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ABSTRACT

Current online reinforcement learning (RL) algorithms like GRPO share a key
limitation in LLM reasoning: they cannot learn from problems that are “unsolv-
able” to the model. In other words, they can only improve performance on prob-
lems where the model is capable of exploring the correct answer. If a problem is
too difficult–such that even hundreds of attempts never produce a correct solution–
the model cannot learn from it. Consequently, the model’s “upper limit” remains
unchanged after RL training, even though the likelihood of solving easier, solv-
able problems may increase. These hard, unsolvable samples–though potentially
rich in learning signal–cannot contribute to training, as no rollouts yield rewards
and thus no gradients are produced. To unlock learning from these hard samples,
we propose NuRL 1, a “nudging” method that aims to push the upper bound of
LLM reasoning using self-generated hints, i.e., abstract cues that help reduce the
problem difficulty for the model. Given a question and its gold answer, the model
generates a Chain-of-Thought (CoT) and then produces a hint containing the core
knowledge needed to solve the problem. During online RL training, we generate
G rollouts from the base policy and use the pass rate to decide whether the hint
should be injected. For hard samples with a 0% pass rate, we inject the offline-
generated hint and regenerate a new batch of trajectories. This yields two benefits:
(1) the hint boosts pass rates (from 0% to non-zero), thereby introducing training
signals for previously unsolvable samples, and (2) the hints are self-generated
(conditioned on the gold answer), avoiding distributional shift and do not rely
on external models. Compared to standard GRPO, NuRL achieves consistent
improvements across six diverse benchmarks and three models, while remaining
complementary to test-time scaling. Notably, NuRL can raise the model’s upper
limit, whereas GRPO leaves pass@1024 unchanged from the base model. Fur-
thermore, we present a systematic study of what makes an effective hint and when
hints are most useful. Interestingly, the best hints are abstract and high-level–as
revealing gold answers actually hurt performance–and are most beneficial when
applied necessarily and after GRPO has converged.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) algorithms have played a central role in improving
the reasoning abilities of large language models (LLMs). Despite many promising advances, current
online RL algorithms share a key limitation: they cannot learn from problems that are unsolvable
under the base policy. In other words, if the model cannot reach the correct answer even after exten-
sive exploration, then no meaningful learning signal can be obtained from the problem. On a similar
vein, a growing body of work finds that post-training mainly encourages models to generate already
high-reward trajectories (He et al., 2025; Yue et al., 2025; Dang et al., 2025; Zhao et al., 2025). As
a result, the model’s upper limit–often measured by pass@k for large k—remains unchanged after
RL training. Intuitively, learning from harder samples offers a clear path to improving a model’s
performance and expanding its ceiling capacity. In other words, learning from the hard samples has
two key benefits: (1) extracting more training signal from the same dataset (improving pass@1),
and (2) enabling the model to solve previously unsolvable problems, thereby extending its capabil-
ity boundary (improving pass@k). However, precisely because these problems are difficult, models
often cannot learn them without appropriate guidance or intervention from a teacher model.

1Pronounced like “neural” (nur·uhl)
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Figure 1: GRPO yields substantial gains, but the improvements largely stem from extending the
model’s ability within its comfort zone, i.e., if the model fails to solve a hard problem after numerous
attempts, it is unable to learn from that problem. In NuRL, we address this by exploring various
forms of hints (abstract cues, partial steps, explanations, or even the gold answer), which can be
self-generated or teacher-generated. Both self- and teacher-generated abstract cues can expand the
model’s comfort zone, effectively transforming previously unsolvable problems into solvable ones.

This dynamic parallels Vygotsky’s concept of the Zone of Proximal Development (ZPD) (Vygot-
sky et al., 1978), which distinguishes between tasks a learner can solve independently (“comfort
zone” in Fig. 1) and those achievable only with appropriate guidance (“learning zone” in Fig. 1).
The inability to learn from hard samples – or the lack of improvement in pass@k – mirrors be-
ing trapped in the comfort zone. Motivated by this analogy, we ask: can models generate their
own “hints””—lightweight forms of guidance—so that even the hard problems become learnable?
Then, we propose NuRL (Nudging LLM with Reinforcement Learning), which adaptively injects
self-generated hints into training. Our hypothesis is that hard problems become more learnable
when paired with carefully abstracted hints (Huang et al., 2025; Park et al., 2025). These hints act
as light-weight “nudges,” transforming previously unlearnable samples into productive training sig-
nals. To achieve this, our approach begins with offline hint collection. Given a question and its gold
answer, we prompt the model to generate Chain-of-Thought (CoT; Wei et al., 2022) reasoning that
connects the two. Using the question and CoT as input, the model then produces a high-level cue
that captures the core knowledge required to solve the problem. We also explore various types of
hints as shown in the bottom-left of Fig. 1, where the hints can be self-generated or provided by a
stronger model (e.g., GPT-o4-mini (OpenAI, 2025)), and the forms of hints can be abstract cues,
partial steps, explanations, or even the gold answer. We find that self-generated hints are effective,
while teacher-generated hints give further improvements. Importantly, effective hints are abstract
and conceptual: they neither reveal the final answer nor provide detailed solution steps, but only
mention what core knowledge is needed to solve this problem (see the bottom left in Fig. 2).

We adopt GRPO (Shao et al., 2024) as the training framework. During training, the policy model
generates G rollouts per problem, and we use pass rate to decide when to inject hints. For hard
problems with a 0% pass rate, we inject the pre-generated hints to the end of the question, and
prompt the model to regenerate another G rollouts conditioned on the hints. Given the hint, the model
is more likely to produce successful solutions (non-zero pass rate), turning previously unlearnable
examples into learnable ones. This strategy offers two main advantages: (1) Hints boost pass rate,
enabling hard problems to produce meaningful training signals. (2) Hints remain within the model’s
distribution, since they are self-generated (conditioned on the answer), avoiding distributional shift
and does not require stronger external models. Together, these benefits allow NuRL to unlock value
from harder samples, broadening the set of problems that contribute to RL training.

We evaluate NuRL on six diverse benchmarks across multiple domains, including MATH 500,
MATH Hard, AIME, GPQA, MMLU-Pro and Date Understanding. Results show that NuRL boosts
the average performance with three different models (+1.62% using Llama, +1.75% using Octo-
Thinker, and +0.79% using Qwen as compared to GRPO), and when an external teacher model
is available for hint generation, the improvement can be further enlarged to up to 3.44%. More-
over, our analysis shows that (a) NuRL is complementary to test-time scaling methods such as
Self-Consistency (Wang et al., 2022) and shows larger improvement: our method improves 9.4%
with 16-way Self-Consistency, as compared to GRPO, which improves 7.8%. (b) NuRL is able to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

transform previously unsolvable problems into solvable ones, and that transfer to the improvements
on the upper limit of a model’s capacity. (c) Hints are useful when they are abstract and high-level.
The more exposure to the answer, the more severe the degradation. This aligns with human learning,
where effective hints should be abstract and high-level—providing guidance without revealing the
solution. Knowing the answer upfront risks biasing toward it and undermines generalization.

2 RELATED WORK

Reinforcement Learning with Verifiable Reward (RLVR). RLVR computes the reward using
rule-based verification, which is effective in improving LLM reasoning. The reward function can be
as simple as checking whether the model’s answer matches the gold answer (Lambert et al., 2024;
Guo et al., 2025; Team et al., 2025; Zeng et al., 2025). The success of RLVR is also supported by
advancements, including PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023), GRPO (Guo
et al., 2025) and many techniques like DAPO (Yu et al., 2025), Dr. GRPO (Liu et al., 2025b).

The Role of RL: Distribution Sharpening vs. Discovery. There has been an active discussion on
whether RL primarily performs distribution sharpening, i.e., amplifying behaviors already present
in the model, or enables genuine discovery of new reasoning abilities. The distribution-sharpening
view holds that RL mainly surfaces high-reward paths and increases their likelihood of generation
(Zhang et al., 2025a; Zhao et al., 2025; Shenfeld et al., 2025). This is often supported by the findings
that RL improves pass@1 but not pass@k (Yue et al., 2025; He et al., 2025), and that even weak
reward signals can yield substantial improvements (Shao et al., 2025; Zuo et al., 2025; Prabhudesai
et al., 2025; Wang et al., 2025a). On the other hand, some argue that RL fails to improve pass@k
not because of inherent limitations, but due to insufficient training or evaluating on tasks where
models already perform strongly (Liu et al., 2025a). Yuan et al. (2025) also show that RL can learn
new skills by combining existing ones. Zhang et al. (2025a) suggest that RL can both sharpen and
discover, with the balance determined by the trade-off between exploration and exploitation.

Mixture of Offline and Online RL. When the base policy fails to generate solutions that yield
non-zero rewards, replay buffer or off-policy optimization leverage previous positive trajectories
(Lu et al., 2025) or expert demonstrations (Levine et al., 2020). Recently, hybrid approaches that
mix online and offline training have been proposed to improve generalization (Yan et al., 2025; Phan
et al., 2025). A line of work uses SFT with RL to expand the model’s knowledge scope (Ma et al.,
2025; Fu et al., 2025; Zhou et al., 2025), while others employ hints to adjust problem difficulty
during training (Zhang et al., 2025b; Huang et al., 2025). Our work differs from these approaches in
two aspects. First, NuRL does not rely on SFT to broaden the model’s knowledge; instead, we focus
on the RL stage and analyze how different hints expand a model’s reasoning boundary. A notable
work is STaR (Zelikman et al., 2022), where the reasoning is bootstrapped from reasoning given the
answer. Our hints are further abstracted out from the reasoning to ensure it does not disclose the
answer. Second, we show that nudging the model with self-generated hints is effective: it enables
self-improvement (both pass@1 and pass@k) without depending on stronger external models.

3 METHODOLOGY

3.1 PRELIMINARY

Our method is based on GRPO (Shao et al., 2024). Specifically, GRPO updates the policy by
maximizing JGRPO(θ) using the following objective:

JGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

[
πθ(oi,t|oi,<t)

πold(oi,t|oi,<t)
Âi,t, clip

(
πθ(oi,t|oi,<t)

πold(oi,t|oi,<t)
, 1− ε, 1 + ε

)
Âi,t

]
,

where πθ is the policy, πold is the old policy, ε is the clipping range, and Ât is an estimator of the
advantage at time step t. Given a reward function f and a question-answer pair (q, a) from training
data D, the advantage is estimated by letting πθold samples a group of G responses {oi}Gi=1. Then, the
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Figure 2: NuRL provides targeted guidance to the LLM policy during online GRPO training. Prior
to training, we construct an offline collection of hints, defined as abstract problem-specific cues that
reduce task difficulty. During the online training, whenever all G rollouts for a problem are incorrect,
NuRL augments G − 1 of the rollouts with the corresponding hint and regenerates the batch. This
intervention facilitates the acquisition of non-zero rewards on instances that would otherwise yield
uniformly zero rewards, thereby supplying informative training signals.

advantage of the i-th response is calculated by normalizing the rewards within the group {ri}Gi=1:

Âi,t =
ri − µr

σr
, µr =

1

G

G∑
i=1

ri, σr =

√√√√ 1

G

G∑
i=1

(ri − µr)2. (1)

We use the rule-based outcome correctness as the reward (Guo et al., 2025), i.e., f(ŷ, y) =
1, if is equivalent(ŷ, y) else 0, where y is the ground truth and ŷ is the predicted answer.

3.2 NURL: NUDGING LLMS WITH REINFORCEMENT LEARNING

Offline Hint Collection. Given a training dataset consisting of question–answer pairs D =

(qi, ai)
N
i=1, our method begins with offline hint collection. As illustrated in Fig. 1, hints can be

categorized by their source (self-generated by the model vs. provided by a teacher model) and their
type: (1) Abstract cues: generated by abstracting from an explanation of why an answer is correct,
designed to avoid revealing concrete details or the final answer. (2) Partial steps: obtained by gen-
erating a step-by-step solution using the gold answer, masking 75% of the steps (keep only the first
25%), with the model asked to complete the rest. (3) Explanations: formed by replacing incorrect
rollouts with gold-conditioned explanations that justify why the answer is correct. (4) Ground-
truth answer: appending the correct answer alongside the question with the prompt, “I was told
the answer is {gold answer}. Do not blindly accept it. Take it as a reference and provide your own
step-by-step reasoning.” Note that from (1) to (4) is a reverse order of how much information about
the answer is being revealed. Later in Section 5.2, we will show that the more disclosure about the
answer, the worse the performance is. Therefore, in this work, we mainly focus on self-generated
abstract cues as the hint (see Appendix E.1 for examples with different types of hints).

Concretely, to collect such high-level abstract cues that can simplify the problem without revealing
specific solution details, we first prompt the base policy LLM with both the question and the ground-
truth answer, and instruct it to generate a Chain-of-Thought (CoT; Wei et al., 2022) that explains why
the provided answer is correct. This can be expressed as y = πold(q, a; py) where πold is the initial
policy, y is the generated CoT, and py is the prompt (see Appendix D). We find that directly using
such explanation-style CoTs as hints is not effective (also will be shown in Section 5.2). To address
this, we introduce an abstraction step. Specifically, we prompt the LLM again with the question, the
answer, and the self-generated CoT (q, a, y), asking it to produce a high-level hint that reduces task
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difficulty without being overly specific: h = πθ(q, a, y; ph) where ph is the hint generation prompt
as provided in Appendix D. After this process, the training data is augmented with hints, yielding
an enriched dataset D = {(qi, ai, hi)}Ni=1 where every sample has a corresponding hint.

Online Rollout Augmentation. After augmenting the training data with hints, we proceed with
online GRPO-style training. For each question q, the base policy first generates G rollouts without
hints. When all responses {oi}Gi=1 are incorrect (i.e., ri = 0 ⇒ Âi,t = 0 for all i), the advantages
vanish, yielding ∇JGRPO = 0 and thus no policy update. This is illustrated in the gray box of
Fig. 2, where the correct answer is C but none of the rollouts reach it. Similarly, if all rollouts are
correct, the task is trivially easy and again results in ∇JGRPO = 0. In practice, such uninformative
problems (both too hard and too easy) are often discarded to improve training efficiency (Yu et al.,
2025). In contrast, NuRL retains the hard cases, as they present opportunities to unlock further
gains. Specifically, when all G rollouts fail, we activate NuRL by appending the offline-generated
hint h to the problem, producing the new input q ⊕ h, where ⊕ denotes concatenation. A new batch
of rollouts is then generated from q ⊕ h (blue box in Fig. 2). To reduce the chance to collapse into
uniformly correct responses—which would again eliminate the learning signal—we let only G − 1
rollouts see the hint, {oi}G−1

i=1 ∼ πθold(q, h), while one rollout remains hint-free, oG ∼ πθold(q).

Inference. The hints are only used in training. During test time, we prompt the model only with the
question. The hypothesis is that exposure to hints during training guides the model toward correct
solutions, enabling it to internalize the reasoning patterns required to solve the problems. That is,
the use of hints broadens the set of solvable problems and translates to improved performance.

4 EXPERIMENTAL SETUP

Models. We evaluate NuRL on three models: Llama3.2-3B-Instruct (Grattafiori et al., 2024),
OctoThinker-3B-Hybrid-Zero (Wang et al., 2025b), and Qwen3-4B-Instruct-2507 (Team, 2025).2
Llama is a general-purpose instruction-tuned model, while OctoThinker is a recently proposed
model that applies mid-training on Llama and has been shown to exhibit stronger compatibility
with reinforcement learning (Wang et al., 2025b). Qwen is also a general-purpose instruction-tuned
model that encompasses strong compatibility with post-training techniques. We evaluate these mod-
els because they exhibit distinct properties, helping us avoid conclusions that are overly specific to
a single model—a lesson underscored in recent studies (Shao et al., 2025; Chandak et al., 2025).

Datasets. For training, we use Open-R1’s Mixture-of-Thought dataset (Face, 2025) due to its di-
versity, which includes science QA data from Llama-Nemotron (Bercovich et al., 2025), ensuring
our training set is not purely math-focused. We randomly sample 7.5k math and 2.5k science data
points. Since the dataset provides only CoT outputs from Deepseek-R1 (Guo et al., 2025) rather than
explicit gold answers, we extract the answers from \boxed{} and generate 8 CoTs per problem us-
ing GPT-o4-mini (OpenAI, 2025). We keep only samples where Deepseek-R1 and GPT-o4-mini’s
majority agree on the answer. This yields 8.3k samples for training. NuRL is tested across a di-
verse set of reasoning-intensive tasks spanning STEM and other domain-specific areas, including:
(1) MATH 500, a subset 500 problems from the MATH benchmark (Hendrycks et al., 2021) cu-
rated by Lightman et al. (2023); (2) MATH Hard, the hardest problem set from MATH, totaling
1.3k problems (Hendrycks et al., 2021); (3) AIME 2024, 30 mathematics problems from the 2024
AIME competition (AIME, 2024); (4) GPQA Diamond, 198 PhD-level questions covering biology,
physics, and chemistry (Rein et al., 2024); (5) MMLU-Pro, a more challenging variant of MMLU
(Hendrycks et al., 2020), spanning 14 college-level subjects with 12k samples (Wang et al., 2024);
(6) Date Understanding, 250 problems designed to test LLM’s understanding to date information,
requiring commonsense and logical reasoning (bench authors, 2023; Suzgun et al., 2022).

Baselines. We compare NuRL with the following baselines: (1) Zero-shot: We prompt the model
to think step-by-step and provide the answer within \boxed{} (Kojima et al., 2022). (2) Few-shot:
Besides prompting the model to think step-by-step, we include 8 in-context learning samples. (3)
Rejection sampling Fine-Tuning (RFT): We prompt the model with training data 8 times using the
zero-shot prompt same as above, and keep only the correct reasoning chains to perform supervise
fine-tuning (Yuan et al., 2023). (4) Reasoning with Reinforced Fine-Tuning (ReFT): We adopt

2Hereafter, we refer to them as Llama, OctoThinker, and Qwen, respectively.
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Table 1: Comparison of methods across three models and six benchmarks. NuRL consistently out-
performs all baselines with self-generated hints, and shows further improvements when an external
model is available for hint generation (shown in gray for reference).

MATH 500 MATH Hard AIME GPQA MMLU-Pro Date Avg.

Llama3.2-3B-Instruct

Zero-shot 35.71 15.28 3.33 13.23 11.52 2.33 13.57
Few-shot 36.68 16.73 3.63 15.52 12.02 8.87 15.58
RFT 40.12 17.72 3.63 14.76 12.98 13.36 17.10
ReFT 55.80 28.86 8.00 24.42 30.19 55.34 33.77
GRPO 56.92 30.11 8.33 27.98 34.78 57.10 35.87
w/ Hint (Self) 58.04 31.62 9.17 28.28 36.18 61.65 37.49
w/ Hint (GPT-o4-mini) 59.30 32.42 10.83 28.40 41.38 63.53 39.31

OctoThinker-3B-Hybrid-Zero

Zero-shot 59.98 36.87 4.83 16.57 21.18 19.25 26.45
Few-shot 61.23 37.01 5.33 18.62 23.32 24.53 28.34
RFT 62.78 37.73 4.83 19.45 27.34 36.82 31.49
ReFT 66.38 39.69 6.66 24.53 44.66 70.32 42.04
GRPO 68.81 41.29 8.33 23.26 44.25 69.85 42.63
w/ Hint (Self) 70.13 42.07 9.66 27.15 45.54 71.75 44.38
w/ Hint (GPT-o4-mini) 71.62 43.51 12.63 27.43 46.53 72.28 45.67

Qwen3-4B-Instruct-2507

Zero-shot 94.88 90.54 58.75 35.57 58.88 83.35 70.33
Few-shot 94.97 90.54 55.52 34.82 59.01 85.01 69.98
RFT 94.41 90.41 56.63 37.72 59.54 85.42 70.69
ReFT 96.46 90.83 62.79 60.31 72.21 92.20 79.13
GRPO 96.52 90.54 60.83 62.50 72.65 92.80 79.31
w/ Hint (Self) 96.46 92.57 63.54 62.88 72.83 92.30 80.10
w/ Hint (GPT-o4-mini) 96.58 92.96 62.71 64.99 72.95 93.91 80.68

the SFTed model from RFT, and continue for GRPO training (Trung et al., 2024). (5) GRPO: Using
outcome correctness as a rule-based reward function (Guo et al., 2025).

Implementation Details. We employ abstract cues as hints, and compare self-generated versus
teacher-generated in Table 1. We evaluate all methods using pass@1. Results are averaged over 16
runs, except for MMLU-Pro, which has 12k samples; for this dataset, we report the average over 3
runs. We adopt verl (Sheng et al., 2024) as the backbone, and utilize vllm (Kwon et al., 2023) to
speed up rollout generation and inference. To verify equivalence between predictions and references,
we use Math-Verify3. We employ a two-stage strategy for training. In stage 1, we optimize the base
policy with correctness-only GRPO until both training reward and validation accuracy show no
improvement for over 10 steps. In stage 2, we apply NuRL to continue training. To ensure fairness,
GRPO-based baselines are trained for the same total number of steps as NuRL, albeit NuRL starts
midway. Before stage 2 begins, we use the stage 1 checkpoint to generate 8 rollouts and filter out
samples where all rollouts are correct (i.e., overly easy cases) to improve efficiency. The resulting
sample size is reported in Appendix B. All methods are running on 8 H200 GPUs, and it takes
around six days for GRPO-based methods to converge. During training, we use a temperature of 1.0
and set the clip-high parameter ϵ to 0.28 (Yu et al., 2025). The rollout number is 16 for GRPO and
8 for NuRL, as NuRL may regenerate an additional batch of rollouts when all rollouts fail. We cap
the output length at 9k tokens for both training and testing. At inference, we fix the temperature to
0.7. Token limits and inference temperature are aligned across all baselines for evaluation. Other
hyperparameters and details can be found in Appendix B and in our code.

3https://github.com/huggingface/Math-Verify
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5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

NuRL consistently outperforms all baselines with self-generated hints. We present the main
results in Table 1. Across six benchmarks, NuRL shows superior performance compared to all
baselines, beating the zero-shot and the SFT baseline (RFT) by a large margin. For RL-based base-
lines (ReFT and GRPO), we see the performance increase by a large margin (+8.8% to +22.3%
compared to the base model), conforming that RL largely improves a model’s performance. Never-
theless, NuRL consistently surpasses these strong RL-based baselines. On average, it improves over
GRPO by +1.62 points on Llama, +1.75% on OctoThinker, and +0.79% on Qwen. Importantly,
these improvements are achieved on top of already strong GRPO performance, despite GRPO using
16 rollouts per question, whereas NuRL uses only 8 (with the option to generate another eight only
if all initial rollouts fail). Thus, GRPO operates with strictly more rollouts than NuRL. Since the
primary difference between NuRL and GRPO is the use of hints, these results highlight that tar-
geted hints are an effective mechanism for improving LLM performance. We note that the relatively
smaller improvement on Qwen (+0.79%) may stem from the limited stage 2 data (fewer than 2k
examples), as Qwen’s stronger base capability caused many overly easy samples to be filtered out
before stage 2. Finally, we observe that incorporating stronger external models for hint generation
yields additional gains beyond self-generated hints. For example, on Llama, hints from GPT-o4-
mini improve performance by +3.44% absolute points on average over GRPO and by +1.82% over
self-hints. This demonstrates that while self-generated hints are already beneficial, the framework
naturally accommodates stronger sources of guidance when available.

5.2 ADDITIONAL ANALYSIS
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Figure 3: Compared to GRPO’s improvements with Self-Consistency (+7.6% and +7.8% on Llama
and OctoThinker), NuRL obtains larger gains with +8.0% and +9.4%, respectively.

NuRL is complimentary to test-time scaling method. While NuRL shows superior performance in
Table 1, a common way to augment the baselines is to scale the test-time compute, often measured
in the number of tokens or number of samples at inference time. Here we adopt the latter and
employ Self-Consistency (SC; Wang et al., 2022). We compare NuRL with zero-shot and GRPO,
with and without Self-Consistency across two models, Llama and OctoThinker. Results in Fig. 3
show that NuRL does not only remain effective for test-time scaling method, but also shows greater
improvements compared to GRPO. Specifically, Llama trained with GRPO improves 7.6% with
SC, while Llama trained with NuRL improves 8.0%. Similarly, OctoThinker trained with GRPO
improves 7.8% with SC, while OctoThinker trained with NuRL improves 9.4%.

Hint abstraction is key to improvement. In Section 3, we described how hints are generated by
abstracting explanations of why an answer is correct. While this represents one useful approach, it
raises a broader question: what makes a good hint? To investigate this, we compare four types of
hints as mentioned in Section 3. In Fig. 4, we observe a consistent trend: the more directly answer in-
formation is disclosed, the lower the downstream performance. Abstract cues, which explicitly avoid
revealing details or solutions, yield the highest accuracy. Partial steps perform slightly worse, but
still help since the initial reasoning structure provides a useful starting point. Explanations are less
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Figure 4: Comparison of different types of hints. From left to right, the hints vary in how directly
they disclose information about the ground-truth answer. At the leftmost end, abstract hints provide
only high-level guidance without revealing details of the solution or answer, whereas at the rightmost
end the answer is given explicitly. Interestingly, more direct hints lead to worse performance.

effective, as justifying why an answer is correct is not equivalent to reasoning through the problem;
in fact, explanations often implicitly disclose the answer (e.g., “but the answer is {gold answer}, so
I should try a different method”). Finally, directly providing the ground-truth answer severely harms
generalization. This setup frequently induces reward hacking: during training, the model learns to
simply output the provided answer to maximize reward without genuine reasoning, and that does not
generalize at test time. Overall, these results suggest that effective hints should remain high-level
and abstract. A good hint guides the model toward reasoning independently, but avoids revealing
shortcuts that undermine generalization.

Table 2: Comparison of hint application strate-
gies during training. Results are on MATH 500
and GPQA with Llama3.2-3B-Instruct.

Two-stage Diff. Trigger MATH GPQA

✗ ✓ 56.06 27.63
✗ ✗ 53.41 24.84
✓ ✗ 53.09 26.62
✓ ✓ 58.04 28.28

Using hints only when necessary is crucial.
While we have established that a good hint should
be abstract, the question of when is the best time
to use hints remains open. To examine this, we
consider two key factors. First, one can de-
cide whether to apply hints from the beginning
of training, or to wait until GRPO converges be-
fore introducing them. We refer to the latter ap-
proach as two-stage training. Second, one can de-
termine the condition under which hints are pro-
vided. Specifically, hints may be applied uni-
formly to all problems, or only when all G rollouts are incorrect. We refer to this latter condition
as a difficulty trigger. Combining these two factors yields four experimental settings, summarized
in Table 2. We find that applying hints from the beginning of training generally underperforms
compared to introducing hints only after GRPO has stabilized. Similarly, applying hints indiscrim-
inately results in lower performance than using a difficulty trigger. This suggests that unnecessary
hints may interfere with the model’s ability to learn independently on problems where guidance is
not required. In contrast, when hints are introduced only after GRPO convergence and combined
with a difficulty trigger, we observe consistent improvements across both MATH and GPQA (58.04
and 28.28, respectively). In summary, these findings indicate that hints are most effective when used
selectively and adaptively. Rather than being injected throughout training or applied uniformly, hints
should be reserved for difficult cases and integrated after the base policy has stabilized.

NuRL improves pass@k when the task is more challenging to the model. In Table 1, we show
that NuRL generally outperforms GRPO in terms of pass@1. A natural follow-up question is
whether these gains also extend to higher values of k, especially when using NuRL, the model is
supposed to solve more training problems compared to GPRO. To investigate this, we plot pass@k
for k = {1, 2, . . . , 512, 1024} in Fig. 5 using Llama. Following Yuan et al. (2025), we set the maxi-
mum k as 1024 as a sufficiently large and practical budget to probe the model’s ceiling performance.
In Fig. 5, we first report results on MATH 500. Here, the base model already achieves pass@1024
= 96.4% before training (despite its relatively low pass@1 = 34.4%). In this case, neither GRPO
nor NuRL increases pass@1024, as the model already possesses strong knowledge on this task,
albeit hard to generate a correct answer given only one attempt. In contrast, for tasks where the
base model’s upper bound is lower – such as Date Understanding (85.4%) and GPQA (67.2%) – we
observe clear gains from NuRL, while GRPO provides little or no improvement. We hypothesize
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Figure 5: When the base model (Llama) already has strong pre-trained knowledge (e.g., MATH
500), both GRPO and NuRL yield little improvement in pass@k. In contrast, on tasks with lower
upper-bound performance (e.g., Date Understanding and GPQA, with pass@1024 of 85.4 and 67.2),
GRPO provides no gains on pass@1024, while NuRL pushes it further.

that hints guide the model to explore underrepresented solution paths, increasing the chance of dis-
covering correct answers that would otherwise remain in “unreachable corners” of the search space.
From an entropy perspective, hints may also induce more diverse exploration, which translates into
higher pass@k (Cheng et al., 2025). Importantly, these hints are lightweight: rather than fine-tuning
the model with hints, we simply append them to the input question, yet this is sufficient to guide
exploration more effectively. Moreover, we find that pass@1024 scales with the quality of hints:
using teacher-generated hints pushes it further to 95.2% on GPQA, compared to GRPO’s 63.4%.
In summary, when the base model’s ceiling performance is not yet saturated, NuRL raises pass@k
– both with self-generated hints (86.4% → 94.0% on Date, 63.6% → 69.7% on GPQA) and even
more so with higher-quality hints generated from the teacher model.
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Figure 6: The self-generated hints in NuRL
effectively reduce the task difficulty and in-
crease the portion of solvable problems.

NuRL increases the fraction of solvable problems.
Having demonstrated that NuRL is able to improve
both pass@1 and pass@k, we further analyze the
source of such performance gains. In Fig. 6, we show
that training with self-generated hints effectively in-
creases the fraction of solvable problems. Specifi-
cally, we present Qwen’s training log and compare,
at each training step, the fraction of solvable prob-
lems under three conditions: (1) no hints, correspond-
ing to standard GRPO training, (2) using NuRL before
adding hints, and (3) using NuRL after injecting hints
whenever all rollouts fail. Here, a problem is consid-
ered solvable if at least one rollout produces a correct
answer. Given the same training step, adding hints
yields an approximate 4% increase in solvable prob-
lems, suggesting that self-generated hints reduce problem difficulty for the model. Second, NuRL
shows a clear upward trend in the fraction of solvable problems both before and after hint injection.
This indicates that as training progresses, the model begins to solve problems that were previously
unsolvable, increasing the solvable fraction from 66% to 70%. Lastly, standard GRPO without hints
exhibits a relatively flat trend, with the solvable fraction fluctuating around 66%. Overall, these
results explain the improvements observed across diverse benchmarks: by leveraging self-generated
hints, the model effectively increases the amount of data it can learn from.

6 CONCLUSION

We introduce NuRL, a self-guided reinforcement learning approach that uses hints to extend models’
reasoning capabilities. NuRL consistently outperforms strong baselines with self-generated hints
and achieves further gains with hints generated by a stronger external model. Our analysis reveals
that the most effective hints are high-level, abstract, and applied selectively – only when the model
cannot solve a problem unaided. Moreover, NuRL scales more efficiently than GRPO at test time,
increases the fraction of solvable problems, and delivers substantial pass@k improvements on two
challenging tasks, effectively expanding the model’s comfort zone.
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ETHICS STATEMENT

In this work, we propose a reinforcement learning method that optimizes for final outcome correct-
ness. As a result, our trained LLMs may still produce hallucinations, since intermediate reasoning
is not directly supervised and the correctness is only verified against the final answer. Thus, out-
puts generated by NuRL carry potential risks of misinformation or hallucination. Future research is
needed to better assess and mitigate these limitations.

REPRODUCIBILITY STATEMENT

We are making our code available in the supplementary materials to enable replication of our find-
ings. We also provide implementation details of NuRL in Appendix B and prompts in Appendix D.
The datasets we use are all publicly available, as detailed in Appendix C.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use ChatGPT4 for grammar correction and refinement. The model was only used to polish text
already written by the authors, and was not used for research ideation or generating original content.

B IMPLEMENTATION DETAILS

Recall that in Section 3, we describe a two-stage training procedure where NuRL is applied after
GRPO converges. By convergence, we mean that both the training reward and validation accuracy
plateau after 10 training steps. Stage 1 corresponds to GRPO convergence, and stage 2 applies
NuRL on top of the converged checkpoint. For fairness, GRPO-based baselines also undergo stage
2 training without hints, ensuring the total training steps are aligned with NuRL. Since convergence
speed varies across models, we report the detailed hyperparameters and number of steps required
for each model in Table 3.

Table 3: Stage 1 configurations and hyperparameters.

Llama OctoThinker Qwen
num train samples 8316 8316 8316
max prompt length 1800 1800 1800
max response length 9000 9000 9000
lr 1e-6 1e-6 1e-6
clip ratio low 0.2 0.2 0.2
clip ratio high 0.28 0.28 0.28
rollout temperature 1 1 1
rollout n 16 16 16
use kl loss False False False
train batch size 1024 1024 4096
converged steps 375 175 125

At the start of Stage 2, we use the converged checkpoints and generate 8 rollouts per question. Then,
we discard samples where all rollouts are correct (i.e., overly easy examples) to improve efficiency.
This filtering is performed after Stage 1, since the trained checkpoints are stronger than the initial
models. The detailed stage 2 configurations are given in Table 4.

C DATASET STATISTICS AND LICENSES

We provide the sample sizes and licenses of the datasets used in this work in Table 5. All the datasets
are in English and all datasets are used in a fashion consistent with their intended use.

4https://chatgpt.com/
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Table 4: Stage 2 configurations and hyperparameters.

Llama OctoThinker Qwen
num train samples 5996 4502 1937
max prompt length 1800 1800 1800
max response length 9000 9000 9000
lr 1e-6 1e-6 1e-6
clip ratio low 0.2 0.2 0.2
clip ratio high 0.28 0.28 0.28
rollout temperature 1 1 1
rollout n 16 16 16
use kl loss False False False
train batch size 512 512 1937
converged steps 275 175 90

Table 5: The statistics and licenses of the datasets used in this study.

Sample Size License

MATH 500 (Lightman et al., 2023) 500 MIT License
MATH Hard (Hendrycks et al., 2021) 1324 MIT License
AIME 2024 (AIME, 2024) 30 CC0
GPQA-Diamond (Rein et al., 2024) 198 MIT License
MMLU-Pro (Wang et al., 2024) 12032 Apache License
Date Understanding (bench authors, 2023; Suzgun et al., 2022) 250 Apache License

D PROMPTS FOR HINT GENERATION

We use the following prompts to generate hints. First, we generate an explanation style of Chain-of-
Thought by conditioning on the ground truth answer:

Prompt for Explanation Generation

Question: {question}
I was told the answer is {gold answer} but I don’t know why. Please explain why the
answer is {gold answer} step by step.

Then, we use the concatenation of the question with the generated explanation, and ask the model
to generate an abstract hint using the following prompt:

Prompt for Hint Generation

<system prompt> You are a tutor. You are given a set of question, correct answer and
solution. Your job is to provide a hint for the problem. The hint should help the student learn
the core concept (e.g. formula, lemma, or necessary knowledge) needed to solve this problem.
The hint should be concise, to the point, but high level. Do not include any detailed steps or
calculations or the final answer. </system prompt>

Question: {question}
Answer: {gold answer}
Solution: {explanation}
Now, please provide a hint for this problem to help the student learn the core concept.
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E QUALITATIVE EXAMPLES

E.1 EXAMPLES OF DIFFERENT TYPES OF HINTS

We provide examples of the four types of hints we explored in this work. All the examples below
answer the same question (shown below) and are self-generated with Qwen3-4B-Instruct-2507.

Example Question and Answer

Question: During a school football match, there are 3 types of balls used, each with a different
number of colors. Type A balls have yellow, brown, and blue variations; Type B balls have
green, orange, and pink; and Type C balls have black, red, and white variations. The number of
colored balls varies according to the number of players in each team. Team 1 has 72 members,
and each player receives 4 Type A yellow balls, 3 Type A brown balls, and 3 Type A blue balls.
Team 2 has 64 members, and each player receives 5 Type B green balls, 4 Type B orange balls,
and 2 Type B pink balls. Team 3 has 53 members, and each player receives 3 Type C black
balls, 2 Type C red balls, and 6 Type C white balls. Calculate what percentage of all the balls
distributed for the match are Type A yellow balls.

Answer: 14.35%

Type 1: Abstract Cue

To find the percentage of a specific type of ball among all distributed balls, first calculate
the total number of that specific ball and then divide it by the total number of all balls dis-
tributed—then multiply by 100. Focus on identifying which team(s) contribute to the specific
ball type and sum all balls across teams.

Type 2: Partial Steps

Step 1: We are to find the percentage of all the balls distributed that are Type A yellow balls.
So, we need: (Total number of Type A yellow balls) / (Total number of all balls distributed) ×
100%

Step 2: Calculate total number of Type A yellow balls. Team 1 has 72 members, and each
player gets 4 Type A yellow balls. So Type A yellow balls = 72 × 4 = 288.

Type 3: Explanation

Step 1: Understand what is being asked. We are to calculate the percentage of all the balls
distributed that are Type A yellow balls.

Step 2: Calculate the number of Type A yellow balls. Team 1 has 72 members. Each player
gets 4 Type A yellow balls. Thus, Type A yellow balls = 72× 4 = 288.

Step 3: Calculate total number of balls distributed. We need to compute the total across all
teams and all ball types.

Team 1 (Type A balls): 72× (4 + 3+ 3) = 72× 10 = 720. Team 2 (Type B balls): 64× (5 +

4 + 2) = 64× 11 = 704. Team 3 (Type C balls): 53× (3 + 2 + 6) = 53× 11 = 583.

Step 4: Add up total balls across all teams. Total balls = 720 + 704 + 583 = 2007.
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Step 5: Calculate percentage of Type A yellow balls. We already have
Type A yellow balls = 288. So, Percentage =

(
288
2007

)
× 100.

Simplify: 288
2007 = 96

669 = 32
223 . Now, 32

223 ≈ 0.1435, and 0.1435× 100 = 14.35%.

Final Answer: 14.35%

Why is this correct?

• Only Team 1 gets Type A yellow balls.
• Total Type A yellow balls = 72× 4 = 288.
• Total balls distributed = 720 + 704 + 583 = 2007.
• Therefore, (288/2007)× 100 ≈ 14.35%.

Thus, 14.35% of all distributed balls are Type A yellow balls.

Type 4: Ground Truth Answer

I was told the answer is 14.35% . Do not blindly accept it. Take it as a reference and provide
your own step-by-step reasoning.

E.1.1 EXAMPLES OF SELF- AND GPT-O4-MINI-GENERATED ABSTRACT CUES

Example 1

Question: What is the maximum amount of heat that can be supplied to the system during the
electrolysis of water without violating the second law of thermodynamics? (A) 237 kJ (B) 286
kJ (C) 163 kJ (D) 49 kJ (Correct answer: D)

Hint (Self-generated): Think about the difference between the energy required to break wa-
ter (enthalpy) and the useful energy available (Gibbs free energy). This difference represents
the minimum amount of energy that must be lost as heat due to entropy—this is a direct con-
sequence of the second law of thermodynamics. What is this difference for water electrolysis?

Hint (GPT-o4-mini-generated): Use the relation ∆G = ∆H – T∆S to find the entropy change,
then recall that under a reversible (second-law-limit) process the maximum heat input is Qmax

= T∆S.

Example 2

Question: When two fair dice are thrown, the numbers obtained are respectively a and b.
Determine the probability that the line bx+ ay = 1 intersects the circle x2 + y2 = 1 and that
the length of the intercepted chord does not exceed 4

√
2

3 (Correct answer: 1
9 ).

Hint (Self-generated): Focus on the geometric condition for a line to cut a chord of a given
length in a unit circle. Recall that the length of the chord depends on the distance from the
center of the circle to the line — use this relationship to set up an inequality involving a and b.
Then translate the condition into a constraint on a2 + b2.

Hint (GPT-o4-mini-generated): Use the fact that for the circle x2 + y2 = 1 and the line
bx + ay = 1, the distance from the origin to the line is d = 1√

a2+b2
and the chord-length is

L = 2
√
1− d2 (L ≤ 4

√
2

3 ) to get a condition on a2 + b2, then count the integer pairs.
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