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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable suc-
cess in image and short video understanding tasks, but their performance on hour-
long videos remains limited due to constraint of input token capacity. Existing
approaches often require costly training procedures, hindering their adaptability
to rapidly evolving MLLM architectures. In this paper, we propose a training-
free framework for long video understanding, integrating three key innovations:
Adaptive Frame Sampling (AFS), Dynamic Resolution Allocation (DRA), and
Video-Query-Options Similarity (VQOS). AFS adaptively increases frame sam-
pling density in highly relevant video segments to preserve critical temporal de-
tails, while DRA reduces spatial resolution in less relevant segments to sup-
press redundant information. VQOS enhances similarity calculation by prompt-
ing MLLMs to generate candidate answer options, fusing queries with options
to refine relevance estimation. Mirroring human cognitive processes (hypothesis
generation → focused verification → irrelevance filtering), our framework effec-
tively improve model accuracy without fine-tuning. The method is implemented
on LLaVA-Video and Qwen2.5-VL respectively, and experimental results show
our method could achieve state-of-the-art performances over 5 mainstream bench-
marks. Demo videos and code are provided in the supplementary materials, and
instructions for the demo videos can be found in Appendix C.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) (Zhang et al., 2024b; Wang et al.,
2024a; Liu et al., 2025b; Zhang et al., 2025a; Bai et al., 2025; Zhu et al., 2025) have made
rapid progress, excelling at various vision tasks like image/video captioning, visual question an-
swering, and visual reasoning — especially for images and short videos. However, for long
videos—especially hour-long videos—existing MLLMs generally exhibit limited capabilities, leav-
ing substantial room for improvement.

The fundamental challenge in long video understanding stems from the inherent contradiction be-
tween limited model context windows and the vast spatiotemporal extent of video content. To mit-
igate this, some methods (Zhang et al., 2024a; Chen et al., 2024; Shen et al., 2025) extend the
maximum token capacity through techniques such as parallel processing or multi-stage training.
Others (Shen et al., 2024; Qin et al., 2025; Wang et al., 2025b; Li et al., 2024) exploit the inher-
ent temporal and spatial redundancy in videos, aiming to compress the input by retaining only the
most informative tokens. However, these methods typically require extensive and costly training
procedures. Recently, training-free approaches (Ma et al., 2025b; Wang et al., 2025a; Tang et al.,
2025) have demonstrated great potential by extracting meaningful and representative information
from long videos without requiring model fine-tuning. In the field of training-free long video un-
derstanding, retrieval-based strategies offer a viable solution. Leveraging the strong performance
of existing vision-language models of existing vision-language models (Radford et al., 2021; Zhai
et al., 2023) in image-text retrieval, some methods (Tang et al., 2025; Liu et al., 2025a) effectively
retrieve key frames that are semantically relevant to the user’s query, thereby enabling MLLMs to
focus on critical content. However, these approaches exhibit two key shortcomings: (1) they pre-
dominantly focus on static image, neglecting important information in videos such as actions, causal
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Image-Text Similarity: 

Q : What does Dominique do after the man with red shirt and black 
and red pants comes to the stage?
A: She hugs him.

Video-Text Similarity: 

Q: In accordance with the video footage, who protects the mermaid?
A: The shark.

Key Video Segment:

Image-Text Similarity: 

Video-Text Similarity: 

Key Video Segment: ...

196x112 336x196448x252

252x140 252x140 252x140 252x140Resolution:

Resolution:

Our Method: Answer : GreenGuess: White? Blue? Green? 

Uniform Sampling: Answer : Blue

Question: What color are the gloves when cleaning parts? Video: 50 minutes

448x252

(a) Unifom Sampling and Our Methods (a) Image-Text and Video-Text

Figure 1: Comparisons with existing methods. (a) Most existing MLLMs rely on uniform frame
sampling, which—due to context length limits—often misses critical information in long videos.
Our approach enhances MLLMs’ question-answering capabilities by retrieving question/options-
relevant frames, densely sampling highly pertinent segments, and employing elevated resolution
settings. (b) While some approaches leverage image-text retrieval, they are inadequate for action-
related or temporally dependent questions, as static frames cannot reliably capture dynamic cues or
temporal structure. Video-text retrieval is therefore essential in our method.

relationships and temporal dynamics, as shown in Fig. 1 (b), and (2) while effective at selecting key
frames, they lack mechanisms to deeply exploit or refine the information contained in those frames.

In this paper, we conduct an in-depth exploration of such training-free retrieval-based meth-
ods for long video understanding. Building upon the state-of-the-art (SOTA) video-text retrieval
model (Bolya et al., 2025), which computes similarity scores between video segments and textual
queries, we introduce two key components: Adaptive Frame Sampling (AFS) and Dynamic Res-
olution Allocation (DRA). The former adaptively samples a greater number of frames from video
segments with higher similarity scores, thereby enhancing the representational richness of relevant
content. The latter reduces the spatial resolution of less relevant segments, optimizing both com-
putational efficiency and focus on salient regions. To further refine the similarity computation,
we propose Video-Query-Options Similarity (VQOS), a novel strategy wherein original MLLM is
prompted to generate plausible answer options based on the user query. The similarity between the
video and each generated option is then computed and fused with the original query for a more ro-
bust relevance estimation. Our approach closely emulates the cognitive process by which humans
comprehend and answer questions about long videos: when faced with a question, humans typically
formulate several hypotheses, selectively review the video to verify these hypotheses, and naturally
filter out irrelevant information during the process. By mimicking this behavior, our method effec-
tively improves accuracy in long video understanding without requiring any model fine-tuning. A
typical example is shown in Fig. 1 (a) to illustrate our method.

We integrate our method into MLLMs including LLaVA-Video (Zhang et al., 2024b) and Qwen2.5-
VL (Bai et al., 2025), across both 7B and 72B parameter scales. Experimental results on 5 long
video understanding benchmarks demonstrate an average performance gain of 5.3% and 5.0% in 7B
size and 3.6% and 3.2% in 72B size compared with LLaVA-Video and Qwen2.5-VL. Especially, on
hour-long video benchmarks LVBench (Wang et al., 2024b) and VideoEval-Pro (Ma et al., 2025a),
our 7B-scale model achieves substantial improvements, outperforming LLaVA-Video and Qwen2.5-
VL by an average of 8.5% and 8.3%, respectively. Our contributions are summarized as follows:

• We propose AFS and DRA to adaptively optimize frame selection and resolution resizing
based on relevance scores for long video understanding.

• We develop VQOS mechanism, which leverages the capabilities of MLLMs to generate
candidate answers and enhance similarity estimation through multi-hypothesis fusion.

• We integrate our method into LLaVA-Video and Qwen2.5-VL across 7B and 72B scales,
achieving significant performance gains on 5 long video benchmarks—demonstrating its
effectiveness and scalability in long video understanding.
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2 RELATED WORK

2.1 MLLMS FOR LONG VIDEO

Existing approaches address the long video understanding challenge through two primary strategies:
context extension (Zhang et al., 2024a; Chen et al., 2024; Shen et al., 2025) and token compres-
sion (Shen et al., 2024; Qin et al., 2025; Wang et al., 2025b; Li et al., 2024). The context extension
strategy focuses on increasing the maximum sequence length that models can process during train-
ing. For example, LongVILA (Chen et al., 2024) employs multi-stage training pipelines and novel
parallelism techniques to expand contextual capacity. In contrast, token compression methods aim
to preserve more informative content within a reduced number of tokens. InternVideo2.5 (Wang
et al., 2025b) adopts hierarchical token compression combined with task-preference optimization to
improve representation efficiency, while VideoXL-2 (Qin et al., 2025) introduces task-aware key-
value (KV) sparsification to enhance memory utilization. However, these methods require expensive
training, limiting their adaptability to rapidly evolving MLLM architectures.

2.2 TRAINING-FREE LONG VIDEO UNDERSTANDING

Training-free approaches for long video understanding aim to extract meaningful and representative
information without requiring model fine-tuning. These methods can be broadly categorized into
three types: (1) Agent-based approaches (Zhang et al., 2023; Wang et al., 2024c; Luo et al., 2024;
Ma et al., 2025b; Pang & Wang, 2025; Zhang et al., 2025b) involves dividing a long video into
shorter clips, where agents generate descriptive captions for each clip and subsequently use these
textual summaries to answer questions. For instance, Deep Video Discovery (Zhang et al., 2025b)
utilizes LLM-based agents to autonomously explore and reason over segmented clips. In contrast
to our method, these approaches are fundamentally dependent on video captioning, a process that
is computationally intensive and prone to loss of fine-grained visual details due to the abstraction
of rich visual content into text. Furthermore, they often rely on proprietary models such as GPT-
4o (Hurst et al., 2024) as the underlying agent, making direct comparison unfair and impractical.
(2) Compression-based approaches (Wang et al., 2025a; Luo et al., 2025; Gao et al., 2025) fo-
cus on reducing redundancy in the visual token stream, enabling more efficient processing of long
video sequences. These methods typically operate on the internal token representations within the
MLLM, compressing or pruning less informative visual tokens. For instance, AdaReTake (Wang
et al., 2025a) adaptively removes redundant information in the key-value (KV) cache across both
temporal and layer dimensions, allowing MLLMs to process up to 2048 frames efficiently. These
techniques are complementary to our approach: while they operate at the token level during infer-
ence, our method targets the input frame-sampling stage prior to model ingestion. (3) Retrieval-
based approaches (Park et al., 2024; Tang et al., 2025; Liu et al., 2025a) employ lightweight expert
models to identify and retrieve keyframes that are most relevant to the given question. For in-
stance, AKS (Tang et al., 2025) computes frame-question similarity using CLIP (Radford et al.,
2021) embeddings to select semantically aligned frames. Our method is closely aligned with this
paradigm; however, we introduce a more refined similarity estimation strategy by leveraging a ded-
icated video-text retrieval model to jointly compute the similarity among the video, the question,
and the candidate options. Furthermore, we utilize the resulting similarity scores not only for adap-
tive frame sampling but also for dynamic frame resizing, thereby enhancing the quality of the input
representation.

2.3 VIDEO-TEXT RETRIEVAL

Video-Text Retrieval (VTR) is a cross-modal task that aims to measure the semantic similarity be-
tween video content and textual queries. Vision language models like CLIP (Radford et al., 2021)
and SigLIP (Zhai et al., 2023) excell at image-text retrieval, and can also zero-shot to video-text re-
trieval by pooling image embdeddings. CLIP4CLIP (Luo et al., 2022) fine-tunes the CLIP model for
video-text retrieval leavaging contrastive learning. Recently, PerceptionEncoder (Bolya et al., 2025)
pretrained visual encoder with extensive video data, which makes it have excellent performance in
video text retrieval task.

3
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Figure 2: Overall Framework. We first generate plausible answer options using the original
MLLM, concatenate them with the question, and compute similarity scores between the resulting
queries and video segments using a pre-trained video-text retrieval model. Based on these similarity
scores, Adaptive Frame Sampling increases frame density in high-similarity regions, while Dynamic
Resolution Allocation increases resolution in more relevant segments.

3 METHODOLOGY

The overall framework of our approach is illustrated in Fig. 2. By generating options and leveraging
a video-text retrieval model to compute their similarity with video segments (Sec. 3.1), we guide
both adaptive frame sampling (Sec. 3.2) and dynamic resolution allocation (Sec. 3.3). Specifically,
regions with higher similarity receive denser frame sampling and higher spatial resolution.

3.1 VIDEO-QUERY-OPTIONS SIMILARITY

Given a long video, we uniformly divide it into m equal-length segments, denoted as :
V = {V1, V2, . . . , Vm}. (1)

For each segment Vi and user query Q, we employ a video-text retrieval (VTR) model to extract the
video and text features, denoted as fvi , fq ∈ Rd. The initial similarity score S0

i for the i-th video
segment is then computed as the cosine similarity between the video and text features:

S0
i =

fvi · fq
∥fvi∥ · ∥fq∥

. (2)

Then we prompt the MLLM to generate z candidate options, where the prompt is shown in Fig. 2.
Subsequently, the question is concatenated with each option to form z distinct statements:

T = {T1, T2, ...Tz}. (3)

These statements are encoded into text features using the same VTR model respectively, and com-
bined as F . The final similarity score Si to for the i-th video segment is then computed as the
maximum cosine similarity between the video feature and all text features in F :

Si = max
f∈F

fvi · f
∥fvi∥ · ∥f∥

. (4)

Note that S0
i is utilized for selecting video segments based on user queries without options, and Si

is employed when the options are available. Both undergo the same processing pipeline described in
Sec. 3.2 and Sec. 3.3. To enhance diversity in option generation, options can be generated multiple
rounds by splitting the whole video into several parts and generating options separately. Specifically,
for multiple-choice questions, the option generation step can be bypassed, as candidate answers are
provided. For clarity, we provide pseudocode in the Appendix D.
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3.2 ADAPTIVE FRAME SAMPLING

To effectively represent long video with a limited number of frames, we adopt a adaptive sam-
pling strategy that emphasizes semantically relevant content. Instead of treating all video segments
equally, we leverage their similarity to the input query to guide the sampling process.

To sample N frames from a video, we first select the top-k segments based on their video-query-
options similarity scores S1, S2, . . . , Sk. From each selected segment Vi, we uniformly sample pi
frames such that the following constraints are satisfied:

k∑
i=1

pi = N, Si ≤ Sj ⇒ pi ≤ pj . (5)

These conditions ensure that the total number of sampled frames remains fixed at N , and segments
with higher similarity scores are assigned more frames, while segments with lower scores are as-
signed fewer.

To simplify the allocation process while adhering to the desired priority, we first sort the top-k
segments in descending order of their similarity scores. These sorted segments are then partitioned
into L1 sampling levels, where the l-th level contains ml segments, each segment samples cl frames
, satisfying that:

L1∑
l=1

ml = k,

L1∑
l=1

ml · cl = N, (6)

where c1 > c2 > ... > cL1
. For simplicity, we assume roughly equal segment distribution across

levels, utilizing Pulp (Mitchell et al., 2011) to find a feasible {ml} with predefined {cl}.
This sampling strategy allows more relevant segments to contribute a greater number of frames,
thereby enhancing the semantic coverage and representativeness of the selected frame set while
maintaining computational simplicity.

3.3 DYNAMIC RESOLUTION ALLOCATION

For long video sequences, existing visual encoders often encounter a fundamental trade-off between
the number of processed frames and spatial resolution: given a fixed total input token budget (deter-
mined by the model’s sequence length limit), increasing the number of frames necessitates down-
scaling the spatial resolution of frames, which may result in the loss of critical spatial information
in high-importance frames. To mitigate this issue, we propose an Dynamic Resolution Allocation
strategy that allocates higher resolution to key frames (frames of high task relevance) and lower
resolution to non-key frames.

For a given video with resolution H ×W , we define L2 resolution levels as:

Hi =

⌊
αi

H

I

⌋
· I, Wi =

⌊
αi

W

I

⌋
· I, (7)

where α1 > α2 > ... > αL2 ∈ (0, 1] are scaling factors that preserve the aspect ratio, and I = 28 is
a stride constraint imposed by the visual encoder architecture due to patch size and downsampling
requirements. Each resolution (Hi,Wi) is further constrained to lie within a valid range Cmin ≤
Hi,Wi ≤ Cmax.

A feasible resolution allocation strategy {n1, n2, ..., nL}must satisfy two constraints: (1) All frames
are allocated to L resolution levels, (2) The sum of tokens across all frames equals the budget P :

L∑
i=1

ni = N,

L∑
i=1

(ni ·Hi ·Wi) = P. (8)

Frames with higher similarity scores are assigned to higher-resolution levels, for example n1 frames
with largest similarity scores are allocated resolution (H1,W1).

To simplify computation while maintaining a balanced distribution of tokens across resolution levels,
we assume a uniform per-level token budget — that is, each resolution level receives an equal share

5
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Table 1: Comparisons on widely used benchmarks. LongVB and VMME refer to LongVideoBench
and VideoMME, respectively.

Model Size

LVBench MLVU LongVB VMME VideoEval-Pro

Average(67min) (13min) (8min) (17min) (38min)

Overall M-Avg Overall Overall Open MCQ

Proprietary MLLMs
Gemini-1.5-Pro - 33.1 - 64.0 75.0 39.3 63.4 -
GPT-4o - 48.9 64.6 66.7 71.9 34.2 59.5 57.6
Seed1.5-VL 200B 64.6 82.1 74.0 77.9 40.7 66.6 67.7

Open-Source MLLMs
Qwen2-VL 7B 44.2 69.8 55.6 63.3 26.5 48.2 51.3
NVILA 8B 42.6 70.6 57.7 64.2 - - -
VideoLLaMA3 7B 45.3 73.0 59.8 66.2 - - -
InternVL3 8B - 71.4 58.8 66.3 24.7 48.4 -

Training-Based MLLMs For Long Video
LongVA 7B - 56.3 - 52.6 16.5 38.0 -
VideoChat-Flash 7B 48.2 74.7 64.7 65.3 27.0 51.2 55.2
InternVideo2.5 8B 46.4 74.9 60.6 65.1 27.2 53.2 54.6
Video-XL-2 8B 48.4 74.8 61.0 66.6 28.6 53.0 55.4

Training-Free MLLMs For Long Video
LLaVA-Video 7B 42.0 69.3 57.4 63.2 24.2 47.6 50.6

+ AKS 47.0 69.1 62.9 65.3 28.9 51.3 54.1
+ AdaReTake 49.6 70.6 59.6 64.0 27.7 53.5 54.2
+ Ours-GO 51.3 70.3 61.0 64.8 32.7 55.3 55.9
+ Ours-PO 54.2 73.4 61.0 65.5 - 56.9 57.3

Qwen2.5-VL 7B 45.5 69.4 61.0 66.4 27.7 46.6 52.8
+ AdaReTake 51.0 72.9 61.9 67.4 30.8 53.7 56.3
+ Ours-GO 52.7 72.3 63.4 66.7 35.0 56.9 57.8
+ Ours-GO + AdaReTake 55.5 74.3 63.0 69.3 35.4 57.3 59.1
+ Ours-PO 55.5 74.1 63.3 67.9 - 57.6 58.9
+ Ours-PO + AdaReTake 57.5 74.7 64.2 69.4 - 58.2 59.9

LLaVA-Video 72B 46.1 71.3 62.4 70.3 26.7 50.1 54.5
+ Ours-GO 51.7 71.7 63.6 70.3 33.1 58.3 58.1
+ Ours-PO 54.8 74.7 64.0 70.3 - 60.1 59.5

Qwen2.5-VL 72B 49.6 75.3 65.1 73.3 29.9 55.9 58.2
+ Ours-GO 54.0 76.9 66.3 72.7 36.5 61.9 61.4
+ Ours-PO 56.9 77.7 66.3 73.1 - 64.2 62.5

Table 2: Ablation for components. For LongVideoBench, VideoMME, and VideoEval-Pro, we
evaluate on representative and cost-efficient subsets: LVB-L and VMME-L (the long-video sub-
sets of LongVideoBench and VideoMME, respectively) and VEP-M (the multiple-choice subset of
VideoEval-Pro).

Method LVBench MLVU LVB-L VMME-L VEP-M ∆avg

LLaVA-Video-7B 42.0 69.3 48.2 51.4 47.6 -
+ top-N frames retrieval 49.6 70.0 55.3 51.8 53.5 +4.3
+ top-k segments uniform sampling 48.9 70.3 55.7 53.2 53.1 +0.2
+ adaptive frame sampling 50.2 70.4 56.6 53.2 54.2 +0.7
+ generated options 51.3 70.3 57.1 54.0 55.3 +0.7
+ provided options 54.2 73.4 55.9 55.0 56.9 +1.5

Qwen2.5-VL-7B 45.5 69.4 53.7 55.6 46.6 -
+ top-N frames retrieval 50.3 70.0 53.5 55.4 51.4 +2.0
+ top-k segments uniform sampling 50.1 70.3 53.9 55.1 51.1 +0.0
+ adaptive frame sampling 51.1 70.0 55.3 55.7 52.7 +0.8
+ dynamic resolution allocation 51.9 72.1 59.0 56.0 55.9 +2.1
+ generated options 52.7 72.3 58.5 56.4 56.9 +0.4
+ provided options 55.5 74.1 58.9 56.9 57.6 +1.2

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

of the total token budget P . Under this assumption, the number of frames allocated to resolution
level i can be approximated by:

n̂i =

⌊
P

L ·Hi ·Wi

⌋
. (9)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We divide videos into 16-second segments and employ PE-G/14 (Bolya et al., 2025) for video-
text retrieval with fps = 1. Then we integrate our method into both the 7B and 72B variants of
LLaVA-Video (Zhang et al., 2024b) and Qwen2.5-VL (Bai et al., 2025). For LLaVA-Video, we
limit the input to a maximum of 64 frames, select top-16 segments, and set the frame sampling level
to {2, 4, 8} without employing DRA, as it is designed to accept fixed-resolution inputs of 384×384.
For Qwen2.5-VL, we set the maximum number of frames to 768, select top-48 segments, set the
frame sampling level to {8, 16, 32}, and constrain the resolution budget to 20480 × 28 × 28 with
resolution levels ranging from 84 to 644. Furthermore, we rerun two typical training-free methods
AKS (Tang et al., 2025) and AdaReTake (Wang et al., 2025a) on the datasets which are not reported
in the original papers, and integrate AdaReTake into our method using 2048 frames as input.

Two versions of our method are implemented: (1) Ours-GO which means the candidate options are
generated by original MLLM without additional prior knowledge, and (2) Ours-PO which indicates
the candidate options are given by the dataset. Empirically, we generate options three iterations for
LLaVA-Video and once for Qwen2.5-VL. Ours-GO is more general and the comparisons with other
methods are fair. In contrast, Ours-PO only adapts to the multiple-choice questions, and the results
are just for reference.

4.2 BENCHMARKS

Five widely used datasets are used, including: (1) LVBench (Wang et al., 2024b) is a benchmark
designed for evaluating extreme long video understanding. (2) MLVU (Zhou et al., 2025) is a multi-
task benchmark for long video understanding. We report the M-Avg metric on the dev set. (3)
LongVideoBench (Wu et al., 2024) is a benchmark for both short and long video understanding.
We report the overall accuracy on its val set without interleaved subtitles. (4) VideoMME (Fu
et al., 2025) is the first-ever comprehensive video understanding benchmark. We report the accuracy
results without using subtitles. (5) VideoEval-Pro (Ma et al., 2025a) is a benchmark designed for
more robust evaluation of long video understanding capabilities. It consists of 465 videos, with each
video exceeding 10 minutes, selected from the four aforementioned benchmarks. Unlike previous
benchmarks that primarily rely on multiple-choice questions — which may allow models to exploit
answer options through guessing — VideoEval-Pro adopts open-ended questions, offering a more
robust, comprehensive, and realistic assessment of models’ long video comprehension abilities. The
open-ended and multiple-choice metrics are reported. Overall, the average video lengths of these
benchmarks are about 67 minutes, 13 minutes, 8 minutes, 17 minutes and 38 minutes, respectively.
More evalution details could be found in Appendix E.

4.3 MAIN RESULTS

The compared results are shown in Table 1. It is evident that:

(1) Compared with LLaVA-Video and Qwen2.5-VL across two model scales (7B and 72B), Ours-
Go demonstrates substantial performance gains on five prominent long-form video benchmarks.
Specifically, the 7B-scale models exhibit performance improvements of 5.3% and 5.0% respectively,
and the 72B-scale models could achieve gains of 3.6% and 3.2% respectively. It shows our method
could improve the baseline significantly. Ours-PO outperforms Ours-GO in most cases due to the
guaranteed presence of correct answers in provided options. It indicates the method could leverage
the prior knowledge of the options.

(2) Ours-Go outperforms the SOTA training-free approaches AKS and AdaReTake overall. Ours-
Go achieves comparable performances in datasets with relatively shorter videos including MLVU,
LongVideoBench and VideoMME, while shows clear advantage in longer video datasets LVBench

7
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and VideoEval-Pro (more detailed results on these two benchmarks are in Appendix B). Specifically,
based on LLaVA-Video-7B, Ours-Go outperforms AdaReTake by an average of 0.6% on the first
three datasets and by 2.8% on the latter two. Compared with AKS, Ours-Go lags slightly by an
average of 0.4% on the former three datasets but surpasses it by an average of 3.0% on the latter
two. It shows our potential for long video understanding.

(3) Since AdaReTake operates via token-level compression, we could further integrate the two ap-
proaches, yielding improved results of 1.3% and 1.0% as shown in ”Ours-Go + AdaReTake” and
”Ours-PO + AdaReTake”.

(4) Overall, our method achieves SOTA average performance except proprietary models on these
benchmarks without any training. This underscores the effectiveness and practicality of our ap-
proach in real-world long video understanding scenarios.

Since AKS doesn’t provide code for Qwen2.5-VL, here we compare it only on LLaVA-Video for
rigorous. We don’t compare with other training-free methods due to differing used models and miss-
ing results on certain benchmarks, making direct comparison infeasible. More detailed comparisons
with AKS and results of other training-free methods are included in Appendix A for reference.

4.4 ABLATION STUDIES

Table 3: Ablation for VTR models on
LVBench. Res. refers to video resolution.
Time refers to average inference time (sec-
ond) per minute video.

Model Size Res. Acc Time

CLIP-B/32 0.2B 224 49.8 0.6
CLIP-B/16 0.2B 224 50.5 0.7
CLIP-L/14 0.4B 224 50.8 0.9
CLIP-L/14-336 0.4B 336 51.2 1.7

PE-L/14 0.6B 336 52.0 1.8
PE-G/14 2.4B 448 54.2 15.5

SigLIP-LLaVA 0.8B 384 52.0 -

Effect of components. We demonstrate perfor-
mance improvements after integrating partial com-
ponents of our method into LLaVA-Video-7B and
Qwen2.5-VL-7B, as shown in Table 2. We could ob-
tain the follow key findings: (1) Image-text retrieval
for top-N frames yields significant gains of 4.3%
and 2.0% respectively. Retrieving top-k video seg-
ments with uniform sampling within each segment
provides only marginal gains of 0.2% and 0.0%.
It indicates that direct retrieval on video segments
plays similar role with frame retrieval. (2) In con-
trast, incorporating our AFS based on video-text re-
trieval provides additional improvements of 0.7%
and 0.8%, and our DRA in Qwen2.5-VL-7B con-
tributes a substantial 2.1% gain. The reason is that
the proposed AFS and DRA could focus on more
important cues adaptively. (3) Furthermore, utiliz-
ing our generated options for similarity computation yields 0.7% and 0.4% improvements, while
leveraging provided multiple-choice options achieves further gains of 1.5% and 1.2%.

Table 4: Ablation for segment length and fps.

Model FPS Segment Length
0 8s 16s 32s 64s

LLaVA
0.5 51.8 53.4 52.7 51.5 48.7
1.0 51.4 54.2 52.0 50.8 47.4
2.0 51.0 53.6 53.7 50.9 48.6

Qwen
0.5 48.9 54.3 54.5 54.0 50.3
1.0 49.8 54.0 55.2 52.8 50.0
2.0 49.2 54.8 54.3 52.9 49.8

Ablation for VTR models. Table 3 presents
zero-shot video-text retrieval results using
image-text retrieval models (CLIP) and pre-
trained video-text retrieval models (Perceptio-
nEncoder). Results demonstrate that models
with larger parameters, higher resolution, and
video-specific pretraining could enhance per-
formance. For computation constrained sce-
narios, smaller models remain viable alterna-
tives. We also introduce ”SigLIP-LLaVA”,
which directly reuses LLaVA-Video’s visual
encoder—requiring no additional VTR model
(see Appendix G). Moreover, in streaming sce-
narios, VTR inference time can be effectively hidden by overlapping it with video ingestion latency,
rendering it negligible (see Appendix H).

Ablation for segment length and sample fps. Table 4 shows results for LLaVA-Video-7B and
Qwen2.5-VL-7B on LVBench. When segment length is 0, video segments will degenerate to single
images. Results indicate that segment lengths of 8s or 16s yield superior performance, with VTR
model sampling fps of 1.0 being optimal. When the segment length is too long (e.g., 32s or 64s),
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performance drops due to loss of fine-grained event details. Lower fps and longer segments reduce
computational cost, making this configuration suitable for resource-constrained scenarios.

Table 5: Ablation for video segment retrieval.

Model Frames Top-K
4 8 16 32 64

LLaVA
16 48.6 47.7 46.0 - -
32 50.0 51.0 49.3 47.5 -
64 51.9 53.3 54.2 48.5 46.7

Qwen

64 50.4 50.2 49.4 46.5 45.3
256 51.6 51.5 52.2 52.6 49.8
512 - 52.8 53.4 53.5 53.9

1024 - - 54.6 53.7 53.8

Ablation for video segment retrieval.
Table 5 shows results for LLaVA-Video-
7B and Qwen2.5-VL-7B on LVBench
with varying top-k selections and differ-
ent total frame counts. The results indi-
cate that retrieving more video segments
may degrade performance, due to the in-
clusion of irrelevant content and a reduc-
tion of information per segment.

Ablation for similarity computation.
Table 6 presents results on VideoEval-Pro
and LVBench using LLaVA-Video-7B,
comparing performance with question-
only inputs, generated options, and pro-
vided options. We also report the upper bound of our method using correct answers for similarity
computation. Results shows that provided options significantly enhance performance, while gener-
ated options are essential for open-ended questions lacking predefined options.

4.5 OPTION GENERATION QUALITY

To systematically evaluate the quality of the generated options, we introduce two complementary
metrics: (1) Option Coverage Accuracy (OCA) — the proportion of questions for which at least
one generated option is semantically equivalent to the ground-truth answer. A high OCA indicates
that the generator reliably includes the correct answer within its output for most questions. (2)
Mean Proportion of Correct Options (MPCO) — the average fraction of semantically correct
options among all generated options. This metric penalizes models that generate many incorrect or
irrelevant options alongside the correct one. Details of these metrics could be found in Appendix F.

Fig. 3 illustrates how the number of option generation rounds affects LLaVA-Video’s performance
on VideoEval-Pro in terms of answer accuracy, OCA, and MPCO. As the number of rounds increases
from 1 to 4, OCA steadily rises (54.6% → 63.8%), indicating improved coverage of semantically
correct options. In contrast, MPCO consistently declines (26.8% → 20.0%), reflecting the dilution
of correct options in an expanding pool of distractors. Notably, model accuracy initially benefits
from improved OCA (rising from 54.2% to 55.3% within 3 rounds), but begins to slightly decline
thereafter (55.3% → 55.1%) — suggesting that beyond a certain point, the inclusion of additional
distractors outweighs the gains from better option coverage, ultimately harming answer accuracy.

Table 6: Ablation for similairty computation.

Method
VideoEval-Pro

LVBenchOpen MCQ

only question 31.0 54.2 50.2
generate 1 round 31.2 54.3 50.7
generate 2 rounds 32.1 54.3 50.8
generate 3 rounds 32.7 55.3 51.3
generate 4 rounds 31.9 55.1 50.4
provided options - 56.9 54.2
correct answer 36.4 60.9 58.6
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Figure 3: Impact of option generation rounds

5 CONCLUSION

We propose a training-free framework for long video understanding through dynamic adjustment
of frame resolution and sampling density, leveraging similarities between video, query, and options.
Evaluated on five benchmarks with multiple MLLMs, our approach achieves significant performance
gains, demonstrating a scalable and effective paradigm for long-form video comprehension.
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A MORE QUANTITATIVE COMPARISON

A.1 EXTRA COMPARISON WITH AKS

To fairly compare with AKS (Tang et al., 2025) under same retrieval model, two additional experi-
ments are conducted: (1) Firstly, we replace the vision-language model in AKS with PE-G/14 (Bolya
et al., 2025), as used in our method, while keeping all hyperparameters identical to those in the orig-
inal AKS. This variant is denoted as ”AKS (PE)”. We compare it with the original AKS and ”Ours-
GO (PE)” (our method with PE-G/14); (2) The CLIP-B/32 (Radford et al., 2021) is used in our
method (”Ours-GO (CLIP)”), which is consistent with the original AKS. We conduct experiments
under both LLaVA-Video-7B (Zhang et al., 2024b) and Qwen2.5-VL-7B (Bai et al., 2025) back-
bones. Since the AKS does not support Qwen2.5-VL-7B, we implement it with 768 frames to align
with our method, while keeping all other hyperparameters unchanged. The results are presented in
Table 7.

As shown in Table 7, when paired with LLaVA-Video-7B, AKS (PE) exhibits inferior performance
compared to the original AKS using CLIP-B/32. Even though AKS (PE) outperforms AKS in
combination with Qwen2.5-VL-7B, both fall short of the baseline Qwen2.5-VL-7B. Since AKS
doesn’t provide source code on PE-G/14 and Qwen2.5-VL-7B, these comparisons are not rigorous
and just for reference. It indicates that the native employment of better retrieval model and backbone
could not improve performances directly, which demonstrates our advantages.

Except for the generalization of hyperparameters, the reason may come from the method mecha-
nism. AKS aims at maintaining temporal coverage across the video. This design is beneficial for
relatively short videos (e.g., in LongVideoBench (Wu et al., 2024) and VideoMME (Fu et al., 2025)),
it becomes less effective—and theoretically less meaningful—for hour-long videos, where the sheer
duration and sparse distribution of critical events make coverage less important than precise, query-
focused retrieval. In such scenarios, overemphasis on coverage may dilute the selection of highly
relevant segments, ultimately harming performance. In contrast, our approach does not prioritize
full-video coverage and instead focus on retrieval accuracy, leading to superior performance espe-
cially on longer video benchmarks (e.g., LVBench (Wang et al., 2024b) and VideoEval-Pro (Ma
et al., 2025a)).

A.2 OTHER TRAINING-FREE METHODS

More training-free methods are listed in Table 8: MRVideo (Pang & Wang, 2025), DeepDiscov-
ery (Zhang et al., 2025b), MenVid (Yuan et al., 2025), QuoTA (Luo et al., 2025), E-VRAG (Xu
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Table 7: Comparisons on widely used benchmarks. LongVB and VMME refer to LongVideoBench
and VideoMME, respectively.

Model
LVBench MLVU LongVB VMME VideoEval-Pro

AverageOverall M-Avg Overall Overall Open MCQ

LLaVA-Video-7B 42.0 69.3 57.4 63.2 24.2 47.6 50.6
+ AKS (CLIP) 47.0 69.1 62.9 65.3 28.9 51.3 54.1
+ Ours-GO (CLIP) 49.1 71.5 60.2 64.1 29.9 54.8 54.9
+ AKS (PE) 46.4 69.1 60.7 64.1 30.0 52.9 53.9
+ Ours-GO (PE) 51.3 70.3 61.0 64.8 32.7 55.2 55.9

Qwen2.5-VL-7B 45.5 69.4 61.0 66.4 27.7 46.6 52.8
+ AKS (CLIP) 45.0 65.9 58.6 63.2 25.4 46.2 50.7
+ Ours-GO (CLIP) 50.9 71.5 60.9 66.7 31.3 53.1 55.7
+ AKS (PE) 46.1 67.1 58.8 62.4 26.0 47.6 51.3
+ Ours-GO (PE) 52.7 72.3 63.4 66.7 35.0 56.9 57.8

Table 8: More training-free methods. LongVB and VMME refer to LongVideoBench and
VideoMME, respectively.

Method Used Models
LVBench MLVU LongVB VMME

M-Avg Overall Overall Overall

MRVideo Gemini-2.0- Flash/GPT4o 60.8 - - -
DeepDiscovery GPT-4.1+OpenAI o3 74.2 - 71.6 -

MemVid LanguageBind-Large+Qwen2VL-7B 44.4 58.1 - 63.7
QuoTA Qwen2-VL-2B+LLaVA-Video-7B - 71.9 59.0 65.9
E-VRAG ? 70.2 63.1 65.4
APVR LLM?+CLIP+Ground-DINO+Qwen2.5-VL-7B - - 69.4 68.4

Ours-GO PerceptionEncoder+Qwen2.5-VL-7B 52.7 72.3 63.4 66.7
Ours-PO PerceptionEncoder+Qwen2.5-VL-7B 55.5 74.1 63.3 67.9

et al., 2025) and APVR (Gao et al., 2025). However, due to the use of different (and in some cases
unspecified) base models, as well as missing evaluation results on certain benchmarks, a direct com-
parison is not feasible; thus, the results are provided for reference only.

B DETAILED RESULTS ON VIDEOEVAL-PRO AND LVBENCH

B.1 ADDITIONAL RESULTS ON VIDEOEVAL-PRO

We additionally report accuracy of 4 sub-tasks on both Open and MCQ subset: (1) Local Perception
(LP): Identify and retrieve visual elements or actions within short clips from long videos, covering
object, action, attribute, and entity recognition, as well as segment and needle-in-a-haystack QA. (2)
Local Reasoning (LR): Perform reasoning over short event sequences, including temporal, causal,
and object-action relationships within localized time windows. (3) Holistic Perception (HP): Un-
derstand global visual patterns through aggregated spatial or structural information, primarily in-
volving visual counting. (4) Holistic Reasoning (HR): Achieve high-level understanding of long
videos by reasoning about events, narrative structure, and underlying intent.

As shown in Table. 9 and Table. 10, Ours-GO achieves relatively higher accuracy gains on the
local perception task. This improvement can be attributed to its retrieval-based architecture, which
explicitly focuses on retrieving video segments most relevant to the question, thereby enhancing the
model’s sensitivity to local visual details.

Results in Table. 10 also show that Ours-PO achieves greater performance improvements on holistic
reasoning task compared to Ours-GO. This is primarily because the option generation process in
our framework is guided by local, question-relevant segments, which makes it challenging to in-
fer answers that depend on global video semantics or require complex, multi-step reasoning over
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Table 9: Detailed results on VideoEvalPro-Open

Method LP LR HP HR Overall

LLaVA-7B 28.5 13.6 20.7 19.3 24.2
+Ours-GO 40.8 19.7 20.7 22.3 32.7

Qwen-7B 33.9 15.6 24.8 17.8 27.7
+Ours-GO 43.3 18.4 30.6 22.3 35.0

LLaVA-72B 31.3 17.7 24.8 19.3 26.7
+Ours-GO 39.2 23.8 20.7 26.5 33.1

Qwen-72B 35.0 22.4 25.6 21.6 29.9
+Ours-GO 44.5 17.7 35.5 24.2 36.5

Table 10: Detailed results on VideoEvalPro-MCQ

Method LP LR HP HR Overall

LLaVA-7B 53.2 46.9 39.7 35.2 47.6
+Ours-GO 63.4 51.7 34.7 43.2 55.2
+Ours-PO 63.4 55.1 34.7 49.2 56.9

Qwen-7B 50.9 49.0 33.9 39.0 46.6
+Ours-GO 63.1 52.4 43.8 47.3 56.9
+Ours-PO 63.4 50.3 42.1 52.3 57.6

LLaVA-72B 54.6 57.1 32.2 41.7 50.1
+Ours-GO 63.4 62.6 33.1 53.0 58.3
+Ours-PO 64.5 61.9 35.5 58.0 60.1

Qwen-72B 60.5 59.9 38.0 48.9 55.9
+Ours-GO 67.8 59.2 47.9 53.0 61.9
+Ours-PO 70.1 60.5 46.3 57.2 64.2

long-range dependencies. However, since Ours-PO leverages provided options—which ensure the
inclusion of the correct answer—it mitigates this limitation and improving performance on holistic
reasoning task.

B.2 ADDITIONAL RESULTS ON LVBENCH

We additionally report accuracy on six sub-tasks: (1) Entity Recognition (ER): Identify and track
entities, their relations, actions, and associations over time. (2) Event Understanding (EU): Rec-
ognize video-level semantics including genre, events, and scene changes. (3) Key Information
Retrieval (KIR): Extract precise factual details, such as on-screen text. (4) Temporal Grounding
(TG): Locate and describe events at specific timestamps. (5) Reasoning (Rea): Perform causal,
emotional, intentional, and prospective reasoning about video content. (6) Summarization (Sum):
Generate abstractive summaries capturing the full video narrative.

Consistent with the findings on VideoEval-Pro, the results in Table 11 demonstrate that Ours-GO
achieves notable improvements on tasks that primarily require understanding of local visual con-
tent—such as entity recognition, event understanding, and key information retrieval. On more chal-
lenging, holistic tasks that demand comprehensive understanding and synthesis-such as reasoning
and summarization, Ours-PO outperforms Ours-GO.

C QUALITATIVE COMPARISON

We provide several videos in the Supplementary Materials to visually compare our method with the
baseline using the Qwen2.5-VL-7B backbone. The top of each video displays the given question
and options. Below that, on the left side are the frames sampled by our method, and on the right
side are the frames uniformly sampled by the baseline method. At the bottom, the similarity scores
over video time in our method are visualized, such as Fig 4. Specifically, the horizontal axis denotes
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Table 11: Detailed results on LVBench

Method ER EU KIR TG Rea Sum Overall

LLaVA-Video-7B 43.6 40.0 39.5 34.5 46.8 32.8 42.0
+Ours-GO 54.8 49.1 55.7 35.0 44.8 32.8 51.3
+Ours-PO 57.8 51.3 59.5 47.3 48.8 36.2 54.2

Qwen2.5-VL-7B 44.3 43.9 50.5 40.9 50.2 36.2 45.5
+Ours-GO 53.5 49.8 62.2 41.8 54.2 36.2 52.7
+Ours-PO 57.3 52.9 62.5 41.4 53.2 34.5 55.5

LLaVA-Video-72B 44.6 45.0 48.8 39.5 50.7 37.9 46.1
+Ours-GO 55.5 49.0 58.4 37.7 49.3 32.8 51.7
+Ours-PO 59.2 52.7 60.5 45.5 52.2 34.5 54.8

Qwen2.5-VL-72B 49.2 49.1 54.0 36.8 56.7 34.5 49.6
+Ours-GO 55.4 49.9 63.6 37.3 54.7 41.4 54.0
+Ours-PO 58.6 54.1 65.6 42.7 55.7 31.0 56.9
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Figure 4: The horizontal axis denotes the video timeline (in seconds), where the blue curve repre-
sents video-query-option similarity, the orange area indicates sampled frames (with darker shading
corresponding to higher sampling density). The green line depicts similarity-based resolution allo-
cation, while the red line represents uniform sampling resolution.

the video timeline (in seconds), where the blue curve represents our video-query-option similarity,
the orange area indicates sampled frames (with darker shading corresponding to higher sampling
density). The green line depicts similarity-based resolution allocation, while the red line represents
uniform sampling resolution. The green scanline corresponds to our method, and the red scanline to
uniform sampling. Along the right side of each scanline, the associated frame resolution is displayed.
We provide two video examples:

(1) In the video ”01262.mp4”, to answer ”What’s the weakness of the villain?”, our method—unlike
uniform sampling—focuses sampling on the critical sequence where Tom and Jerry fetch water to
confront the villain, guided by video-query-options similarity scores. At 2:42, the woman defeats
the villain with a bucket of water, clearly revealing his weakness-water; at this moment, the similar-
ity score peaks, sampling is densest, and resolution is highest (560×308), enabling Qwen2.5-VL-7B
to correctly answer the question. Conversely, uniform sampling assigns all frames a small resolu-
tion (252x140) and includes many frames that are irrelevant to the question. As a result, uniform
sampling approach leads to an incorrect answer.

(2) In the video ”01254.mp4”, when tasked with answering the question ”How often do the people
take water breaks?”, our method strategically samples five key moments of people taking water
breaks at a high resolution. At each of these moments, the time is clearly visible at the bottom of
the screen. Leveraging this visible time information, the Qwen2.5-VL-7B can accurately infer that
people take water breaks every 5 minutes. On the contrary, due to the relatively short duration of
these five moments, uniform sampling fails to capture all of them. Additionally, because uniform
sampling uses a low resolution, the Qwen2.5-VL-7B model is unable to recognize the time displayed
on the screen. These factors ultimately lead to an incorrect answer when using uniform sampling.
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D PSEUDOCODE OF OUR METHOD

As outlined in Algorithm 1, given a set of pre-segmented video clips V and a question q , our method
first encodes the question and all video segments using a video-text retrieval (VTR) model to obtain
embeddings. Initial video–question similarity scores (S0) are computed via cosine similarity, and
the top-R·N most relevant segments are selected to form a refined candidate pool V ′. Over R rounds
of option generation, the algorithm samples N segments from V ′ per round, applies Adaptive Frame
Sampling (AFS) guided by S0, and enhances frame quality via Dynamic Resolution Allocation
(DRA). These processed frames are fed into a Multimodal Large Language Model (MLLM) to
generate diverse candidate answer options. Each option is then combined with the original question,
re-encoded by the VTR model, and scored against all segment embeddings; the maximum similarity
across options yields a refined relevance score. Finally, the top-N segments are retrieved based on
this similarity score, resampled with AFS and DRA, and passed to the MLLM together with the
question to produce the final answer. Note that the R rounds of option generation are not temporally
dependent and can be parallelized for acceleration.

Algorithm 1 Our Method

Require: Video segments (V), question (q), option generation round (R), sampled frame num (N ),
video-text retrieval model (VTR), multimodal large language model (MLLM), Adaptive frame
sampling (AFS), Dynamic Resolution Allocation (DRA).

Ensure: Answer the question according to the video.
1: segment embeddings← ∅
2: simiarities← ∅
3: generated options← ∅
4: q embedding ← VTR(q)
5: for each Vi ∈ V do
6: segment embedding.append(VTR(Vi))
7: end for
8: S0 ← cosine simiarity(q embedding, segment embeddings)
9: V ′ ← TopK(V, S0, R ·N)

10: for r ← 1 to R do
11: Vr ← (Vr+kR)

N−1
k=0 , V ∈ V ′

12: sampled frames← DRA(AFS(S0,Vr))
13: options← MLLM(′Please generate some options....′, sampled frames)
14: generated options.extend(options)
15: end for
16: for each o ∈ generated options do
17: o embedding ← VTR(q + o)
18: S ← cosine simiarity(o embedding, segment embeddings)
19: similarities← max(simiarities, S)
20: end for
21: Vfinal ← TopK(V, simiarities,N)
22: sampled frames← DRA(AFS(simiarities,Vfinal))
23: answer ← MLLM(q, sampled frames)
24: return answer

E MORE EVALUTATION DETAILS

E.1 BENCHMARKS DETAILS

In Table 12, we present the number of videos, the number of question - answer (QA) pairs, and the
average video duration across the five long video benchmarks we utilized. Additionally, in Fig. 5,
we illustrate the duration distribution of these five benchmarks. These demonstrate that LVBench
and VideoEval-Pro contain a higher proportion of long videos compared to the other benchmarks.
This characteristic enables our method to achieve better performance on these two benchmarks.
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Table 12: Benchmarks infomation

Benchmark Videos QAs Avg Duration

LVBench 103 1549 67.3 min
VideoEvalPro 465 1289 38.2 min
VideoMME 900 2700 17.0 min
MLVU 1122 2174 12.6 min
LongVideoBench 735 1337 7.9 min
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Figure 5: Benchmark duration distribution.

E.2 EVALUATION PROMPTS

We provide the prompts used in our evalutaion on 5 long video benchmarks :

LVBench

{question}
(A) {optionA}
(B) {optionB}
......
Answer with the option's letter from the given choices directly.

VideoEvalPro-MCQ

Select the best answer to the following multiple-choice question based
on the video. Respond with only the letter (A, B, C, or D) of the
correct option, with no text around it.
{question} A. {optionA} B. {optionB} ......

VideoEvalPro-Open

{question} Keep the answer short and concise.

VideoMME

Select the best answer to the following multiple-choice question based
on the video and the subtitles. Respond with only the letter (A, B, C,
or D) of the correct option.
{question}
A. {optionA}
B. {optionB}
......
Answer with the option's letter from the given choices directly.

MLVU
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Carefully watch this video and pay attention to every detail. Based on
your observations, select the best option that accurately addresses the
question.
Question: {question}
Options:
A. {optionA}
B. {optionB}
......
Only give the best option.
Best Option:

LongVideoBench

{question}
A. {optionA}
B. {optionB}
......
Answer with the option's letter from the given choices directly.

E.3 TIMING MEASUREMENTS

All timing measurements presented in this article (Table 3) were obtained under the specific system
configuration detailed below.

CPU : 20 x Intel(R) Xeon(R) Platinum 8457C
MEM : 225 GB
GPU : 1 x NVIDA-H20 (96GB)

Note that execution times may vary across different environments due to hardware, software, or
system load differences.

F DETAILS OF OPTIONS GENERATION QUALITY

Formally, let n denote the total number of evaluation questions. For the i-th question, let Qi be the
question text, Ai the ground-truth answer, and Oi the set of generated options. We define SCOC
(Semantic Correct Option Count) as the number of options in Oi that are judged to be semantically
equivalent to Ai, where semantic equivalence is determined via a GPT-based judgment. Specifically,
we employ a simple prompt to instruct the large language model gpt-4.1-2025-04-14 to count the
number of semantically correct options for a given question, along with its corresponding answer
and candidate options. The prompt used is as follows:

You are an intelligent chatbot designed to evaluate the correctness of
given options.
You will be provided with a question, a reference answer, and a set of
options.
Without relying on external knowledge, determine whether the correct
answer is included in the provided options, and count the number of
correct answers in the options.
```
Question: {question}
Reference Answer: {target}
Options: {gen_opts}
```
Please directly return the number of correct options, without any
additional text. If no option is correct, return 0.

The metrics OCA and MPOC are then computed as follows:

OCA =
1

n

n∑
i=1

I[SCOCi > 0], (10)
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MPOC =
1∑n

i=1 I[SCOCi > 0]

n∑
i=1

(
SCOCi

|Oi|
· I[SCOCi > 0]

)
, (11)

where I[·] denotes the indicator function (equals 1 if the condition is true and 0 otherwise).

G ACCELERATION WITHOUT EXTRA MODEL

Notably, both the VTR model and the MLLM’s visual encoder perform similar operations: extract-
ing visual tokens and (in VTR’s case) pooling them into video embeddings. This raises an important
opportunity for optimization: What if we eliminate redundant computation by reusing the visual to-
kens already extracted by the MLLM’s visual encoder? Specifically, instead of having VTR model
computes frame embeddings and then recomputing visual tokens by MLLM, we could directly use
the MLLM’s native visual encoder to extract both the visual tokens and derive the pooled video
segment embeddings. This would effectively eliminate time , since token extraction and embed-
ding aggregation would occur in a single unified pass. Therefore, we could revise Algorithm 1 into
Algorithm 2 by eliminating the additional VTR model.

Algorithm 2 Our Method Without Extra Model

Require: Video segments (V), question (q), option generation round (R), sampled frame num (N ),
multimodal large language model (MLLM), Adaptive frame sampling (AFS), Dynamic Resolu-
tion Allocation (DRA).

Ensure: Answer the question according to the video.
1: segment embeddings← ∅
2: visual tokens cache← ∅
3: simiarities← ∅
4: generated options← ∅
5: q embedding ← MLLM text encoder(q)
6: for each Vi ∈ V do
7: visual tokens, visual embedding ← MLLM visual encoder(Vi)
8: segment embedding.append(visual embedding)
9: visual tokens cache.extend(visual tokens)

10: end for
11: S0 ← cosine simiarity(q embedding, segment embeddings)
12: V ′ ← TopK(V, S0, R ·N)
13: for r ← 1 to R do
14: Vr ← (Vr+kR)

N−1
k=0 , V ∈ V ′

15: sampled frames← DRA(AFS(S0,Vr))
16: visual tokens← visual tokens cache.get(sampled frames)
17: options← MLLM(′Please generate some options....′, visual tokens)
18: generated options.extend(options)
19: end for
20: for each o ∈ generated options do
21: o embedding ← MLLM text encoder(q + o)
22: S ← cosine simiarity(o embedding, segment embeddings)
23: similarities← max(simiarities, S)
24: end for
25: Vfinal ← TopK(V, simiarities,N)
26: sampled frames← DRA(AFS(simiarities,Vfinal))
27: visual tokens← visual tokens cache.get(sampled frames)
28: answer ← MLLM(q, visual tokens)
29: return answer

For LLaVA-Video, the visual encoder is fine-tuned from SigLIP (Zhai et al., 2023), a model origi-
nally pretrained on large-scale image-text retrieval tasks — making it inherently well-suited for use
as a VTR model. Notably, LLaVA-Video removes SigLIP’s original vision pooling head (approx-
imately 15M parameters), as it is unnecessary within the MLLM’s architecture. In our implemen-
tation, we reintroduce the pooling head by directly copying it from the original SigLIP checkpoint,
without any additional fine-tuning or parameter updates. Additionally, we directly leverage SigLIP’s
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pretrained text encoder to compute text embeddings. Since the text encoder of SigLIP is lightweight
and each question embedding is computed only once per query, the associated computational cost is
negligible. While one could alternatively use the MLLM’s native text encoder and attach a trainable
pooling head to generate text embeddings, this would require additional fine-tuning — violating our
design principle of training-free adaptation.

The resulting model, which we refer to as “SigLIP-LLaVA”, is evaluated in Table 3. Remarkably,
even without task-specific adaptation of the pooling head, SigLIP-LLaVA achieves strong perfor-
mance on LVBench — outperforming the baseline by approximately 10%, and falling only 2.2%
behind our best-performing model. This finding further supports the availability of Algorithm 2. In
contrast, for Qwen2.5-VL, the visual encoder does not include a native pooling head suitable for gen-
erating video embeddings — meaning that introducing such a component would require additional
training. Since the primary goal of this work is to explore training-free architectural optimizations,
we do not implement this extension in our current pipeline. However, this remains a compelling
avenue for future research.

H STREAMING LONG VIDEO UNDERSTANDING

Our method is primarily designed to enhance offline long video understanding capabilities without
requiring any training, and as such, computational efficiency or inference latency is not the main
focus. Nevertheless, our approach can be easily adapted for streaming long-video understanding
scenarios with minimal modifications.

As outlined in Algorithm 3, at certain sampling fps, the system checks whether the user has asked a
question. If no question is detected, a frame is sampled from the video stream. The VTR model is
used to compute the frame embedding, which is then cached. Once T frames have been accumulated,
the system computes a video segment embedding from these T frame embeddings and stores it. If a
question is posed, the VTR model is used to encode the question into an embedding. This question
embedding is then compared with historical video segment embeddings to compute similarity scores
(VQOS). Then, AFS and DRA are applied to sample N relevant frames from the historical cache.
These frames, along with the question, are fed into a Multimodal Large Language Model (MLLM)
to generate an answer.

Notably, our method performs well under the configuration fps = 1 and T = 16 , as demonstrated
in Section 4. In streaming video scenarios, the time required for frame embedding extraction is
negligible: even when using the largest video-text retrieval (VTR) model (PE-G/14), the frame
embedding computation takes only 15.5/60 ≈ 0.26 seconds (Table 3), which is well below the
inter-frame interval of 1

fps = 1 second. Thus, embedding extraction introduces no bottleneck in
streaming video processing.
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Algorithm 3 Streaming Video Processing with Our Method

Require: Video stream, sampling fps (fps), video segment length (T ), multimodal large language
model (MLLM), video-query-options similairity (VQOS), adaptive frame sampling (AFS), dy-
namic resolution allocation (DRA).

Ensure: Answers to user questions on the streaming video.
1: visual tokens cache← ∅
2: segment embeddings← ∅
3: frame embeds buffer ← ∅
4: while video stream is active do
5: if video time mod 1

fps == 0 then
6: if user has question q then
7: q embedding, text tokens← MLLM text encoder(q)
8: similarities← VQOS(segment embeddings, q embedding)
9: sampled visual tokens← DRA(AFS(similarities, visual tokens cache))

10: answer ← MLLM(text tokens, sampled visual tokens)
11: Print answer
12: else
13: frame← sample frame(video stream)
14: frame embedding, visual tokens← MLLM visual encoder(frame)
15: visual tokens cache.append(visual token)
16: frame embeds buffer.append(frame embedding)
17: if len(frame buffer) == T then
18: segment embedding ← aggregate(frame buffer)
19: segment embeddings.append(segment embedding)
20: frame embeds buffer ← ∅
21: end if
22: end if
23: end if
24: end while
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