
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NUDGING THE BOUNDARIES OF LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Current online reinforcement learning (RL) algorithms like GRPO share a key
limitation in LLM reasoning: they cannot learn from problems that are “unsolv-
able” to the model. In other words, they can only improve performance on prob-
lems where the model is capable of exploring the correct answer. If a problem is
too difficult–such that even hundreds of attempts never produce a correct solution–
the model cannot learn from it. Consequently, the model’s “upper limit” remains
unchanged after RL training, even though the likelihood of solving easier, solv-
able problems may increase. These hard, unsolvable samples–though potentially
rich in learning signal–cannot contribute to training, as no rollouts yield rewards
and thus no gradients are produced. To unlock learning from these hard samples,
we propose NuRL 1, a “nudging” method that aims to push the upper bound of
LLM reasoning using self-generated hints, i.e., abstract cues that help reduce the
problem difficulty for the model. Given a question and its gold answer, the model
generates a Chain-of-Thought (CoT) and then produces a hint containing the core
knowledge needed to solve the problem. During online RL training, we generate
G rollouts from the base policy and use the pass rate to decide whether the hint
should be injected. For hard samples with a 0% pass rate, we inject the offline-
generated hint and regenerate a new batch of trajectories. This yields two benefits:
(1) the hint boosts pass rates (from 0% to non-zero), thereby introducing training
signals for previously unsolvable samples, and (2) the hints are self-generated
(conditioned on the gold answer), avoiding distributional shift and do not rely
on external models. Compared to standard GRPO, NuRL achieves consistent
improvements across six diverse benchmarks and three models, while remaining
complementary to test-time scaling. Notably, NuRL can raise the model’s upper
limit, whereas GRPO leaves pass@1024 unchanged from the base model. Fur-
thermore, we present a systematic study of what makes an effective hint and when
hints are most useful. Interestingly, the best hints are abstract and high-level–as
revealing gold answers actually hurt performance–and are most beneficial when
applied necessarily and after GRPO has converged.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) algorithms have played a central role in improving
the reasoning abilities of large language models (LLMs). Despite many promising advances, current
online RL algorithms share a key limitation: they cannot learn from problems that are unsolvable
under the base policy. In other words, if the model cannot reach the correct answer even after exten-
sive exploration, then no meaningful learning signal can be obtained from the problem. On a similar
vein, a growing body of work finds that post-training mainly encourages models to generate already
high-reward trajectories (He et al., 2025; Yue et al., 2025; Dang et al., 2025; Zhao et al., 2025). As
a result, the model’s upper limit–often measured by pass@k for large k—remains unchanged after
RL training. Intuitively, learning from harder samples offers a clear path to improving a model’s
performance and expanding its ceiling capacity. In other words, learning from the hard samples has
two key benefits: (1) extracting more training signal from the same dataset (improving pass@1),
and (2) enabling the model to solve previously unsolvable problems, thereby extending its capabil-
ity boundary (improving pass@k). However, precisely because these problems are difficult, models
often cannot learn them without appropriate guidance or intervention from a teacher model.

1Pronounced like “neural” (nur·uhl)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Learning Zone

Anxiety Zone

Comfort Zone
Can learn alone

Learning Zone
Can learn with help

Anxiety Zone
Out of reach

Comfort Zone

Base Ability
Starting point

GRPOQ
!! = 0

!" = 0

Correctness Reward ?
?

Cannot learn from the unsolvable problems
Improves the model within the comfort zone

!

…… …

!

Hard
Problem

Q !! = 0……

Hint !" = 1

Enable learning from unsolvable problems
Expand the comfort zone for more gains"

"

“nudge”

NuRL (Ours)

Sources Types of Hint

Boundaries of Learning

Self Teacher Ans.

…

Expl. Abstract CuePartial Steps

Figure 1: GRPO yields substantial gains, but the improvements largely stem from extending the
model’s ability within its comfort zone, i.e., if the model fails to solve a hard problem after numerous
attempts, it is unable to learn from that problem. In NuRL, we address this by exploring various
forms of hints (abstract cues, partial steps, explanations, or even the gold answer), which can be
self-generated or teacher-generated. Both self- and teacher-generated abstract cues can expand the
model’s comfort zone, effectively transforming previously unsolvable problems into solvable ones.

This dynamic parallels Vygotsky’s concept of the Zone of Proximal Development (ZPD) (Vygot-
sky et al., 1978), which distinguishes between tasks a learner can solve independently (“comfort
zone” in Fig. 1) and those achievable only with appropriate guidance (“learning zone” in Fig. 1).
The inability to learn from hard samples – or the lack of improvement in pass@k – mirrors be-
ing trapped in the comfort zone. Motivated by this analogy, we ask: can models generate their
own “hints””—lightweight forms of guidance—so that even the hard problems become learnable?
Then, we propose NuRL (Nudging LLM with Reinforcement Learning), which adaptively injects
self-generated hints into training. Our hypothesis is that hard problems become more learnable
when paired with carefully abstracted hints (Huang et al., 2025; Park et al., 2025). These hints act
as light-weight “nudges,” transforming previously unlearnable samples into productive training sig-
nals. To achieve this, our approach begins with offline hint collection. Given a question and its gold
answer, we prompt the model to generate Chain-of-Thought (CoT; Wei et al., 2022) reasoning that
connects the two. Using the question and CoT as input, the model then produces a high-level cue
that captures the core knowledge required to solve the problem. We also explore various types of
hints as shown in the bottom-left of Fig. 1, where the hints can be self-generated or provided by a
stronger model (e.g., GPT-o4-mini (OpenAI, 2025)), and the forms of hints can be abstract cues,
partial steps, explanations, or even the gold answer. We find that self-generated hints are effective,
while teacher-generated hints give further improvements. Importantly, effective hints are abstract
and conceptual: they neither reveal the final answer nor provide detailed solution steps, but only
mention what core knowledge is needed to solve this problem (see the bottom left in Fig. 2).

We adopt GRPO (Shao et al., 2024) as the training framework. During training, the policy model
generates G rollouts per problem, and we use pass rate to decide when to inject hints. For hard
problems with a 0% pass rate, we inject the pre-generated hints to the end of the question, and
prompt the model to regenerate another G rollouts conditioned on the hints. Given the hint, the model
is more likely to produce successful solutions (non-zero pass rate), turning previously unlearnable
examples into learnable ones. This strategy offers two main advantages: (1) Hints boost pass rate,
enabling hard problems to produce meaningful training signals. (2) Hints remain within the model’s
distribution, since they are self-generated (conditioned on the answer), avoiding distributional shift
and does not require stronger external models. Together, these benefits allow NuRL to unlock value
from harder samples, broadening the set of problems that contribute to RL training.

We evaluate NuRL on six diverse benchmarks across multiple domains, including MATH 500,
MATH Hard, AIME, GPQA, MMLU-Pro and Date Understanding. Results show that NuRL boosts
the average performance with three different models (+1.62% using Llama, +1.75% using Octo-
Thinker, and +0.79% using Qwen as compared to GRPO), and when an external teacher model
is available for hint generation, the improvement can be further enlarged to up to 3.44%. More-
over, our analysis shows that (a) NuRL is complementary to test-time scaling methods such as
Self-Consistency (Wang et al., 2022) and shows larger improvement: our method improves 9.4%
with 16-way Self-Consistency, as compared to GRPO, which improves 7.8%. (b) NuRL is able to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

transform previously unsolvable problems into solvable ones, and that transfer to the improvements
on the upper limit of a model’s capacity. (c) Hints are useful when they are abstract and high-level.
The more exposure to the answer, the more severe the degradation. This aligns with human learning,
where effective hints should be abstract and high-level—providing guidance without revealing the
solution. Knowing the answer upfront risks biasing toward it and undermines generalization.

2 RELATED WORK

Reinforcement Learning with Verifiable Reward (RLVR). RLVR computes the reward using
rule-based verification, which is effective in improving LLM reasoning. The reward function can be
as simple as checking whether the model’s answer matches the gold answer (Lambert et al., 2024;
Guo et al., 2025; Team et al., 2025; Zeng et al., 2025). The success of RLVR is also supported by
advancements, including PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023), GRPO (Guo
et al., 2025) and many techniques like DAPO (Yu et al., 2025), Dr. GRPO (Liu et al., 2025b).

The Role of RL: Distribution Sharpening vs. Discovery. There has been an active discussion on
whether RL primarily performs distribution sharpening, i.e., amplifying behaviors already present
in the model, or enables genuine discovery of new reasoning abilities. The distribution-sharpening
view holds that RL mainly surfaces high-reward paths and increases their likelihood of generation
(Zhang et al., 2025a; Zhao et al., 2025; Shenfeld et al., 2025). This is often supported by the findings
that RL improves pass@1 but not pass@k (Yue et al., 2025; He et al., 2025), and that even weak
reward signals can yield substantial improvements (Shao et al., 2025; Zuo et al., 2025; Prabhudesai
et al., 2025; Wang et al., 2025a). On the other hand, some argue that RL fails to improve pass@k
not because of inherent limitations, but due to insufficient training or evaluating on tasks where
models already perform strongly (Liu et al., 2025a). Yuan et al. (2025) also show that RL can learn
new skills by combining existing ones. Zhang et al. (2025a) suggest that RL can both sharpen and
discover, with the balance determined by the trade-off between exploration and exploitation.

Mixture of Offline and Online RL. When the base policy fails to generate solutions that yield
non-zero rewards, replay buffer or off-policy optimization leverage previous positive trajectories
(Lu et al., 2025) or expert demonstrations (Levine et al., 2020). Recently, hybrid approaches that
mix online and offline training have been proposed to improve generalization (Yan et al., 2025; Phan
et al., 2025). A line of work uses SFT with RL to expand the model’s knowledge scope (Ma et al.,
2025; Fu et al., 2025; Zhou et al., 2025), while others employ hints to adjust problem difficulty
during training (Zhang et al., 2025b; Huang et al., 2025). Our work differs from these approaches in
two aspects. First, NuRL does not rely on SFT to broaden the model’s knowledge; instead, we focus
on the RL stage and analyze how different hints expand a model’s reasoning boundary. A notable
work is STaR (Zelikman et al., 2022), where the reasoning is bootstrapped from reasoning given the
answer. Our hints are further abstracted out from the reasoning to ensure it does not disclose the
answer. Second, we show that nudging the model with self-generated hints is effective: it enables
self-improvement (both pass@1 and pass@k) without depending on stronger external models.

3 METHODOLOGY

3.1 PRELIMINARY

Our method is based on GRPO (Shao et al., 2024). Specifically, GRPO updates the policy by
maximizing JGRPO(θ) using the following objective:

JGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

[
πθ(oi,t|oi,<t)

πold(oi,t|oi,<t)
Âi,t, clip

(
πθ(oi,t|oi,<t)

πold(oi,t|oi,<t)
, 1− ε, 1 + ε

)
Âi,t

]
,

where πθ is the policy, πold is the old policy, ε is the clipping range, and Ât is an estimator of the
advantage at time step t. Given a reward function f and a question-answer pair (q, a) from training
data D, the advantage is estimated by letting πθold samples a group of G responses {oi}Gi=1. Then, the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Base Policy

Question:
What process uses
electricity to
separate hydrogen &
oxygen from water?
A: filtration
B: combustion
C: electrolysis
D: distillation

…The answer is (D).

…The answer is (A).

…The answer is (A).

…The answer is (B).

Ans: (C)electrolysis

…The answer is (A).

…The answer is (B).

…The answer is (C).

…The answer is (C).

1

1

0

0

Correctness RewardIncorrect Output Correct Output

Standard GRPO: when all rollouts are incorrect →

NuRL: Nudging the LLM with hints to enable training signal

1 0

Hint: Electricity is
the main tool—like
using a battery—to
split something into
simpler pieces.

Hint

…The answer is (C).

…The answer is (C).

Rollout | Hint

All rewards are zero
(no training signal)

Exists non-zero rewards
(with training signal)

Only triggered when
all rollouts fail

Rollout

Figure 2: NuRL provides targeted guidance to the LLM policy during online GRPO training. Prior
to training, we construct an offline collection of hints, defined as abstract problem-specific cues that
reduce task difficulty. During the online training, whenever all G rollouts for a problem are incorrect,
NuRL augments G − 1 of the rollouts with the corresponding hint and regenerates the batch. This
intervention facilitates the acquisition of non-zero rewards on instances that would otherwise yield
uniformly zero rewards, thereby supplying informative training signals.

advantage of the i-th response is calculated by normalizing the rewards within the group {ri}Gi=1:

Âi,t =
ri − µr

σr
, µr =

1

G

G∑
i=1

ri, σr =

√√√√ 1

G

G∑
i=1

(ri − µr)2. (1)

We use the rule-based outcome correctness as the reward (Guo et al., 2025), i.e., f(ŷ, y) =
1, if is equivalent(ŷ, y) else 0, where y is the ground truth and ŷ is the predicted answer.

3.2 NURL: NUDGING LLMS WITH REINFORCEMENT LEARNING

Offline Hint Collection. Given a training dataset consisting of question–answer pairs D =

(qi, ai)
N
i=1, our method begins with offline hint collection. As illustrated in Fig. 1, hints can be

categorized by their source (self-generated by the model vs. provided by a teacher model) and their
type: (1) Abstract cues: generated by abstracting from an explanation of why an answer is correct,
designed to avoid revealing concrete details or the final answer. (2) Partial steps: obtained by gen-
erating a step-by-step solution using the gold answer, masking 75% of the steps (keep only the first
25%), with the model asked to complete the rest. (3) Explanations: formed by replacing incorrect
rollouts with gold-conditioned explanations that justify why the answer is correct. (4) Ground-
truth answer: appending the correct answer alongside the question with the prompt, “I was told
the answer is {gold answer}. Do not blindly accept it. Take it as a reference and provide your own
step-by-step reasoning.” Note that from (1) to (4) is a reverse order of how much information about
the answer is being revealed. Later in Section 5.2, we will show that the more disclosure about the
answer, the worse the performance is. Therefore, in this work, we mainly focus on self-generated
abstract cues as the hint (see Appendix E.1 for examples with different types of hints).

Concretely, to collect such high-level abstract cues that can simplify the problem without revealing
specific solution details, we first prompt the base policy LLM with both the question and the ground-
truth answer, and instruct it to generate a Chain-of-Thought (CoT; Wei et al., 2022) that explains why
the provided answer is correct. This can be expressed as y = πold(q, a; py) where πold is the initial
policy, y is the generated CoT, and py is the prompt (see Appendix D). We find that directly using
such explanation-style CoTs as hints is not effective (also will be shown in Section 5.2). To address
this, we introduce an abstraction step. Specifically, we prompt the LLM again with the question, the
answer, and the self-generated CoT (q, a, y), asking it to produce a high-level hint that reduces task

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

difficulty without being overly specific: h = πθ(q, a, y; ph) where ph is the hint generation prompt
as provided in Appendix D. After this process, the training data is augmented with hints, yielding
an enriched dataset D = {(qi, ai, hi)}Ni=1 where every sample has a corresponding hint.

Online Rollout Augmentation. After augmenting the training data with hints, we proceed with
online GRPO-style training. For each question q, the base policy first generates G rollouts without
hints. When all responses {oi}Gi=1 are incorrect (i.e., ri = 0 ⇒ Âi,t = 0 for all i), the advantages
vanish, yielding ∇JGRPO = 0 and thus no policy update. This is illustrated in the gray box of
Fig. 2, where the correct answer is C but none of the rollouts reach it. Similarly, if all rollouts are
correct, the task is trivially easy and again results in ∇JGRPO = 0. In practice, such uninformative
problems (both too hard and too easy) are often discarded to improve training efficiency (Yu et al.,
2025). In contrast, NuRL retains the hard cases, as they present opportunities to unlock further
gains. Specifically, when all G rollouts fail, we activate NuRL by appending the offline-generated
hint h to the problem, producing the new input q ⊕ h, where ⊕ denotes concatenation. A new batch
of rollouts is then generated from q ⊕ h (blue box in Fig. 2). To reduce the chance to collapse into
uniformly correct responses—which would again eliminate the learning signal—we let only G − 1
rollouts see the hint, {oi}G−1

i=1 ∼ πθold(q, h), while one rollout remains hint-free, oG ∼ πθold(q).

Inference. The hints are only used in training. During test time, we prompt the model only with the
question. The hypothesis is that exposure to hints during training guides the model toward correct
solutions, enabling it to internalize the reasoning patterns required to solve the problems. That is,
the use of hints broadens the set of solvable problems and translates to improved performance.

4 EXPERIMENTAL SETUP

Models. We evaluate NuRL on three models: Llama3.2-3B-Instruct (Grattafiori et al., 2024),
OctoThinker-3B-Hybrid-Zero (Wang et al., 2025b), and Qwen3-4B-Instruct-2507 (Team, 2025).2
Llama is a general-purpose instruction-tuned model, while OctoThinker is a recently proposed
model that applies mid-training on Llama and has been shown to exhibit stronger compatibility
with reinforcement learning (Wang et al., 2025b). Qwen is also a general-purpose instruction-tuned
model that encompasses strong compatibility with post-training techniques. We evaluate these mod-
els because they exhibit distinct properties, helping us avoid conclusions that are overly specific to
a single model—a lesson underscored in recent studies (Shao et al., 2025; Chandak et al., 2025).

Datasets. For training, we use Open-R1’s Mixture-of-Thought dataset (Face, 2025) due to its di-
versity, which includes science QA data from Llama-Nemotron (Bercovich et al., 2025), ensuring
our training set is not purely math-focused. We randomly sample 7.5k math and 2.5k science data
points. Since the dataset provides only CoT outputs from Deepseek-R1 (Guo et al., 2025) rather than
explicit gold answers, we extract the answers from \boxed{} and generate 8 CoTs per problem us-
ing GPT-o4-mini (OpenAI, 2025). We keep only samples where Deepseek-R1 and GPT-o4-mini’s
majority agree on the answer. This yields 8.3k samples for training. NuRL is tested across a di-
verse set of reasoning-intensive tasks spanning STEM and other domain-specific areas, including:
(1) MATH 500, a subset 500 problems from the MATH benchmark (Hendrycks et al., 2021) cu-
rated by Lightman et al. (2023); (2) MATH Hard, the hardest problem set from MATH, totaling
1.3k problems (Hendrycks et al., 2021); (3) AIME 2024, 30 mathematics problems from the 2024
AIME competition (AIME, 2024); (4) GPQA Diamond, 198 PhD-level questions covering biology,
physics, and chemistry (Rein et al., 2024); (5) MMLU-Pro, a more challenging variant of MMLU
(Hendrycks et al., 2020), spanning 14 college-level subjects with 12k samples (Wang et al., 2024);
(6) Date Understanding, 250 problems designed to test LLM’s understanding to date information,
requiring commonsense and logical reasoning (bench authors, 2023; Suzgun et al., 2022).

Baselines. We compare NuRL with the following baselines: (1) Zero-shot: We prompt the model
to think step-by-step and provide the answer within \boxed{} (Kojima et al., 2022). (2) Few-shot:
Besides prompting the model to think step-by-step, we include 8 in-context learning samples. (3)
Rejection sampling Fine-Tuning (RFT): We prompt the model with training data 8 times using the
zero-shot prompt same as above, and keep only the correct reasoning chains to perform supervise
fine-tuning (Yuan et al., 2023). (4) Reasoning with Reinforced Fine-Tuning (ReFT): We adopt

2Hereafter, we refer to them as Llama, OctoThinker, and Qwen, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison of methods across three models and six benchmarks. NuRL consistently out-
performs all baselines with self-generated hints, and shows further improvements when an external
model is available for hint generation (shown in gray for reference).

MATH 500 MATH Hard AIME GPQA MMLU-Pro Date Avg.

Llama3.2-3B-Instruct

Zero-shot 35.71 15.28 3.33 13.23 11.52 2.33 13.57
Few-shot 36.68 16.73 3.63 15.52 12.02 8.87 15.58
RFT 40.12 17.72 3.63 14.76 12.98 13.36 17.10
ReFT 55.80 28.86 8.00 24.42 30.19 55.34 33.77
GRPO 56.92 30.11 8.33 27.98 34.78 57.10 35.87
w/ Hint (Self) 58.04 31.62 9.17 28.28 36.18 61.65 37.49
w/ Hint (GPT-o4-mini) 59.30 32.42 10.83 28.40 41.38 63.53 39.31

OctoThinker-3B-Hybrid-Zero

Zero-shot 59.98 36.87 4.83 16.57 21.18 19.25 26.45
Few-shot 61.23 37.01 5.33 18.62 23.32 24.53 28.34
RFT 62.78 37.73 4.83 19.45 27.34 36.82 31.49
ReFT 66.38 39.69 6.66 24.53 44.66 70.32 42.04
GRPO 68.81 41.29 8.33 23.26 44.25 69.85 42.63
w/ Hint (Self) 70.13 42.07 9.66 27.15 45.54 71.75 44.38
w/ Hint (GPT-o4-mini) 71.62 43.51 12.63 27.43 46.53 72.28 45.67

Qwen3-4B-Instruct-2507

Zero-shot 94.88 90.54 58.75 35.57 58.88 83.35 70.33
Few-shot 94.97 90.54 55.52 34.82 59.01 85.01 69.98
RFT 94.41 90.41 56.63 37.72 59.54 85.42 70.69
ReFT 96.46 90.83 62.79 60.31 72.21 92.20 79.13
GRPO 96.52 90.54 60.83 62.50 72.65 92.80 79.31
w/ Hint (Self) 96.46 92.57 63.54 62.88 72.83 92.30 80.10
w/ Hint (GPT-o4-mini) 96.58 92.96 62.71 64.99 72.95 93.91 80.68

the SFTed model from RFT, and continue for GRPO training (Trung et al., 2024). (5) GRPO: Using
outcome correctness as a rule-based reward function (Guo et al., 2025).

Implementation Details. We employ abstract cues as hints, and compare self-generated versus
teacher-generated in Table 1. We evaluate all methods using pass@1. Results are averaged over 16
runs, except for MMLU-Pro, which has 12k samples; for this dataset, we report the average over 3
runs. We adopt verl (Sheng et al., 2024) as the backbone, and utilize vllm (Kwon et al., 2023) to
speed up rollout generation and inference. To verify equivalence between predictions and references,
we use Math-Verify3. We employ a two-stage strategy for training. In stage 1, we optimize the base
policy with correctness-only GRPO until both training reward and validation accuracy show no
improvement for over 10 steps. In stage 2, we apply NuRL to continue training. To ensure fairness,
GRPO-based baselines are trained for the same total number of steps as NuRL, albeit NuRL starts
midway. Before stage 2 begins, we use the stage 1 checkpoint to generate 8 rollouts and filter out
samples where all rollouts are correct (i.e., overly easy cases) to improve efficiency. The resulting
sample size is reported in Appendix B. All methods are running on 8 H200 GPUs, and it takes
around six days for GRPO-based methods to converge. During training, we use a temperature of 1.0
and set the clip-high parameter ϵ to 0.28 (Yu et al., 2025). The rollout number is 16 for GRPO and
8 for NuRL, as NuRL may regenerate an additional batch of rollouts when all rollouts fail. We cap
the output length at 9k tokens for both training and testing. At inference, we fix the temperature to
0.7. Token limits and inference temperature are aligned across all baselines for evaluation. Other
hyperparameters and details can be found in Appendix B and in our code.

3https://github.com/huggingface/Math-Verify

6

https://github.com/huggingface/Math-Verify

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

NuRL consistently outperforms all baselines with self-generated hints. We present the main
results in Table 1. Across six benchmarks, NuRL shows superior performance compared to all
baselines, beating the zero-shot and the SFT baseline (RFT) by a large margin. For RL-based base-
lines (ReFT and GRPO), we see the performance increase by a large margin (+8.8% to +22.3%
compared to the base model), conforming that RL largely improves a model’s performance. Never-
theless, NuRL consistently surpasses these strong RL-based baselines. On average, it improves over
GRPO by +1.62 points on Llama, +1.75% on OctoThinker, and +0.79% on Qwen. Importantly,
these improvements are achieved on top of already strong GRPO performance, despite GRPO using
16 rollouts per question, whereas NuRL uses only 8 (with the option to generate another eight only
if all initial rollouts fail). Thus, GRPO operates with strictly more rollouts than NuRL. Since the
primary difference between NuRL and GRPO is the use of hints, these results highlight that tar-
geted hints are an effective mechanism for improving LLM performance. We note that the relatively
smaller improvement on Qwen (+0.79%) may stem from the limited stage 2 data (fewer than 2k
examples), as Qwen’s stronger base capability caused many overly easy samples to be filtered out
before stage 2. Finally, we observe that incorporating stronger external models for hint generation
yields additional gains beyond self-generated hints. For example, on Llama, hints from GPT-o4-
mini improve performance by +3.44% absolute points on average over GRPO and by +1.82% over
self-hints. This demonstrates that while self-generated hints are already beneficial, the framework
naturally accommodates stronger sources of guidance when available.

5.2 ADDITIONAL ANALYSIS

Zero-shot GRPO NuRL (Self) NuRL (o4-mini)
30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

35.7

56.8 58.0 59.3
55.6

64.4 66.0 67.6
60.0

65.8 67.4 69.266.2
73.6 76.8 78.0

+19.9%

+6.2% +7.6%

+7.8%
+8.0%

+9.4%

+8.3%

+8.8%

Llama-3B Avg@16 Llama-3B SC=16 Octo-3B Avg@16 Octo-3B SC=16

Figure 3: Compared to GRPO’s improvements with Self-Consistency (+7.6% and +7.8% on Llama
and OctoThinker), NuRL obtains larger gains with +8.0% and +9.4%, respectively.

NuRL is complimentary to test-time scaling method. While NuRL shows superior performance in
Table 1, a common way to augment the baselines is to scale the test-time compute, often measured
in the number of tokens or number of samples at inference time. Here we adopt the latter and
employ Self-Consistency (SC; Wang et al., 2022). We compare NuRL with zero-shot and GRPO,
with and without Self-Consistency across two models, Llama and OctoThinker. Results in Fig. 3
show that NuRL does not only remain effective for test-time scaling method, but also shows greater
improvements compared to GRPO. Specifically, Llama trained with GRPO improves 7.6% with
SC, while Llama trained with NuRL improves 8.0%. Similarly, OctoThinker trained with GRPO
improves 7.8% with SC, while OctoThinker trained with NuRL improves 9.4%.

Hint abstraction is key to improvement. In Section 3, we described how hints are generated by
abstracting explanations of why an answer is correct. While this represents one useful approach, it
raises a broader question: what makes a good hint? To investigate this, we compare four types of
hints as mentioned in Section 3. In Fig. 4, we observe a consistent trend: the more directly answer in-
formation is disclosed, the lower the downstream performance. Abstract cues, which explicitly avoid
revealing details or solutions, yield the highest accuracy. Partial steps perform slightly worse, but
still help since the initial reasoning structure provides a useful starting point. Explanations are less

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Llama3.2-3B OctoThinker-3B Qwen3-4B

40

60

80

100

Ac
cu

ra
cy

 (%
)

58.0
67.4

97.1

57.6
67.6

96.6

54.3
63.4

94.4

27.6
35.9

82.3

Abstract Partial Steps Explanation Ground Truth

Figure 4: Comparison of different types of hints. From left to right, the hints vary in how directly
they disclose information about the ground-truth answer. At the leftmost end, abstract hints provide
only high-level guidance without revealing details of the solution or answer, whereas at the rightmost
end the answer is given explicitly. Interestingly, more direct hints lead to worse performance.

effective, as justifying why an answer is correct is not equivalent to reasoning through the problem;
in fact, explanations often implicitly disclose the answer (e.g., “but the answer is {gold answer}, so
I should try a different method”). Finally, directly providing the ground-truth answer severely harms
generalization. This setup frequently induces reward hacking: during training, the model learns to
simply output the provided answer to maximize reward without genuine reasoning, and that does not
generalize at test time. Overall, these results suggest that effective hints should remain high-level
and abstract. A good hint guides the model toward reasoning independently, but avoids revealing
shortcuts that undermine generalization.

Table 2: Comparison of hint application strate-
gies during training. Results are on MATH 500
and GPQA with Llama3.2-3B-Instruct.

Two-stage Diff. Trigger MATH GPQA

✗ ✓ 56.06 27.63
✗ ✗ 53.41 24.84
✓ ✗ 53.09 26.62
✓ ✓ 58.04 28.28

Using hints only when necessary is crucial.
While we have established that a good hint should
be abstract, the question of when is the best time
to use hints remains open. To examine this, we
consider two key factors. First, one can de-
cide whether to apply hints from the beginning
of training, or to wait until GRPO converges be-
fore introducing them. We refer to the latter ap-
proach as two-stage training. Second, one can de-
termine the condition under which hints are pro-
vided. Specifically, hints may be applied uni-
formly to all problems, or only when all G rollouts are incorrect. We refer to this latter condition
as a difficulty trigger. Combining these two factors yields four experimental settings, summarized
in Table 2. We find that applying hints from the beginning of training generally underperforms
compared to introducing hints only after GRPO has stabilized. Similarly, applying hints indiscrim-
inately results in lower performance than using a difficulty trigger. This suggests that unnecessary
hints may interfere with the model’s ability to learn independently on problems where guidance is
not required. In contrast, when hints are introduced only after GRPO convergence and combined
with a difficulty trigger, we observe consistent improvements across both MATH and GPQA (58.04
and 28.28, respectively). In summary, these findings indicate that hints are most effective when used
selectively and adaptively. Rather than being injected throughout training or applied uniformly, hints
should be reserved for difficult cases and integrated after the base policy has stabilized.

NuRL improves pass@k when the task is more challenging to the model. In Table 1, we show
that NuRL generally outperforms GRPO in terms of pass@1. A natural follow-up question is
whether these gains also extend to higher values of k, especially when using NuRL, the model is
supposed to solve more training problems compared to GPRO. To investigate this, we plot pass@k
for k = {1, 2, . . . , 512, 1024} in Fig. 5 using Llama. Following Yuan et al. (2025), we set the maxi-
mum k as 1024 as a sufficiently large and practical budget to probe the model’s ceiling performance.
In Fig. 5, we first report results on MATH 500. Here, the base model already achieves pass@1024
= 96.4% before training (despite its relatively low pass@1 = 34.4%). In this case, neither GRPO
nor NuRL increases pass@1024, as the model already possesses strong knowledge on this task,
albeit hard to generate a correct answer given only one attempt. In contrast, for tasks where the
base model’s upper bound is lower – such as Date Understanding (85.4%) and GPQA (67.2%) – we
observe clear gains from NuRL, while GRPO provides little or no improvement. We hypothesize

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26 27 28 29210

Pass@k

40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

MATH 500

20 21 22 23 24 25 26 27 28 29210

Pass@k

0

25

50

75

100
Date

20 21 22 23 24 25 26 27 28 29210

Pass@k

20

40

60

80

100
GPQA

Llama GRPO NuRL (Self) NuRL (o4-mini)
Figure 5: When the base model (Llama) already has strong pre-trained knowledge (e.g., MATH
500), both GRPO and NuRL yield little improvement in pass@k. In contrast, on tasks with lower
upper-bound performance (e.g., Date Understanding and GPQA, with pass@1024 of 85.4 and 67.2),
GRPO provides no gains on pass@1024, while NuRL pushes it further.

that hints guide the model to explore underrepresented solution paths, increasing the chance of dis-
covering correct answers that would otherwise remain in “unreachable corners” of the search space.
From an entropy perspective, hints may also induce more diverse exploration, which translates into
higher pass@k (Cheng et al., 2025). Importantly, these hints are lightweight: rather than fine-tuning
the model with hints, we simply append them to the input question, yet this is sufficient to guide
exploration more effectively. Moreover, we find that pass@1024 scales with the quality of hints:
using teacher-generated hints pushes it further to 95.2% on GPQA, compared to GRPO’s 63.4%.
In summary, when the base model’s ceiling performance is not yet saturated, NuRL raises pass@k
– both with self-generated hints (86.4% → 94.0% on Date, 63.6% → 69.7% on GPQA) and even
more so with higher-quality hints generated from the teacher model.

0 200 400 600
Steps

64
66
68
70
72
74
76

So
lv

ab
le

 P
ro

bl
em

s (
%

)

w/o Hint Before Hint After Hint

Figure 6: The self-generated hints in NuRL
effectively reduce the task difficulty and in-
crease the portion of solvable problems.

NuRL increases the fraction of solvable problems.
Having demonstrated that NuRL is able to improve
both pass@1 and pass@k, we further analyze the
source of such performance gains. In Fig. 6, we show
that training with self-generated hints effectively in-
creases the fraction of solvable problems. Specifi-
cally, we present Qwen’s training log and compare,
at each training step, the fraction of solvable prob-
lems under three conditions: (1) no hints, correspond-
ing to standard GRPO training, (2) using NuRL before
adding hints, and (3) using NuRL after injecting hints
whenever all rollouts fail. Here, a problem is consid-
ered solvable if at least one rollout produces a correct
answer. Given the same training step, adding hints
yields an approximate 4% increase in solvable prob-
lems, suggesting that self-generated hints reduce problem difficulty for the model. Second, NuRL
shows a clear upward trend in the fraction of solvable problems both before and after hint injection.
This indicates that as training progresses, the model begins to solve problems that were previously
unsolvable, increasing the solvable fraction from 66% to 70%. Lastly, standard GRPO without hints
exhibits a relatively flat trend, with the solvable fraction fluctuating around 66%. Overall, these
results explain the improvements observed across diverse benchmarks: by leveraging self-generated
hints, the model effectively increases the amount of data it can learn from.

6 CONCLUSION

We introduce NuRL, a self-guided reinforcement learning approach that uses hints to extend models’
reasoning capabilities. NuRL consistently outperforms strong baselines with self-generated hints
and achieves further gains with hints generated by a stronger external model. Our analysis reveals
that the most effective hints are high-level, abstract, and applied selectively – only when the model
cannot solve a problem unaided. Moreover, NuRL scales more efficiently than GRPO at test time,
increases the fraction of solvable problems, and delivers substantial pass@k improvements on two
challenging tasks, effectively expanding the model’s comfort zone.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In this work, we propose a reinforcement learning method that optimizes for final outcome correct-
ness. As a result, our trained LLMs may still produce hallucinations, since intermediate reasoning
is not directly supervised and the correctness is only verified against the final answer. Thus, out-
puts generated by NuRL carry potential risks of misinformation or hallucination. Future research is
needed to better assess and mitigate these limitations.

REPRODUCIBILITY STATEMENT

We are making our code available in the supplementary materials to enable replication of our find-
ings. We also provide implementation details of NuRL in Appendix B and prompts in Appendix D.
The datasets we use are all publicly available, as detailed in Appendix C.

REFERENCES

AIME. Aime. aime problems and solutions, 2024., 2024. URL https://artofproblemsolv
ing.com/wiki/index.php/American_Invitational_Mathematics_Examina
tion.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Ger-
ald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia
Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh,
Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Alek-
sander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria
Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus
Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Bran-
don Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary,
Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue
Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry
Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath,
Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Olek-
sandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edel-
man, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yut-
ing Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin,
Michael Evans, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Joey Conway, Trisha
Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geif-
man, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient reasoning models, 2025. URL
https://arxiv.org/abs/2505.00949.

Nikhil Chandak, Shashwat Goel, and Ameya Prabhu. Incorrect baseline evaluations call into ques-
tion recent llm-rl claims. https://safe-lip-9a8.notion.site/Incorrect-Bas
eline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f
1fbf0ee8094ab8ded1953c15a37?pvs=4, 2025. Notion Blog.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758,
2025.

10

https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2505.00949
https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37?pvs=4
https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37?pvs=4
https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37?pvs=4

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xingyu Dang, Christina Baek, J Zico Kolter, and Aditi Raghunathan. Assessing diversity collapse
in reasoning. In Scaling Self-Improving Foundation Models without Human Supervision, 2025.
URL https://openreview.net/forum?id=AMiKsHLjQh.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Yuqian Fu, Tinghong Chen, Jiajun Chai, Xihuai Wang, Songjun Tu, Guojun Yin, Wei Lin, Qichao
Zhang, Yuanheng Zhu, and Dongbin Zhao. Srft: A single-stage method with supervised and
reinforcement fine-tuning for reasoning. arXiv preprint arXiv:2506.19767, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting grpo beyond distribution
sharpening. arXiv preprint arXiv:2506.02355, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Qihan Huang, Weilong Dai, Jinlong Liu, Wanggui He, Hao Jiang, Mingli Song, Jingyuan Chen,
Chang Yao, and Jie Song. Boosting mllm reasoning with text-debiased hint-grpo. arXiv preprint
arXiv:2503.23905, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b.

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy opti-
mization for gui agents with experience replay. arXiv preprint arXiv:2505.16282, 2025.

11

https://openreview.net/forum?id=AMiKsHLjQh
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu,
Chengyu Shen, Runming He, Bin Cui, et al. Learning what reinforcement learning can’t: In-
terleaved online fine-tuning for hardest questions. arXiv preprint arXiv:2506.07527, 2025.

OpenAI. Introducing openai o3 and o4-mini, 2025. URL https://openai.com/index/int
roducing-o3-and-o4-mini/.

Jinyoung Park, Jeehye Na, Jinyoung Kim, and Hyunwoo J Kim. Deepvideo-r1: Video reinforcement
fine-tuning via difficulty-aware regressive grpo. arXiv preprint arXiv:2506.07464, 2025.

Peter Phan, Dhruv Agarwal, Kavitha Srinivas, Horst Samulowitz, Pavan Kapanipathi, and An-
drew McCallum. Migrate: Mixed-policy grpo for adaptation at test-time. arXiv preprint
arXiv:2508.08641, 2025.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl’s razor: Why online reinforcement learning
forgets less. arXiv preprint arXiv:2509.04259, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT: Reasoning
with reinforced fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceed-
ings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 7601–7614, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.410. URL https://aclanthology.org/2
024.acl-long.410/.

Lev S Vygotsky, Michael Cole, Vera John-Steiner, S Scribner, and Ellen Souberman. The develop-
ment of higher psychological processes, 1978.

12

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2505.09388
https://aclanthology.org/2024.acl-long.410/
https://aclanthology.org/2024.acl-long.410/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/for
um?id=_VjQlMeSB_J.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Lifan Yuan, Weize Chen, Yuchen Zhang, Ganqu Cui, Hanbin Wang, Ziming You, Ning Ding,
Zhiyuan Liu, Maosong Sun, and Hao Peng. From f(x) and g(x) to f(g(x)): LLMs learn new
skills in RL by composing old ones. https://husky-morocco-f72.notion.site/F
rom-f-x-and-g-x-to-f-g-x-LLMs-Learn-New-Skills-in-RL-by-Compo
sing-Old-Ones-2499aba4486f802c8108e76a12af3020, 2025. Notion blog post,
available online.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023. URL https://arxiv.org/abs/2308.01825.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan
Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo
Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan,
Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, and Bowen
Zhou. A survey of reinforcement learning for large reasoning models, 2025a. URL https:
//arxiv.org/abs/2509.08827.

Kaiyi Zhang, Ang Lv, Jinpeng Li, Yongbo Wang, Feng Wang, Haoyuan Hu, and Rui Yan.
Stephint: Multi-level stepwise hints enhance reinforcement learning to reason. arXiv preprint
arXiv:2507.02841, 2025b.

13

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://husky-morocco-f72.notion.site/From-f-x-and-g-x-to-f-g-x-LLMs-Learn-New-Skills-in-RL-by-Composing-Old-Ones-2499aba4486f802c8108e76a12af3020
https://husky-morocco-f72.notion.site/From-f-x-and-g-x-to-f-g-x-LLMs-Learn-New-Skills-in-RL-by-Composing-Old-Ones-2499aba4486f802c8108e76a12af3020
https://husky-morocco-f72.notion.site/From-f-x-and-g-x-to-f-g-x-LLMs-Learn-New-Skills-in-RL-by-Composing-Old-Ones-2499aba4486f802c8108e76a12af3020
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2509.08827
https://arxiv.org/abs/2509.08827

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

Ruiyang Zhou, Shuozhe Li, Amy Zhang, and Liu Leqi. Expo: Unlocking hard reasoning with
self-explanation-guided reinforcement learning. arXiv preprint arXiv:2507.02834, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use ChatGPT4 for grammar correction and refinement. The model was only used to polish text
already written by the authors, and was not used for research ideation or generating original content.

B IMPLEMENTATION DETAILS

Recall that in Section 3, we describe a two-stage training procedure where NuRL is applied after
GRPO converges. By convergence, we mean that both the training reward and validation accuracy
plateau after 10 training steps. Stage 1 corresponds to GRPO convergence, and stage 2 applies
NuRL on top of the converged checkpoint. For fairness, GRPO-based baselines also undergo stage
2 training without hints, ensuring the total training steps are aligned with NuRL. Since convergence
speed varies across models, we report the detailed hyperparameters and number of steps required
for each model in Table 3.

Table 3: Stage 1 configurations and hyperparameters.

Llama OctoThinker Qwen
num train samples 8316 8316 8316
max prompt length 1800 1800 1800
max response length 9000 9000 9000
lr 1e-6 1e-6 1e-6
clip ratio low 0.2 0.2 0.2
clip ratio high 0.28 0.28 0.28
rollout temperature 1 1 1
rollout n 16 16 16
use kl loss False False False
train batch size 1024 1024 4096
converged steps 375 175 125

At the start of Stage 2, we use the converged checkpoints and generate 8 rollouts per question. Then,
we discard samples where all rollouts are correct (i.e., overly easy examples) to improve efficiency.
This filtering is performed after Stage 1, since the trained checkpoints are stronger than the initial
models. The detailed stage 2 configurations are given in Table 4.

C DATASET STATISTICS AND LICENSES

We provide the sample sizes and licenses of the datasets used in this work in Table 5. All the datasets
are in English and all datasets are used in a fashion consistent with their intended use.

4https://chatgpt.com/

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Stage 2 configurations and hyperparameters.

Llama OctoThinker Qwen
num train samples 5996 4502 1937
max prompt length 1800 1800 1800
max response length 9000 9000 9000
lr 1e-6 1e-6 1e-6
clip ratio low 0.2 0.2 0.2
clip ratio high 0.28 0.28 0.28
rollout temperature 1 1 1
rollout n 16 16 16
use kl loss False False False
train batch size 512 512 1937
converged steps 275 175 90

Table 5: The statistics and licenses of the datasets used in this study.

Sample Size License

MATH 500 (Lightman et al., 2023) 500 MIT License
MATH Hard (Hendrycks et al., 2021) 1324 MIT License
AIME 2024 (AIME, 2024) 30 CC0
GPQA-Diamond (Rein et al., 2024) 198 MIT License
MMLU-Pro (Wang et al., 2024) 12032 Apache License
Date Understanding (bench authors, 2023; Suzgun et al., 2022) 250 Apache License

D PROMPTS FOR HINT GENERATION

We use the following prompts to generate hints. First, we generate an explanation style of Chain-of-
Thought by conditioning on the ground truth answer:

Prompt for Explanation Generation

Question: {question}
I was told the answer is {gold answer} but I don’t know why. Please explain why the
answer is {gold answer} step by step.

Then, we use the concatenation of the question with the generated explanation, and ask the model
to generate an abstract hint using the following prompt:

Prompt for Hint Generation

<system prompt> You are a tutor. You are given a set of question, correct answer and
solution. Your job is to provide a hint for the problem. The hint should help the student learn
the core concept (e.g. formula, lemma, or necessary knowledge) needed to solve this problem.
The hint should be concise, to the point, but high level. Do not include any detailed steps or
calculations or the final answer. </system prompt>

Question: {question}
Answer: {gold answer}
Solution: {explanation}
Now, please provide a hint for this problem to help the student learn the core concept.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E QUALITATIVE EXAMPLES

E.1 EXAMPLES OF DIFFERENT TYPES OF HINTS

We provide examples of the four types of hints we explored in this work. All the examples below
answer the same question (shown below) and are self-generated with Qwen3-4B-Instruct-2507.

Example Question and Answer

Question: During a school football match, there are 3 types of balls used, each with a different
number of colors. Type A balls have yellow, brown, and blue variations; Type B balls have
green, orange, and pink; and Type C balls have black, red, and white variations. The number of
colored balls varies according to the number of players in each team. Team 1 has 72 members,
and each player receives 4 Type A yellow balls, 3 Type A brown balls, and 3 Type A blue balls.
Team 2 has 64 members, and each player receives 5 Type B green balls, 4 Type B orange balls,
and 2 Type B pink balls. Team 3 has 53 members, and each player receives 3 Type C black
balls, 2 Type C red balls, and 6 Type C white balls. Calculate what percentage of all the balls
distributed for the match are Type A yellow balls.

Answer: 14.35%

Type 1: Abstract Cue

To find the percentage of a specific type of ball among all distributed balls, first calculate
the total number of that specific ball and then divide it by the total number of all balls dis-
tributed—then multiply by 100. Focus on identifying which team(s) contribute to the specific
ball type and sum all balls across teams.

Type 2: Partial Steps

Step 1: We are to find the percentage of all the balls distributed that are Type A yellow balls.
So, we need: (Total number of Type A yellow balls) / (Total number of all balls distributed) ×
100%

Step 2: Calculate total number of Type A yellow balls. Team 1 has 72 members, and each
player gets 4 Type A yellow balls. So Type A yellow balls = 72 × 4 = 288.

Type 3: Explanation

Step 1: Understand what is being asked. We are to calculate the percentage of all the balls
distributed that are Type A yellow balls.

Step 2: Calculate the number of Type A yellow balls. Team 1 has 72 members. Each player
gets 4 Type A yellow balls. Thus, Type A yellow balls = 72× 4 = 288.

Step 3: Calculate total number of balls distributed. We need to compute the total across all
teams and all ball types.

Team 1 (Type A balls): 72× (4 + 3+ 3) = 72× 10 = 720. Team 2 (Type B balls): 64× (5 +

4 + 2) = 64× 11 = 704. Team 3 (Type C balls): 53× (3 + 2 + 6) = 53× 11 = 583.

Step 4: Add up total balls across all teams. Total balls = 720 + 704 + 583 = 2007.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Step 5: Calculate percentage of Type A yellow balls. We already have
Type A yellow balls = 288. So, Percentage =

(
288
2007

)
× 100.

Simplify: 288
2007 = 96

669 = 32
223 . Now, 32

223 ≈ 0.1435, and 0.1435× 100 = 14.35%.

Final Answer: 14.35%

Why is this correct?

• Only Team 1 gets Type A yellow balls.
• Total Type A yellow balls = 72× 4 = 288.
• Total balls distributed = 720 + 704 + 583 = 2007.
• Therefore, (288/2007)× 100 ≈ 14.35%.

Thus, 14.35% of all distributed balls are Type A yellow balls.

Type 4: Ground Truth Answer

I was told the answer is 14.35% . Do not blindly accept it. Take it as a reference and provide
your own step-by-step reasoning.

E.1.1 EXAMPLES OF SELF- AND GPT-O4-MINI-GENERATED ABSTRACT CUES

Example 1

Question: What is the maximum amount of heat that can be supplied to the system during the
electrolysis of water without violating the second law of thermodynamics? (A) 237 kJ (B) 286
kJ (C) 163 kJ (D) 49 kJ (Correct answer: D)

Hint (Self-generated): Think about the difference between the energy required to break wa-
ter (enthalpy) and the useful energy available (Gibbs free energy). This difference represents
the minimum amount of energy that must be lost as heat due to entropy—this is a direct con-
sequence of the second law of thermodynamics. What is this difference for water electrolysis?

Hint (GPT-o4-mini-generated): Use the relation ∆G = ∆H – T∆S to find the entropy change,
then recall that under a reversible (second-law-limit) process the maximum heat input is Qmax

= T∆S.

Example 2

Question: When two fair dice are thrown, the numbers obtained are respectively a and b.
Determine the probability that the line bx+ ay = 1 intersects the circle x2 + y2 = 1 and that
the length of the intercepted chord does not exceed 4

√
2

3 (Correct answer: 1
9).

Hint (Self-generated): Focus on the geometric condition for a line to cut a chord of a given
length in a unit circle. Recall that the length of the chord depends on the distance from the
center of the circle to the line — use this relationship to set up an inequality involving a and b.
Then translate the condition into a constraint on a2 + b2.

Hint (GPT-o4-mini-generated): Use the fact that for the circle x2 + y2 = 1 and the line
bx + ay = 1, the distance from the origin to the line is d = 1√

a2+b2
and the chord-length is

L = 2
√
1− d2 (L ≤ 4

√
2

3) to get a condition on a2 + b2, then count the integer pairs.

17

	Introduction
	Related Work
	Methodology
	Preliminary
	NuRL: Nudging LLMs with Reinforcement Learning

	Experimental Setup
	Results and Analysis
	Main Results
	Additional Analysis

	Conclusion
	The Use of Large Language Models (LLMs)
	Implementation Details
	Dataset Statistics and Licenses
	Prompts for Hint Generation
	Qualitative Examples
	Examples of Different Types of Hints
	Examples of Self- and GPT-o4-mini-generated Abstract Cues

