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ABSTRACT

Random Forests are widely recognized for establishing efficacy in classification
and regression tasks, standing out in various domains such as medical diagnosis,
finance, and personalized recommendations. These domains, however, are inher-
ently sensitive to privacy concerns, as personal and confidential data are involved.
With increasing demand for the right to be forgotten, particularly under regula-
tions such as GDPR and CCPA, the ability to perform machine unlearning has be-
come crucial for Random Forests. However, insufficient attention was paid to this
topic, and existing approaches face difficulties in being applied to real-world sce-
narios. Addressing this gap, we propose the DYNFRS framework designed to en-
able efficient machine unlearning in Random Forests while preserving predictive
accuracy. DYNFRS leverages subsampling method OCC(q) and a lazy tag strategy
LZY, and is still adaptable to any Random Forest variant. In essence, OCC(q) en-
sures that each sample in the training set occurs only in a proportion of trees so
that the impact of deleting samples is limited, and LZY delays the reconstruction
of a tree node until necessary, thereby avoiding unnecessary modifications on tree
structures. In experiments, applying DYNFRS on Extremely Randomized Trees
yields substantial improvements, achieving orders of magnitude faster unlearn-
ing performance and better predictive accuracy than existing machine unlearning
methods for Random Forests.

1 INTRODUCTION

Machine unlearning is an emerging paradigm of removing specific training samples from a trained
model as if they had never been included in the training set (Cao and Yang, 2015). This concept
emerged as a response to growing concerns over personal data security, especially in light of regula-
tions such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy
Act (CCPA). These legislations demand data holders to erase all traces of private users’ data upon
request, safeguarding the right to be forgotten. However, unlearning a single data point in most ma-
chine learning models is more complicated than deleting it from the database because the influence
of any training samples is embedded across countless parameters and decision boundaries within the
model. Retraining the model from scratch on the reduced dataset can achieve the desired objective,
but is computationally expensive, making it impractical for real-world applications. Thus, the abil-
ity of models to efficiently “unlearn” training samples has become increasingly crucial for ensuring
compliance with privacy regulations while maintaining predictive accuracy.

Over the past few years, several approaches to machine unlearning have been proposed, particu-
larly focusing on models such as neural networks (Mehta et al., 2022; Cheng et al., 2023), support
vector machines (Cauwenberghs and Poggio, 2000), and k-nearest neighbors (Schelter et al., 2023).
However, despite the progress made in these areas, machine unlearning in Random Forests (RFs)
has received insufficient attention. Random Forests, due to their ensemble nature and the unique
tree structure, present unique challenges for unlearning that cannot be addressed by techniques de-
veloped for neural networks (Bourtoule et al., 2021) and methods dealing with loss functions and
gradient (Qiao et al., 2024) which RFs lack. This gap is significant, given that RFs are widely used
in critical, privacy-sensitive fields such as medical record analysis (Alam et al., 2019), financial
market prediction (Basak et al., 2019), and recommendation systems (Zhang and Min, 2016) for its
effectiveness in classification and regression.
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To this end, we study an efficient machine unlearning framework dubbed DYNFRS for RFs. One
of its components, the OCC(q) subsampling technique, limits the impact of each data sample to a
small portion of trees while maintaining similar or better predictive accuracy through the ensemble.
DYNFRS resolves three kinds of requests on RFs: to predict the result of the query, to remove sam-
ples (machine unlearning), and to add samples to the model. The highly interpretable data structure
of Decision Trees allows us to make the following two key observations on optimizing online (re-
quire instant response) RF (un)learning. (1) Requests that logically modify the tree structure (e.g.,
sample addition and removal) can be partitioned, coalesced, and lazily applied up to a later querying
request. (2) Although fully applying a modifying request on a tree might have to retrain an entire
subtree, a querying request after those modifications can only observe the updates on a single tree
path in the said subtree. Therefore, we can amortize the full update cost on a subtree into multiple
later queries that observe the relevant portion (see Fig. 1).

To this effect, we propose the lazy tag mechanism LZY for fine-grain tracking of pending updates on
tree nodes to implement those optimizations, which provides a low latency online (un)learning RF
interface that automatically and implicitly finds the optimal internal batching strategy within nodes.

We summarize the key contributions of this work in the following:

• Subsampling: We propose a subsampling method OCC(q) that guarantees a 1/q times
(where q < 1) training speedup and an expected 1/q2 times unlearning speedup compared
to naı̈ve retraining approach. Empirical results show that OCC(q) brings improvements to
predictive performance for many datasets.

• Lazy Tag: We introduce the lazy tag strategy LZY that avoid subtree retraining for unlearn-
ing in RFs. The lazy tag interacts with modification and querying requests to obtain the
best internal batching strategy for each tree node when handling online real-time requests.

• Experimental Evaluation: DYNFRS yields a 4000 to 1500000 times speedup relative to
the naı̈ve retraining approach and is orders of magnitude faster than existing methods in se-
quential unlearning and multiple times faster in batch unlearning. In the online mixed data
stream settings, DYNFRS achieves an averaged 0.12 ms latency for modification requests
and 1.3 ms latency for querying requests on a large-scale dataset.

2 RELATED WORKS

Machine unlearning concerns the complicated task of removing specific training sample from a
well-trained model (Cao and Yang, 2015). Retraining the model from scratch ensures the complete
removal of the sample’s impact, but it is computationally expensive and impractical, especially when
the removal request occurs frequently. Studies have explored unlearning methods for support vector
machines (Cauwenberghs and Poggio, 2000), and k-nearest neighbor (Schelter et al., 2023). Lately,
SISA (Bourtoule et al., 2021) has emerged as a universal unlearning approach for neural networks.
SISA partitions the training set into multiple subsets and trains a model for each subset (sharding),
and the prediction comes from the aggregated result from all models. Then, the unlearning is ac-
complished by retraining the model on the subset containing the requested sample, and a slicing
technique is applied in each shard for further improvements. However, as stated in the paper, SISA
meets difficulties when applying slicing to tree-based models.

Schelter et al. (2021) introduced the first unlearning model for RFs based on Extremely Randomized
Trees (ERTs), and used a robustness quantification factor to search for robust splits, with which
the structure of the tree node will not change under a fixed amount of unlearning requests, while
for non-robust splits, a subtree variant is maintained for switching during the unlearning process.
However, HedgeCut only supports removal of a small fraction (0.1%) of the entire dataset. Brophy
and Lowd (2021) introduced DaRE, an RF variant similar to ERTs, using random splits and caching
to enhance unlearning efficiency. Random splits in the upper tree layers help preserve the structure,
though they would decrease predictive accuracy. DaRE further caches the split statistics, resulting
in less subtree retraining. Although DaRE and HedgeCut provide a certain speedup for unlearning,
they are incapable of batch unlearning (unlearn multiple samples simultaneously in one request).

Laterly, unlearning frameworks like OnlineBoosting (Lin et al., 2023) and DeltaBoosting (Wu et al.,
2023) are proposed, specifically designed for GBDTs, which differ significantly from RFs in training
mechanisms. OnlineBoosting adjusts trees by using incremental calculation updates in split gains
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and derivatives, offering faster batch unlearning than DaRE and HedgeCut. However, it remains an
approximate method that cannot fully eliminate the influence of deleted data, and its high computa-
tional cost for unlearning individual instances limits its practical use in real-world applications. In
the literature, Sun et al. (2023) attempted to lazily unlearn samples from RFs, but their approach still
requires subtree retraining and suffers from several limitations in both clarity and design.

Different from others, our proposed DYNFRS excels in sequential and batch unlearning settings and
supports learning new samples after training.

3 BACKGROUND

Our proposed framework is designed for classification and regression tasks. Let D ⊆ Rd × Y
represent the underlying sample space. The goal is to find a hypothesis h that captures certain
properties of the unknown D based on observed samples. We denote each sample by k, where
x ∈ Rd is a d-dimensional vector describing features of the sample and y ∈ Y represents the
corresponding label or value. Denote S as the set of observed samples, consisting of n independent
and identically distributed (i.i.d.) samples k for i ∈ [n] drawn from D, where [n] ≜ {i | 1 ≤ i ≤
n, i ∈ Z}. For clarity, we call the k-th entry of x attribute k.

3.1 EXACT MACHINE UNLEARNING

The objective of machine unlearning for a specific learning algorithm A is to efficiently forget certain
samples. An additional constraint is that the unlearning algorithm must be equivalent to applying A
to the original dataset excluding the sample to be removed.

Formally, let the algorithm A : S → H maps a training set S ∈ S to a hypothesis A(S) ∈ H. We
then define A− : H×S ×D → H as an unlearning algorithm, where A−(A(S), S, k) produces the
modified hypothesis with the impact of k removed. The algorithm A− is termed an exact unlearning
algorithm if the hypotheses A(S\{k}) and A−(A(S), S, k) follow the same distribution. That is,

Pr [A(S \{k})] = Pr
[
A−(A(S), S, k)

]
. (1)

3.2 RANDOM FOREST

Prior to discussing Random Forests, it is essential to first introduce its base learner, the Decision
tree (DT), a well-known tree-structured supervised learning method. It is proven that finding the
optimal DT is NP-Hard (Hyafil and Rivest, 1976; Demirović et al., 2022); thus, studying hierarchical
approaches is prevalent in the literature. In essence, the tree originates from a root containing all
training samples and grows recursively by splitting a leaf node into new leaves until a predefined
stopping criterion is met. Typically, DTs take the form of binary trees where each node branches
into two by splitting Su (the set of samples obsessed by the node u) into two disjoint sets. Let ul

and ur be the left and right child of node u, and we say split (a,w) partitions Su into Sul
and Sur if

Sul
= {k ∈ Su | xa ≤ w}, Sur = {k ∈ Su | xa > w}.

The best split (a⋆u, w
⋆
u) ≜ argmin{I(Su, (a,w)) | a ∈ [p], w ∈ R} is found among all possible

splits by optimizing an empirical criterion score I(S, k) such as the Gini index IG (Breiman et al.,
1984), or the Shannon entropy IE (Quinlan, 1993):

IG(Su, (a,w)) =
∑

v∈{ul,ur}

|Sv|
|Su|

(
1−

∑
c∈Y

|Sv,c|2

|Sv|2

)
,

IE(Su, (a,w)) =
∑

v∈{ul,ur},c∈Y

(
−|Sv,c|
|Sv|

log2
|Sv,c|
|Sv|

)
,

where Su,c ≜ {k ∈ Su | y = c}. The prediction for sample k starts with the root and recursively
goes down to a child until a leaf is reached, and the traversal proceeds to the left child if xa⋆

u
≤ w⋆

u
and to the right otherwise.

Random forest (RF) is an ensemble of independent DTs, where each tree is constructed with an
element of randomness to enhance predictive performance. This randomness reduces the variance
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of the forest’s predictions and thus lowers prediction error (Breiman, 2001). One method involves
selecting the best split (a⋆u, w

⋆
u) among p randomly selected attributes rather than all d attributes.

Additionally, subsampling methods such as bootstrap (Breiman et al., 1984), or m-out-of-n boot-
strap (Genuer et al., 2017), are used to introduce more randomness. Bootstrap creates a training set
S(t) for each tree φt by drawing n i.i.d. samples from the original dataset S with replacement. A
variant called m-out-of-n bootstrap randomly picks m different samples from S to form S(t). These
subsampling methods increase the diversity among trees, enhancing the robustness and generaliz-
ability of the model. However, all existing RF unlearning methods do not adopt subsampling, and
Brophy and Lowd (2021) claims this exclusion does not affect the model’s predictive accuracy.

3.3 EXTREMELY RANDOMIZED TREE

Extremely randomized trees (ERTs) (Geurts et al., 2006) is a variant of the Decision Trees, but ERTs
embrace randomness when finding the best split. For a tree node u, both ERT and DT find the
best splits on p randomly selected attributes a1···p ⊆ [d], but for each attribute ak, (k ∈ [p]), ERT
considers only s candidates {(ak, wk,i) | i ∈ [s]}, where wk,1···s are uniformly sampled from range
[min{xi,ak

| k ∈ Su},max{xi,ak
| k ∈ Su}]. Then, the best split (a⋆u, w

⋆
u) is set as the candidates

with optimal empirical criterion score (where I could be either IG or IE):

(a⋆u, w
⋆
u) ≜ argmin{I(Su, (ak, wk,i)) | k ∈ [p], i ∈ [s]}.

Compared to DTs considering all O(p|Su|) possible splits, ERTs consider only O(ps) candidates
while maintaining similar predictive accuracy. This shrink in candidate size makes ERTs less sensi-
tive to sample removal, and thus makes ERTs outstanding for efficient machine unlearning.

4 METHODS

In this section, we introduce the DYNFRS framework, which is structured into three components
— the subsampling method OCC(q), the lazy tag strategy LZY, and the base learner ERT. OCC(q)
allocates fewer training samples to each tree (i.e., S(1), · · · , S(T )) with the aim to minimize the work
brought to each tree during both training and unlearning phrase while preserving par predictive
accuracy. The lazy tag strategy LZY takes advantage of tree structure by caching and batching
reconstruction needs within nodes and avoiding redundant work, and thus enables an efficient auto
tree structure modification and suiting DYNFRS for online fixed data streams. ERTs require fewer
adjustments towards sample addition/deletion, making them the appropriate base learners for the
framework. In a nutshell, DYNFRS optimize machine unlearning in tree-based methods from three
perspectives — across trees (OCC(q)), across requests (LZY), and within trees (ERT).

4.1 TRAINING SAMPLES SUBSAMPLING

Introducing divergence among DTs in the forest is crucial for enhancing predictive performance,
as proven by Breiman (2001). Developing novel subsampling methods can further enhance this
effect. Recall that S represents the training set, and S(t) denotes the training set for the t-th tree
φt. Empirical results (Section 5.2) indicate that having a reduced training set (i.e., |S(t)| < |S|)
does not degrade predictive performance and may even improve accuracy as more randomness is
involved. In the following, we demonstrate that OCC(q) leverages smaller |S(t)| and considerably
shortens training and unlearning time.

The key idea is that if sample k ∈ S does not occurs in tree φt (i.e., k /∈ S(t)), then tree φt is
unaffected when unlearning k. Therefore, it is natural to constrain the occurrence of each sample
k ∈ S in the forest. To achieve this, OCC(q) performs subsampling on trees instead of training
samples, as it is how other methods did. The algorithm starts with iterating through all training
samples, and for each sample k ∈ S, k different trees (say they are φi1 , . . . , φik with i1···k ∈ [n])
are randomly and independently drawn from all T trees (Algorithm 1: line 5), where k is determined
by the proportion factor q (q < 1) satisfying k = ⌈qT ⌉. Then, OCC(q) appends k to all of the drawn
tree’s own training set (S(1), S(2), . . . , S(k)) (Algorithm 1: line 6-8). When all sample allocations
finish, The algorithm terminates inO(nk) = O(nqT ). Intuitively, OCC(q) ensures that each sample
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Normal Node Deleted Node Tagged Node

Figure 1: Left: (a) A sample addition/deletion request arises. (b) The nodes it impacts are covered
in the blue path. (c) There is a change in best split in the purple node (but not in other visited nodes),
and a tag is placed on it. (d) The subtree of the tagged node is deleted. Middle: (a) A querying
request arises. (b) A node that determines the prediction is covered in the orange path. (c) The tag
is pushed down recursively until the query reaches a leaf. Right: A detailed process of how the
querying request grows (split tagged node, push down its tree recursively) the tree.

occurs in exactly k trees in the forest, and thus reduces the impact of each sample from all T trees
to merely ⌈qT ⌉ trees.

Further calculation confirms that OCC(q) provides an expected 1/q2 unlearning speedup toward
naı̈vely retraining. When unlearning an arbitrary sample with OCC(q), w.l.o.g (tree order does not
matter), assume it occurs in the first k = ⌈qT ⌉ trees φ1, . . . , φk. Calculation begins with finding the
sum of all affected tree’s training set sizes:

Nocc =

k∑
t=1

∣∣S(t)
∣∣ = |S|∑

i=1

k∑
t=1

1
[
k ∈ S(t)

]
.

As for each sample k ∈ S, OCC(q) assures that Pr[k ∈ S(t)] = k/T = q, giving,

E [Nocc] =

|S|∑
i=1

k∑
t=1

E
[
1
[
k ∈ S(t)

]]
=

|S|∑
i=1

k∑
t=1

Pr
[
k ∈ S(t)

]
= qk|S| = q2T |S|.

For the naı̈ve retraining method, the corresponding sum of affected sample size Nnai is T |S| as
all trees and all samples are affected. As the retraining time complexity is linear to Nocc and
Nnai (Appendix A.2, Theorem 2), the expected computational speedup provided by OCC(q) is
E[Nnai/Nocc] = 1/q2, when OCC(q) and the naı̈ve method adopt the same retraining method.

The above analysis also concludes that training a Random Forest with OCC(q) will result in a 1/q
times boost. In practice, we will empirically show (in Section 5.2) that by taking q = 0.1 or
q = 0.2, the resulting model would have a similar or even higher accuracy in binary classification,
which benefits unlearning with a 100× or 25× boost, and make training 10× or 5× faster.

4.2 LAZY TAG STRATEGY

There are two observations on tree-based methods that make LZY possible. (1) During the unlearning
phase, the portion of the model that is affected by the deleted sample is known (Fig. 1 left, blue path,
and deleted nodes). (2) During the inference phase, only a small portion (a tree path) of the whole
model determines the prediction of the model (Fig. 1 middle, orange path) (Louppe, 2015). Along
with another universal observation (3) Adjustments to the model is unnecessary until a querying
request arises, we are able to develop the LZY lazy tag strategy that minimizes adjustments to tree
structure when facing a mixture of sample addition/deletion and querying requests. In contrast,
neural network based methods do not fully possess the properties mentioned in observation (1) and
(2), although encouraging exploration on similar properties has been reported (Morcos et al., 2018;
Goh et al., 2021; Zhu et al., 2024).

Intuitively, A tree node u can remain unchanged if adding/deleting a sample does not change its best
split (a⋆u, w

⋆
u). Then, the sample addition/deletion request would affect only one of the u’s children

since the best split partitions u into two disjoint parts. Following this process recursively, the request
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will go deeper in the tree until a leaf is reached or a change in best split occurs. Unfortunately, if the
change in best split occurs in node u, we need to retrain the whole subtree rooted by u to meet the
criterion for exact unlearning. Therefore, a sample addition/deletion request affects only a path and
a subtree of the whole tree, which is observation (1).

As retraining a subtree is time-consuming, we place a tag on u, denoting it needs a reconstruction
(Algorithm 2: line: 8-9). When another sample addition/deletion request reaches the tagged u later,
it just simply ends here (Algorithm 2: line 7) since the will-be-happening reconstruction would cover
this request as retraining is the most effective unlearning method. But when a querying request meets
a tag, we need to lead it to a leaf so that a prediction can be made (observation (3)). As we do not
retrain the subtree, recall that observation (2) states that the query only observes a path in the tree,
so the minimum effect to fulfill this query is to reconstruct the tree path that connects u and a leaf,
instead of the entire subtree u. To make this happen, we find the best split of u and grow the left
and right child. Then, we clear the tag on u since it has been split and push down the tags to both of
its children, indicating further splitting on them is needed (Algorithm 2: line 26-27). As depicted in
Fig. 1 right side, the desired path reveals when the recursive pushing-down process reaches a leaf.

To summarize, only queries activate node reconstruction within a node, and LZY automatically
batches all node reconstructions between two visiting queries, saving plenty of computational ef-
forts. From the tree’s perspective, LZY replaces the subtree retraining by amortizing it into path
constructions in queries so that the latency for responding to modification requests is reduced. Un-
like OCC(q), which takes advantage of ensemble and brings less workload to each tree, LZY relies
on tree structures, dismantling requests into smaller parts and handling these parts in batches for
better efficiency.

4.3 UNLEARNING IN EXTREMELY RANDOMIZED TREES

Despite OCC(q) and LZY making no assumption on the forest’s base learner, we opt for Extremely
Randomized Trees (ERTs) with the aim of achieving the best performance in machine unlearning.
Different from Decision Trees, ERTs are more robust to changes in training samples while remain-
ing competitive in predictive performance. This robustness ensures the whole DYNFRS framework
undergoes fewer changes in the tree’s perspective when unlearning.

In essence, each ERT node finds the best split among s (usually around 20) candidates on one
attribute instead of all possible splits (possibly more than 105) so that the best split has a higher
chance to remain unchanged when a sample addition/deletion occurs in that node. Additionally, It
takes a time complexity of O(ps) for ERTs to detect whether the change in best split occurs if all
candidate’s split statistics are stored during the training phase, which is much more efficient than the
O(p|Su|) detection for Decision Trees. To be specific, for each ERT node u, we store a subset of
attributes a1···p ⊆ [d], and for each interested attribute ak, s different thresholds wk,1···s is randomly
generated and stored. Therefore, a total of p · s candidates {(ak, wk,i) | k ∈ [p], i ∈ [s]} determine
the best split of the node. Furthermore, the split statistics of each candidate (ak, wk,i) are also kept,
which consists of its empirical criterion score, the number of samples less than the threshold, and the
number of positive samples less than the threshold. When a sample addition/deletion occurs, each
candidate’s split statistics can be updated in O(1), and we assign the one with optimal empirical
criterion score as the node’s best split.

However, one special case is that when a change in range of ak occurs, a resampling on wk,1···s
is needed. ERT node u find the candidates of attribute ak by generating i.i.d. samples following a
uniform distribution on [ak,min, ak,max], where ak,min ≜ min{xi,ak

| k ∈ Su} and ak,max is defined
similarly. Therefore, we keep track of ak,min and ak,max and resample candidates’ threshold when
the range [ak,min, ak,max] changes due to sample addition/deletion.

4.4 THEORETICAL RESULTS

Due to the page limit, all detailed proofs of the following theorems are provided in Appendix A.2.

We first demonstrate that DYNFRS’s approach to sample addition and deletion suits the definition of
exact (un)learning (Section 3.1), validating the unlearning efficacy of DYNFRS:

Theorem 1. Sample deletion and addition for the DYNFRS framework are exact.
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Next, we establish the theoretical bound for time efficiency of DYNFRS across different aspects.
Conventionally, for an ERT node u and a certain attribute a, finding the best split of attribute a re-
quires a time complexity ofO(|Su| log |Su|). In this work, we propose a more efficientO(|Su| log s)
algorithm (see Appendix A.2, Lemma 1) to find the desired split utilizing data structure that performs
O(1) range addition, and O(s) range query. Since |Su| ≫ s in most cases, and usually log2 s ≤ 5,
this new algorithm is advantageous in both theoretical bounds and practical performance.

For DYNFRS with T trees, each having a maximum depth dmax, and considering p attributes per
node, the time complexity for training on a training set with n = |Su| is derived as:

Theorem 2. Training DYNFRS yields a time complexity of O(qTdmaxpn log s).

Thanks to OCC(q) that significantly reduces the workload for each tree and LZY that avoids subtree
retraining, DYNFRS achieves an outstanding time complexity for sample addition/deletion and an
efficient one for querying. For clarity, we define naff as the sum of sample size |Su| of all node u s.t.
u is met by request, and a change in range occurs, and c be the number of attributes whose range
has changed. Further, denote nlzy as the sum of sample size |Su| of all node u s.t. u is met by the
request, and is tagged. Based on observations described in Section 4.2, we claim the following:

Theorem 3. Modification (sample addition or deletion) in DYNFRS yields a time complexity of
O(qTdmaxps) if no attribute range changes occur while O(qTdmaxps+ cnaff log s) otherwise.

Theorem 4. Query in DYNFRS yields a time complexity of O(Tdmax) if no lazy tag is met, while
O(Tdmax + pnlzy log s) otherwise.

5 EXPERIMENTS

In this section, we empirically evaluate the DYNFRS framework on the predictive performance,
machine unlearning efficiency, and response latency in the online mixed data stream setting.

5.1 IMPLEMENTATION

Due to the page limit, this part is moved to Appendix A.3.

5.1.1 BASELINES

We use DaRE (Brophy and Lowd, 2021), HedgeCut (Schelter et al., 2021), and OnlineBoosting (Lin
et al., 2023) as baseline models. Although OnlineBoosting employs a different learning algorithm,
it is included due to its superior performance in batch unlearning. Additionally, we included the
Random Forest Classifier implementation (we call it Vanilla in tables below) from scikit-learn to
provide an additional comparison of predictive performance. For all baseline models, we adhere to
the instructions provided in the original papers and use the same parameter settings. More details
regarding the baselines are in Appendix A.4.

5.1.2 DATASETS

Table 1: Datasets specifications. (# train: number of training samples; # test: number of testing
samples; % pos: percentage of positive samples; # attr: number of attributes; # attr-hot: number of
attributes after one-hot encoding; # cat: number of categorical attributes.)

Datasets # train # test % pos # attr # attr-hot # cat

Purchase 9864 2466 .154 17 17 0
Vaccine 21365 5342 .466 36 184 36
Adult 32561 16281 .239 13 107 8
Bank 32950 8238 .113 20 63 10
Heart 56000 14000 .500 12 12 0
Diabetes 81412 20354 .461 43 253 36
NoShow 88421 22106 .202 17 98 2
Synthetic 800000 200000 .500 40 40 0
Higgs 8800000 2200000 .530 28 28 0
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We test DYNFRS on 9 binary classification datasets that vary in size, positive sample proportion,
and attribute types. The technical details of these data sets can be found in Table 1. For better pre-
dictive performance, we apply one-hot encoding for categorical attributes (attributes whose values
are discrete classes, such as country, occupation, etc.). Further details regarding datasets are offered
in the Appendix A.5.

5.1.3 METRICS

For predictive performance, we evaluate all the models with accuracy (number of correct predictions
divided by the number of tests) if the dataset has less than 21% positive samples or AUC-ROC (the
area under receiver operating characteristic curve) otherwise.

To evaluate models’ unlearning efficiency, we follow Brophy and Lowd (2021) and use the term
boost standing for the speedup relative to the naı̈ve retraining approach (i.e., the number of samples
unlearned when naı̈vely retraining unlearns 1 sample). Each model’s naı̈ve retraining procedure is
implemented in the same programming language as the model itself. Additionally, we report the
time elapsed during the unlearning process for direct comparison.

5.2 PREDICTIVE PERFORMANCE

Table 2: Predictive performance (↑) comparison between models. Each cell contains the accuracy
or AUC-ROC score with standard deviation in a smaller font. The best-performing model is bolded.

Datasets DaRE HedgeCut Vanilla
Online
Boosting

DYNFRS
(q = 0.1)

DYNFRS
(q = 0.2)

Purchase .9327±.001 .9118±.001 .9372±.001 .9207±.000 .9327±.001 .9359±.001

Vaccine .7916±.003 .7706±.002 .7939±.002 .8012±.000 .7911±.001 .7934±.002

Adult .8628±.001 .8428±.001 .8637±.000 .8503±.000 .8633±.001 .8650±.001

Bank .9420±.000 .9350±.000 .9414±.001 .9436±.000 .9417±.000 .9436±.000

Heart .7344±.001 .7195±.001 .7342±.001 .7301±.000 .7358±.002 .7366±.000

Diabetes .6443±.001 .6190±.000 .6435±.001 .6462±.000 .6453±.001 .6470±.002

NoShow .7361±.001 .7170±.000 .7387±.000 .7269±.000 .7335±.001 .7356±.000

Synthetic .9451±.000 / .9441±.000 .9309±.000 .9424±.000 .9454±.000

Higgs .7441±.000 / .7434±.000 .7255±.000 .7431±.000 .7475±.000
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Figure 2: DYNFRS with different q is tested on
the dataset Adult and Diabetes, and the tendency
is shown by the curve with the standard deviation
shown by error bars.
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Figure 3: DYNFRS’s unlearning exactness. The
blue-gray solid line represents the accuracy ten-
dency of the unlearned model, while the orange
dotted line represents that of the retrained model.

We evaluate the predictive performance of DYNFRS in comparison with 4 other models in 9 datasets.
The detailed results are listed in Table 2. In 6 out of 9 datasets, DYNFRS(q = 0.2) outperforms all
other models in terms of predictive performance, while OnlineBoosting shows an advantage in the
Vaccine and Bank dataset, and scikit-learn Random Forest comes first in Purchase and NoShow.
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These results show that OCC(0.2) sometimes improves the forest’s predictive performance. Looking
closely at DYNFRS(q = 0.1), we observe that its accuracy is similar to that of DaRE and the scikit-
learn Random Forest. All the hyperparameters used in DYNFRS are listed in the Appendix A.11.

The effects of q are assessed on the two most commonly used datasets (Adult and Diabetes) in RF
classification. From Fig. 2, an acute drop in predictive accuracy is obvious when q < 0.1. For the
Adult dataset, DYNFRS’s predictive accuracy peaks at q = 0.4, while a similar tendency is observed
for the Diabetes dataset with the peak at q = 0.2. However, to avoid tuning on q, we suggest
choosing q = 0.2 to optimize accuracy and q = 0.1 to improve unlearning efficiency.

To determine whether DYNFRS(q = 0.1) achieves exact unlearning (Section 3.1), we compare it
with a retrain-from-scratch model with various sample removal proportions. Specifically, Let S−

denote the set of samples requested for removal, and we compare the predictive performance of an
unlearned model — trained on complete training set S and subsequently unlearning all samples in
S− — with the retrained model, which is trained directly on S\S−. Note that both models adopt the
same training algorithm. As depicted in Fig. 3, the performance of both models is nearly identical
across different removal proportions (i.e., |S−|/|S|). This close alignment suggests that, empirically,
the unlearned model and the retrained model follow the same distribution (Equation 1).

5.3 SEQUENTIAL UNLEARNING

Purchase Vaccine Adult Bank Heart Diabetes NoShow Synthetic Higgs
102

103

104

105

106

Sp
ee

du
p

v.
s.

N
aı̈

ve

Sequential Unlearning Boost
DaRE
DYNFRS(q = 0.1)
DYNFRS(q = 0.2)

Figure 4: Comparison of sequential unlearning boost (↑) between DYNFRS with different q and
DaRE, and error bars represent the minimum and maximum values among five trials.

In this section, we evaluate the efficiency of DYNFRS in sequential unlearning settings, where mod-
els process unlearning requests individually. In experiments, models are fed with a sequence of
unlearning requests until the time elapsed exceeds the time naı̈ve retraining model unlearns one
sample. To ensure that DYNFRS does not gain an unfair advantage by merely tagging nodes without
modifying tree structures, we disable LZY and use a Random Forest without OCC(q) as the naı̈ve
retraining method for DYNFRS. As shown in Fig. 4, DYNFRS consistently outperforms DaRE, the
state-of-the-art method in sequential unlearning for RFs, across all datasets, in both q = 0.1 and
q = 0.2 settings, and achieved a 22× to 523× speedup relative to DaRE. Furthermore, DYNFRS
demonstrates a more stable performance compared to DaRE who exhibits large error bars in Higgs.

HedgeCut is excluded from the plot as it is unable to unlearn more than 0.1% of the training set,
making boost calculation often impossible. OnlineBoosting is also omitted due to poor performance,
achieving boosts of less than 10. This inefficiency stems from its slow unlearning efficiency of
individual instances (see Fig. 5 upper-left plot). Appendix A.6 contains more experiment results.

5.4 BATCH UNLEARNING

We measure each model’s batch unlearning performance based on execution time (DYNFRS’s run-
time includes retraining of all the tagged subtree), where one request contains multiple samples to
be unlearned. The results indicate that DYNFRS significantly outperforms other models across all
datasets and batch sizes (see Appendix A.6 for complete results). In the lower-left and lower-right
plots of Fig. 5, DaRE demonstrates excessive time requirements for unlearning 0.1% and 1% of
samples in the large-scale datasets Synthetic and Higgs, primarily due to its inefficiency when deal-
ing large batches. In contrast, OnlineBoosting achieves competitive performance on these datasets,
but DYNFRS completes the same requests in half the time. Furthermore, OnlineBoosting shows
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the poorest performance in single-instance unlearning (Fig. 5 upper-left), and this inability limits its
effectiveness in sequential unlearning. Overall, Fig. 5 demonstrates that DYNFRS is the only model
that excels in both sequential and batch unlearning contexts.

Further investigation of each model’s behavior across different unlearning batch sizes is presented
in Fig. 6. Both DaRE and DYNFRS w/o LZY exhibit linear trends in the plot, indicating their lack
of specialization for batch unlearning. Meanwhile, the curve of OnlineBoosting maintains a station-
ary performance for batch sizes up to 104 but experiences a rapid increase in runtime beyond this
threshold. Notably, the curve for DYNFRS stays below those of all other models, demonstrating its
advantage across all batch sizes in dataset Higgs. Additionally, DYNFRS is the only model whose
runtime converges for large batches, attributed to the presence of LZY.

5.5 ONLINE MIXED DATA STREAM

In this section, we introduce the online mixed data stream setting, which satisfies: (1) there are 3
types of requests: sample addition, sample deletion, and querying; (2) requests arrive in a mixed
sequence, with no prior knowledge of future requests until the current one is processed; (3) the
amount of addition and deletion requests are roughly balanced, allowing unchanged model’s hyper-
parameters; (4) the goal is to minimize the latency in responding to each request. Currently, no other
tree-based models but DYNFRS can handle sample addition/deletion and query simultaneously.

Due to the page limit, this part is moved to Appendix A.9.

6 CONCLUSION

In this work, we introduced DYNFRS, a framework that supports efficient machine unlearning in
Random Forests. Our results show that DYNFRS is 4-6 orders of magnitude faster than the naı̈ve re-
training model and 2-3 orders of magnitude faster than the state-of-the-art Random Forest unlearning
approach DaRE (Brophy and Lowd, 2021). DYNFRS also outperforms OnlineBoosting (Lin et al.,
2023) in batch unlearning. In the context of online data streams, DYNFRS demonstrated strong per-
formance, with an average latency of 0.12 ms on sample addition/deletion in the large-scale dataset
Higgs. This efficiency is due to the combined effects of the subsampling method OCC(q), the lazy
tag strategy LZY, and the robustness of Extremely Randomized Trees, bringing Random Forests
closer to real-world applicability in dynamic data environments.

For future works, we will investigate more strategies that take advantage of the tree structure and
accelerate Random Forest in the greatest extent for real-world application.
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7 REPRODUCIBILITY STATEMENT

• Code: We provide pseudocode to help understand this work. All our code is publicly
available at: https://anonymous.4open.science/r/DynFrs-2603.

• Datasets: All datasets are either included in the repo, or a description for how to download
and preprocess the dataset is provided. All datasets are public and raise no ethical concerns.

• Hyperparameters: All parameters of our proposed framework is provided in Appendix
A.11, Table 13.

• Environment: Details of our experimental setups are provided in Appendix A.3.

• Random Seed: we use C++’s mt19937 module with a random device for all random be-
havior, with the random seed determined by the system time.
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A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 Training DYNFRS and Unlearning
Samples with OCC(q)

1: procedure DISTRIBUTE(S, T , q)
2: k ← T × q
3: S(1), . . . , S(T ) ← {∅}, · · · , {∅}
4: for k ∈ S do
5: j1···k ← sample k different integers from

[T ]
6: for t ∈ j1···k do
7: S(t) ← S(t) ∪ k
8: end for
9: end for

10: return S(1), . . . , S(T )

11: end procedure
12:
13: procedure TRAIN(S, T , q)
14: Φ← ∅
15: S(1), . . . , S(T ) ← DISTRIBUTE(S, T, q)
16: for t← 1 · · ·T do
17: φt ← BUILDTREE(S(t))
18: Φ← Φ ∪ {φt}
19: end for
20: return Φ
21: end procedure
22:
23: procedure ADD(Φ, k)
24: j1···k ← sample k different integers from [T ]
25: for t← j1···k do
26: ADD(φ, k)
27: end for
28: end procedure
29:
30: procedure DELETE(Φ, k)
31: for t← 1 · · ·T do
32: if k ∈ S(t) then
33: DELETE(φ, k)
34: end if
35: end for
36: end procedure

Algorithm 2 Unlearning and Querying in Trees
with LZY
1: procedure DELETE(φ, k) ▷ ADD is similar
2: DELETE(ROOT(φ), k)
3: end procedure
4:
5: procedure DELETE(u, k)
6: Su ← Su\k ▷ implementation

of DYNFRS does not actually store Su, so this line
stands for updating all split statistics of node u

7: if LZYu = 1 then return
8: else if BESTSPLITCHANGED(u) then
9: LZYu ← 1

10: else if ¬ISLEAF(u) then
11: if xa⋆

u
≤ w⋆

u then
12: DELETE(ul, k)
13: else
14: DELETE(ur, k)
15: end if
16: end if
17: end procedure
18:
19: procedure QUERY(φ, k)
20: QUERY(ROOT(φ), k)
21: end procedure
22:
23: procedure QUERY(u, k)
24: if LZYu = 1 then
25: SPLIT(u)
26: LZYu ← 0
27: LZYul ← 1, LZYur ← 1
28: end if
29: if ISLEAF(u) then
30: return Su

31: end if
32: if xa⋆

u
≤ w⋆

u then
33: QUERY(ul, k)
34: else
35: QUERY(ur, k)
36: end if
37: end procedure

A.2 PROOFS

Theorem 1. Sample deletion and addition for the DYNFRS framework are exact.

Proof. We prove that the subsampling method OCC(q) maintains the exactness of DYNFRS. Let
random variable oi,t ≜ [k ∈ S(t)] denotes whether k occurs in S(t). In OCC(q), each sample k
is distributed to ⌈qT ⌉ distinct trees, with the selection of these trees being independent of other
samples k ∈ S for j ̸= i. Thus, oi,· is independent from oj,· for j ̸= i. However, oi,1, oi,2, . . . , oi,T
are dependent on each other, constrainted by ∀t ∈ [T ], oi,t ∈ {0, 1},

∑T
t=0 oi,t = ⌈qT ⌉, and we say

they follow a joint distribution B(T, q).

Now, let S′(1), S′(2), . . . , S′(T ) denotes the training sets for each tree generated by applying OCC(q)

to the modified training set S′, and let o′i,t ≜ [k ∈ S′(t)]. Then, when deleting sample k (i.e.,
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S′ = S\k), we have (oj,1, . . . , oj,T ) ∼ B(T, q) and (o′j,1, . . . , o
′
j,T ) ∼ B(T, q) for i ̸= j, and

oi,· = 0 (because k is removed) and o′i,· = 0. Notably, B(T, q) depends on T and q only, but not
on training samples S. This shows that simply setting oi,· = 0 ensures that OCC(q) with sample
removed maintains the same distribution as applying OCC(q) on the modified training set.

Similarily, when adding k (i.e., S′ = S ∪ k), (oj,1, . . . , oj,T ) and (o′j,1, . . . , o
′
j,T ) follow the same

distribution B(T, q) for j ̸= i. While (oj,1, . . . , oj,T ) is generated from B(T, q) for addition, it is
equivalent to (o′i,1, . . . , o

′
i,T ) for following the same distribution. Therefore, OCC(q) with sample

added maintains the same distribution as applying OCC(q) on the modified training set.

Next, we prove that the addition and deletion operations are exact within a specific DYNFRS tree.
When no change in range of attribute a ([min{xi,a | k ∈ Su},max{xi,a | k ∈ Su}]) occurs, the
candidate splits are sampled from the same uniform distribution making DYNFRS and the retrain-
ing method are identical in distribution node’s split candidates. However, when a change in range
occurs, DYNFRS resamples all candidate splits and makes them stay in the same uniform distribu-
tion as those in the retraining method. Consequently, DYNFRS adjusts itself to remain in the same
distribution with the retraining method. Thus, sample addition and deletion in DYNFRS are exact.

Lemma 1. For a certain Extremely Randomized Tree node u, and a specific attribute a, the time
complexity of finding the best split of attribute a is O(|Su| log s), assuming that |Su| ≫ s.

Proof. Conventionally, for each tree node u and an attribute a, we uniformly samples s thresholds
wa,1···s from [min{xi,a | k ∈ Su},max{xi,a | k ∈ Su}]. Then, we try to split Su with each
threshold and look for split statistics that are: (1) the number of samples in the left or right child
(i.e., |Sul

| and |Sur |), and (2) the number of positive samples in left or right child (|Sul,+| and
|Sur,+|), which are the requirements for calculating the empirical criterion scores.

One approach, as used by prior works, first sort all samples Su by x·,a in ascending order, and then
sort thresholds wa,1···s in ascending order. These sortings has a time complexity ofO(|Su| log |Su|)
and O(s log s), respectively. After that, a similar technique used in the merge sort algorithm is used
to find the desired split statistics in O(|Su|+ s).

To get rid of the costly sorting on Su, we sort wa,1···s O(s log s) and then iterate through all samples
and calculate the changes each sample brings to candidates’ split statistics. For convenience, let

bk ≜
∣∣{k | k ∈ Su ∧ xi,a ≤ wa,k}

∣∣,
ck ≜

∣∣{k | k ∈ Su ∧ xi,a ≤ wa,k ∧ yi = +}
∣∣,

which are crucial split statistics for calculating the empirical criterion score. We start with setting
b1···s and c1···s as all zeros. Then, for a sample k ∈ Su, it will cause an increment in bs′···s for some
s′ satisfying xi,a ≤ ws′ and xi,a > ws′−1. Given that wa,1···s are sorted, all k, (s′ ≤ k ≤ s) satisfy
xi,a ≤ wa,k, while xi,a > wa,k for all 1 ≤ k < s′. s′ can be easily found by binary search in
O(log s), then adding 1 to bs′ , bs′+1, . . . , bs is the only thing left. Use a loop for range addition is
clearly O(s), but insteading of finding b1···s, we keep track of d1···s, where dk ≜ bk − bk−1. So
increment bs′···s can be replace by ds′ ← ds′ + 1, which is O(1). When all samples are processed,
we construct b1·s from d1···s, where prefix sums bk ← bk−1 + dk help solve it in O(s).
For every sample k ∈ S, we need to find s′ in O(log s) (Algorithm 3: line 10), and perform
increment in d′s in O(1) (Algorithm 3: line 11), which results in a time complexity of O(|Su| log s)
in this part (Algorithm 3: line 9-14). Meanwhile, the prefix sum is executed after all samples are
processed (Algorithm 3: line 15-18), and its execution time is bounded by O(s). Luckily, c1···s can
be calculated in a similar manner, and with both b1···s and c1···s ready, we can obtain the empirical
criterion score for each candidate split (Algorithm 3: line 21-28), and this has a time complexity of
O(s) assuming calculating criterion scores to be O(1).
Since |Su| ≫ s, the term O(|Su| log s) dominates in time complexity, with the binary search (Al-
gorithm 3: line 10) being the threshold. It is noteworthy that adopting exponential search to find
s′ can result in an expected O(log log s) time complexity since wa,1···s are uniformly distributed.
However, binary search outperforms exponential search in practice, so we conclude with a time
complexity of O(|Su| log s) for finding the best split of attribute a in node u when |Su| ≫ s.
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Algorithm 3 Find the best split for attribute a

1: procedure FINDATTRIBUTEBESTSPLIT(Su, a, s)
2: R← [min{xi,a | k ∈ Su},max{xi,a | k ∈ Su}]
3: wa,1···s ← sample s i.i.d. values from R
4: wa,1···s ← SORT(wa,1···s) ▷ sort wa,1···s in ascending order.
5: b1···s ← {0, · · · , 0} ▷ create an 1-D array of size s
6: c1···s ← {0, · · · , 0} ▷ create an 1-D array of size s
7: n← |Su|
8: n+ ← 0
9: for k ∈ Su do

10: s′ ← LOWERBOUND(w1···s,xi,a) ▷ find the largest position k s.t. wk−1 < xi,a

11: bs′ ← bs′ + 1
12: cs′ ← cs′ + yi
13: n+ ← n+ + yi
14: end for
15: for k ← 2 . . . s do ▷ find prefix sum
16: bk ← bk + bk−1

17: ck ← ck + ck−1

18: end for
19: I⋆ ←∞
20: w⋆

a ← 0
21: for k ← 1 . . . s do
22: Ik ← I(bk, ck, n− bk, n+ − ck)
23: ▷ I(|Sul |, |Sul,+|, |Sur |, |Sur,+|) returns the empirical critierion score for split (a,wa,k) in O(1)

using either Gini index IG (this work) or Shannon’s entropy IE .
24: if Ik < I⋆ then
25: I⋆ ← Ik
26: w⋆

a ← wa,k

27: end if
28: end for
29: return (a,w⋆

a)
30: end procedure

Given q < 1, the proportion of trees each sample is assigned to, T , the number of trees in the
forest, dmax, the maximum depth of each tree, p, the number of candidate attributes, s, the number
of candidate splits for each attribute (usually s ≤ 30), and n = |S|, size of the training set, we now
prove the following:

Theorem 2. Training DYNFRS yields a time complexity of O(qTdmaxpn log s).

Proof. For certain tree and a specific node u, we find the best split among p randomly selected
attributes a1···p, and we call FINDATTRIBUTEBESTSPLIT(Su, ai, s) (Algorithm 3) p times for each
i ∈ [p]. From Lemma 1, finding the best split for the node u has a time complexity ofO(p|Su| log s).
Then, summing |Su| over all tree nodes u on that tree, we have

∑
u |Su| ≤ dmaxqn, since the root

of the tree contains about ⌈qT ⌉n/T ≈ qn samples, and each layer has at most the same amount of
samples as the root (layer 0). Therefore, the time complexity for training one DYNFRS tree can be
bounded byO(dmaxqn log s). Since there are T independent trees in the forest, the time complexity
for training a DYNFRS forest is O(qTdmaxpn log s).

Theorem 3. Modification (sample deletion or addition) in DYNFRS yields a time complexity of
O(qTdmaxps) if no attribute range changes occurs while O(qTdmaxps + cnaff log s) otherwise
(where c denotes the number of attributes affected, and naff denotes the sum of sample size among
all affected nodes met by this modification request).

Proof. When no attribute range change occurs on each tree, the modification request traverses a
path from the root to a leaf with at most dmax nodes. For each node, we need to recalculate all the
empirical criterion scores for all candidate splits O(ps). Since OCC(q) guarantees that only ⌈qT ⌉
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trees are affected by the modification requests, at most qTdmax nodes need the recalculation. So,
the time complexity for one modification request yields O(qTdmaxps).

When an attribute range occurs on u, it is necessary to call FINDATTRIBUTEBESTSPLIT(Su, a, s)
for u and the affected attribute a. Given that the affected nodes’ sample sizes sum up to naff, and for
each affected node, we need to resample at most c ≤ p attributes, and then Lemma 1 entails that the
time complexity for completing all resampling is an additional O(cnaff log s).

Theorem 4. Query in DYNFRS yields a time complexity of O(Tdmax) if no lazy tag is met, while
O(Tdmax + pnlzy log s) otherwise (where nlzy denotes the sum of sample size among all nodes with
lazy tag and met by this query).

Proof. On each tree, the query starts with the root and ends at a leaf node, traversing a tree path
with at most dmax nodes, and the query on DYNFRS aggregates the results of all T trees, therefore
querying without bumping into a lazy tag yields a time complexity of O(Tdmax).

However, if the query reaches on a tagged node u, we need to perform a split on it, and
by the proof of Theorem 2 and Lemma 1, finding the best split of node u calls function
FINDATTRIBUTEBESTSPLIT(Su, ·, s) p times and results in a time complexity of O(p|Su| log s).
As nlzy denotes the sum of sample sizes of all nodes with lazy tags met by the query, handling these
lazy tags requires an additional time complexity of O(pnlzy log s).

A.3 IMPLEMENTATION

All of the experiments are conducted on a machine with AMD EPYC 9754 128-core CPU and 512
GB RAM in a Linux environment (Ubuntu 22.04.4 LTS), and all codes of DYNFRS are written
in C++ and compiled with the g++ 11.4.0 compiler and the -O3 optimization flag enabled. To
guarantee fair comparison, all tests are run on a single thread and are repeated 5 times with the mean
and standard deviation reported.

DYNFRS is tuned using 5-fold cross-validation for each dataset, and the following hyperparameters
are tuned using a grid search: Number of trees in the forest T ∈ {100, 150, 250}, maximum depth of
each tree dmax ∈ {10, 15, 20, 25, 30, 40}, and the number of sampled splits s ∈ {5, 15, 20, 30, 40}.

A.4 BASELINES

HedgeCut and OnlineBoosting can not process real continuous input. Thus, all numerical attributes
are discretized into 16 bins, as suggested in their works (Schelter et al., 2021; Lin et al., 2023).
Both of them are not capable of processing samples with sparse attributes, so one-hot encoding is
disabled for them. Additionally, it is impossible to train Hedgecut on datasets Synthetic and Higgs
in our setting due to its implementation issue, as its complexity degenerates to O(pn2) sometimes
and consumes more than 256 GB RAM during training.

A.5 DATASETS

Purchase Sakar and Kastro (2018); Dua and Graff (2019) is primarily used to predict online shop-
ping intentions, i.e., users’ determination to complete a transaction. The dataset was col-
lected from an online bookstore built on an osCommerce platform.

Vaccine Bull et al. (2016); DrivenData (2019) comes from data-mining competition in Driven-
Data. It contains 26,707 survey responses, which were collected between October 2009
and June 2010. The survey asked 36 behavioral and personal questions. We aim to deter-
mine whether a person received a seasonal flu vaccine.

Adult Becker and Kohavi (1996); Dua and Graff (2019) is extracted from the 1994 Census database
by Barry Becker, and is used for predicting whether someone’s income level is more than
50,000 dollars per year or not.
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Bank Moro et al. (2014); Dua and Graff (2019) is related to direct marketing campaigns of a Por-
tuguese banking institution dated from May 2008 to November 2010. The goal is to predict
if the client will subscribe to a term deposit based on phone surveys.

Heart Kaggle (2018) is provided by Ulianova, and contains 70,000 patient records about cardio-
vascular diseases, with the label denoting the presence of heart disease.

Diabetes Strack et al. (2014); Dua and Graff (2019) encompasses a decade (1999-2008) of clinical
diabetes records from 130 hospitals across the U.S., covering laboratory results, medica-
tions, and hospital stays. The goal is to predict whether a patient will be readmitted within
30 days of discharge.

Synthetic Kaggle (2016) focuses on the patient’s appointment information, such as date, number of
SMS sent, and alcoholism, aiming to predict whether the patient will show up after making
an appointment.

Higgs Baldi et al. (2014); Dua and Graff (2019) consists of 1.1 × 107 signals characterized by 22
kinematic properties measured by detectors in a particle accelerator and 7 derived attributes.
The goal is to distinguish between a background signal and a Higgs boson signal.

A.6 RESULTS

In this section, Table 3 presents the training time for each model, with OnlineBoosting being the
fastest in most datasets while DYNFRS ranks first among Random Forest based methods. Table 4, 5,
6, and 7 despicts the runtime for model simultaneously unlearning 1, 10, 100 instances or 0.1% and
1% of all samples, where DYNFRS consistently outperforms all others in all settings and all datasets.

Table 3: Training time (↓) of each model, measured in seconds (s), and the standard deviation is
given with the same unit in a smaller font. “/” means the model is unable to train on that dataset.

Datasets DaRE HedgeCut Online
Boosting

DYNFRS
(q = 0.1)

DYNFRS
(q = 0.2)

Purchase 3.10±0.0 1.05±0.0 0.27±0.0 0.38±0.0 0.72±0.0

Vaccine 4.78±0.0 431±14 1.05±0.0 1.12±0.0 2.27±0.0

Adult 5.02±0.1 11.8±0.5 0.77±0.0 0.61±0.0 1.15±0.0

Bank 8.26±0.2 8.44±0.3 0.92±0.0 1.15±0.0 2.37±0.0

Heart 12.1±0.2 3.51±0.0 1.02±0.0 1.04±0.0 1.96±0.0

Diabetes 123±1.0 162±3.3 3.51±0.0 8.67±0.0 18.2±0.0

NoShow 65.4±0.4 28.1±0.3 1.68±0.0 3.08±0.0 6.10±0.0

Synthetic 1334±6.3 / 40.7±0.9 66.3±0.2 128±0.4

Higgs 10793±48 / 460±13 548±1.2 1120±1.0

Table 4: Runtime (↓) for each model to unlearn 1 sample measured in milliseconds (ms), and the
standard deviation is given with the same unit in a smaller font. “/” means the model is unable to
train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS

Purchase 35.0±15 1245±343 83.4±9.0 0.40±0.2

Vaccine 16.0±15 33445±14372 222±53 1.40±0.9

Adult 10.6±5.0 3596±2396 249±62 1.10±1.5

Bank 33.2±17 2760±371 227±7.4 2.40±3.7

Heart 16.8±10 972±154 411±13 0.50±0.2

Diabetes 293±168 27654±10969 753±143 7.30±5.4

NoShow 330±176 1243±94 570±69 0.30±0.0

Synthetic 2265±3523 / 5225±241 2.50±3.7

Higgs 174±135 / 73832±4155 1.60±1.8
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Table 5: Runtime (↓) for each model to unlearn 10 samples measured in milliseconds (ms), and the
standard deviation is given with the same unit in a smaller font. “/” means the model is unable to
train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS

Purchase 295±54 10973±643 183±21 12.3±4.8

Vaccine 285±160 222333±64756 418±41 9.20±2.8

Adult 148±79 51831±2795 389±48 4.80±2.4

Bank 320±108 18091±1524 423±47 7.6±2.7

Heart 162±46 5524±335 625±36 6.80 ±2.8

Diabetes 2773±877 211640±79652 1096±172 85.5±38

NoShow 2217±723 17235±17905 712±74 18.2±123

Synthetic 92279±42634 / 6015±301 77.3±34

Higgs 20119±31897 / 104063±1258 32.1±8.6

Table 6: Runtime (↓) for each model to unlearn 100 samples measured in milliseconds (ms), and the
standard deviation is given with the same unit in a smaller font. “/” means the model is unable to
train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS

Purchase 3591±186 83649±2047 275±12 70.4±11

Vaccine 2385 ±408 1703355±157274 792±15.06 82.6±11

Adult 954±158 219392±34630 632±24 32.2±4.0

Bank 3546±302 195014±15854 740±20 78.8±13

Heart 1502±543 33806±5385 986±75 59.3±11

Diabetes 23833±10330 / 2071±115 578±50

NoShow 23856±3978 57021±6327 1120±92 117±10

Synthetic 1073356±420053 / 7609±171 889±287

Higgs 165122±149092 / 145386±5677 642±317

Table 7: Left: runtime (↓) for unlearning 0.1% of the training set between models. Right: runtime
(↓) for unlearning 1% of the training set between models. Each cell contains the elapsed time in
seconds (s), and the standard deviation is given with the same unit in a smaller font. “/” means the
model is unable to train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS DaRE HedgeCut Online

Boosting DYNFRS

Purchase 0.35±0.1 11.25±1.5 0.17±0.0 0.01±0.0 3.39±0.7 76.0±3.0 0.28±0.0 0.07±0.0

Vaccine 0.47±0.1 404.73±69 0.61±0.1 0.02±0.0 5.01±1.0 4054±427 0.98±0.0 0.13±0.0

Adult 0.44±0.3 88.1±27 0.49±0.1 0.01±0.0 3.39±0.6 516±23 0.80±0.0 0.09±0.0

Bank 1.15±0.3 47.3±6.0 0.61±0.1 0.02±0.0 14.7±2.3 418±25 0.96±0.0 0.16±0.0

Heart 0.70±0.2 20.0±1.7 0.85±0.0 0.03±0.0 8.43±1.2 145±10 1.23±0.0 0.20±0.0

Diabetes 23.8±2.7 694±61 2.12±0.1 0.57±0.1 258±20 / 3.51±0.1 2.50±0.1

NoShow 18.8±2.7 57.0±6.3 1.10±0.1 0.10±0.0 268±7.5 / 1.90±0.1 0.56±0.0

Synthetic 10790±5348 / 13.1±0.6 5.68±0.2 / / 44.2±1.4 27.4±0.9

Higgs / / 188±7.1 39.2±0.7 / / 456±4.7 201±9.6

A.7 SPACE COMPLEXITY AND MEMORY CONSUMPTION

The space complexity of DYNFRS is O(qTn+ Tvps) where T is the number of trees in the forest,
n is the number of samples in the training sets, q is the factor used in OCC, v is the average number
of nodes in each tree, p is the number of attributes considered by each node, and s is the number of
candidate splits. Since we store training samples on each leaf, and each tree occupies qn samples on
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average, then the leaf statistics sums up to O(qTn). As mentioned in section 4.3, we store an extra
O(ps) split statistics on each node so that these split statistics contribute up to O(Tvps) space.

We compare the maximum resident space of DYNFRS and DaRE for building on the training set. We
found that DaRE, which has a space complexity ofO(Tn+Tvps), has larger memory consumption
than DYNFRS in all datasets. We use /usr/bin/time in Linux to evaluate the maximum resident
set size.

Table 8: The maximum resident set size (↓) of each model measured in megabytes with standard
deviation shown in a smaller font.

Datasets DaRE DYNFRS

Purchase 398.4±1.4 83.2±1.6

Vaccine 782.2±1.6 492.8±1.6

Adult 460.6±2.2 232.0±0

Bank 801.0±1.8 300.0±0

Heart 254.4±1.7 252.2±1.6

Diabetes 7148±39 2512±7.6

NoShow 3792±19 761.6±2.0

Synthetic 8526±65 5827±7.8

Higgs 60528±789 58263±52

A.8 MULTI-CLASS CLASSIFICATION

DYNFRS is capable of handling multi-class classification tasks since OCC(q) and LZY do not af-
fect the functionality of the forest. We tested DYNFRS’s prediction performance and unlearning
boost on 3 datasets — Optical (Hyafil and Rivest, 1976), Pen (Alpaydin and Alimoglu, 1996), and
Letter (Slate, 1991). Unfortunately, existing random forest unlearning methods (DaRE and Hedge-
Cut) have no implementation for multi-class classification, so we only include the Random Forest
Classifier implementation (we call it Vanilla in the following) in scikit-learn as our baseline.

Table 9: Datasets specifications. (# train: number of training samples; # test: number of testing
samples; # attr: number of attributes; # class: number of label classes.)

Datasets # train # test # attr # class

Optical 3823 1797 64 10
Pen 7494 3498 16 10
Letter 15000 5000 16 26

Table 10: Each model’s predictive performance, training time, and unlearning boost with standard
deviation are shown in a smaller font. Vanilla denotes the scikit-learn Random Forest implementa-
tion.

Accuracy (↑) Train Time (↓,ms) Unlearn Boost (↑)
Datasets Vanilla DynFrs Vanilla DynFrs Vanilla DynFrs

Optical .9694±.002 .9707±.002 585.4±1.9 445.4±2.7 1±0 3823±0

Pen .9649±.002 .9696±.002 996.2±1.7 813.2±8.0 1±0 7494±0

Letter .9603±.002 .9624±.001 1666±7.6 1530±20 1±0 14142±917

Results show that DYNFRS outperforms the vanilla Random Forest in terms of predictive perfor-
mance and training time for all datasets. Additionally, DYNFRS still shows splendid unlearning
efficiency on these datasets. In dataset Optical and Pen, DYNFRS finishes unlearning all training
samples before the naive retraining method unlearns 1 sample, and DYNFRS achieves a 14142 un-
learning boost in dataset Letter.

In the multi-class classification setting, we suggest picking q = 0.5 for OCC(q), because the rise in
class number leads to the drop of sample size to each class (roughly n/c, where n is the number of

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

training samples and c is the number of classes) and rising q enable each tree is accessible to more
samples belonging to a specific class and lead to better predictive performance eventually. For all
datasets, we set the hyperparameters of DYNFRS to T = 100, dmax = 20, and s = 1.

A.9 ONLINE MIXED DATA STREAM

Table 11: DYNFRS’s latency (↓) of sample addition/deletion and querying in 4 scenarios measured
in microseconds (µs). # add/del/qry: the number of sample addition/deletion/querying requests;
add/del/qry lat.: the latency of sample addition/deletion/querying. Each cell contains the averaged
latency with its minimum and maximum values listed in a smaller font.

No. # add # del # qry add lat. del lat. qry lat.

1 5 · 105 5 · 105 106 406.2 [150, 450894] 437.6 [134, 394801] 3680 [209, 1885030]

2 5 · 105 5 · 105 106 122.7 [30, 168984] 120.2 [25, 146300] 1218 [23, 1026964]

3 5 · 104 5 · 104 106 140.0 [30, 81661] 139.2 [32, 101429] 299.5 [21, 861151]

4 5 · 103 5 · 103 106 145.5 [44, 55954] 140.5 [38, 29810] 72.3 [19, 212915]

To simulate a large-scale database, we use the Higgs dataset, the largest in our study. We train
DYNFRS on 88, 000, 000 samples and feed it with mixed data streams with different proportions of
modification requests. Scenario 1 is the vanilla single-thread setting, while scenarios 2, 3, and 4
employ 25 threads using OpenMP. DYNFRS achieves an averaged latency of less than 0.15 ms for
modification requests (Table 11 column # add and # del) and significantly outperforms DaRE, which
requires 180 ms to unlearn a single instance on average. Query latency drops from 1.2 ms to 0.07
ms as the number of modification requests declines, as fewer lazy tags are introduced to trees.

These results are striking: while it takes over an hour to train a vanilla Random Forest on Higgs,
DYNFRS maintains exceptionally low latency that is measured in µs, even in the single-threaded
setting. This makes DYNFRS highly suited for real-world scenarios, especially when querying con-
stitutes a large proportion of requests (Table 11 Scenario 4).

A.10 EFFECTS ON NUMBER OF CANDIDATES

We ran an ablation experiment regarding the number of candidate split s. We tested DYNFRS(q =
0.1) with s ∈ {1, 5, 10, 20, 30, 50} and report the predictive performance on all the binary clas-
sification datasets (same settings as in the manuscript). The results are summarized in the table
below:

Table 12: The predictive performance (↑) of DYNFRS(q = 0.1) with s ∈ {1, 5, 10, 20, 30, 50}.

Datasets s = 1 s = 5 s = 10 s = 20 s = 30 s = 50

Purchase .9242±.001 .9313±.000 .9323±.000 .9329±.001 .9328±.001 .9330±.001

Vaccine .7911±.002 .7910±.000 .7908±.001 .7910±.002 .7911±.002 .7912±.001

Adult .8558±.001 .8610±.001 .8624±.001 .8635±.001 .8635±.000 .8640±.001

Bank .9323±.000 .9399±.000 .9409±.000 .9414±.001 .9417±.000 .9417±.001

Heart .7365±.001 .7359±.001 .7357±.001 .7359±.002 .7357±.000 .7351±.001

Diabetes .6429±.001 .6453±.001 .6451±.001 .6446±.001 .6442±.001 .6443±.001

NoShow .7278±.001 .7332±.000 .7328±.000 .7332±.000 .7323±.001 .7328±.000

Synthetic .9352±.000 .9415±.000 .9421±.000 .9422±.000 .9424±.000 .9423±.000

Higgs .7277±.000 .7409±.000 .7423±.000 .7431±.000 .7431±.000 .7431±.000

From the result, we find that the performance peaks around s = 20 in most datasets, and the result
of s = 30 and s = 50 has no significant difference. However, in datasets Heart, Diabetes, and
NoShow, a smaller s has an even higher predictive performance, suggesting that considering more
candidates might not always be the best choice. This ablation study indicates that the optimal s is
dataset-specific and can be tuned for improved predictive performance in DYNFRS.
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A.11 HYPERPARAMETERS

All hyperparameters of DYNFRS are listed in Table 13. Specially, we set the minimum split size of
each node to be 10 for all datasets.

Table 13: Hyperparameters used by DYNFRS with both q = 0.1 and q = 0.2 setting.

Datasets T dmax s

Purchase 250 10 30
Vaccine 250 20 5
Adult 100 20 30
Bank 250 25 30
Heart 150 15 5
Diabetes 250 30 5
NoShow 250 20 5
Synthetic 150 40 30
Higgs 100 30 20
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