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Abstract

The universal approximation property (UAP) of neural networks is funda-
mental for deep learning, and it is well known that wide neural networks
are universal approximators of continuous functions within both the Lp

norm and the continuous/uniform norm. However, the exact minimum
width, wmin, for the UAP has not been studied thoroughly. Recently, us-
ing a decoder-memorizer-encoder scheme, Park et al. (2021) found that
wmin = max(dx + 1, dy) for both the Lp-UAP of ReLU networks and the
C-UAP of ReLU+STEP networks, where dx, dy are the input and out-
put dimensions, respectively. In this paper, we consider neural networks
with an arbitrary set of activation functions. We prove that both C-UAP
and Lp-UAP for functions on compact domains share a universal lower
bound of the minimal width; that is, w∗

min = max(dx, dy). In particular,
the critical width, w∗

min, for L
p-UAP can be achieved by leaky-ReLU net-

works, provided that the input or output dimension is larger than one.
Our construction is based on the approximation power of neural ordinary
differential equations and the ability to approximate flow maps by neural
networks. The nonmonotone or discontinuous activation functions case and
the one-dimensional case are also discussed.

1 Introduction

The study of the universal approximation property (UAP) of neural networks is fundamental
for deep learning and has a long history. Early studies, such as Cybenkot (1989); Hornik
et al. (1989); Leshno et al. (1993), proved that wide neural networks (even shallow ones) are
universal approximators for continuous functions within both the Lp norm (1 ≤ p <∞) and
the continuous/uniform norm. Further research, such as Telgarsky (2016), indicated that
increasing the depth can improve the expression power of neural networks. If the budget
number of the neuron is fixed, the deeper neural networks have better expression power
Yarotsky & Zhevnerchuk (2020); Shen et al. (2022). However, this pattern does not hold if
the width is below a critical threshold wmin. Lu et al. (2017) first showed that the ReLU
networks have the UAP for L1 functions from Rdx to R if the width is larger than dx + 4,
and the UAP disappears if the width is less than dx. Further research, Hanin & Sellke
(2017); Kidger & Lyons (2020); Park et al. (2021), improved the minimum width bound
for ReLU networks. Particularly, Park et al. (2021) revealed that the minimum width is
wmin = max(dx +1, dy) for the L

p(Rdx ,Rdy ) UAP of ReLU networks and for the C(K,Rdy )
UAP of ReLU+STEP networks, where K is a compact domain in Rdx .

For general activation functions, the exact minimum width wmin for UAP is less studied.
Johnson (2019) consider uniformly continuous activation functions that can be approximated
by a sequence of one-to-one functions and give a lower bound wmin ≥ dx + 1 for C-UAP
(means UAP for C(K,Rdy )). Kidger & Lyons (2020) consider continuous nonpolynomial
activation functions and give an upper bound wmin ≤ dx + dy + 1 for C-UAP. Park et al.
(2021) improved the bound for Lp-UAP (means UAP for Lp(K,Rdy )) to wmin ≤ max(dx +
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2, dy + 1). A summary of known upper/lower bounds on minimum width for the UAP can
be found in Park et al. (2021).

In this paper, we consider neural networks having the UAP with arbitrary activation func-
tions. We give a universal lower bound, wmin ≥ w∗

min = max(dx, dy), to approximate
functions from a compact domain K ⊂ Rdx to Rdy in the Lp norm or continuous norm. Fur-
thermore, we show that the critical width w∗

min can be achieved by many neural networks,
as listed in Table 1. Surprisingly, the leaky-ReLU networks achieve the critical width for
the Lp-UAP provided that the input or output dimension is larger than one. This result
relies on a novel construction scheme proposed in this paper based on the approximation
power of neural ordinary differential equations (ODEs) and the ability to approximate flow
maps by neural networks.

Table 1: Summary of the known minimum width of feed-forward neural networks that have
the universal approximation property.

Functions Activation Minimum width References
C(K,R) ReLU wmin = dx + 1 Hanin & Sellke (2017)
Lp(Rdx ,Rdy ) ReLU wmin = max(dx + 1, dy) Park et al. (2021)
C([0, 1],R2) ReLU wmin = 3 = max(dx, dy) + 1 Park et al. (2021)
C(K,Rdy ) ReLU+STEP wmin = max(dx + 1, dy) Park et al. (2021)
Lp(K,Rdy ) Conti. nonpoly‡ wmin ≤ max(dx + 2, dy + 1) Park et al. (2021)
Lp(K,Rdy ) Arbitrary wmin ≥ max(dx, dy) =: w∗

min Ours (Lemma 1)
Leaky-ReLU wmin = max(dx, dy, 2) Ours (Theorem 2)
Leaky-ReLU+ABS wmin = max(dx, dy) Ours (Theorem 3)

C(K,Rdy ) Arbitrary wmin ≥ max(dx, dy) =: w∗
min Ours (Lemma 1)

ReLU+FLOOR wmin = max(dx, dy, 2) Ours (Lemma 4)
UOE†+FLOOR wmin = max(dx, dy) Ours (Corollary 6)

C([0, 1],Rdy ) UOE† wmin = dy Ours (Theorem 5)
‡ Continuous nonpolynomial ρ that is continuously differentiable at some z with ρ′(z) ̸= 0. .
† UOE means the function having universal ordering of extrema, see Definition 7 .

1.1 Contributions

1) Obtained the universal lower bound of width w∗
min for feed-forward neural networks

(FNNs) that have universal approximation properties.

2) Achieved the critical width w∗
min by leaky-ReLU+ABS networks and UOE+FLOOR

networks. (UOE is a continuous function which has universal ordering of extrema.
It is introduced to handle C-UAP for one-dimensional functions. See Definition 7.)

3) Proposed a novel construction scheme from a differential geometry perspective that
could deepen our understanding of UAP through topology theory.

1.2 Related work

To obtain the exact minimum width, one must verify the lower and upper bounds. Generally,
the upper bounds are obtained by construction, while the lower bounds are obtained by
counterexamples.

Lower bounds. For ReLU networks, Lu et al. (2017) utilized the disadvantage brought
by the insufficient size of the dimensions and proved a lower bound wmin ≥ dx for L1-
UAP; Hanin & Sellke (2017) considered the compactness of the level set and proved a lower
bound wmin ≥ dx+1 for C-UAP. For monotone activation functions or its variants, Johnson
(2019) noticed that functions represented by networks with width dx have unbounded level
sets, and Beise & Da Cruz (2020) noticed that such functions on a compact domain K
take their maximum value on the boundary ∂K. These properties allow one to construct
counterexamples and give a lower bound wmin ≥ dx + 1 for C-UAP. For general activation
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functions, Park et al. (2021) used the volume of simplex in the output space and gave a
lower bound wmin ≥ dy for either Lp-UAP or C-UAP. Our universal lower bound, wmin ≥
max(dx, dy), is based on the insufficient size of the dimensions for both the input and output
space, which combines the ideas from these references above.

Upper bounds. For ReLU networks, Lu et al. (2017) explicitly constructed a width-(dx+4)
network by concatenating a series of blocks so that the whole network can be approximated
by scale functions in L1(Rdx ,R) to any given accuracy. Hanin & Sellke (2017); Hanin (2019)
constructed a width-(dx + dy) network using the max-min string approach to achieve C-
UAP for functions on compact domains; Park et al. (2021) proposed an encoder-memorizer-
decoder scheme that achieves the optimal bounds wmin = max(dx + 1, dy) of the UAP for
Lp(Rdx ,Rdy ). For general activation functions, Kidger & Lyons (2020) proposed a register
model construction that gives an upper bound wmin ≤ dx + dy + 1 for C-UAP. Based on
this result, Park et al. (2021) improved the upper bound to wmin ≤ max(dx + 2, dy + 1) for
Lp-UAP. In this paper, we adopt the encoder-memorizer-decoder scheme to calculate the
universal critical width for C-UAP by ReLU+FLOOR activation functions. However, the
floor function is discontinuous. For Lp-UAP, we reach the critical width by leaky-ReLU,
which is a continuous network using a novel scheme based on the approximation power of
neural ODEs.

ResNet and neural ODEs. Although our original aim is the UAP for feed-forward neural
networks, our construction is related to the neural ODEs and residual networks (ResNet, He
et al. (2016)), which include skipping connections. Many studies, such as E (2017); Lu et al.
(2018); Chen et al. (2018), have emphasized that ResNet can be regarded as the Euler dis-
cretization of neural ODEs. The approximation power of ResNet and neural ODEs have also
been examined by researchers. To list a few, Li et al. (2022) gave a sufficient condition that
covers most networks in practice so that the neural ODE/dynamic systems (without extra
dimensions) process Lp-UAP for continuous functions, provided that the spatial dimension
is larger than one; Ruiz-Balet & Zuazua (2021) obtained similar results focused on the case
of one-hidden layer fields. Tabuada & Gharesifard (2020) obtained the C-UAP for mono-
tone functions, and for continuous functions it was obtained by adding one extra spatial
dimension. Recently, Duan et al. (2022) noticed that the FNN could also be a discretization
of neural ODEs, which motivates us to construct networks achieving the critical width by
inheriting the approximation power of neural ODEs. For the excluded dimension one, we
design an approximation scheme with leaky-ReLU+ABS and UOE activation functions.

1.3 Organization

We formally state the main results and necessary notations in Section 2. The proof ideas
are given in Section 3 4, and 5. In Section 3, we consider the case where N = dx = dy = 1,
which is basic for the high-dimensional cases. The construction is based on the properties
of monotone functions. In Section 4, we prove the case where N = dx = dy ≥ 2. The
construction is based on the approximation power of neural ODEs. In Section 5, we consider
the case where dx ̸= dy and discuss the case of more general activation functions. Finally,
we conclude the paper in Section 6. All formal proofs of the results are presented in the
Appendix.

2 Main results

In this paper, we consider the standard feed-forward neural network with N neurons at each
hidden layer. We say that a σ network with depth L is a function with inputs x ∈ Rdx and
outputs y ∈ Rdy , which has the following form:

y ≡ fL(x) =WL+1σ(WL(· · ·σ(W1x+ b1) + · · · ) + bL) + bL+1, (1)

where bi are bias vectors, Wi are weight matrices, and σ(·) is the activation function. For
the case of multiple activation functions, for instance, σ1 and σ2, we call fL a σ1+σ2
network. In this situation, the activation function of each neuron is either σ1 or σ2. In this
paper, we consider arbitrary activation functions, while the following activation functions
are emphasized: ReLU (max(x, 0)), leaky-ReLU (max(x, αx), α ∈ (0, 1) is a fixed positive
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parameter), ABS (|x|), SIN (sin(x)), STEP (1x>0), FLOOR (⌊x⌋) and UOE (universal
ordering of extrema, which will be defined later).

Lemma 1. For any compact domain K ⊂ Rdx and any finite set of activation functions
{σi}, the {σi} networks with width w < w∗

min ≡ max(dx, dy) do not have the UAP for both
Lp(K,Rdy ) and C(K,Rdy ).

Lp-UAP and C-UAP. The lemma indicates that w∗
min ≡ max(dx, dy) is a universal lower

bound for the UAP in both Lp(K,Rdy ) and C(K,Rdy ). The main result of this paper
illustrates that the minimal width w∗

min can be achieved. We consider the UAP for these
two function classes, i.e., Lp-UAP and C-UAP, respectively. Note that any compact domain
can be covered by a big cubic, the functions on the former can be extended to the latter, and
the cubic can be mapped to the unit cubic by a linear function. This allows us to assume
K to be a (unit) cubic without loss of generality.

2.1 Lp-UAP

Theorem 2. Let K ⊂ Rdx be a compact set; then, for the function class Lp(K,Rdy ), the
minimum width of leaky-ReLU networks having Lp-UAP is exactly wmin = max(dx, dy, 2).

The theorem indicates that leaky-ReLU networks achieve the critical width w∗
min =

max(dx, dy), except for the case of dx = dy = 1. The idea is to consider the case where
dx = dy = d > 1 and let the network width equal d. According to the results of Duan et al.
(2022), leaky-ReLU networks can approximate the flow map of neural ODEs. Thus, we can
use the approximation power of neural ODEs to finish the proof. Li et al. (2022) proved
that many neural ODEs could approximate continuous functions in the Lp norm. This is
based on the fact that orientation preserving diffeomorphisms can approximate continuous
functions Brenier & Gangbo (2003).

The exclusion of dimension one is because of the monotonicity of leaky ReLU. When we add
a nonmonotone activation function such as the absolute value function or sine function, the
Lp-UAP at dimension one can be achieved.

Theorem 3. Let K ⊂ Rdx be a compact set; then, for the function class Lp(K,Rdy ), the min-
imum width of leaky-ReLU+ABS networks having Lp-UAP is exactly wmin = max(dx, dy).

2.2 C-UAP

C-UAP is more demanding than Lp-UAP. However, if the activation functions could in-
clude discontinuous functions, the same critical width w∗

min can be achieved. Following the
encoder-memory-decoder approach in Park et al. (2021), the step function is replaced by
the floor function, and one can obtain the minimal width wmin = max(dx, 2, dy).

Lemma 4. Let K ⊂ Rdx be a compact set; then, for the function class C(K,Rdy ), the min-
imum width of ReLU+FLOOR networks having C-UAP is exactly wmin = max(dx, 2, dy).

Since ReLU and FLOOR are monotone functions, the C-UAP critical width w∗
min does not

hold for C([0, 1],R). This seems to be the case even if we add ABS or SIN as an additional
activator. However, it is still possible to use the UOE function (Definition 12).

Theorem 5. The UOE networks with width dy have C-UAP for functions in C([0, 1],Rdy ).

Corollary 6. Let K ⊂ Rdx be a compact set; then, for the continuous function class
C(K,Rdy ), the minimum width of UOE+FLOOR networks having C-UAP is exactly wmin =
max(dx, dy).

3 Approximation in dimension one (N = dx = dy = d = 1)

In this section, we consider one-dimensional functions and neural networks with a width of
one. In this case, the expression of ReLU networks is extremely poor. Therefore, we consider
the leaky ReLU activation σα(x) with a fixed parameter α ∈ (0, 1). Note that leaky-ReLU is
strictly monotonic, and it was proven by Duan et al. (2022) that any monotone function in
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C([0, 1],R) can be uniformly approximated by leaky-ReLU networks with width one. This
is useful for our construction to approximate nonmonotone functions. Since the composition
of monotone functions is also a monotone function, to approximate nonmonotone functions
we need to add a nonmonotone activation function.

Let us consider simple nonmonotone functions, such as |x| or sin(x). We show that leaky-
ReLU+ABS or leaky-ReLU+SIN can approximate any continuous function f∗(x) under the
Lp norm. The idea, shown in Figure 1, is that the target function f∗(x) can be uniformly
approximated by the polynomial p(x), which can be represented as the composition

g ◦ u(x) = p(x) ≈ f∗(x).

Here, the outer function g(x) is any continuous function whose value at extrema matches
the value at extrema of p(x), and the inner function u(x) is monotonically increasing, which
adjusts the location of the extrema (see Figure 1). Since polynomials have a finite number
of extrema, the inner function u(x) is piecewise continuous.

Figure 1: Example of approximating/representing a polynomial by the composition of a
monotonically increasing function u(x) and a nonmonotone function g(x). (a) only matching
the ordering of extrema values, (b) matching the values as well.

For Lp-UAP, the approximation is allowed to have a large deviation on a small interval;
therefore, the extrema could not be matched exactly (over a small error). For example, we
can choose g(x) as the sine function or the sawtooth function (which can be approximated
by ABS networks), and u(x) is a leaky-ReLU network approximating g−1 ◦ p(x) at each
monotone interval of p. Figure 1(a) shows an example of the composition.

For C-UAP, matching the extrema while keeping the error small is needed. To achieve this
aim, we introduce the UOE functions.

Definition 7 (Universal ordering of extrema (UOE) functions). A UOE function is a con-
tinuous function in C(R,R) such that any (finite number of) possible ordering(s) of values
at the (finite) extrema can be found in the extrema of the function.

There are an infinite number of UOE functions. Here, we give an example, as shown in
Figure 2. This UOE function ρ(x) is defined by a sequence {oi}∞i=1,

ρ(x) =

{
x/4, x ≤ 0,
oi + (x− i)(oi+1 − oi), x ∈ [i, i+ 1),

(2)

where {oi}∞i=1 = (1, 2, 2, 1, 1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1, 1, 2, 3, 4, ...) is the con-
catenation of all permutations of positive integer numbers. The term UOE in this paper
means this function ρ. Since the UOE function ρ(x) can represent leaky-ReLU σ1/4 on any
finite interval, this implies that the UOE networks can uniformly approximate any monotone
functions.

To illustrate the C-UAP of UOE networks, we only need to construct a continuous function
g(x) matching the extrema of p(x) (see Figure 1(b)). That is, construct g(x) by the com-
position ũ ◦ ρ(x), where ũ(x) is a monotone and continuous function. This is possible since
the UOE function contains any ordering of the extrema.

The following lemma summarizes the approximation of one-dimensional functions. As a
consequence, Theorem 5 holds since functions in C([0, 1],Rdy ) can be regarded as dy one-
dimensional functions.
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Figure 2: An example of the UOE function ρ(x), which has an infinite number of pieces.

Lemma 8. For any function f∗(x) ∈ C[0, 1] and ε > 0, there is a leaky-ReLU+ABS (or

leaky-ReLU+SIN) network with width one and depth L such that
∫ 1

0
|f∗(x)−fL(x)|pdx < εp.

There is a leaky-ReLU+UOE network with a width of one and a depth of L such that
|f∗(x)− fL(x)| < ε,∀x ∈ [0, 1].

4 Connection to the neural ODEs (N = dx = dy = d ≥ 2)

Now, we turn to the high-dimensional case and connect the feed-forward neural networks
to neural ODEs. To build this connection, we assume that the input and output have the
same dimension, dx = dy = d.

Consider the following neural ODE with one-hidden layer neural fields:{
ẋ(t) = v(x(t), t) := A(t) tanh(W (t)x(t) + b(t)), t ∈ (0, τ),

x(0) = x0,
(3)

where x, x0,∈ Rd and the time-dependent parameters (A,W, b) ∈ Rd×d × Rd×d × Rd are
piecewise constant functions of t. The flow map is denoted as ϕτ (·), which is the function
from x0 to x(τ). According to the approximation results of neural ODEs (see Li et al.
(2022); Tabuada & Gharesifard (2020); Ruiz-Balet & Zuazua (2021) for examples), we have
the following lemma.

Lemma 9 (Special case of Li et al. (2022) ). Let d ≥ 2. Then, for any continuous function
f∗ : Rd → Rd, any compact set K ⊂ Rd, and any ε > 0, there exist a time τ ∈ R+ and
a piecewise constant input (A,W, b) : [0, τ ] → Rd×d × Rd×d × Rd so that the flow-map ϕτ

associated with the neural ODE (3) satisfies: ||f∗ − ϕτ ||Lp(K) ≤ ε.

Next, we consider the approximation of the flow map associated with (3) by neural net-
works. Recently, Duan et al. (2022) found that leaky-ReLU networks could perform such
approximations.

Lemma 10 (Theorem 2.2 in Duan et al. (2022)). If the parameters (A,W, b) in (3) are
piecewise constants, then for any compact set K and any ε > 0, there is a leaky-ReLU
network fL(x) with width d and depth L such that

∥ϕτ (x)− fL(x)∥ ≤ ε, ∀x ∈ K. (4)

Combining these two lemmas, one can directly prove the following corollary, which is a part
of our Theorem 2.

Corollary 11. Let K ⊂ Rd be a compact set and d ≥ 2; then, for the function class
Lp(K,Rd), the leaky-ReLU networks with width d have Lp-UAP.

Here, we summarize the main ideas of this result. Let us start with the discretization of the
ODE by the splitting approach (see McLachlan & Quispel (2002) for example). Consider the

spliting of (3) with v(x, t) =
∑

i,j v
(j)
i (x, t)ej , where v

(j)
i (x, t) = Aji(t) tanh(Wi,:(t)x+ bi(t))

is a scalar function and ej is the j-th axis unit vector. Then for a given time step ∆t =
τ/K, (K large enough), the splitting method gives the following iteration of xk which
approximates ϕk∆t(x0),

xk+1 = T
(d,d)
k ◦ · · · ◦ T (1,2)

k ◦ T (1,1)
k xk, (5)
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where the map T
(i,j)
k : x→ y is defined as{
y(l) = x(l), l ̸= j,

y(j) = x(j) +∆tv
(j)
i (x, k∆t) = x(j) + a∆t tanh(wx+ β).

(6)

Here the superscript in x(l) means the l-th coordinate of x. a = Aji, w = Wi,: and β = bi
take their value at t = k∆t. Note that the scalar functions tanh(ξ) and ξ+ a∆t tanh(ξ) are
monotone with respect to ξ when ∆t is small enough. This allows us to construct leaky-

ReLU networks with width d to approximate each map T
(i,j)
k and then approximate the

flow-map, ϕτ (x0) ≈ xK .

Note that Lemma 10 holds for all dimensions, while Lemma 9 holds for dimensions larger
than one. This is because flow maps are orientation-preserving diffeomorphisms, and they
can approximate continuous functions only for dimensions larger than one; see Brenier &
Gangbo (2003). The approximation is based on control theory where the flow map can
be adjusted to match any finite set of input-output pairs. This match does not hold for
dimension one. However, the case of dimension one is discussed in the last section.

5 Achieving the minimal width

Now, we turn to the cases where the input and output dimensions cannot be equal.

5.1 Universal lower bound w∗
min = max(dx, dy)

Here, we give a sketch of the proof of Lemma 1, which states that w∗
min is a universal lower

bound over all activation functions. Parts of Lemma 1 have been demonstrated in many
papers, such as Park et al. (2021). Here, we give proof by two counterexamples that are
simple and easy to understand from the topological perspective. It contains two cases: 1)
there is a function f∗ that cannot be approximated by networks with width w ≤ dx − 1;
2) there is a function f∗ that cannot be approximated by networks with width w ≤ dy − 1.
Figure 3(a)-(b) shows the counterexamples that illustrate the essence of the proof.

For the first case, w ≤ dx − 1, we show that f∗(x) = ∥x∥2, x ∈ K = [−2, 2]dx , is what we
want; see Figure 3(a). In fact, we can relax the networks to a function f(x) = ϕ(Wx+ b),
where Wx + b is a transformer from Rdx to Rdx−1 and ϕ(x) could be any function. A
consequence is that there exists a direction v (set as the vector satisfying Wv = 0, ∥v∥ = 1)
such that f(x) = f(x + λv) for all λ ∈ R. Then, considering the sets A = {x : ∥x∥ ≤ 0.1}
and B = {x : ∥x− v∥ ≤ 0.1}, we have∫

K
|f(x)− f∗(x)|dx ≥

∫
A

|f(x)− f∗(x)|dx+

∫
B

|f(x)− f∗(x)|dx

≥
∫
A

(|f(x)− f∗(x)|+ |f(x+ v)− f∗(x+ v)|)dx

≥
∫
A

(|f∗(x)− f∗(x+ v)|)dx ≥ 0.8|A|.

Since the volume of A is a fixed positive number, the inequality implies that even the L1

approximation for f∗ is impossible. The case of the Lp norm and the uniform norm is
impossible as well.

For the second case, w ≤ dy−1, we show the example of f∗, which is the parametrized curve
from 0 to 1 along the edge of the cubic, see Figure 3(b). Relaxing the networks to a function
f(x) = Wψ(x) + b, ψ(x) could be any function. Since the range of f is in a hyperplane
while f∗ has a positive distance to any hyperplane, the target f∗ cannot be approximated.

5.2 Achieving w∗
min for Lp-UAP

Now, we show that the lower bound w∗
min for Lp-UAP can be achieved by leaky-ReLU+ABS

networks. Without loss of generality, we consider K = [0, 1]dx .
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For any function f∗ in Lp([0, 1]dx ,Rdy ), we can extend it to a function f̃∗ in Lp([0, 1]d,Rd)
by filling in zeros where d = max(dx, dy) = w∗

min. When dx > 1 or dy > 1, the Lp-UAP for
leaky-ReLU networks with width w∗

min is obtained by using Corollary 11. Recall that by
the Lemma 1, w∗

min is optimal, and we obtain our main result Theorem 2.

Combining the case of dx = dy = d = 1 in Section 3, adding absolute function ABS as an
additional activation function, we obtain Theorem 3.

5.3 Achieving w∗
min for C-UAP

Here, we use the encoder-memorizer-decoder approach proposed in Park et al. (2021) to
achieve the minimum width. Without loss of generality, we consider the function class
C([0, 1]dx , [0, 1]dy ). The encoder-memorizer-decoder approach includes three parts:

1) an encoder maps [0, 1]dx to [0, 1] which quantizes each coordinate of x by a K-
bit binary representation and concatenates the quantized coordinates into a single
scalar value x̄ having a (dxK)-bit binary representation;

2) a memorizer maps each codeword x̄ to its target codeword ȳ;

3) a decoder maps ȳ to the quantized target that approximates the true target.

As illustrated in Figure 3(c), using the floor function instead of a step function, one can
construct the encoder by FLOOR networks with width dx and the decoder by FLOOR
networks with width dy. The memorizer is a one-dimensional scalar function that can be
approximated by ReLU networks with a width of two or UOE networks with a width of
one. Therefore, the minimal widths max(dx, 2, dy) and max(dx, dy) are obtained, which
demonstrate Lemma 4 and Corollary 6, respectively.

Figure 3: (a)(b) Counterexamples for proving Lemma 1. (a) Points A and B on a level
set of networks f(x); f(A) = f(B) but f∗(A) − f∗(B) is not small. (b) The curve from 0
to 1 along the edge of the cubic has a positive distance to any hyperplane. (c) illustration
of the encoder-memorizer-decoder scheme for C-UAP by an example where dx = dy = 3, 4
bits for the input and 5 bits for the output.

5.4 Effect of the activation functions

Here, we emphasize that our universal bound of the minimal width is optimized over ar-
bitrary activation functions. However, it cannot always be achieved when the activation
functions are fixed. Here, we discuss the case of monotone activation functions.

If the activation functions are strictly monotone and continuous (such as leaky-ReLU), a
width of at least dx + 1 is needed for C-UAP. This can be understood through topology
theory. Leaky-ReLU, the nonsingular linear transformer, and its inverse are continuous
and homeomorphic. Since compositions of homeomorphisms are also homeomorphisms, we
have the following proposition: If N = dx = dy = d and the weight matrix in leaky-ReLU
networks are nonsingular, then the input-output map is a homeomorphism. Note that
singular matrices can be approximated by nonsingular matrices; therefore, we can restrict
the weight matrix in neural networks to the nonsingular case.

When dx ≥ dy, we can reformulate the leaky-ReLU network as fL(x) = WL+1ψ(x) + bL+1,
where ψ(x) is the homeomorphism. Note that considering the case where dy = 1 is sufficient,
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according to Hanin & Sellke (2017); Johnson (2019). They proved that the neural network
width dx cannot approximate any scalar function with a level set containing a bounded
path component. This can be easily understood from the perspective of topology theory.
An example is to consider the function f∗(x) = ∥x∥2, x ∈ K = [−2, 2]dx shown in Figure 4.

Figure 4: Illustrating the possibility of UAP when N = dx. (a) Plot of f
∗(x) = ∥x∥2 and its

contour at ∥x∥ = 1. (b) The original point P is an inner point of the unit ball, while its image
is a boundary point, which is impossible for homeomorphisms. (c) Any homeomorphism,
approximating ∥x∥2 with error less than ε (=0.1 for example) on Γ, should have error larger
than 1− ε (=0.9) at P . (d) Approximating f∗ in Lp is possible by leaving a small region.

The case where dx < dy. We present a simple example in Figure 5. The curve ‘4’ corre-
sponding to a continuous function from [0, 1] ⊂ R to R2 cannot be uniformly approximated.
However, the Lp approximation is still possible.

Figure 5: Illustrating the possibility of C-UAP when dx ≤ dy. The curve in (a) is homeo-
morphic to the interval [0, 1], while the curve ‘4’ in (b) is not and cannot be approximated
uniformly by homeomorphisms. The Lp approximation is possible via (a).

6 Conclusion

Let us summarize the main results and implications of this paper. After giving the universal
lower bound of the minimum width for the UAP, we proved that the bound is optimal by
constructing neural networks with some activation functions.

For the Lp-UAP, our construction to achieve the critical width was based on the approxi-
mation power of neural ODEs, which bridges the feed-forward networks to the flow maps
corresponding to the ODEs. This allowed us to understand the UAP of the FNN through
topology theory. Moreover, we obtained not only the lower bound but also the upper bound.

For the C-UAP, our construction was based on the encoder-memorizer-decoder approach
in Park et al. (2021), where the activation sets contain a discontinuous function ⌊x⌋. It is
still an open question whether we can achieve the critical width by continuous activation
functions. Johnson (2019) proved that continuous and monotone activation functions need
at least width dx + 1. This implies that nonmonotone activation functions are needed. By
using the UOE activation, we calculated the critical width for the case of dx = 1. It would
be of interest to study the case of dx ≥ 2 in future research.

We remark that our UAP is for functions on a compact domain. Examining the critical
width of the UAP for functions on unbounded domains is desirable for future research.
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A Proof of the lemmas

A.1 Proof of Lemma 8

We give a definition and a lemma below that are useful for proving Lemma 8.

Definition 12. We say two functions, f1, f2 ∈ C(R,R), have the same ordering of extrema
if they have the following properties:

1) fi(x) has only a finite number of extrema that are (increasing) x∗i,j , j = 1, 2, ...,mi.

2) m1 = m2 =: m and the two sequences,

S1 := {f1(−∞), f1(x
∗
1,1), ..., f1(x

∗
1,m), f1(+∞)},

and
S2 := {f2(−∞), f2(x

∗
2,1), ..., f2(x

∗
2,m), f2(+∞)},

have the same ordering, i.e.,

S1,i < S1,j ⇐⇒ S2,i < S2,j , ∀i, j,
S1,i = S1,j ⇐⇒ S2,i = S2,j , ∀i, j.

Lemma 13. Let f1 and f2 be continuous functions in C(R,R) that have the same ordering
of extrema; then, there are two strictly monotone functions, v and u, such that

f1 = v ◦ f2 ◦ u.

Proof. Here, we use the same notation in Definition 12. The functions v and u can be
constructed as follows.

(1) Construct the outer function v that tries to match the function values at the extrema.
The only requirement is that

S1,i = v(S2,i), ∀i.
Since S1 and S2 have the same ordering, it is easy to construct such a function v that is
continuous and strictly increasing, for example, piecewise linear.

(2) Construct the inner function u to match the location of the extrema. Denote g = v ◦ f2,
which satisfies f1(x

∗
1,i) = g(x∗2,i). Since f1 and g are strictly monotone and continuous on

the intervals Ii := (x∗1,i, x
∗
1,i+1) and Ji = (x∗2,i, x

∗
2,i+1), respectively, we can construct the

function u on Ii as

u(x) = g−1(f1(x)), x ∈ Ii.

Combining each piece of u, we have a strictly increasing and continuous function u on the
whole space R. As a consequence, we have f1 = g ◦ u = v ◦ f2 ◦ u.

Lemma 8. For any function f∗(x) ∈ C[0, 1] and ε > 0,

1) there is a leaky-ReLU+ABS (or leaky-ReLU+SIN) network with width one and depth L

such that
∫ 1

0
|f∗(x)− fL(x)|pdx < εp.

2) there is a leaky-ReLU + UOE network width one and depth L such that |f∗(x)−fL(x)| <
ε,∀x ∈ [0, 1].

Proof. We mainly provide proof of the second point, while the first point can be proven
using the same scheme.

For any function f∗(x) ∈ C([0, 1],R) and ε > 0, we can approximate it by a polynomial
pn(x) with order n such that

|f∗(x)− pn(x)| ≤ ε/2, ∀x ∈ [0, 1],

12
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according to the well-known Weierstrass approximation theorem. Without a loss of general-
ity, we can assume that pn(x) is not the same at all of its extrema. Then, we can represent
pn(x) by the following composition, using Lemma 13 and the property of UOE:

pn(x) = v ◦ ρ ◦ u(x), (7)

where ρ(x) is the UOE function (2) and v(x) and u(x) are monotonically increasing contin-
uous functions.

Then, we can approximate pn(x) by UOE networks. Since v(x) and u(x) are monotone,
there are UOE networks ṽ(x) and ũ(x) such that ∥v− ṽ∥ and ∥u− ũ∥ are arbitrarily small.
Hence, there is a UOE network fL(x) = ṽ ◦ ρ ◦ ũ(x) that can approximate pn(x) such that

|pn(x)− fL(x)| ≤ ε/2, ∀x ∈ [0, 1],

which implies that

|f∗(x)− fL(x)| ≤ ε.

This completes the proof of the second point.

For the first point, we only emphasize that it is easy to construct a function f(x) that has the
same local maximum and local minimum in the interval and has ∥f − f∗∥Lp small enough.
This f(x) has the same ordering of extrema as the sawtooth function (or sine) and hence
can be uniformly approximated by leaky-ReLU+ABS (or leaky-ReLU+SIN) networks fL.
As a consequence, ∥fL − f∗∥Lp is small enough.

A.2 Proof of Lemma 9

Lemma 9. Let d ≥ 2. Then, for any continuous function f∗ : Rd → Rd, any compact
set K ⊂ Rd, and any ε > 0, there exist a time τ ∈ R+ and a piecewise constant input
(A,W, b) : [0, τ ] → Rd×d × Rd×d × Rd so that the flow map ϕτ associated with the neural
ODE (3) satisfies: ||f∗ − ϕτ ||Lp(K) ≤ ε.

Proof. This is a special case of Theorem 2.3 in Li et al. (2022).

A.3 Proof of Lemma 10

Lemma 10. If the parameters (A,W, b) in (3) are piecewise constants, then for any compact
set K and any ε > 0, there is a leaky-ReLU network fL(x) with width d and depth L such
that

∥ϕτ (x)− fL(x)∥ ≤ ε, ∀x ∈ K. (8)

Proof. It is Theorem 2.2 in Duan et al. (2022).

A.4 Proof of Corollary 11

Corollary 11. Let K ⊂ Rd be a compact set and d ≥ 2; then, for the function class
Lp(K,Rd), the leaky-ReLU networks with width d have Lp-UAP.

Proof. For any f∗(x) ∈ Lp(K,Rd) and ε > 0, there is a flow map ϕτ (x) associated with the
neural ODE (3) such that (according to Lemma 9)

∥f∗(·)− ϕτ (·)∥Lp ≤ ε

2
.

Then, employing Lemma 10, there is a leaky-ReLU network fL such that

∥fL(·)− ϕτ (·)∥Lp ≤ ε

2
.

Therefore, we have

∥fL(·)− f∗(·)∥Lp ≤ ∥f∗(·)− ϕτ (·)∥Lp + ∥fL(·)− ϕτ (·)∥Lp ≤ ε.

13
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B Proof of the main results

B.1 Proof of Lemma 1

Lemma 1. For any compact domain K ⊂ Rdx and any finite set of activation functions
{σi}, the {σi} networks with width w < w∗

min ≡ max(dx, dy) do not have the UAP for both
Lp(K,Rdy ) and C(K,Rdy ).

Proof. It is enough to show the following two counterexamples f∗(x) that cannot be ap-
proximated in the Lp-norm.

1) f∗(x) = ∥x∥2, x ∈ K = [−2, 2]dx , cannot be approximated by any networks with widths
less than dx − 1. In fact, we can relax the networks to a function f(x) = ϕ(Wx+ b), where
Wx+ b is a transformer from Rdx to Rdx−1 and ϕ(x) could be any function. A consequence
is that there exists a direction v (set as the vector satisfying Wv = 0, ∥v∥ = 1) such that
f(x) = f(x + λv) for all λ ∈ R. Then, considering the sets A = {x : ∥x∥ ≤ 0.1} and
B = {x : ∥x− v∥ ≤ 0.1}, we have∫

K
|f(x)− f∗(x)|dx ≥

∫
A

|f(x)− f∗(x)|dx+

∫
B

|f(x)− f∗(x)|dx

≥
∫
A

(|f(x)− f∗(x)|+ |f(x+ v)− f∗(x+ v)|)dx

≥
∫
A

(|f∗(x)− f∗(x+ v)|)dx ≥ 0.8|A|.

Since the volume of A is a fixed positive number, the inequality implies that even the L1

approximation for f∗ is impossible. The case of the Lp norm and the uniform norm is
impossible as well.

2) The function f∗, the parametrized curve from 0 to 1 along the edge of the cubic, cannot
be approximated by any networks with a width less than dy − 1. Relaxing the networks
to a function f(x) = Wψ(x) + b, ψ(x) could be any function. Since the range of f is in
a hyperplane while f∗ has a positive distance to any hyperplane, the target f∗ cannot be
approximated.

B.2 Proof of Theorem 2

Theorem 2. Let K ⊂ Rdx be a compact set; then, for the function class Lp(K,Rdy ), the
minimum width of leaky-ReLU networks having Lp-UAP is exactly wmin = max(dx, dy, 2).

Proof. Using Lemma 1, we only need to prove two points: 1) the Lp-UAP holds when
max(dx, dy) ≥ 2, 2) when dx = dy = 1, there is a function that cannot be approximated by
leaky-ReLU networks with width one (since width two is enough for the Lp-UAP).

The first point is a consequence of Corollary 11 since we can extend the target function to
dimension d = max(dx, dy).

The second point is obvious since leaky-ReLU networks with a width of one are monotone
functions that cannot approximate nonmonotone functions such as f∗(x) = x2, x ∈ [−1, 1].

B.3 Proof of Theorem 3

Theorem 3. Let K ⊂ Rdx be a compact set; then, for the function class Lp(K,Rdy ), the min-
imum width of leaky-ReLU+ABS networks having Lp-UAP is exactly wmin = max(dx, dy).

Proof. This is a consequence of Theorem 2 (for the case of max(dx, dy) ≥ 2) combined with
Lemma 8 (for the case of dx = dy = 1).
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B.4 Proof of Lemma 4

Lemma 4. Let K ⊂ Rdx be a compact set; then, for the function class C(K,Rdy ), the min-
imum width of ReLU+FLOOR networks having C-UAP is exactly wmin = max(dx, 2, dy).

Proof. Recalling the results of Lemma 1, we only need to prove two points: 1) the C-UAP
holds when max(dx, dy) ≥ 2, 2) when dx = dy = 1, there is a function that cannot be
approximated by ReLU+FLOOR networks with width one (since width two is enough for
the C-UAP).

The first step can be constructed by the encoder-memorizer-decoder approach. The second
point is obvious since ReLU+FLOOR networks with width one are monotone functions that
cannot approximate nonmonotone functions such as f∗(x) = x2, x ∈ [−1, 1].

B.5 Proof of Theorem 5

Theorem 5. The UOE networks with width dy have C-UAP for functions in C([0, 1],Rdy ).

Proof. Since functions in C([0, 1],Rdy ) can be regarded as dy one-dimensional functions, it
is enough to prove the case of dy = 1, which is the result in Lemma 8.

B.6 Proof of Corollary 6

Corollary 6. Let K ⊂ Rdx be a compact set; then, for the continuous function class
C(K,Rdy ), the minimum width of UOE+FLOOR networks having C-UAP is exactly wmin =
max(dx, dy).

Proof. The case where max(dx, dy) ≥ 2 is a consequence of Lemma 4 since the UOE function
contains the leaky-ReLU as a part. The case where max(dx, dy) = 1, i.e. dx = dy = 1, is a
consequence of Lemma 8.
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