baseline methods with DGCNN.

forming baselines with +2.20% mIoU on Last, +0.72% on
AIA, and reducing forgetting by +1.98% on F(T )

Last. This
demonstrates the model-agnostic nature of HIPO.

5. Conclusions & Future Directions

We introduce a previously unexplored problem setting
along with a novel solution specifically designed for few-
shot class-incremental semantic segmentation of 3D point
cloud data, addressing a critical gap in the literature. Rec-
ognizing the unique challenges posed by point clouds, we
identified limitations in current FSCIL methods and de-
veloped HIPO, a model that leverages hyperbolic space to
embed point clouds while achieving an improved stability-
plasticity trade-off. Our approach consistently outperforms
state-of-the-art baselines, demonstrating that hyperbolic ge-
ometry’s ability to represent hierarchical structures offers
a more effective framework for FSCIL in 3D data. HIPO
is particularly valuable for real-world applications like au-
tonomous driving, industrial inspection, urban planning,
and environmental monitoring, where generalization to un-
seen classes is essential. Furthermore, our approach en-
hances safety and efficiency in critical areas such as dis-
aster response and infrastructure maintenance by enabling
accurate, timely semantic segmentation of complex 3D en-
vironments. Future work will focus on managing possible
outliers that may emerge without prior reference across in-
cremental sessions, further strengthening our robustness.
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