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PerSRV: Personalized Sticker Retrieval with
Vision-Language Model

Anonymous Author(s)∗

Abstract
Instant Messaging is a popular mean for daily communication,
allowing users to send text and stickers. As the saying goes, "a
picture is worth a thousand words", so developing an effective
sticker retrieval technique is crucial for enhancing user experience.
However, existing sticker retrieval methods rely on labeled data to
interpret stickers, and general-purpose Vision-Language Models
(VLMs) often struggle to capture the unique semantics of stickers.
Additionally, relevant-based sticker retrieval methods lack person-
alization, creating a gap between diverse user expectations and re-
trieval results. To address these, we propose thePersonalized Sticker
Retrieval with Vision-Language Model framework, namely PerSRV,
structured into offline calculations and online processing modules.
The online retrieval part follows the paradigm of relevant recall
and personalized ranking, supported by the offline pre-calculation
parts, which are sticker semantic understanding, utility evaluation
and personalization modules. Firstly, for sticker-level semantic un-
derstanding, we supervised fine-tuned LLaVA-1.5-7B to generate
human-like sticker semantics, complemented by textual content
extracted from figures and historical interaction queries. Secondly,
we investigate three crowd-sourcing metrics for sticker utility eval-
uation. Thirdly, we cluster style centroids based on users’ historical
interactions to achieve personal preference modeling. Finally, we
evaluate our proposed PerSRV method on a public sticker retrieval
dataset from WeChat1, containing 543,098 candidates and 12,568
interactions. Experimental results show that PerSRV significantly
outperforms existing methods in multi-modal sticker retrieval. Ad-
ditionally, our fine-tuned VLM delivers notable improvements in
sticker semantic understandings. The code is annoymously avail-
able2.

CCS Concepts
• Information systems → Information retrieval; Personaliza-
tion.

Keywords
Multi-modal Search, Personalization, Sticker Retrieval

1https://algo.weixin.qq.com
2https://anonymous.4open.science/r/persrv-5E1F
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1 Introduction
As instant messaging (IM) becomes an increasingly dominant form
of communication, stickers have emerged as a powerful visual tool
for conveying emotions and sentiments that text alone cannot fully
express. Offering a more nuanced and immediate form of interac-
tion, stickers enrich the human communication experience. With
their widespread use on platforms like WhatsApp, WeChat, and
Telegram, the need for advanced sticker retrieval systems has be-
come critical to support users in finding the right stickers efficiently.

Despite their growing significance, retrieving appropriate stick-
ers poses several challenges. Traditional sticker retrieval systems
largely depend on labels or corresponding utterances to understand
sticker semantics, which creates a significant bottleneck. Further-
more, general Vision Language Models (VLMs) struggle to capture
the unique, vibrant, human-like semantics of stickers. Besides, the
relevant-based retrieval methods lack user preference modeling,
leading to a mismatch between users’ expected styles and the re-
trieved stickers. These limitations highlight the need for personal-
ized sticker retrieval methods that can capture the sticker semantics
and user preferences.

Other promising aspect of advancing sticker retrieval system
is sticker utility metrics. Understanding a sticker’s utility can en-
hance a sticker’s retrieval accuracy. However, since sticker retrieval
scenario starkly contrast with image retrieval - where the formal
emphasize on emotional expression and the latter focusing on visual
information, the traditional image quality evaluation metric cannot
be directly applied. Popularity is a common metric used in retrieval
tasks; however we aim to explore other sticker-scenario specific
evaluation metrics that can effectively quantify a sticker’s quality
beyond mere popularity. pecifically, we brewe introduce, evaluate
and compare three utility metrics—Cross User Adaptability, Sticker
Popularity, and Query Adaptability.

In this paper, we present PerSRV (Personalized Sticker Retrieval
with Vision Language Model), a framework integrated with multi-
modal semantic understanding, sticker utility evaluation and user
preference modeling. Specifically, our contributions can be summa-
rized as follows:

• We address the Personalized Sticker Retrieval task, which
has not been well studied before.

• We propose PerSRV, the first Vision-Language Model-based
Personalized Sticker Retrieval method, structured into on-
line recall and ranking processes, supported by offline mod-
ules for sticker semantic understanding, utility evaluation,
and user preference modeling.
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• Extensive experiments on a large-scale real-world dataset
from WeChat demonstrate the significant improvements
of our method, outperforming both sticker retrieval base-
lines and VLM-based methods. Ablation studies confirm
the effectiveness of our framework designs.

2 Related Work
We outline related work on sticker retrieval, conversational recom-
mendation personalized image search.

2.1 Sticker Retrieval
Most previous research emphasizes the importance of data for
sticker retrieval. For instance, SRS [10] and PESRS [11] require cor-
responding utterances, while [20] relies on manually labeled emo-
tions, sentiments, and reply keywords. CKES [4] has each sticker
annotated with a corresponding emotion. During sticker creation,
Hike Messager [19] tags conversational phrases to stickers. The
reliance on data presents a significant limitation, as stickers without
associated information are excluded from consideration.

Gao et al. [10] uses a convolutional sticker encoder and self-
attention dialog encoder for sticker-utterance representations, fol-
lowed by a deep interaction network and fusion network to capture
dependencies and output the final matching score. The method
selects the ground truth sticker from a pool of sticker candidates,
and its successor PESRS [11] enhances this by integrating user
preferences. Zhang et al. [40] performs this on recommendation
tasks. CKES [4] introduces a casual graph to explicitly identify and
mitigate spurious correlations during training. PBR [37] paradigm
enhances emotion comprehension through knowledge distillation,
contrastive learning, and improved hard negative sampling to gen-
erate diverse and discriminative sticker representations for better
response matching in dialogues. PEGS [39], StickerInt [23] gen-
erates sticker information using multimodal models and selects
sticker responses, but does not consider personalization. Moreover,
most methods are limited to selecting only one sticker at a time, a
major drawback for real-world sticker scenario suggestions. To add
on, these ranking methods quickly become impractical on larger
datasets.

2.2 Personalized Image Search
Much work has been done on personalized image search. FedPAM
[9] achieves personalized text-to-image retrieval through a light-
weight personalized federated learning solution. Specifically, the
top-k most similar text-image pairs are fetched from the private
database and an attention-based module generates personalized rep-
resentations. These updated representation includes client-specific
information for text-to-image matching. CA-GCN [14] leverages
user behavior data in a Graph Convolution Neural Network model
to learn user and image embeddings simultaneously. The sparse
user-image interaction data is augmented to consider similarities
among images which improves retrieval performance. The main
difference between Unlike personalized image search, which fo-
cuses on retrieving specific images or objects, the main purpose of
stickers are to convey an emotion or provide an expression. This
fundamental difference highlights the need for tailored approaches

in sticker retrieval that address emotional context rather than object
recognition.

2.3 Image and Sticker Utility Evaluation
Sticker utility is a largely unexplored area. Unlike traditional image
quality metrics such as SSIM and PSNR [24], which often focus on
visual fidelity or perceived quality, a sticker’s utility is measured
through its ability to express emotions and expressions. Moreover,
since most stickers are derived from existing images, sticker reeval-
uation through these methods might be insignificant.

Ge, Jing [12] performed analysis to reveal that sticker’s main
utility, amongst others, is to express emotions and convey behav-
ior, action and attitude, however this is challenging to measure in
stickers. Jiang et al. [15], A. T. Kariko et al. [16] indicates utilization
augments personal happiness. Gygli, M et al. [13] observes inter-
esting gifs gaining curiosity and attention, however this does not
directly align with a sticker’s purpose of emotional expressiveness.
Constantin, Mihai Gabriel, et al. [5] deciphers the visual concepts
of affective value and emotions with dimension emotion space of
valence, arousal and dominance. However, these are challenging to
measure. Zhang et al. [39] employ Empathy-multimodal, Consis-
tency, and Rank as key metrics to evaluate multimodal conversa-
tional responses. However, these metrics are inherently dependent
on the conversational context. In contrast, we intend to explore
sticker-independent metrics.

While popularity has been a widely used metric in retrieval
tasks [31], our research seeks to quantitatively assess a sticker’s
emotional expressiveness within the sticker-scenario.

2.4 Large Multimodal Models
LLMs, such as ChatGPT [1] [3], LLaMA [34], demonstrate powerful
language capabilities, recent researches have extended LLMs to mul-
timodal domains. Flamingo [2] exhibits promising zero-shot capa-
bilities by adding a cross-attention layer. BLIP [22] [21], MiniGPT-4
[42] [41], MiniGPT-5 [41] and LLaVA [26] [25] uses a small inter-
mediate model to bridge between the frozen vision encoder and the
LLM. GILL [17] explores mapping LLM outputs into input space of
vision decoder, empowering LLM’s image generation capabilities.
InstructBLIP [6] and UniMC [35] leverages pretrained models to
enhance generalization. These recent innovations enable more ef-
fective and nuanced communication through images, generating
descriptive captions that align closer to the label. However, most
existing research predominantly focuses on general images.

3 Personalized Sticker Retrieval with VLM
In this section, we present the proposedPersonalized StickerRetrieval
with Vision-Language Model method, abbreviated as PerSRV. We
begin by introducing the problem settings in Section 3.2, followed
by an overview of the framework in Section 3.1. The framework’s
offline pre-calculation modules are then detailed in Section 3.3, 3.4,
3.5, and the online components are introduced in Section 3.6.
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Figure 1: Overview of PerSRV. The framework is structured into offline calculation and online processing. The offline prepa-
ration has three modules: (1)Multi-modal Sticker Semantic Understanding; (2) Sticker Utility Evaluation; (3) User Preference
Modeling for Sticker-Style. When an online query comes, PerSRV first recall semantically relevant, utility enhanced stickers
and then rank according to user preference.

3.1 Framework Overview
3.2 Problem Formulation
We address the standard personalized retrieval task in sticker scenar-
ios. Given users’ historical query logs {(𝑙𝑞1, 𝑙𝑢1, 𝑙𝑠1), .., (𝑙𝑞𝐿, 𝑙𝑢𝐿, 𝑙𝑠𝐿)},
a query 𝑞 from user𝑢 and a set of candidate stickers 𝑆 = {𝑠1, . . . , 𝑠𝑖},
the objective is to provide a selected rank list of stickers, prioritizing
positive examples near the top.

As shown in Figure 1, the Personalized Sticker Retrieval with
Vision-Language Model framework is structured into offline pre-
calculation and online processing stages. The offline stage consists
of three key modules: Sticker Semantic Understanding, Sticker
Utility Evaluation, and User Preference Modeling, discussed in
Section 3.3, 3.4, 3.5. These pre-calculated features further feed into
the online phase. In the online stage, PerSRV follows a standard two-
step process of recall and ranking. First, it recalls utility-boosted
semantic relevance stickers, then applies personalized style-based
ranking. The details of this process are explained in Section 3.6.

3.3 Multi-modal Semantic Understanding
A critical aspect of semantic understanding is generating accu-
rate, human-like descriptions for stickers, an area where previous
sticker retrieval approaches and general VLMs fall short of. To
achieve a more comprehensive semantic understanding, we lever-
age (1) Supservised Fine-tuned Visional Language Model to gener-
ate human-like keywords, (2) Optical Character Recognition (OCR)
to capture textual content in stickers and (3) Historical Click Qury
Information for context integration. These three techniques are
detailed below.

3.3.1 Vision-Language Model for Sticker Understanding. To model-
ing the overall semantics of stickers, we utilize Vision Language
Model (VLM), specifically Llava-1.5-7b [26] for sticker understand-
ings. Initially, we test the Llava’s in-context capabilities to generate
human-like keywords using the following instruction:

Instruction for VLM to obtain sticker semantics

You are a sticker expert. Please carefully observe and under-
stand the meanings that the sticker wants to convey and give
a brief phrase or two that expresses the semantic meanings
of this sticker.

However, experiments reveal that Llava alone is insufficient for
capturing the nuanced, human-like keywords associated with stick-
ers. These results are discussed further in Section 5.3. To improve
performance, we supervised fine-tuned the VLM using Low-Rank
Adaptation (LoRA) on the training set, with human click queries
serving as ground truth for generating sticker keywords.

Additionally, We agument these keywords with general image
captions, including image description and the emotions evoked by
the sticker, using the following format for the general VLM.

This is a sticker. 1 Pease describe the sticker in detail. 2 describe the
feelings it is meant to express. Use this format 1. | 2.

3.3.2 Optical Character Recognition for Textual Content Extraction.
A significant attribute ofmany stickers is the inclusion of text within
the image, which provides essential cues for accurately capturing
semantic meaning.

3
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WeemployOptical Character Recognition (OCR), awell-established
technique for extracting text from images [32]. Specifically, we use
the open-source PaddleOCR model [7] to extract textual informa-
tion from the stickers. For each candidate sticker, the model identi-
fies any present text along with its recognition confidence score.
After manual inspection, text with a confidence score above 0.7 is
retained. After the ORC process, 73% (398,066 out of 543,098) of the
stickers obtain the textual information in the image.

3.3.3 Query Integration from Historical Interactions. In retrieval
scenarios, historical query logs offer an important dimension for
capturing item semantics from real users in a collaborative filtering
manner. To fully utilize the rich interaction logs and enhance the
human-like semantic understanding of stickers, we integrate the
associated queries corresponding to each sticker in the training
set into the semantic understanding of stickers. This integration
reflects real users’ contextual understanding, thereby enriching the
semantic representation of the stickers.

3.4 Sticker Utility Evaluation
Beside semantic relevance requirements, another key factor for
real-world retrieval systems is to provide high-quality results.

We investigate three crowd-sourcing driven factors for utility
modeling. They are sticker popularity, cross user adaptability and
query adaptability.

3.4.1 Sticker Popularity.

Pop𝑠 = | [𝑐 ∈ Logs : clicks 𝑐 for sticker 𝑠] | (1)

3.4.2 Cross User Adaptability.

CrossUserAdapt𝑠 = |{𝑢 ∈ Users : user 𝑢 clicked on sticker 𝑠}|
(2)

3.4.3 Query Adaptability.

QueryAdapt𝑠 = |{𝑞 ∈ 𝑄 : query 𝑞 matches 𝑠}| (3)

The final score is calculated as follow,

U =


Pop𝑠 + base · 1[Pop𝑠 = 0]

CrossUserAdapt𝑠 + base · 1[CrossUserAdapt𝑠 = 0]
QueryAdapt𝑠 + base · 1[QueryAdapt𝑠 = 0]

 (4)

Then, the utility score can be expressed as,

Utility𝑠 = w𝑇 ·
√︁
𝑁𝑜𝑟𝑚(U) (5)

3.5 User Preference Modeling for Sticker Styles
Personalization is a key factor in enhancing user experience within
online systems [8]. In the PerSRV framework, personalization is
achieved by modeling users’ preferred sticker styles, such as sticker
series and included elements.

We utilize the pretrained image encoder, CLIP-cn [38], to ex-
tract 512x512 embedding representations of sticker images. Then,
the k-means clustering method [18] is applied to the embedding
sets of each user’s interacted stickers to identify style preferences.
Each cluster contains a set of embeddings with a corresponding
centroid. This centroid serves as the basis for the online style-based
presonlaized ranking introduced in Section 3.6.2.

Case studies in Section 5.4.2 illustrate that this method could
effective model user preference on sticker styles from interaction

history and experiments in Section 5.2 verifies that PerSRV’s per-
sonalization significantly improve the downtream retrieval perfor-
mances.

3.6 Online Sticker Retrieval enhanced with
Offline Support

Table 1: PerSRV Notations

Symbol Description
𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠𝑠 Semantics of sticker s
𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑠 Utility Evaluation of sticker s

Recall Score𝑞 (𝑠) Recall Score for sticker s under query q
𝑆𝑡𝑦𝑙𝑒𝑢 Preferred Style Cluster for user u

Preference Score𝑢 (𝑠) Preference Score of user u for sticker s
Score𝑢;𝑞 (𝑠) Ranking Score of user u, sticker s and query q

To support timely retrieval from the large number of candidates,
we use a two-step approach when online queries comes. They are
the utility boosted semantic relevance recall and the style-based
personalized ranking.

3.6.1 Utility Boosted Semantic Relevance Recall. PerSRV’s first aim
is to recall relevant stickers for search queries. At the same time, we
further add the sticker utility boosted factor in the recall phrase to
ensure user experience. We use BM25 [30] to calculate the semantic
relevance score between query and stickers. This is supported with
the offline prepared sticker semantics from SFT VLM keywords,
OCR texts and integrated queries. Then, the pre-calculated sticker-
level utility score, defined in the earlier section, is integrated to
enhance the recall process. Based on the above recall score, we get
the top R (100) stickers from the large candidate sets.

Recall Score𝑞 (𝑠) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑞; 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠𝑠 ) +𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑠 (6)
where 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠𝑠 = {VLM𝑠 ,OCR𝑠 ,QueryInteg.𝑠 }, (7)
𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑠 = {Pop𝑠 ,CrossUserAdapt𝑠 ,QueryAdapt𝑠 }. (8)

In the above equations, 𝑞 is the online query and 𝑠 represent
each candidate stickers.

3.6.2 Stype-based Personalized Ranking. After recalling the seman-
tic relevance and high-utility stickers, we further prepare the ranked
list with personalization, where we use the offline calculated user
preferred style clustering.

User preference for each sticker is defined as the shortest distance
between the sticker’s embedding and the centroids of the user’s
style preferences, as calculated in Section 3.5. The preference score
is computed according to the following equation:

Preference Score𝑢 (𝑠) = min
Style𝑢

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (Style𝑢 , 𝑠) (9)

Finally, we combine both the recall score and the preference
score to compute the final score, which is used to rank the final
stickers:

Score𝑢;𝑞 (𝑠) = Recall Score𝑞 (𝑠) (1 + 𝛼Preference Score𝑢 (𝑠)) (10)

This approach allows for personalized ranking by factoring in
both semantic relevance, high-utility and user style preferences.

4
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4 Experimental Setup
4.1 Dataset
We introduce the public dataset from WeChat [36] with sticker as
response in detail.

Table 2: Statistics of the WeChat dataset. The dataset has
543,098 stickers and 12,568 user-query-sticker logs.

Field Number
# Stickers 543,098
# User-Query-Sticker 12,568
# Unique User-Query Pairs 2,308
# Unique Queries 1,891

We utilize the public large-scale user query interaction dataset
with stickers from one of the most popular messaging apps. As
shown in Table 2, there are 543,098 stickers, 12,569 interactions,
and 8 users.We randomly extract 80% of the interactions for training
and reserve the remaining 20% for testing and validation.

4.2 Evaluation Metrics
Following the challenge [36], we employ multi-mean reciprocal
ranking M-MMR@𝑘 as an evaluation metric, which measures the
relative ranking position of positive responses. Following a previous
study [10], we also employ recall 𝑅@𝑘 as an evaluation metric,
which measures if the positive responses are ranked in the top 𝑘
candidates.

4.3 Baseline Details
• Global Pop, User Pop: [31] count the occurrence of most

common stickers globally and user-level to generate a list
of stickers.

• BM25: [30] ranks documents based on the relevance of
term frequency and inverse document frequency.

• BM25 (+OCR): [30] performs the same as before but in-
cludes OCR text.

• BLIP2: [21] aligns visual and textual information through
efficient pre-training. We translated the English captions
into Chinese using Opus-MT-en-zh [33].

• CLIP-cn: [38] uses contrastive learning to align images and
text in a shared embedding space. We input sticker images
and collect 512x512 image embeddings.

• SRS: [10] matches sticker image features with multi-turn
dialog context using convolutional and self-attention en-
coders. The open-source model EmojiLM [29] generate the
required emoji annotations using our captured semantics.

We conducted our experiments using PyTorch [28] on anNVIDIA
A100-SXM4 GPU.

5 Experimental Result
In the following subsections, we aim to answer the following ques-
tions:

• RQ1: What is the overall performance of PerSRV compared
with all baselines?

• RQ2: What is the effect of each module in PerSRV?
• RQ3: How effective is VLM in sticker comprehension?
• RQ4: How effective are proposed sticker quality metrics?

5.1 Overall Results
For research question RQ1 , we evaluated the performance of our
model alongside various baseline methods across multiple metrics,
as detailed in Table 3. We split our baselines into popularity, text,
general-VLM, and sticker-based methods to conduct a comprehen-
sive comparison of our proposed method.

The popularity-based approaches [31] demonstrated limited ef-
fectiveness, with the Global Popularity method achieving a maxi-
mum M-MRR@20 score of only 0.0015, while the User Popularity
method fared slightly better at 0.0028 for M-MRR@20. Similarly,
general VLM-based approaches [21] [38] yielded modest results,
with CLIP-cn reaching just 0.0072 at M-MRR@5. In contrast, the
SRS method [10] showed moderate performance, attaining an M-
MRR@20 score of 0.0087. Notably, text-based approaches exhibited
significantly higher performance, with the BM25 (Query+OCR)
method [30] achieving an impressive M-MRR@20 of 0.2772.

Our proposed method, PerSRV, outperformed all baseline meth-
ods, achieving an outstandingM-MRR@20 of 0.3020—approximately
8.95% higher than the second-best method—and demonstrating a
remarkable 19% improvement in M-MRR@1. This validates the
effectiveness of method on the sticker retrieval task.

5.2 Ablation Study
In this section, we address RQ2. Specifically, we remove person-
alization component from the framework, as shown in Table 3.
Removing the Personalization Ranking resulted in substantial per-
formance drops across several key metrics, with M-MRR@10 and
Recall@10 decreasing by approximately 14.58%, M-MRR@20 de-
creasing by 9.06%, Recall@20 decreasing by 6.30%, and M-MRR@1
showing a decrease of 7.32%. This underscores the critical role of
personalization in sticker retrieval, demonstrating that tailored ap-
proaches significantly enhance user engagement and satisfaction,
leading to enhanced retrieval outcomes.

5.3 Analysis on Vision-Language Model
Quantitatively, we assess the performance of the visual language
model (VLM) through two key evaluations. We compare the key-
words generated by both the base VLM and the SFT VLM.

We utilize the BLEU [27] score to evaluate the proximity of the
generated keywords to the ground truth. To investigate OCR text
influence on the SFT model, we differentiated between stickers with
and without OCR text; this is indicated by the two extra columns:
BLEU w/o OCR and BLEU w/ OCR. Column w/o OCR text indicates
BLEU score evaluation on sticker candidates without OCR text and
columnw/ OCR Text indicates BLEU score evaluation on sticker can-
didates with OCR text. As shown in Table 4, our SFT model exhibits
a remarkably higher BLEU score across all categories. Specifically,
the SFT model demonstrates an astounding performance increase
of approximately 1.2 billion folds compared to the base model, indi-
cating a significant improvement in keyword generation quality.

To complement the BLEU score, which may not fully capture the
semantic relationships between words, we employ cosine similarity
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Table 3: Baseline Evaluation Comparison. Our proposed method, PerSRRV, achieved the highest performance among all
evaluated methods. Text-based approaches ranked second, while general VLM and popularity-based methods exhibited the
lowest performance. The statistical significance of differences observed between the performance of two runs is tested using a
two-tailed paired t-test and is denoted using * for significance at 𝛼 = 0.05 and ** for significance at 𝛼 = 0.01. We bold the best
results and underline the second best.

M-MRR@1 R@1 M-MRR@5 R@5 M-MRR@10 R@10 M-MRR@20 R@20

Popularity-based Global Pop 0.0000 0.0000 0.0009 0.0006 0.0013 0.0012 0.0015 0.0024
User Pop 0.0011 0.0011 0.0022 0.0015 0.0025 0.0027 0.0028 0.0037

Text-based BM25 0.0097 0.0097 0.0418 0.0364 0.0494 0.0535 0.0494 0.0535
BM25 (+OCR) 0.0852 0.0852 0.2414 0.1804 0.2682 0.2269 0.2772 0.2726

General VLM BLIP2 0.0000 0.0000 0.0005 0.0003 0.0011 0.0014 0.0012 0.0021
CLIP-cn 0.0021 0.0021 0.0072 0.0060 0.0078 0.0087 0.0087 0.0123

Sticker Ranking SRS 0.0064 0.0015 0.0086 0.0051 0.0102 0.0096 0.0115 0.0175

Ours PerSRV 0.1014** 0.1014** 0.2673** 0.1889** 0.2938** 0.2326** 0.3020** 0.2736**
w/o Personal. 0.0885 0.0885 0.2451 0.1777 0.2722 0.2265 0.2814 0.2740

Table 4: BLEU score comparison between SFT and base VLM.
The fine-tuned model demonstrates an astounding perfor-
mance increase across all categories. As the BLEU score from
the base model is relatively insignificant, (i.e. 3 × 10−10), we
have omitted it from the table.

Model BLEU Overall BLEU w/o OCR Text BLEU w/ OCR Text

Base 0.0000 0.0000 0.000

SFT 0.3625** 0.3829** 0.3580**

Table 5: Cosine similarity comparison between SFT and base
VLM. The SFT VLM performs significantly better in both
keyword generation scenarios with and without OCR texts.

Model CosSim Overall CosSim w/o OCR Text CS w/ OCR Text

Base 0.3756 0.3757 0.3755

SFT 0.6863** 0.6979** 0.6837**

as an additional evaluation metric. Similarly, to investigate the
OCR text influence on the SFT model, we differentiated between
stickers with and without OCR text; this is indicated by the two
extra columns: CosSim w/o OCR Text and CosSim w/ OCR Text.
Column CosSim w/o OCR Text indicates cosine similarity score
evaluation on sticker candidates without OCR text and column
CosSim w/ OCR Text indicates cosine similarity score evaluation on
sticker candidates with OCR text.

Table 5 illustrates the cosine similarity scores for both the base
and SFT VLM. The SFT VLM shows a substantial increase in simi-
larity both with and without utilizing OCR text; specifically SFT
VLM demonstrates an approximate 80% increase across different
categories.

Collectively, the results from both the BLEU and cosine similarity
metrics emphasize that the SFT VLM demonstrates a strong quan-
titative ability to generate effective sticker keywords, particularly
for the large amount of stickers lacking labels or utterances.

Lastly, we showcase our method’s semantic understanding of
stickers. Figure 2 demonstrates the semantic understanding capabil-
ities of both the base and SFT VLM for a sticker with and without
OCR text. The figure highlights the multi-layered progression of
semantic comprehension, starting from shallow layers like general
descriptions to emotions elicitation, to more precise, contextually
rich keywords generated by the SFT model. The blue box are de-
scription and emotions elicited from the VLM. As shown in Figure
2, the base model is unable to generate an accurate prediction
whereas the VLM model is able to precisely generate the keywords,
as indicated by the green tick.

Moreover, the SFT model demonstrates its effectiveness by accu-
rately predicting the actual keywords, despite it being different than
the OCR text. This showcases its robustness independence of the
OCR text. This underscores the SFT VLM’s capability to improving
the retrieval process by generating more accurate and semantically
relevant keywords.

5.4 Case Study
5.4.1 Vision-Language Model. We present concrete examples from
our dataset that highlight the improvements achieved with the
PerSRV model. Figure 3 shows a sticker retrieval case focusing on
image emotion and description prompting. First, we prompt the
VLM to generate both sticker descriptions and associated emotions.
The VLM’s response is placed in the dark blue container, with the
relevant responses highlighted in orange and light blue. Secondly,
stickers are retrieved based on the generated prompt. Without
sticker description and emotions context, the query “Want to cry,
but no tears come” fails to retrieve the ground truth sticker. How-
ever, the inclusion of VLM output retrieves the ground truth sticker
successfully in the first position. This underscores the importance
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Figure 2: Example of semantic understanding for stickers with and without OCR text. The SFT VLM is capable of accurately
generating keywords. The green box indicates the SFT VLM’s response and the green tick indicates an accurate prediction to
the ground truth stickers.

Figure 3: Example of sticker description and emotions prompting. The inclusion of description and emotions allows PerSRV to
recall and rank the ground truth significantly higher, which was previously not observed.

of offline image description generation and emotion elicitation for
more accurate and efficient sticker retrieval.

5.4.2 Personalization. In Fig 4, we show the significance of person-
alization in downstream task. By considering User 1’s preferences,
we observe a marked increase in the relevance of retrieved sticker
candidates, which are closely aligned with the user’s ground truths.

5.4.3 Quality Score. Fig 5 highlights the impact of sticker utility
metrics on sticker retrieval. The top row is retrieval without quality

score and the bottom row integrates quality score. In this instance,
the ground truth improved its ranking from the 4th position to the
1st position, as indicated by the green arrow, demonstrating the
effectiveness of the quality score metrics generated by PerSRV. This
significant enhancement in relevance underscores the capability of
the quality score to elevate the most pertinent sticker candidates.
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Figure 4: Example of sticker retrieval with user style prefer-
ence. User prefers a classic Disney character; in the retrieval
task, this preference is considered.

Figure 5: Example of quality score ablation generated by
PerSRV, illustrating the effectiveness of the quality score
metrics.

6 Discussion
6.1 Inference Time Evaluation

Table 6: Evaluation of inference times for different baselines.

M-MRR@10 Inference Time/query (s)

BLIP2 + Opus 0.0010 0.0549
CLIP-cn 0.0068 0.0914
SRS 0.0102 0.1103
PerSRV 0.2722 0.0541

Table 6 presents the evaluation of inference times across var-
ious baselines, highlighting the efficient performance of PerSRV
compared to traditional methods. Notably, while other models like
SRS exhibit significantly longer inference times, PerSRV maintains
rapid query processing with minimal latency, crucial for ensuring a
smooth user experience in real-time sticker retrieval applications.

6.2 Extensibility
The PerSRV framework demonstrates notable extensibility, demon-
strating a robust solution for sticker retrieval applications. In con-
trast to conventional systems, which rely heavily on labeled data or
user utterances—two significant bottlenecks in retrieval tasks—our
method utilizes Vision-Language Models (VLMs). This approach
effectively obviates the need for such requirements, thereby stream-
lining the deployment process and mitigating potential data con-
cerns by minimizing the dependence on sensitive user information.
Moreover, PerSRV’s method emphasizes efficient data management,
as the majority of data preparation occurs offline. The method also
requires minimal training time, which enhances its adaptability
across various user contexts and applications.

7 Conclusion
In this work, We address the Personalized Sticker Retrieval task,
which has not been well studied before. We propose PerSRV, the
first Vision-Language Model-based Personalized Sticker Retrieval
method, structured into online recall and ranking processes, sup-
ported by offlinemodules for sticker semantic understanding, utility
evaluation, and user preferencemodeling. Extensive experiments on
a large-scale real-world dataset from WeChat demonstrate the sig-
nificant improvements of our method, outperforming both sticker
retrieval baselines and VLM-based methods. Ablation studies con-
firm the effectiveness of our framework designs.

Furthermore, we emphasize the role of personalization in en-
hancing user experience, tailoring sticker retrieval to individual
preferences and thereby improving overall satisfaction. Through
comprehensive experiments, we demonstrate the practicality and
effectiveness of our system, achieving significantly better perfor-
mance compared to existing methods.

We believe that our findings can pave the way for further sticker
retrieval work. Our work not only contributes to the existing body
of knowledge but also lays the groundwork for future advancements
in personalized sticker retrieval works.
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