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Abstract
Multiple Instance Learning (MIL) is a cornerstone
approach in computational pathology (CPath) for
generating clinically meaningful slide-level em-
beddings from gigapixel tissue images. However,
MIL often struggles with small, weakly super-
vised clinical datasets. In contrast to fields such
as NLP and conventional computer vision, where
transfer learning is widely used to address data
scarcity, the transferability of MIL models re-
mains poorly understood. In this study, we sys-
tematically evaluate the transfer learning capabil-
ities of pretrained MIL models by assessing 11
models across 21 pretraining tasks for morpho-
logical and molecular subtype prediction. Our
results show that pretrained MIL models, even
when trained on different organs than the tar-
get task, consistently outperform models trained
from scratch. Moreover, pretraining on pancancer
datasets enables strong generalization across or-
gans and tasks, outperforming slide foundation
models while using substantially less pretrain-
ing data. These findings highlight the robust
adaptability of MIL models and demonstrate the
benefits of leveraging transfer learning to boost
performance in CPath. Lastly, we provide a re-
source which standardizes the implementation of
MIL models and collection of pretrained model
weights on popular CPath tasks, available at
https://github.com/mahmoodlab/MIL-Lab.

1. Introduction
Multiple Instance Learning (MIL) has been the foundational
paradigm in computational pathology (CPath) for over a
decade. Digitized human tissue sections, referred to as
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Figure 1. Average performance with supervised pretraining vs.
random initialization. Performance of MIL models trained from
random initialization (black) vs. initialized with weights from a
model pretrained (red) on a 108-class pancancer task (n=3,944
WSIs). Performance is averaged across the 19 classification tasks,
using AUROC for the binary classification tasks, weighted kappa
for grading, and balanced accuracy for the multiclass tasks.

whole slide images (WSIs), pose unique challenges due to
their gigapixel resolutions and sparse diagnostic regions.
The weakly-supervised MIL framework addresses these
challenges by (1) using a pretrained encoder to tokenize
a WSI into patch-level features, and (2) using a trainable
aggregator to pool these patch features into a final slide-level
representation for downstream classification (Song et al.,
2023; Campanella et al., 2024).

While substantial progress has been made in developing
powerful pretrained patch encoders for pathology (Chen
et al., 2024a; Vorontsov et al., 2024; Xu et al., 2024b; Lu
et al., 2024), learning an effective aggregation scheme re-
mains an open challenge due to the relatively small train-
ing cohorts and sparse diagnostic regions characteristic of
CPath datasets. As a result, new MIL architectures have
been continually emerging since 2015, with each approach
introducing new inductive biases to improve data efficiency
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and model generalizability during training.

Despite the overwhelming research interest in MIL architec-
ture development and well-recognized benefits of transfer
learning in low-data regimes in the biomedical community,
surprisingly little is known about how well MIL models
transfer in CPath. To date, random weight initialization re-
mains a common standard in MIL model development and
evaluation. Though random weight initialization is appro-
priate for ablating architecture hyper-parameters and devel-
oping academic benchmarks, given the enormous challenge
of bringing pathology AI models to clinical adoption us-
ing small patient cohorts and widespread use of patch-level
transfer in MIL, it is surprising that there is little empirical
understanding of how well slide-level transfer performs, e.g.
using a MIL model pretrained on one task and transferring it
to another task with frozen feature evaluation or lightweight
finetuning.

This knowledge gap is in stark contrast to the enormous
progress made in general machine learning on answering
many fundamental questions, such as: How does model
architecture (Zoph et al., 2018; Kornblith et al., 2019; Zhou
et al., 2021; Renggli et al., 2022), data scale (Kolesnikov
et al., 2020), and pretext task (Tripuraneni et al., 2020; Er-
icsson et al., 2021; Zhao et al., 2021; Mehra et al., 2024)
affect transfer performance? Does better supervised perfor-
mance lead to better transfer? (Recht et al., 2019; He et al.,
2019; Kumar et al., 2022; Fang et al., 2024) When does
transfer not work? (Raghu et al., 2019; Jang et al., 2019;
Pruksachatkun et al., 2020; You et al., 2021) And what
features are being transferred? (Neyshabur et al., 2020)

Indeed, the transfer of MIL models is also pertinent in light
of recent interest in whole slide foundation models, which
aim to extract general-purpose slide-level representations
that can transfer and generalize to challenging clinical tasks
in low-data regimes (Shaikovski et al., 2024; Wang et al.,
2024; Ding et al., 2024; Vaidya et al., 2025). Though self-
supervised learning has demonstrated favorable properties
for developing slide foundation models via data scaling,
model generalization, and emergent capabilities, we contend
that an MIL model trained with supervision on large-scale,
diverse hierarchical classification tasks can also function as
a slide foundation model. We hypothesize this approach can
embed WSIs and generalize to diverse, challenging tasks,
while requiring substantially less pretraining data than its
self-supervised counterparts.

In this work, we investigate transfer learning capabilities of
pretrained MIL models in CPath, evaluating 11 MIL models
and using 21 tasks for supervised pretraining and transfer
evaluation which spans many- and few-shot morphological
classification, cancer grading, and biomarker prediction.
This work provides a roadmap for how to transfer MIL
models, answering: which MIL architectures transfer better,

whether models can transfer to different organs, disease
indications, or task types, does transfer learning always
outperform training from scratch, and more. We summarize
our main findings below:

• Pretrained MIL models consistently outperform MIL
models trained with randomly initialized weights, even
when pretrained on out-of-domain tasks.

• Models pretrained on pancancer tasks are data-efficient
and generalize effectively across organs and task types.

• Transfer performance varies with MIL architecture and
model size. Larger models benefit more from pre-
training, and pancancer pretraining unlocks favorable
scaling trends.

• The aggregation scheme learned during pretraining is
pivotal for observed gains from model transfer.

Finally, we share a GitHub library to standardize MIL im-
plementation and simplify loading pretrained weights across
various CPath tasks.

2. Related work
2.1. MIL in CPath

MIL is a form of supervised learning where models are
trained on labeled collections of instances, known as
“bags”, without individual instance labels. In CPath, MIL
has emerged as the predominant framework for modeling
WSIs, where tissue regions from a WSI (bag) are first
segmented and then divided into non-overlapping image
patches (instances), with variable bag sizes of around 1,000
to 10,000 (Campanella et al., 2019; Lu et al., 2021). A
MIL model learns a mapping from the collection of image
patches of each slide to the slide-level labels, without su-
pervision at the patch level. Numerous variations of MIL
methods have been proposed, distinguishing from one an-
other by the aggregator function (e.g. non-parametric max-
pooling (Campanella et al., 2019) vs. learned parametric
pooling (Ilse et al., 2018)), assumption in permutation in-
variance (e.g. modeling instances as an unordered set (Ilse
et al., 2018) vs. an ordered sequence (Shao et al., 2021)), the
precise model architecture (e.g. feedforward layers only (Lu
et al., 2021; Ilse et al., 2018; Li et al., 2021) vs. transformer
attention (Shao et al., 2021)) and the use of auxilliary objec-
tive functions during training (Lu et al., 2021; Zhang et al.,
2022). We cover diverse types of architectures to derive
general insights on MIL transfer.

2.2. Large-scale pretrained slide foundation models

With the increasing availability of WSIs, recent works have
also explored pretraining MIL architectures to develop slide
foundation models that produce general-purpose slide rep-
resentations (Chen et al., 2022; Jaume et al., 2024; Wang
et al., 2024; Xu et al., 2024a; Ding et al., 2024; Vaidya et al.,
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2025). Instead of leveraging carefully curated labels for task-
specific supervised MIL training, these approaches often
rely on large-scale unimodal and multimodal data and task-
agnostic objectives such as self-distillation and contrastive
learning to learn representations that can be transferred to
diverse downstream tasks. We provide a rigorous compari-
son of supervised pretraining against such slide foundation
models.

3. Preliminaries
The primary goal of this work is to understand how well su-
pervised MIL models transfer to various downstream tasks
in computational pathology (CPath). This investigation is
motivated by the overwhelming interest in developing slide
foundation models, e.g. self-supervised MIL models that
extract general-purpose slide representations with little-to-
zero finetuning. In this context, supervised MIL with model
weight transfer is a simple and fundamental alternative over-
looked in the research community, and we hypothesize that
transferring supervised MIL models may outperform cur-
rent techniques and learning paradigms proposed for solving
challenging CPath tasks. To this end, we exhaustively eval-
uate transfer performance of 11 MIL architectues across 19
publicly available benchmarks. We outline the evaluation
protocol, pretraining and target datasets, and MIL architec-
tures used for assessing MIL transfer below.

3.1. Supervised MIL Transfer

The experimental setup for evaluating supervised MIL trans-
fer follows that of previous works in transfer learning, in
which a network f is first pretrained using a supervised
task from source domain DS (pretrain task) and then eval-
uated on a different task from target domain DT (target
task). We study the following 11 architectures for assessing
MIL transfer: ABMIL (Ilse et al., 2018), CLAM (Lu et al.,
2021), DSMIL (Li et al., 2021), DFTD (Zhang et al., 2022),
TransMIL (Shao et al., 2021), Transformer (Wagner et al.,
2023; Vaswani et al., 2023), ILRA (Xiang & Zhang, 2023),
RRT (Tang et al., 2024), WIKG (Li et al., 2024), Mean-
MIL and MaxMIL. We measure transfer performance to
the target task using two evaluation settings: (1) end-to-end
finetuning, and (2) frozen feature evaluation via K-nearest
neighbors (KNN) on pre-extracted slide-level embeddings.

For evaluation, we assess MIL transfer performance on 19
publicly available CPath tasks, with training datasets rang-
ing in size from 314 to 8,492 WSIs and in label complexity
from 2 to 30 classes. To ensure that the observed trends in
this study are not confined to a specific organ, disease, or
type of task, we comprehensively evaluate on four organs
(breast, lung, prostate, and brain), and diverse task types
such as cancer classification, cancer grading, and molecu-
lar subtyping, which are used as both pretrain and target

tasks. For example, to assess the tranferrability of ABMIL
pretrained on NSCLC subtyping, we would first train an
ABMIL model from scratch on the NSCLC subtyping task,
followed by end-to-end finetuning on the other 18 target
tasks such as BRACS coarse-grained subtyping. For MIL
architecture f , pretrain task s and target task t, we perform
the following main comparisons which answer:

• fs→t vs. frandom init→t: For the same MIL architecture
f , does pretraining task s outperform training from
scratch on task t?

• fs→t vs. fs′→t: For the same MIL architecture f , do
different pretrain tasks s and s′ transfer better to t?

• fs→t vs. f ′
s→t: Using the same pretrain task s, do

different MIL architectures f and f ′ transfer better to
task t?

Though this experimental setup follows previous investiga-
tions in computer vision, one limitation in assessing model
transfer in CPath is the lack of large-scale, diverse classi-
cation datasets similar to ImageNet-1k (IN-1k), which has
been the standard pretraining task for assessing transfer of
various image recognition backbones over the past decade.
In addition to the 19 tasks, we also include two pan-cancer
tasks called PC-43 and PC-108 (Chen et al., 2024a). These
represent 43-class and 108-class cancer subtyping tasks en-
compassing diverse malignancies from 17 organ types and
are curated from the same hierarchical classification dataset
for pretraining purposes only. PC-43 and PC-108 consist
of the same set of 3,499 WSIs with either coarse labels (43
main cancer types) or fine-grained labels (108 OncoTree
codes), respectively, with at least 5 and 15 WSIs per On-
coTree code for training and testing. Overall, these tasks
were developed to emulate IN-1k in label complexity and
flexibility for supervised pretraining, which we hypothesize
to be similar to IN-1k in developing transferrable models.

3.2. Implementation Details

For WSI preprocessing, we use the following standardized
protocol for comparisons across MIL models: 256 × 256
non-overlapping tissue patching at 20× magnification (0.5
µm/pixel) followed by pre-extracting features using UNI, a
DINOv2-pretrained ViT-L/16 encoder (Oquab et al., 2024;
Chen et al., 2024a). Unless specified otherwise, all MIL
models are implemented using the author’s original model
definition, trained with UNI features, and with standardized
hyperparameters: AdamW optimzier with a learning rate
of 1 × 10−4, cosine decay scheduler, and a maximum of
20 epochs with early stopping patience of 5 epochs on the
validation set. Further details are provided in Section B.1.
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4. Results
4.1. Which pretrain tasks are best for MIL transfer?

We first characterize the pretraining task quality by assess-
ing how well a model fully-trained on a task can generalize
to new tasks with frozen weights. Though not intuitive from
a clinical perspective how a model trained on brain tissue
would lead to better performance on lung tissue, we hypoth-
esize that tasks with diverse diagnostic entities may confer
unique advantages by allowing the model to learn from a
more diverse set of slide representations across pretraining
and training. Additionally, many histological entities are
consistently of low diagnostic relevance, such as smooth
muscle, red blood cells, and tissue processing artifacts, just
as the recognition of nuclei and immune cells remain perti-
nent across an array of tasks in CPath. These commonalities
across tasks suggest that MIL models may learn highly
transferable aggregation methods. We evaluate the quality

Figure 2. Transfer performance across pretrain tasks. The con-
tingency table shows the average KNN performance of three MIL
models (ABMIL, TransMIL, Transformer) transferring from the
21 pretrain tasks (columns, bottom axis) to the 19 target tasks
(rows, left axis). The rightmost column (colored gray) shows the
baseline of random weights. We use AUROC for binary classifica-
tion, Cohen’s weighted kappa for prostate grading, and balanced
accuracy for multiclass classification tasks. The heatmap indicates
the relative performance compared to baseline, with red indicating
improvement and blue indicating performance decrease for each
task.

of ”off-the-shelf” slide representations from pretrained MIL
models. To do so, we use a KNN classifier (k=20) to mea-
sure transfer performance from 21 pretraining tasks to 19
target tasks, averaging results across three MIL architectures

(ABMIL, TransMIL, Transformer). As shown in the contin-
gency matrix in Figure 2, representations from pretrained
models consistently outperform a random-weight baseline
(improvement indicated by red in the matrix). We observe
that pretraining on both in-domain and out-of-domain data
yields strong results; for example, models pretrained on
lung cancer (NSCLC) transferred to breast biopsy tasks
(BCNB) as effectively as models pretrained on breast cancer
(BRCA, BRACS). Notably, pancancer pretraining delivered
the most substantial performance gains. Pretraining on PC-
108 and PC-43 improves performance over the baseline an
average of +9.8% and 8.6%, respectively. These findings
suggest that pancancer pretraining is an effective strategy
for obtaining highly transferable slide-level representations.

4.2. How does MIL architecture relate to transfer
performance?

Using PC-108 as the representative pretraining task, we next
perform a more comprehensive assessment of how well MIL
architectures transfer. New MIL architectures are constantly
emerging, each proposing new ways to model inductive
biases such as cell-cell and cell-tissue relationships in the
tissue microenvironment, yet it remains unclear whether
these architectural innovations translate to improved gen-
eralizability or transferability. To gain further insights into
this question, we compare the performance of 11 MIL archi-
tectures pretrained on PC-108 against their counterparts ini-
tialized with random weights. Aside from the initialization
weights, all other training settings are fixed (Section B.2).

Figure 1 and Table 1 illustrate the average performance
across all 19 tasks and performance grouped by distinct
datasets, respectively. We observe that all MIL approaches
benefit from pretraining, with an average improvement of
3.3% when using a pretrained PC-108 model compared to
training from scratch. ABMIL is among the top-performing
models across both initialization strategies, with a 3.8%
average increase in performance. This aligns with recent
findings that, given strong patch foundation models, simpler
MIL approaches tend to outperform more complex alterna-
tives (Chen et al., 2024a;b; Song et al., 2024). Additionally,
DSMIL, a closely related method to ABMIL which adds
patch-level predictions to ABMIL’s global pooling method,
attains the highest performance with random initialization.
This further substantiates the efficacy of simpler weighted
pooling approaches under random initialization.

While pancancer pretraining improves the performance
of all models, the extent of improvement is architecture-
dependent. For instance, we find that Transformer-based
models, (TransMIL and Transformer), exhibit substantial
improvements from pretraining, showing average improve-
ments of 5.82%, and 5.83% respectively across all tasks.
We hypothesize that because these architectures are highly
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Table 1. Finetuning performance across different MIL and datasets. Performance with random initialization (Base) and PC-108
pretraining for each MIL framework, averaged within each task group. Reported metrics are balanced accuracy for multi-class tasks
(C > 2) and weighted κ for PANDA; AUROC otherwise. ∆ denotes the performance difference between PC-108 and Base. Parentheses
indicate the average standard deviation across the grouped tasks, with standard deviation determined by 1,000 bootstrap trials.
Task Init. ABMIL CLAM DFTD DSMIL ILRA RRT TransMIL Transformer WIKG maxMIL meanMIL Average
BRACS
(2 tasks)

Base 53.6(4.5) 43.6(5.2) 50.0(4.7) 53.5(4.5) 55.7(3.9) 53.7(3.8) 50.2(3.8) 36.8(3.3) 50.3(4.7) 49.4(3.8) 49.4(4.5) 49.7
PC-108 57.8(4.9) 44.6(4.8) 57.9(4.7) 57.0(4.5) 51.8(3.9) 52.4(4.2) 50.7(5.0) 53.2(5.3) 62.1(4.5) 48.9(4.1) 41.4(4.8) 52.5
∆ +4.2 +1.0 +7.9 +3.5 −3.9 −1.3 +0.5 +16.4 +11.8 -0.5 −8.0 +2.8

BCNB
(3 tasks)

Base 80.9(4.5) 80.5(4.8) 78.6(5.1) 79.6(4.5) 79.0(4.4) 78.3(4.6) 76.9(4.6) 75.8(4.9) 83.4(4.1) 83.0(4.2) 79.8(4.0) 79.6
PC-108 84.5(4.3) 82.4(4.6) 86.1(5.0) 83.0(4.5) 81.4(4.2) 79.1(4.7) 84.1(5.3) 79.1(4.9) 82.4(4.3) 83.1(4.1) 83.4(4.7) 82.6
∆ +3.6 +1.9 +7.5 +3.4 +2.4 +0.8 +7.2 +3.4 −1.0 +0.1 +3.6 +3.0

BRCA
(4 tasks)

Base 69.2(4.1) 67.8(4.2) 69.4(4.1) 68.9(4.1) 68.7(3.5) 66.7(4.0) 64.7(3.9) 64.2(4.2) 66.0(4.4) 66.7(4.5) 71.2(4.0) 67.6
PC-108 73.3(3.6) 65.1(4.1) 75.5(4.2) 69.4(3.5) 72.2(3.6) 70.4(4.0) 72.1(3.8) 71.4(3.8) 69.1(4.5) 70.9(3.8) 70.7(4.2) 70.9
∆ +4.1 −2.7 +6.1 +0.5 +3.5 +3.7 +7.4 +7.2 +3.1 +4.2 -0.5 +3.3

EBRAINS
(2 tasks)

Base 76.6(2.2) 78.8(2.1) 76.6(1.9) 75.2(1.9) 78.2(2.0) 77.6(1.9) 72.2(2.2) 76.2(2.0) 75.1(2.0) 73.4(2.2) 78.8(2.5) 76.2
PC-108 78.4(2.1) 80.1(2.1) 80.3(1.9) 77.2(1.9) 76.8(2.0) 78.4(2.0) 79.6(2.1) 79.2(2.0) 78.2(2.0) 79.6(2.1) 80.1(2.0) 78.9
∆ +1.8 +1.3 +3.7 +2.0 −1.4 +0.8 +7.4 +3.0 +3.1 +6.2 +1.3 +2.6

GBMLGG
(2 tasks)

Base 68.9(2.5) 66.6(2.8) 67.8(2.6) 72.2(2.3) 73.6(2.4) 71.0(2.6) 69.7(2.9) 68.9(2.4) 67.0(2.4) 72.2(2.5) 70.5(2.3) 69.9
PC-108 73.6(2.1) 71.7(2.2) 74.4(2.1) 75.4(2.1) 70.2(2.1) 74.1(2.2) 71.9(2.3) 70.2(2.3) 67.9(2.1) 73.0(2.1) 70.4(2.2) 72.1
∆ +4.7 +4.1 +6.7 +3.2 −3.4 +3.1 +2.2 +1.3 +0.9 +0.8 −0.1 +2.2

NSCLC Morph
(1 task)

Base 95.3(0.6) 91.1(0.8) 92.1(0.7) 94.0(0.9) 90.4(0.7) 93.9(0.7) 91.3(0.8) 93.3(0.8) 91.3(0.8) 95.9(0.5) 91.1(0.7) 92.7
PC-108 96.1(0.6) 92.0(0.8) 96.6(0.7) 95.3(0.9) 94.8(0.7) 94.7(0.7) 95.4(0.7) 94.4(0.7) 94.7(0.7) 95.4(0.6) 92.3(0.7) 94.7
∆ +0.8 +0.9 +4.5 +1.3 +4.4 +0.8 +4.1 +1.1 +3.4 −0.5 +1.2 +2.0

NSCLC Molec
(4 tasks)

Base 67.4(5.2) 67.5(6.4) 64.0(6.9) 68.3(7.3) 62.8(6.5) 67.2(7.2) 66.1(6.6) 66.1(6.8) 62.4(6.6) 69.1(7.3) 67.4(6.3) 66.2
PC-108 72.8(5.2) 68.5(6.3) 74.3(7.2) 68.8(6.3) 71.0(6.1) 73.3(6.4) 75.0(6.1) 73.2(4.9) 75.0(6.1) 62.4(6.6) 74.1(6.3) 71.7
∆ +5.4 +1.0 +10.3 +0.5 +8.2 +6.1 +8.9 +7.1 +12.6 −6.7 +6.7 +5.5

PANDA
(1 task)

Base 91.6(0.7) 91.2(1.0) 87.9(0.7) 91.2(0.7) 91.5(0.9) 91.1(0.9) 90.5(0.9) 90.4(1.0) 92.1(0.8) 89.7(0.9) 91.2(1.0) 90.8
PC-108 93.3(0.5) 91.8(1.0) 93.2(0.7) 93.5(0.7) 91.5(0.9) 91.5(0.9) 89.9(0.8) 90.7(0.8) 93.0(0.8) 88.9(0.9) 90.9(1.0) 91.8
∆ +1.7 +0.6 +5.3 +2.3 0.0 +0.4 −0.6 +0.3 +0.9 −0.8 −0.3 +1.0

parameterized, they are also more liable to overfit the train-
ing set, and may consequently benefit more from effective
initializations. We directly investigate this relationship be-
tween model size and transfer performance in Section 4.4.

Meanwhile, the non-parametric aggregation models (mean-
MIL and maxMIL) exhibit comparatively small changes in
performance, suggesting that the transfer of knowledge be-
tween aggregation components is the key ingredient of MIL
transfer. We also found that DSMIL and CLAM, closely
related due to reliance on auxiliary loss for classifying key
instances, exhibit lower improvements from transfer com-
pared to other methods. We hypothesize that since the
instance-level auxiliary loss guides the training dynamics of
CLAM and DSMIL on top of the original slide-level loss,
the initial weights are less pertinent to the model conver-
gence, thereby reducing the benefit of MIL transfer.

Furthermore, we observe that the best performance from ran-
dom initialization (72.3 with DSMIL) is lower than 9 of the
11 pretrained models, suggesting that the use of an effective
initialization plays a more important role in performance
than the quality of the MIL method. While many techniques
have been proposed for developing new MIL architectures,
we find that most techniques do not demonstrate any signifi-
cant margin of improvement over ABMIL. Altogether, these
results indicate that, rather than further architectural innova-
tions, high-quality pretraining of simple but effective MIL
models leads to the most performant models. To confirm the
robustness of these results, we repeated experiments across
five random seeds for ABMIL, DFTD, TransMIL, and RRT
(Table A4). In all cases, the performance gains from pre-
training remained consistent, reinforcing the reliability of
these gains from pancancer pretraining.

4.3. Pretrained models are few-shot learners

An important consideration for MIL methods is learning
with only a limited number of samples, a common scenario
when dealing with rare diseases (Huang et al., 2023; Lu
et al., 2024; Chen et al., 2024a). We investigate the data ef-
ficiency of transferred MIL models by probing performance
in few-shot scenarios. Specifically, we randomly sample
K ∈ {4, 16, 32} samples from each class of C diagnostic
classes to construct a dataset of K · C samples, and train
five different MIL methods (ABMIL, Transformer, Trans-
MIL, DFTD, CLAM) on the molecular subtyping tasks of
NSCLC-TP53/STK11/EGFR, BCNB ER/PR/HER2, and
GBMLGG-C. The experiments are repeated five times to
mitigate sampling bias. To delineate the effects of pretrain-
ing datasets, we ablate over random initialization, PC-43,
and PC-108 pretraining datasets.

Across all five methods in Figure 3, we observe a clear
trend of pancancer pretraining outperforming random ini-
tialization across all shots. The difference gap is especially
pronounced for a lower number of shots for all MIL models,
with DFTD boasting a 171% increase for K = 4 over ran-
dom initialization. This underscores the data-efficiency and
potential for MIL transfer to assist in data-sparse regimes.
Between PC-108 and PC-43, we observe that PC-108 ob-
tains higher performance at every configuration, suggesting
that the models trained with a more challenging fine-grained
classification task exhibit better data efficiency.

4.4. Do larger MIL architectures transfer better?

As a subsequent step to understanding transfer trends across
different MIL models, we investigate the transfer trends
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Figure 3. Few-shot performance. Few-shot performance with
different initialization strategies for K = {4, 16, 32} samples
over five MIL methods on molecular subtyping tasks. Performance
is averaged over test splits of 5-fold cross-validation.

within a MIL model, by analyzing the relationship between
transfer performance and model scale. With ABMIL demon-
strating the best MIL transfer performance, we down- or
up-scale the model size of ABMIL (≈ 9× 105 parameters),
by adjusting the depth and width of the pre-attention MLP,
with changes described in Table A2.

We observe that PC-108 pretraining consistently and sub-
stantially outperforms random initialization at all model
scales (Figure 4). Furthermore, while random initializa-
tion led to variable performance across different model
scales, the pretrained model performance remains compar-
atively stable across different model scales, with a mono-
tonic increase from 0.1 million to 5 million parameters,
and subsequently decreasing in performance at 9 million
parameters.This consistency in performance, even with a
model 5-fold larger than vanilla ABMIL (5M parameters
vs. 1M parameters), suggests that pancancer pretrained
models are less likely to overfit. Furthermore, the mono-
tonic increase in performance for PC-108 indicates that
an effectively-initialized model may even exhibit favorable
scaling properties, highlighting the potential and importance
for large-scale slide-level foundation models. We also exam-
ine different Transformer sizes in Table A3, finding similar
trends in transferability and model size.

4.5. Can supervised MIL transfer close the gap with
slide foundation models?

We conduct a head-to-head comparison of our PC-108 pre-
trained models’ transferability against two state-of-the-art
slide-level foundation models: CHIEF (Wang et al., 2024)
and GigaPath (Xu et al., 2024a). CHIEF, an ABMIL-based
model, was pretrained on 60,530 slides using supervised
contrastive learning (Khosla et al., 2021) and CLIP (Rad-
ford et al., 2021) to detect cancer across 19 organ types.

Figure 4. Transfer at different model scales. Average perfor-
mance of different ABMIL scales across 19 evaluation tasks with
initialization from random weights and PC-108 pretraining.

GigaPath, a LongNet-based model (Ding et al., 2023), was
pretrained on 171,189 WSIs via a self-supervised masked
autoencoder approach, with a ViT patch encoder pretrained
on over 1.3 million patches using DINOv2.

For a fair comparison, we benchmark GigaPath against
an ABMIL model pretrained with PC-108 using GigaP-
ath’s ViT patch features. Similarly, CHIEF is benchmarked
against an ABMIL model pretrained with PC-108 using
CTransPath features. Transfer quality is assessed by com-
paring both KNN and finetuning performance.

Our results reported in Table 2 indicate that, while all
pretrained models outperform training from scratch, PC-
108-based slide representations yielded superior KNN per-
formance in 12/15 tasks against CHIEF (average increase:
+5.9%) and 13/15 tasks against GigaPath (average increase:
+9.7%). This improvement is significant because PC-108’s
pretraining set had no sample overlap with these down-
stream tasks, whereas CHIEF was pretrained on TCGA and
PANDA, which cover 11 of the 15 tasks. This underscores
the high generalizability of PC-108’s frozen slide-level fea-
tures from pancancer pretraining.

These advantages extended to finetuning. PC-108 pretrained
representations led to better finetuning performance than
CHIEF in 11/15 tasks (+2.2% average improvement) and
GigaPath in 10/15 tasks (+0.8% average improvement). Cru-
cially, PC-108 achieved this using a pretraining dataset that
was merely 6.5% and 2.3% the size of CHIEF’s and GigaP-
ath’s, respectively. As both CHIEF and our PC-108 model
employ the same ABMIL architecture, we conclude that
PC-108’s superior transferability stems from its pretraining
methodology rather than architectural differences.

Although CHIEF and our work both employ supervised pre-
training, we hypothesize that this difference in performance
may likely be a result of the complexity of the pretraining
dataset. Specifically, CHIEF was pretrained on a binary task
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Table 2. Comparison of MIL transfer with slide foundation models. KNN and finetuning performance for MIL transfer with slide
foundation models (GigaPath, CHIEF) compared against an ABMIL model initialized with pancancer pretraining (PC-108) and random
weights (Base). Evaluations are grouped by patch encoder (GigaPath ViT, CTransPath). Best results are bold, second best are underlined.

KNN Finetuning
GigaPath ViT CTransPath GigaPath ViT CTransPath

Task PC-108 GigaPath Base PC-108 CHIEF Base PC-108 GigaPath Base PC-108 CHIEF Base

BRACS-C 70.3(4.6) 47.8(3.3) 44.7(3.8) 66.5(3.5) 66.5(3.3) 49.9(3.9) 75.0(4.9) 65.6(4.1) 69.4(4.8) 71.8(5.1) 74.6(4.4) 60.6(5.2)
BRACS-F 35.3(4.1) 24.5(4.5) 18.2(4.8) 46.3(4.2) 37.5(4.8) 16.4(5.1) 48.3(4.4) 43.5(4.5) 44.1(4.5) 48.8(5.1) 42.1(5.1) 43.1(4.0)
BRCA-ER 88.4(2.8) 71.9(4.1) 70.2(4.7) 84.2(3.8) 77.4(3.5) 69.1(3.9) 84.8(4.4) 81.7(4.4) 86.9(4.5) 86.2(3.7) 84.0(4.0) 85.3(3.6)
BRCA-HER2 62.7(5.0) 65.9(4.1) 59.6(4.6) 60.3(4.8) 54.0(4.1) 63.3(4.0) 68.9(5.1) 67.0(5.4) 63.5(6.0) 65.3(5.7) 63.1(5.1) 69.6(4.9)
BRCA-PIK3CA 60.8(3.3) 60.2(3.5) 54.7(3.8) 61.0(3.5) 60.6(3.7) 52.9(3.7) 66.9(4.2) 64.7(3.9) 60.9(3.6) 67.1(4.3) 62.9(3.9) 55.7(4.1)
BRCA-PR 83.0(3.8) 67.4(3.0) 68.2(3.4) 70.4(3.9) 74.2(3.6) 67.5(4.1) 75.3(3.6) 78.6(3.6) 80.0(3.4) 78.1(3.4) 75.5(3.7) 75.5(4.0)
NSCLC-EGFR 72.6(7.2) 37.0(7.0) 58.8(7.4) 71.1(7.5) 59.7(7.3) 50.1(8.1) 73.6(7.6) 58.1(8.1) 62.3(6.7) 58.8(9.9) 65.1(8.8) 53.9(9.1)
NSCLC-KRAS 60.8(4.2) 63.2(6.2) 57.3(4.7) 60.6(6.5) 51.4(5.9) 50.2(6.3) 69.8(5.7) 71.8(5.4) 58.0(5.2) 69.1(6.2) 57.5(6.3) 67.1(5.7)
NSCLC-STK11 84.5(5.1) 77.4(6.7) 63.2(5.7) 64.5(5.9) 62.3(5.9) 50.1(6.2) 88.6(4.5) 78.3(4.4) 83.5(3.9) 77.5(7.0) 71.1(6.3) 76.2(7.5)
NSCLC-TP53 80.3(5.1) 69.7(4.1) 68.3(4.4) 74.9(4.9) 72.0(4.4) 60.0(4.4) 80.9(4.3) 78.4(4.7) 77.3(4.0) 81.8(4.3) 79.8(4.6) 75.2(4.8)
EBRAINS-C 78.5(2.3) 72.9(2.0) 74.6(2.3) 67.2(2.1) 51.8(2.2) 58.1(2.5) 85.5(2.2) 86.4(2.2) 85.9(2.2) 78.2(2.6) 81.9(2.3) 79.5(2.2)
EBRAINS-F 60.6(2.2) 56.5(1.9) 54.2(1.7) 51.9(1.8) 38.6(1.6) 37.1(2.3) 70.2(2.0) 72.1(1.9) 69.5(1.8) 59.2(2.3) 60.0(2.6) 58.3(2.2)
GBMLGG-C 93.9(0.6) 84.4(1.4) 79.7(1.2) 89.4(0.9) 77.0(0.8) 82.3(1.1) 93.4(2.1) 94.7(1.3) 92.0(1.6) 92.6(1.7) 91.2(1.8) 91.3(1.8)
GBMLGG-F 55.3(1.8) 45.3(2.2) 29.1(2.5) 49.2(2.3) 38.9(2.1) 38.2(2.6) 56.8(2.8) 53.0(3.4) 48.0(3.2) 56.5(3.3) 54.4(3.3) 56.4(3.5)
PANDA 67.5(0.9) 67.4(1.0) 53.0(0.9) 75.0(1.1) 83.2(0.8) 71.8(1.1) 93.1(1.1) 94.5(0.7) 91.5(0.9) 90.8(1.0) 84.2(1.4) 90.5(1.0)

Average 70.3 60.8 56.9 66.2 60.3 54.5 73.4 72.6 71.5 72.0 69.8 69.2

of distinguishing cancer from non-cancer, utilizing both
supervised contrastive learning for visual pretraining and
CLIP for image-text alignment. We believe the strength of
our approach lies in the diversity of our pretraining dataset
and the challenging nature of differentiating a large number
of classes simultaneously: PC-108 is a pancancer, hierarchi-
cal classification scheme, requiring the model to implicitly
characterize each WSI in terms of its organ, cancer type, and
cancer subtype(s). This diverse and challenging pretraining
task likely promotes the learning of comparatively more
detailed, generalizable slide-level representations. Overall,
our results highlight the feasibility of supervised pancancer
pretrained models to surpass the ability of self-supervised
slide-level foundation models while requiring less than 10%
of the pretraining data.

4.6. How do patch encoders impact transfer
performance?

To investigate whether the observed benefits of pancancer
pretraining are inherent to MIL architecture versus choice of
pretrained patch encoder, we also investigate transfer perfor-
mance across various feature encoders of varying strengths.
Specifically, we conduct experiments with a general-purpose
image encoder for natural images, ResNet-50 (He et al.,
2015) pretrained on IN-1k, CTransPath (Wang et al., 2022),
GigaPath ViT (Xu et al., 2024b), UNIv2-h (Chen et al.,
2024a) and CONCHv1.5 (Lu et al., 2024). For each encoder,
we evaluate the finetuning transfer of randomly initialized
ABMIL models to their counterparts initialized from PC-
108-trained models.

The results of these experiments are displayed in Tables 2
and 3. We observe that across all encoders, PC-108 pre-
training leads to an average improvement in performance.

The benefit of PC-108 pretraining is particularly evident
for ABMIL, which improves over random initialization on
13/15 tasks with CTransPath, 12/15 tasks with ResNet50,
12/15 tasks with GigaPath, 10/15 tasks with UNIv2, and
11/15 tasks with CONCHv15. We repeat this experiment
over CTransPath and ResNet50 with TransMIL (Table A5),
finding that TransMIL leads to improved performance in
8/15 tasks with CTransPath and 10/15 tasks with ResNet.

Table 3. Combined ABMIL pretraining performance with dif-
ferent encoders. Performance across different tasks for ABMIL
using ResNet-50, UNIv2, and CONCHv1.5 as patch feature en-
coders with PC-108 pretraining and random initialization (Base).
Best performance between Base and PC-108 for each encoder is
bold.

ResNet-50 UNIv2 CONCHv1.5

Task Base PC-108 Base PC-108 Base PC-108

BRACS-C 54.0 (4.9) 54.1(5.0) 71.6(4.4) 74.6(4.8) 78.4(4.6) 78.0(4.8)
BRACS-F 19.4(3.6) 27.3(3.7) 45.6(4.9) 50.0(4.9) 49.4(3.5) 53.2(4.6)
BRCA-ER 77.5(4.0) 72.3(5.1) 85.3(3.6) 84.5(4.0) 87.3(3.9) 88.7(4.0)
BRCA-HER2 58.0(6.3) 65.5(6.6) 71.1(5.3) 67.1(5.9) 64.5(5.5) 56.8(5.5)
BRCA-PIK3CA 59.0(4.5) 60.7(4.0) 62.7(4.8) 57.1(3.7) 66.1(4.1) 69.1(3.6)
BRCA-PR 65.6(4.4) 62.2(4.8) 76.4(3.6) 77.7(4.2) 73.0(3.9) 77.5(3.9)
EBRAINS-C 51.3(2.7) 53.6(2.8) 89.3(2.1) 90.5(1.7) 90.1(1.9) 88.0(2.2)
EBRAINS-F 28.2(1.9) 34.7(2.0) 70.6(2.1) 70.4(1.9) 70.1(1.9) 71.1(2.0)
GBMLGG-C 78.5(2.2) 84.8(2.3) 91.0(2.1) 92.7(1.7) 91.5(1.7) 92.8(1.6)
GBMLGG-F 37.7(3.7) 42.6(3.8) 56.2(3.2) 59.2(3.2) 59.7(3.0) 60.6(2.4)
NSCLC-EGFR 56.1(9.7) 52.0(9.8) 70.9(10.1) 72.4(8.9) 56.4(8.8) 71.4(7.0)
NSCLC-KRAS 56.8(5.7) 63.5(5.8) 58.9(6.2) 58.3(6.7) 59.5(5.7) 60.7(6.6)
NSCLC-STK11 50.7(8.0) 64.1(8.1) 70.4(8.3) 87.9(4.2) 70.0(7.0) 76.1(7.6)
NSCLC-TP53 69.9(4.9) 76.3(5.0) 81.0(4.9) 83.1(4.5) 76.2(4.9) 83.1(4.8)
PANDA 79.6(1.6) 80.1(1.7) 93.3(0.7) 93.8(0.7) 91.8(0.8) 91.4(0.9)

Average 56.2(4.5) 59.6(4.7) 72.9(4.4) 74.6(4.1) 72.3(4.1) 74.6(4.1)

4.7. Can public, single-organ datasets serve as a
pretraining task?

Section 4.1 establishes that pancancer pretraining produces
transferable frozen slide-level representations, although
single-organ pretraining also consistently outperforms ran-
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dom weight initialization. Here, we investigate if these
findings extend to finetuning. To compare the benefits of
pancancer and single-organ pretraining, we evaluate the
transferability of four models (ABMIL, DFTD, TransMIL,
and Transformer). We train each model on a specific task
from our 19 public datasets and then use its weights to
initialize the model for evaluation on all other tasks.

The results, summarized in Figure A1, align with our previ-
ous findings on frozen feature evaluation. We observe that
any form of pretraining improves average downstream task
performance over random initialization, even when transfer-
ring between different organ types. Furthermore, PC-108
consistently achieves the highest finetuning performance,
surpassing all single-organ pretraining approaches. These
findings highlight pancancer pretraining as the preferable
strategy for developing generalizable models with super-
vised pretraining, while validating single-organ pretraining
as a feasible and accessible alternative.

4.8. Why does pancancer pretraining transfer so well?

Encouraged by the performance of pancancer pretrained
models, we next seek to understand why initialization from
pancancer tasks would lead to higher performance with fine-
tuning. We hypothesize that, because large pancancer tasks
require models to learn slide-level representations which
can distinguish between a huge variety of organs and mor-
phological appearances, these slide-level representations
would likely help differentiate between classes of unseen
tasks without any finetuning. In Figure 5, we indeed ob-
serve clearer class separation among 12 histologic subtypes
(EBRAINS-C) for slide features from ABMIL trained on
PC-108, when compared to randomly initialized version.

Figure 5. t-SNE of slide-level features. Visualization of the slide-
level features from randomly initialized ABMIL compared to AB-
MIL pretrained on PC-108 for 12-class brain subtyping for rare
brain disease classification.

4.9. What features are being transferred?

Supervised MIL transfer learning offers substantial perfor-
mance gains, but it remains unclear which layer’s features
are most important for transfer. While early layers often
prove most transferable in standard CNNs (Raghu et al.,
2019), this principle may not extend to MIL models. These
models, designed for gigapixel inputs, use a distinct two-
stage process, consisting of a patch-level MLP followed
by attention-based aggregation, raising the questions: How
much do pretrained layers change during finetuning, and
how does their transfer impact performance? We exam-
ine quantitative and qualitative measures to answer these
questions in this section.

4.9.1. FEATURE STABILITY

We first study feature stability of pretrained layers, hypoth-
esizing that layers possessing the most transferable knowl-
edge would change less during fine-tuning. We measure
feature stability with Singular Vector Canonical Correlation
Analysis (SVCCA) (Raghu et al., 2017), which provides
a means of assessing the linear similarity between the ac-
tivation spaces of each neural network layer before and
after finetuning. We measure layer stability with using the
average canonical correlation on a scale from 0-100.

We compare the pre- and post-fine-tuning activations for
every layer in our Standard (S, 9×105 params) and Large (L,
5.25× 106 params) ABMIL models, using 45,232 patches
from 30 NSCLC-KRAS slides. ABMIL-S uses a single
linear layer (Lin. 1) for patch-specific processing, while
ABMIL-L uses a three-layer MLP (Lin. 1, 2, 3) and wider
aggregation layer, allowing us to investigate whether the
same trends hold across different model scales.

The results, presented in Table 4, demonstrate that pre-
trained layers exhibit significantly less change during train-
ing compared to their randomly-initialized counterparts.
Notably, the deep attention layer shows a remarkably low
correlation (2.5 ± 0.0 and 16.3 ± 0.0 for ABMIL-L and
-S, respectively) with its initial state when training from
random initialization. In contrast, when using pretrained
weights, these models retain high similarity (82.7± 0.0 and
97.7± 0.0). Given that the attention layer plays the critical
role of converting each patch embedding into a scalar weight
for slide-level aggregation, this finding strongly suggests
that the benefits of MIL transfer learning are closely tied to
the transfer of learned aggregation strategies.

4.9.2. LAYER-LEVEL PRETRAINING IMPORTANCE

We next investigate the contribution of different components
within the pretrained MIL model towards overall perfor-
mance. To do so, we assess finetuning performance while
progressively resetting layers of the aggregation module to
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Table 4. SVCCA Similarity. Mean and standard deviation of
canonical correlation between layers before and after fine-tuning,
on the scale of 0 to 100 for Large (L) and Standard (S) ABMIL.

Layer Base-L PC108-L Base-S PC108-S

Lin. 1 92.8 ± 18.3 95.5 ± 14.7 93.9 ± 16.0 97.2 ± 12.0
Lin. 2 81.2 ± 22.6 89.2 ± 17.9 — —
Lin. 3 47.2 ± 25.0 66.5 ± 26.3 — —
Attention 2.5 ± 0.0 82.7 ± 0.0 16.3 ± 0.0 97.7 ± 0.0

Average 61.6 83.1 75.7 96.2

random weights, starting from the final layer and moving
to earlier layers. We compare these results against the base-
line where all weights are transferred for PC108-pretrained
ABMIL-L (PC108-L).

The experiments are setup as follows - Reset Attn: Re-
initialize only the attention layer weights. Reset Lin3+:
Re-initialize the third linear layer and attention layer. Reset
Lin2+: Re-initialize the second and third linear layers, and
the attention layer. Reset All: Re-initialize all weights in the
aggregation module, same as randomly initialized weights.

Table 5. Impact of re-initializing aggregation module layers.
Values represent the change in performance relative to the PC108-
L baseline (full weight transfer).

Task PC108-L Reset Attn Reset Lin3+ Reset Lin2+ Reset All

BRACS-C 71.9 -8.5 -8.5 -12.8 -11.0
BRACS-F 53.3 -12.1 -10.5 -10.4 -10.1
GBMLGG-C 95.4 -1.2 -1.0 0.0 -0.2
GBMLGG-F 51.7 0.0 -0.8 -1.8 0.8
NSCLC-EGFR 76.1 -8.6 -10.2 -13.1 -12.8
NSCLC-KRAS 68.4 -2.0 -4.5 -5.8 -8.7
NSCLC-STK11 86.7 0.0 -0.6 -8.3 -15.0
NSCLC-TP53 81.5 -7.3 -5.9 -0.5 -10.0

Average 73.1 -5.0 -5.2 -6.6 -8.3

Performance is reported as the change relative to the full
weight transfer (PC108) baseline. The results, presented in
Table 5, reveal that re-initializing the attention layer (Re-
set Attn) causes the largest single performance drop (-5.0%
average decrease). Re-initializing the preceding MLP lay-
ers (Reset Lin3+ and Reset Lin2+) leads to further, albeit
smaller, decreases, culminating in an 8.3-point drop when
all weights are reset. This underscores the critical role of all
MIL layers, particularly the attention component, for suc-
cessful transfer learning. These findings diverge from prior
work (Raghu et al., 2017), which observed minimal impact
from transferring later CNN layers, thereby highlighting the
unique characteristics and requirements of MIL transfer.

4.9.3. VISUALIZING TRANSFERABILITY

We examine whether the transferability observed in Sec-
tions 4.9.1 and 4.9.2 is also reflected in ABMIL atten-
tion heatmaps, which indicate the learned importance of
each patch according to the aggregation layer. We show

a representative attention heatmap of TP53 positive lung
cancer (TCGA) in Figure 6 across three different scenarios:
Randomly-initialized weights, PC-108 pretrained weights,
and finetuned on NSCLC TP53 mutation prediction from
PC-108 pretrained weights.

Figure 6. Heatmaps for visualizing attention transfer. Visu-
alization of the three different ABMIL attention heatmaps for
lung squamous cell carcinoma: ABMIL with randomly-initialized
weights, PC-108 pretrained weights, and finetuned with NSCLC
TP53 mutation prediction from PC-108 pretrained weights.

We observe that ABMIL with random weights exhibit dif-
fuse attention, without focusing on regions of clinical impor-
tance. Meanwhile, the pancancer pretrained model focuses
on tumor regions prior to finetuning, with high-attention
regions remaining relatively stable after finetuning. We hy-
pothesize that by allowing the model to place high attention
from the start on regions that are diagnostically-relevant
across cancer types, pretrained MIL models may be less
prone to spurious correlations and learn more nuanced dis-
tinctions between classes over the course of training.

5. Conclusion
We investigated transfer learning capabilities of MIL mod-
els in CPath, with models pretrained on pancancer tasks
exhibiting remarkable generalization across organs and
tasks, and models pretrained on single-organ tasks trans-
ferring effectively to out-of-domain tasks. Limitations of
our study include the absence of state-space MIL models,
survival prediction tasks, and augmented pretraining that
could further improve generalizability. Nonetheless, by
providing insights into MIL transfer, this work offers a
roadmap for leveraging supervised pretrained MIL mod-
els to enhance performance in various clinical tasks. All
model weights and initialization schemes can be accessed
at https://github.com/mahmoodlab/MIL-Lab.
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Impact Statement
The research presented in this paper aims to advance the
application of Machine Learning in computational pathol-
ogy by introducing a more resource-efficient paradigm for
pretraining multiple instance learning models. Our work
demonstrates that leveraging an institution’s own diverse,
pancancercer data can lead to significant improvements in
data efficiency, requiring less data than traditional large-
scale approaches. This, in turn, contributes to notable com-
pute and storage efficiency for both model development and
subsequent fine-tuning. The primary societal benefit of this
approach is the potential to make advanced AI tools for
pathology more accessible, particularly for research groups
and healthcare institutions that may lack the extensive re-
sources typically required for pretraining with techniques
like large-scale self-supervised learning (SSL). To this end,
we share all model weights and initialization methods in the
aforementioned GitHub for public use. We envision this
fostering wider innovation, accelerating the development of
diagnostic aids, and potentially improving the consistency
and reach of pathological services by making powerful AI
tools easier to develop and adapt.

While this work offers a path toward more accessible and
efficient AI development, it is crucial to address potential
ethical considerations and societal consequences:

Algorithmic Bias and Equity: Models pretrained on data
from a specific institution, even if pancancercer, may inad-
vertently inherit biases present in that data (e.g., related to
patient demographics, disease prevalence, specific equip-
ment, or institutional recording practices). In the case of PC-
108, all cases were acquired from Brigham and Women’s
Hospital, which may lead to bias and performance dispari-
ties when applied to underrepresented groups or different
clinical contexts, potentially exacerbating existing health
inequities. In the future, more rigorous bias audits, diverse
dataset validation, and ongoing monitoring are therefore
critical next steps to ensure the equitable translation of pre-
trained models.

Resource Allocation and Access: While our approach low-
ers the barrier for model development, ensuring equitable
access to the benefits of these AI tools across diverse health-
care settings, including those in low-resource environments,
will require concerted effort beyond the technical aspects of
model creation.

Overall, our work contributes to a more sustainable, effi-
cient, and potentially equitable approach to developing AI
tools in computational pathology. The realization of these
benefits, however, depends critically on a continued com-
mitment to responsible research and development practices.
This includes transparency in model development and limi-
tations, proactive strategies to identify and mitigate algorith-

mic bias, and ongoing efforts to ensure that the advantages
of these technologies are accessible equitably across diverse
healthcare settings.
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A. Transfer performance across pretraining tasks

Figure A1. Finetuning performance with pretraining on public datasets. Performance of various MIL models initialized with different
pretraining tasks (columns) on each evaluation dataset (rows). Diagonals indicate performance when trained from scratch. Colormap is
row-normalized according to the difference between each pretrained model and the model trained from scratch, such that red corresponds
to an increase in performance compared to random initialization, and blue indicates a decrease in performance. Metrics reported are
AUROC for binary classification tasks, weighted Cohen’s Kappa for PANDA, and balanced accuracy for all other multiclass problems.
We find that across all models and pretraining tasks, pretraining generally leads to an improvement in performance (indicated by the large
proportion of red). Each model was finetuned for 10 epochs.
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Figure A2. KNN performance on public datasets. Performance of various MIL models initialized with different pretraining tasks
(columns) on each evaluation dataset (rows). Colormap is row-normalized according to maximum and minimum performance on each
task. Metrics reported are AUROC for binary classification tasks, weighted Cohen’s Kappa for PANDA, and balanced accuracy for all
other multiclass problems. We find that across transformer-based models, the PC-108 pretrained model consistently resulted in the best
knn transfer across pretraining tasks. Meanwhile, the best-performing pretraining model varied.
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B. Implementation details
B.1. Multiple Instance Learning implementation

All MIL models are adapted according to their official implementation, using the default hyperparameters provided by
their official codebases. For meanMIL and maxMIL, which do not have official codebases, we first apply a linear layer
paramaterized by W ∈ Rd×512, followed by ReLU activation, onto each d-dimensional patch embedding. We then obtain a
slide-level prediction by feeding the average of task-specific embeddings through a classification head. For MaxMIL, we
feed each patch through W , then pass each transformed patch embedding through a classification head, and select the patch
with the highest logit as the final slide representation.

B.2. Training details

We train all models with the AdamW optimizer with a learning rate of 1 × 10−4, a cosine decay scheduler, and mixed
precision according to Pytorch’s native implementation. For datasets with a validation set, we train with a maximum of
20 epochs with an early stopping patience of 5 epochs for a minimum of 10 epochs. For datasets without a validation
set, we train for 10 epochs. We use cross-entropy loss with random class-weighted sampling and a batch size of 1. For
regularization, we use a weight decay of 1× 10−5, a dropout of 0.25 at every feedforward layer, and a dropout of 0.1 on
the features from the pretrained encoder. Experiments were performed across four NVIDIA RTX A4000s, three NVIDIA
GeForce RTX 2080 TIs GPUs, and three RTX 3090s, with a single GPU used per experiment.

C. Dataset Description
We briefly describe the datasets that were used to evaluate MIL transfer.

C.1. Morphological Subtyping

EBRAINS (Roetzer-Pejrimovsky et al., 2022): We perform coarse-grained (12 classes) and fine-grained (30 classes)
classification of brain tumor subtypes. The dataset consisted 2,319 Hematoxylin and Eosin (H&E) Formalin-fixed and
paraffin-embedded (FFPE) Whole Slide Images (WSIs). We use label-stratified train/val/test splits (50% / 25% / 25%)
provided by UNI(Chen et al., 2024a) with the same folds for both coarse- and fine-grained tasks. We evaluate performance
using balanced accuracy.

NSCLC: The non-small cell lung carcinoma (NSCLC) subtyping task was a binary classification problem for distinguishing
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). The training data consisted of publicly available
H&E WSIs from TCGA (n = 1, 041 slides). We performed an 80% / 10% / 10% train/val/test split on the TCGA dataset
for training and internal validation, and evaluated the trained model on two external datasets: the Clinical Proteomic
Tumor Analysis Consortium (CPTAC, n = 1, 091 slides) and the National Lung Screening Trial (NLST, n = 1, 008
slides) (Campbell et al., 2016; Satpathy et al., 2021; Gillette et al., 2020). We report the AUROC averaged across the TCGA,
NLST, and CPTAC test sets for all results.

PANDA (Bulten et al., 2022): We used prostate cancer core needle biopsies (n = 10, 616) from the Prostate Cancer Grade
Assessment (PANDA) challenge to perform 6-class classification according to the prostate cancer grade. We use the same
train/val/test folds (80% / 10 % / 10%) as UNI, and evaluate using Cohen’s quadratic weighted Kappa κ metric.

BRACS (Brancati et al., 2021): The BRACS subtyping task consisted of a 3-class coarse-grained classification task to
distinguish benign, malignant, and atypical breast carcinoma H&E slides, as well as a fine-grained 7-class classification task
that classifies benign tumors into three subtypes, atypical tumors into two subtypes, and malignant tumors as two subtypes.
We use the official train/val/test folds (72% / 12% / 16%), with the same folds for both coarse- and fine-grained tasks. We
evaluate performance using balanced accuracy.

Pancancer subtyping: These tasks consisted of cases collected at Brigham and Women’s Hospital, from which we defined
a 108-class fine-grained label and a 43-class coarse-grained label set. The fine-grained task sought to identify one of 108
OncoTree codes, while PC-43 sought to identify one of 43 cancer types. The cases were divided into a ratio of 3,944 slides
for training, and 1,620 slides for validation, with the same splits for both tasks. These datasets were previously named
OT-108 and OT-43 in the UNI study (Chen et al., 2024a).
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C.2. Biomarker Prediction

Lung cancer biomarkers: We evaluate H&E-stained WSIs for the binary classification task of predicting mutation status
of TP53, KRAS, STK11, and EGFR in TCGA lung cancer cases (n = 524 slides) (Network et al., 2015), with each task
site- and label-stratified into an approximate train/val/test splits (60% / 20% / 20%), with the same splits for all tasks. We
evaluate performance using AUROC.

Breast cancer biomarkers: We predicted the binary mutation status of ER, PR, HER2, and PIK3CA on H&E-stained WSIs
from TCGA breast cancer (BRCA) cases (n = 1, 034), each site-stratified and label-stratified in an approximate train/val/test
splits (60% / 20% / 20%). Additionally, we evaluate on breast cancer core needle biopsies (BCNB, n = 1, 058) (Xu et al.,
2021) in a label-stratified train/test split (90% / 10%) for ER, PR, and HER2, with the same splits for all tasks. We evaluate
performance using AUROC.

GBMLGG mutational subtyping (Brennan et al., 2013; Roetzer-Pejrimovsky et al., 2022): These tasks include binary
coarse-grained mutation prediction of IDH1 status using the TCGA GBMLGG dataset (1,123 slides), and 5-class fine-grained
histomolecular subtyping. The 5-class histomolecular subtyping task was separated into the categories of Astrocytoma,
IDH1-mutant, Glioblastoma, IDH1-mutant, Oligodendroglioma, IDH1-mutant and 1p/19q codeleted, Astrocytoma, IDH1-
wildtype, and Glioblastoma, IDH1-wildtype. For training and evaluation of both tasks, we use the UNI splits, which
label-stratified TCGA-GBMLGG into a train/val/test split with a 47:22:31 ratio with the same splits for both coarse- and
fine-grained tasks. Additionally, we perform external validation on the held-out EBRAINS cohort (n = 873 slides) for the
cases with known IHD1 status. We evaluate GBMLGG-coarse with AUROC, and GBMLGG-fine with balanced accuracy.

Shared split experiments: For the experiments depicted in Figures A1 and A2, we perform transfer learning by pretraining
on the training set of one dataset and evaluating on the test set of a separate dataset. However, we observed that some official
dataset splits (specifically, NSCLC, BRCA, and BCNB) contain overlapping samples—meaning that certain instances
appear in the training set for one label and the test set for another label. This overlap could result in data leakage during
evaluation, thereby inflating performance estimates. To mitigate this risk, we employ multi-label stratified splits for the
NSCLC, BRCA, and BCNB datasets in these specific experiments. With this approach, we ensure that all tasks within a
dataset (e.g., NSCLC TP53 and NSCLC EGFR) share an identical set of training samples, eliminating any possibility of
overlap between training and testing data across labels. These custom multi-label splits are publicly available at the GitHub
repository. For all other experiments, we use the official or previously published dataset splits. This decision facilitates
reproducibility and enables direct comparison with prior work.
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D. Expanded Results
D.1. ABMIL Scaling Implementation

Table A1. Model Configurations for ABMIL with different parameter counts with UNI patch features. Embed dim: output dimension of
pre-attention linear layer. Attn Dim: Hidden dimension of attention2 embedding. Num FC Layers: number of pre-attention linear layers.
FC Hidden Dim: hidden dimension(s) of pre-attention linear layers.

Params In Dim N Classes Embed Dim Attn Dim Num FC Layers Hidden Dim
8,530,675 1,024 2 512 512 5 [2048, 1536, 1024, 768]
6,837,292 1,024 2 512 512 4 [2048, 1280, 768]
5,249,027 1,024 2 512 512 3 [2048, 1024]
3,084,931 1,024 2 512 384 3 [1280, 768]
1,445,507 1,024 2 512 384 3 [512, 512]
920,195 1,024 2 512 384 1 []
591,747 1,024 2 384 256 1 []
394,755 1,024 2 256 256 1 []
164,611 1,024 2 128 128 1 []

Table A2. Model Configurations for Transformer with different parameter counts with 1024-dimensional UNI patch features. N. Layers:
Number of Transformer encoder layers. Encoder Hidden Dim: Hidden dimension of encoder feedforward network. N. FC Layers: number
of pre-attention linear layers. FC Hidden Dim: hidden dimension(s) of pre-attention linear layers. ”-” indicates no feedforward network.

Params Embed Dim N. Layers Encoder Hidden Dim N. FC Layers FC Hidden Dim
9,984,514 512 3 2048 1 []
6,837,555 512 3 1024 1 []
5,258,242 512 2 1024 3 [512, 512]
3,155,970 512 2 - 3 [1280, 768]
2,631,209 512 2 - 1 []
792,316 256 2 - 1 []
264,450 128 2 - 1 []

Table A3. Performance comparison of ABMIL and Transformer models across a range of sizes, both with pretraining (PC-108) and
without pretraining (Base). Performance is averaged across eight tasks: BRCA ER/PR, NSCLC TP53/STK11, GBMLGG C/F, and
BRACS C/F. The results show that ABMIL performance plateaus in the 5-7M parameter range before decreasing at 9M. At larger sizes,
Transformers benefit substantially from pretraining, outperforming ABMIL at 7M, though both models show reduced performance at 9M.

Approx Params Base PC108
ABMIL Transformer ABMIL Transformer

0.2M 70.5 67.4 73.1 72.9
1M 70.1 68.8 72.6 72.6

2.6M - 64.4 - 70.5
3.2M 71.3 65.2 74.0 71.2
5.2M 70.7 65.1 75.7 73.8
7M 71.3 66.3 75.4 76.8
9M 70.6 67.5 74.1 72.1
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Table A4. Performance across random seeds. Average performance with 95% confidence interval according to five runs with different
random seeds. For each task, base models were randomly initialized with different weights for each random seed. PC-108 models used
the same pretrained model and were finetuned with 5 random seeds for each downstream task. Average performance and average of
standard deviation is shown in the final row and final column.

Task Initialization ABMIL DFTD RRT TransMIL

BRACS-C
Base 71.4± 2.7 64.6± 5.4 65.7± 3.7 63.9± 6.5

PC-108 68.8± 2.4 63.7± 5.4 68.6± 0.0 63.6± 2.0
∆ −2.6 −1.0 +2.8 −0.3

BRACS-F
Base 41.3± 2.3 44.6± 1.9 35.4± 2.8 34.6± 3.1

PC-108 40.9± 1.8 42.0± 4.6 36.2± 1.3 40.0± 2.2
∆ −0.4 −2.6 +0.9 +5.4

NSCLC Morph
Base 95.4± 0.3 95.4± 0.4 94.4± 0.6 95.0± 0.2

PC-108 95.2± 0.1 95.4± 0.5 94.7± 0.2 95.1± 0.5
∆ −0.2 +0.1 +0.3 +0.1

BCNB-ER
Base 89.2± 1.5 91.1± 0.2 90.6± 0.8 90.5± 0.2

PC-108 88.8± 1.1 90.1± 1.6 89.6± 1.4 88.7± 1.3
∆ −0.4 −1.0 −1.0 −1.8

BCNB-HER2
Base 74.5± 1.1 72.6± 0.8 70.7± 1.1 68.4± 0.7

PC-108 75.5± 2.5 72.7± 2.6 72.6± 1.3 66.6± 3.5
∆ +1.0 +0.1 +1.9 −1.8

BCNB-PR
Base 82.8± 0.7 83.0± 0.4 81.3± 0.9 80.6± 0.3

PC-108 82.4± 1.9 82.6± 2.1 75.1± 1.4 81.6± 5.1
∆ −0.4 −0.4 −6.2 +1.0

BRCA-ER
Base 87.4± 1.0 87.7± 1.3 83.5± 1.4 86.1± 2.1

PC-108 87.5± 1.3 87.3± 1.4 86.3± 1.3 81.9± 3.6
∆ +0.0 −0.4 +2.8 −4.2

BRCA-HER2
Base 65.2± 3.4 63.6± 3.3 57.2± 3.1 61.1± 3.4

PC-108 67.6± 2.9 65.7± 4.0 53.9± 2.2 61.7± 4.4
∆ +2.3 +2.1 −3.3 +0.6

BRCA-PIK3CA
Base 61.6± 1.8 64.3± 4.5 60.2± 2.6 58.7± 4.0

PC-108 66.8± 1.4 64.5± 3.3 60.0± 3.1 58.8± 0.9
∆ +5.2 +0.2 −0.2 +0.1

BRCA-PR
Base 77.7± 0.2 79.5± 2.1 74.6± 1.7 76.7± 2.3

PC-108 78.4± 3.2 79.5± 1.4 81.5± 1.0 79.6± 2.2
∆ +0.7 −0.1 +6.9 +2.9

EBRAINS-C
Base 87.7± 1.1 84.4± 1.7 87.5± 2.5 85.6± 0.8

PC-108 86.5± 1.4 88.2± 1.8 88.5± 0.0 87.4± 2.8
∆ −1.2 +3.7 +1.0 +1.8

EBRAINS-F
Base 68.8± 1.4 65.9± 0.8 68.9± 0.6 67.4± 1.0

PC-108 68.8± 1.0 66.8± 1.6 68.2± 1.1 67.3± 1.4
∆ +0.0 +0.8 −0.8 −0.1

GBMLGG-C
Base 93.7± 1.5 92.5± 1.1 93.7± 0.7 92.8± 1.3

PC-108 93.6± 1.3 91.7± 1.1 93.0± 0.7 93.5± 0.5
∆ −0.1 −0.7 −0.7 +0.6

GBMLGG-F
Base 50.8± 1.0 46.9± 4.3 52.3± 1.0 49.0± 2.4

PC-108 51.6± 2.0 51.8± 2.7 55.2± 3.7 49.9± 3.4
∆ +0.8 +4.9 +2.9 +0.9

NSCLC-EGFR
Base 66.3± 2.7 70.1± 3.3 65.8± 6.1 62.7± 1.5

PC-108 75.5± 4.9 71.7± 4.9 69.1± 3.5 69.9± 4.3
∆ +9.2 +1.6 +3.3 +7.2

NSCLC-KRAS
Base 63.6± 2.7 62.3± 4.4 62.2± 1.4 61.7± 4.4

PC-108 62.4± 4.2 61.8± 3.1 67.5± 3.9 63.3± 3.1
∆ −1.2 −0.4 +5.3 +1.6

NSCLC-STK11
Base 76.7± 1.8 78.3± 2.9 75.8± 2.1 62.4± 7.6

PC-108 81.7± 3.5 80.4± 2.6 82.7± 2.6 75.3± 3.5
∆ +5.0 +2.1 +6.9 +12.9

NSCLC-TP53
Base 76.2± 2.6 80.9± 3.9 74.0± 1.2 74.0± 2.6

PC-108 80.8± 1.0 80.5± 2.9 73.7± 2.3 79.4± 2.2
∆ +4.6 −0.4 −0.2 +5.4

PANDA
Base 93.3± 0.4 93.1± 0.5 91.1± 0.6 90.5± 0.4

PC-108 93.7± 0.3 92.8± 0.5 91.7± 0.3 90.7± 0.4
∆ +0.4 −0.3 +0.6 +0.3

Average
Base 74.7± 2.27 74.8± 2.14 72.9± 1.78 70.9± 2.22

PC-108 76.1± 1.62 75.2± 1.98 74.1± 1.51 73.4± 2.14
∆ +1.4 +0.4 +1.2 +2.6
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Table A5. Pretraining performance with different encoders for TransMIL. Performance across different tasks for TransMIL using
CTransPath and ResNet as patch feature encoders with PC-108 pretraining and random initialization. Best performance between Base and
PC-108 for each encoder is bold.

CTransPath ResNet

Task Base PC-108 Base PC-108

BRACS-C 59.1 57.6 51.0 54.1
BRACS-F 39.0 38.6 26.1 29.9
EBRAINS-C 81.0 76.5 63.9 61.4
EBRAINS-F 53.9 54.9 46.8 42.5
PANDA 90.2 87.2 83.5 77.6
BRCA-ER 81.6 80.5 70.5 64.2
BRCA-HER2 62.9 58.6 70.5 64.9
BRCA-PIK3CA 52.8 53.1 52.4 69.5
BRCA-PR 57.7 76.3 59.6 68.3
NSCLC-EGFR 59.1 69.4 48.2 66.0
NSCLC-KRAS 59.1 65.8 65.0 67.7
NSCLC-STK11 62.4 79.0 64.3 76.9
NSCLC-TP53 72.5 76.3 60.8 74.8
GBMLGG-C 91.4 89.6 53.4 78.7
GBMLGG-F 53.0 55.7 53.0 60.8

Average 65.1 67.94 59.5 66.3

Table A6. Performance per task with pretraining and random initialization. Results of MIL methods with random initialization
(Base) and PC-108 supervised pretraining. The number of classes are specified below the task. The evaluation metrics for each task are
indicated in parentheses. All models use UNI features as patch embeddings (Chen et al., 2024a). Performance on NSCLC subtyping is
averaged across the internal TCGA cohort and the external NLST and CPTAC cohorts

Task Init. ABMIL CLAM DFTD DSMIL ILRA RRT TransMIL Transformer WIKG maxMIL meanMIL
BRACS-C Base 64.1 (5.2) 55.9 (5.4) 64.3 (4.9) 66.8 (4.9) 67.0 (4.1) 63.9 (3.2) 64.2 (4.3) 55.3 (3.7) 60.1 (5.3) 64.5 (4.0) 61.6 (4.9)

C = 3 PC-108 68.5 (4.6) 55.5 (5.6) 68.4 (4.9) 69.7 (4.9) 67.3 (4.1) 68.6 (4.4) 62.8 (4.4) 63.4 (5.0) 77.4 (4.3) 58.7 (4.5) 52.8 (5.5)

BRACS-F Base 43.0 (3.9) 31.2 (5.1) 35.6 (4.5) 40.2 (4.1) 44.4 (3.8) 43.5 (4.5) 36.1 (3.3) 18.3 (2.9) 40.4 (4.2) 34.2 (3.7) 32.2 (4.2)

C = 7 PC-108 47.1 (5.3) 33.7 (4.1) 47.4 (4.5) 44.2 (4.1) 35.2 (3.8) 36.2 (4.1) 38.6 (5.6) 42.9 (5.6) 46.8 (4.7) 39.0 (3.7) 30.0 (4.1)

NSCLC Base 95.3 (0.6) 91.1 (0.8) 92.1 (0.7) 94.0 (0.9) 90.4 (0.7) 93.9 (0.7) 91.3 (0.8) 93.3 (0.8) 91.3 (0.8) 95.9 (0.5) 91.1 (0.7)

C = 2 PC-108 96.1 (0.6) 92.0 (0.8) 96.6 (0.7) 95.3 (0.9) 94.8 (0.7) 94.7 (0.7) 95.4 (0.7) 94.4 (0.7) 94.7 (0.7) 95.4 (0.6) 92.3 (0.7)

BCNB ER Base 85.7 (4.4) 88.1 (3.0) 85.3 (3.5) 87.4 (2.7) 87.4 (2.8) 82.1 (4.0) 87.4 (3.1) 81.1 (3.7) 90.1 (3.5) 88.4 (3.4) 86.3 (2.9)

C = 2 PC-108 88.6 (3.6) 89.6 (2.7) 92.3 (3.5) 92.6 (2.7) 92.8 (2.8) 89.6 (2.9) 90.6 (3.7) 89.8 (3.7) 89.0 (3.8) 89.2 (3.0) 89.5 (2.9)

BCNB HER2 Base 75.4 (4.8) 72.4 (5.8) 72.3 (6.0) 72.5 (6.1) 71.4 (5.5) 71.9 (4.9) 67.2 (5.2) 65.8 (6.2) 76.6 (4.7) 73.9 (5.2) 68.4 (6.0)

C = 2 PC-108 79.8 (4.2) 74.4 (5.8) 79.5 (6.0) 74.0 (6.1) 71.0 (5.5) 72.6 (5.6) 71.6 (5.9) 61.9 (6.2) 75.7 (5.8) 70.3 (5.2) 70.4 (6.0)

BCNB PR Base 81.5 (4.5) 81.1 (5.5) 78.3 (5.9) 79.0 (4.8) 78.1 (5.0) 80.8 (5.0) 76.1 (4.5) 80.4 (4.4) 83.6 (4.4) 86.7 (4.8) 79.9 (5.1)

C = 2 PC-108 85.2 (4.7) 83.2 (5.2) 86.4 (5.9) 82.5 (4.8) 80.3 (5.0) 75.1 (5.8) 83.8 (6.7) 85.7 (5.1) 82.5 (5.3) 89.6 (4.3) 84.4 (5.1)

BRCA ER Base 81.4 (3.5) 80.7 (4.3) 80.5 (2.8) 82.9 (3.7) 80.2 (3.6) 81.8 (4.9) 76.1 (4.1) 76.0 (3.8) 83.1 (3.9) 83.6 (3.9) 80.9 (4.4)

C = 2 PC-108 84.2 (2.8) 81.8 (3.2) 88.8 (2.8) 83.5 (3.7) 85.0 (3.6) 86.3 (3.1) 80.3 (3.5) 84.2 (2.7) 83.3 (3.8) 84.8 (2.9) 82.9 (3.5)

BRCA HER2 Base 63.2 (5.1) 61.8 (5.0) 63.0 (5.2) 61.6 (5.8) 64.4 (4.6) 55.3 (6.0) 55.8 (5.5) 64.4 (5.0) 53.5 (6.4) 57.7 (5.5) 51.7 (5.9)

C = 2 PC-108 68.6 (4.2) 50.6 (5.7) 54.1 (5.7) 58.3 (5.8) 71.2 (4.6) 53.9 (5.1) 60.0 (5.4) 62.7 (5.0) 58.1 (5.6) 66.8 (5.5) 62.6 (5.3)

BRCA PIK3CA Base 60.9 (4.0) 59.6 (3.8) 62.9 (3.9) 62.7 (3.7) 57.2 (3.5) 57.7 (4.1) 57.8 (4.5) 44.6 (4.5) 54.5 (4.2) 55.2 (3.9) 58.8 (4.4)

C = 2 PC-108 67.9 (4.0) 60.3 (3.8) 60.8 (3.9) 63.0 (3.7) 54.1 (3.5) 60.0 (3.8) 63.6 (4.5) 63.9 (4.5) 60.1 (4.4) 59.9 (3.6) 61.7 (4.3)

BRCA PR Base 71.4 (4.5) 68.9 (4.6) 71.0 (3.2) 68.3 (2.9) 72.9 (3.2) 72.0 (4.2) 69.2 (3.5) 71.6 (3.8) 73.0 (3.7) 69.4 (5.0) 73.5 (3.8)

C = 2 PC-108 77.6 (2.7) 67.6 (3.5) 79.1 (3.2) 80.7 (2.9) 78.5 (3.2) 81.5 (3.7) 78.4 (3.5) 74.9 (3.3) 74.8 (4.3) 72.1 (3.2) 70.9 (3.3)

EBRAINS-C Base 86.1 (2.1) 86.1 (2.3) 81.2 (1.9) 86.2 (1.8) 85.0 (1.8) 86.7 (2.0) 82.2 (2.1) 86.6 (2.1) 83.6 (2.1) 82.0 (2.4) 86.3 (2.3)

C = 12 PC-108 87.6 (1.8) 87.2 (2.3) 91.1 (1.9) 88.1 (1.8) 89.0 (1.8) 88.5 (2.0) 87.5 (2.4) 90.7 (1.8) 83.3 (2.1) 89.0 (2.4) 85.5 (2.3)

EBRAINS-F Base 67.1 (2.3) 71.4 (2.0) 61.5 (2.0) 64.2 (2.1) 71.3 (2.2) 68.4 (1.8) 62.1 (1.9) 65.8 (2.1) 66.6 (1.9) 64.7 (2.1) 69.3 (2.2)

C = 30 PC-108 69.2 (2.3) 73.0 (1.9) 69.4 (2.0) 66.2 (2.1) 64.6 (2.2) 68.2 (1.9) 68.9 (2.1) 67.6 (2.1) 73.0 (1.8) 70.1 (2.1) 72.3 (2.2)

GBMLGG-C Base 92.8 (1.8) 91.7 (1.7) 91.7 (2.2) 93.1 (1.4) 93.6 (1.6) 92.2 (1.8) 91.0 (1.2) 92.9 (1.5) 92.4 (1.2) 94.3 (1.3) 91.8 (1.6)

C = 2 PC-108 93.4 (1.2) 92.8 (1.7) 91.7 (2.2) 95.7 (1.4) 92.9 (1.6) 93.0 (1.7) 94.5 (1.1) 91.5 (1.1) 92.3 (1.4) 93.4 (1.3) 91.3 (1.3)

GBMLGG-F Base 44.9 (3.1) 45.4 (3.8) 43.9 (3.5) 51.3 (3.2) 53.6 (3.1) 49.7 (3.3) 48.3 (3.6) 44.9 (3.2) 41.6 (3.5) 50.1 (3.4) 47.2 (3.2)

C = 12 PC-108 53.7 (2.9) 50.5 (3.8) 57.1 (3.3) 55.0 (3.2) 47.5 (3.1) 55.2 (3.5) 49.2 (3.6) 48.9 (3.9) 43.4 (3.4) 52.5 (3.4) 47.0 (2.8)

NSCLC-EGFR Base 63.4 (7.0) 60.6 (8.7) 62.9 (9.5) 64.8 (9.0) 61.6 (8.8) 62.3 (9.0) 68.0 (7.0) 63.3 (7.2) 60.1 (8.5) 64.0 (9.3) 63.2 (8.1)

C = 2 PC-108 69.8 (7.0) 62.6 (8.7) 67.8 (9.5) 60.1 (9.0) 64.9 (8.8) 69.1 (8.8) 73.7 (7.0) 69.9 (7.2) 79.1 (6.1) 57.8 (9.6) 64.2 (8.1)

NSCLC-KRAS Base 60.0 (5.5) 63.5 (5.4) 58.1 (6.1) 62.5 (7.4) 52.9 (6.6) 62.0 (5.7) 59.3 (6.1) 60.0 (6.5) 54.0 (5.8) 62.2 (6.3) 63.6 (4.8)

C = 2 PC-108 65.2 (5.1) 64.3 (5.4) 71.4 (6.1) 61.5 (7.4) 60.8 (6.6) 67.5 (6.2) 66.6 (6.1) 64.8 (4.5) 62.3 (6.1) 60.6 (6.3) 57.3 (6.9)

NSCLC-STK11 Base 72.5 (3.6) 69.9 (7.7) 65.4 (7.2) 71.5 (5.9) 65.4 (6.6) 72.4 (7.8) 65.1 (7.1) 68.8 (7.8) 65.8 (6.9) 70.8 (6.5) 66.4 (6.4)

C = 2 PC-108 78.1 (3.6) 72.3 (5.3) 79.6 (7.2) 71.5 (5.9) 77.9 (6.6) 82.7 (5.0) 76.6 (7.1) 73.6 (4.9) 82.1 (7.1) 61.8 (4.4) 72.9 (5.9)

NSCLC-TP53 Base 73.7 (4.6) 75.8 (4.6) 69.5 (4.8) 74.2 (5.0) 71.4 (4.6) 72.2 (5.1) 72.1 (4.6) 72.3 (5.4) 69.7 (6.0) 79.3 (4.7) 72.2 (5.0)

C = 2 PC-108 77.9 (3.5) 75.0 (4.6) 78.3 (4.8) 82.1 (5.0) 80.2 (4.6) 73.7 (5.5) 80.5 (4.6) 84.6 (3.8) 76.3 (4.5) 69.5 (4.7) 80.2 (4.8)

PANDA Base 91.6 (0.7) 91.2 (1.0) 87.9 (0.7) 91.2 (0.7) 91.5 (0.9) 91.1 (0.9) 90.5 (0.9) 90.4 (1.0) 92.1 (0.8) 89.7 (0.9) 90.2 (1.0)

C = 7 PC-108 93.3 (0.5) 91.8 (1.0) 93.2 (0.7) 93.5 (0.7) 91.5 (0.9) 91.5 (0.9) 89.9 (0.8) 90.7 (0.8) 93.0 (0.8) 88.9 (0.9) 89.7 (1.0)
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