
Under review as a conference paper at ICLR 2022

MCL-GAN: GENERATIVE ADVERSARIAL NETWORKS
WITH MULTIPLE SPECIALIZED DISCRIMINATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a generative adversarial network with multiple discriminators, which
collaborate to represent a real dataset more effectively. This approach facilitates
learning a generator consistent with the underlying data distribution based on real
images and thus mitigates the chronic mode collapse problem. From the inspiration
of multiple choice learning, we guide each discriminator to have expertise in the
subset of the entire data and allow the generator to find reasonable correspondences
between the latent and real data spaces automatically without the extra supervision
for training examples. Despite the use of multiple discriminators, the backbone
networks are shared across the discriminators and the increase of training cost
is marginal. We demonstrate the effectiveness of our algorithm using multiple
evaluation metrics in the standard datasets for diverse tasks.

1 INTRODUCTION

Generative models learn to represent a probability distribution of data. With recent advances of
deep generative models, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and
Variational Autoencoders (VAEs) (Kingma & Welling, 2014) have shown impressive achievements
in unconditional generation of high-dimensional realistic images as well as various conditional
generation tasks including image-to-image translation (Zhu et al., 2017b; Lee et al., 2018; Zhu et al.,
2017a), image inpainting (Yeh et al., 2017), image super-resolution (Ledig et al., 2017), etc.

GANs have received a lot of attention due to their interesting framework of minimax games, where
two agents, a generator and a discriminator, compete against each other. Specifically, a discriminator
distinguishes whether a sample comes from the real dataset or the generator while the generator
attempts to deceive the discriminator. In theory, the generator learns the real data distribution by
reaching an equilibrium point of the minimax game. It is known that GANs produce acute, high
quality images compared to VAEs. However, in practice, the alternating training procedure does not
guarantee the convergence to the optimal solution and often experiences mode collapsing, failing to
cover the multiple modes of real data or, even worse, reaching at trivial solutions.

This paper focuses on the mode collapse problem in training GANs. Our main idea is adopting
multiple collaborating discriminators. Each discriminator is learned to specialize in a subset of
reference data space, which is identified automatically via the training procedure, so the ensemble of
discriminators provide not only the differentiation of fake data, but also more accurate predictions
over the clusters of real data. In this respect, a generator is encouraged to produce diverse modes
that deceive a set of discrimantors. We employ Multiple Choice Learning (MCL) to learn multiple
discriminators that are trained on a subset of training data as illustrated in Figure 1. The generator is
updated via a set of expert models, each of which is associated with a subset of the true and generated
examples closest to the expert. We call the proposed approach based on a single generator and
multiple discriminators MCL-GAN, which is optimized by the standard objective of GAN combined
with the objective for MCL in the discriminator side.

There are several GAN literatures that employ multiple discriminators (Nguyen et al., 2017; Durugkar
et al., 2017; Albuquerque et al., 2019). Among them, GMAN (Durugkar et al., 2017) is closely
related with our approach in the sense that it utilizes the ensemble prediction of discriminators. It
explores multi-discriminator extensions of GANs with diverse versions of the aggregated prediction
of discriminators—from a harsh trainer to a lenient teacher with a softened criteria. Meanwhile, there
are significant differences in the method of ensembling from our approach. While GMAN focuses
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on the loss to the generator with parallel learning of discriminators, our strategy takes care of the
specialization of each discriminator for more informative feedbacks to the generator.

Figure 1: The main idea of MCL-GAN.
Each discriminator Dm is trained to spe-
cialize in the cluster Sm of the real
dataset. The mapping between Dm and
Sm is obtained automatically by MCL.

The training algorithm of the proposed method is inspired
by Multiple Choice Learning (Lee et al., 2016), which is
known to be effective in learning specialized models with
high oracle accuracy in recognition tasks. Encouraged by
this benefit, Chen & Koltun (2017); Mun et al. (2018);
Firman et al. (2018); Li et al. (2019) apply MCL or its
variations (Lee et al., 2017; Tian et al., 2019) to produce
diverse and accurate outputs in several applications. For
instance, Mun et al. (2018) propose MCL-KD framework
to come up with the visual question answering (VQA)
systems based on multiple models that are specialized in
different types of visual reasonings. Li et al. (2019) apply
MCL to a conditional generative model for synthesizing
diverse image from semantic layouts. DiverseNet (Firman
et al., 2018) introduces the control parameter as an input
that diversifies the outputs of networks with an MCL loss
by making each control parameter ally with a different
mode of data. While these works generate multiple outputs
explicitly and select them at inference time, our approach
adopts a unique strategy for diversifying the mode, learning to branch the decision of discriminators.

The proposed method takes an advantage of MCL techniques into unconditional generative models,
which has not been explored before. No supervision such as class labels or other conditions are
assumed unlike the aforementioned works. Our main contributions are summarized as follows:

• We propose a single-generator multi-discriminator GAN training algorithm to alleviate the
mode collapse problem. Our approach provides simple yet effective updating rules based on
MCL to achieve the goal.

• We present a balanced discriminator assignment strategy to facilitate the robust convergence
of models and preserve the multi-modality of training data, where the number of the
discriminators is determined adaptively.

• The proposed method is applicable to many GAN variants since there is no constraint on the
network architectures or the loss functions. Our method requires a small additional overhead
and trains the model with computational efficiency via feature sharing in the discriminators.

• We experimentally show the competence of our method in terms of the generated image
quality and the behavior of the networks.

2 RELATED WORK

There exist a lot of GAN approaches that address the mode collapse problem for output diversity.
This section discusses the recent progress related to the issue briefly.

2.1 HANDLING MODE COLLAPSE FOR DIVERSITY

Many variations of GANs propose either novel metrics for the discriminator loss or better alternatives
of the discriminator design. For example, LSGAN (Mao et al., 2017) substitutes the least square
function for the binary cross-entropy function as the discriminator loss. WGAN (Arjovsky et al., 2017)
introduces a critic function based on the Earth-Mover’s distance rather than a binary classifier, and
WGAN-GP (Gulrajani et al., 2017) improves WGAN by adding a gradient penalty term. PacGAN (Lin
et al., 2018) augments the discriminator’s input by packing samples for a single label. EBGAN (Zhao
et al., 2017) models the discriminator as an energy function, which is, in effect, implemented by
the reconstruction loss of the autoencoder. BiGAN (Donahue et al., 2017), ALI (Dumoulin et al.,
2017), VEEGAN (Srivastava et al., 2017), Inclusive GAN (Yu et al., 2020) also learn reconstruction
networks. In particular, VEEGAN (Srivastava et al., 2017) autoencodes the latent vectors to learn the
inverse function of the generator and map both the true and generated data to the latent distribution,
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i.e. a Gaussian. Inclusive GAN (Yu et al., 2020) learns a generator by matching between real and
fake examples in the feature space.

The mode collapse and diversity issue of generated outputs has been addressed explicitly in (Liu
et al., 2019; Yang et al., 2018; Mao et al., 2019). They formulate the diversity metrics that encourage
the mode exploration of the generators and derive the loss function using the metrics. To be specific,
Liu et al. (2019) measure normalized pairwise distances between the latent vectors and between their
corresponding outputs, which are employed as a diversity loss to optimize the generator.

2.2 GAN WITH MULTIPLE GENERATORS

Another line of research is the integration of multiple generators (Tolstikhin et al., 2017; Ghosh et al.,
2018; Hoang et al., 2018; Park et al., 2018). This approach represents the data distribution with a
mixture model enforcing each generator to cover a portion of the whole data space. It is naturally
expected that mixture models approximate true distributions better than a single model especially in
high-dimensional spaces with multiple modes.

MAD-GAN (Ghosh et al., 2018) introduce an augmented classifier as a discriminator, which predicts
whether the sample is real and which generator the sample is drawn from, to encourage individual
generators to learn distinctive modes. MGAN (Hoang et al., 2018) has the similar strategies to MAD-
GAN, but constructs a separate branch in the discriminator to perform the two tasks. MEGAN (Park
et al., 2018) adopts a gating network that produces a one-hot vector to select the generator creating
the best example. P2GAN (Trung Le et al., 2019) sequentially adds a new generator to cover the
missing modes of the real data.

2.3 GAN WITH MULTIPLE DISCRIMINATORS

Multiple discriminators are often employed to improve the performance of a single generator (Nguyen
et al., 2017; Durugkar et al., 2017; Albuquerque et al., 2019; Doan et al., 2019). D2GAN (Nguyen
et al., 2017) conducts a three player minimax game, where two discriminators are trained for the
completely opposite objectives, minimizing Kullback-Leibler (KL) divergence and the inverse KL
divergence between the true and generated data distributions. The balancing of two losses plays a role
for seeking desirable and diverse modes at the same time. Albuquerque et al. (2019) propose a general
multi-objective optimization framework in the scenario with multiple discriminators. They present
the hypervolume maximization algorithm to obtain weighed gradients. Neyshabur et al. (2017)
train a GAN based on multiple projections. Each discriminator makes a decision for the random
low-dimensional projection of a sample to address the instability of GAN training in high-dimensions.

GMAN (Durugkar et al., 2017) presents diverse aggregation methods of multiple discriminators,
where both hard and soft discriminator selection strategies are studied. Note that all the existing
approaches learn the multiple discriminators independently and they may have strong correlations,
which may not be appropriate for diversifying the generated samples. Our approach, however, assigns
each sample to the best-suited discriminator through the interactions among the discriminators, and,
consequently, each discriminator becomes the expert model for the assigned examples.

3 MULTIPLE CHOICE LEARNING

We present the main idea of MCL (Guzman-Rivera et al., 2012) and its extensions briefly. Given a
training dataset with N samples, D = {(xi, yi)}Ni=1, M models, {fm}Mm=1 and a task-specific loss
function, `(·, ·), MCL minimizes the following oracle loss:

LMCL(D) =
N∑
i=1

min
m

`(yi, fm(xi)). (1)

In other words, only the model with the smallest error out of M candidates is selected for each
example. This optimization process makes each model fm become an expert for a subset of D, thus
leads to forming a natural cluster in D.

A weakness of MCL is the possible mistakes caused by the overconfidence issues. If non-specialized
models make wrong predictions with high confidences in the score aggregation process, the average
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scores are misleading and the ensemble model may result in poor quality outputs. To alleviate the
limitation, Confident Multiple Choice Learning (CMCL) (Lee et al., 2017) adopts a confident oracle
loss that enforces the predictions of a non-specialized model to be uniformly distributed using KL
divergence, denoted by DKL. Assuming that fm predicts the output distribution given data point x,
i.e., Pm(y|x), the modified loss is modified as

LCMCL(D) =
N∑
i=1

M∑
m=1

vi,m`(yi, Pm(y|xi)) + β(1− vi,m)DKL(U(y)‖Pm(y|xi)), (2)

where U(y) is the uniform distribution and the flag variable vi,m ∈ {0, 1} allows the choices of the
specialized models. Note that, if

∑M
m=1 vi,m = k (k < M ), each example is assigned to k models.

4 MCL-GAN

We describe our GAN structure with a generator G(·; θ) and M discriminators {Dm(·;φm)}Mm=1
extended from the standard GAN. Let pz and pd be the distributions of the latent space and real data
space, respectively. Given z ∼ pz , the generator produces a sample x̃ = G(z; θ) and M predictions
are made by the discriminators for each real example x ∼ pd and fake sample x̃. Each prediction,
Dm(x;φm), ranges in [0, 1] and represents the probability that x belongs to the true data distribution.

4.1 EXPERT TRAINING

Assuming that we draw Nd real data and generate Ng examples in each training batch, denoted by x
and x̃, respectively, each network is trained as follows.

Discriminators Expert discriminators are the ones that predict the highest scores for each sample.
With the indicator variable vi,m for sample xi, the discriminators are trained to minimize the following
loss function:

Le(x) = −
Nd∑
i=1

M∑
m=1

vi,m log(Dm(xi;φm)), (3)

where we choose k experts out of M discriminators for each example, i.e.,
∑M

m=1 vi,m = k. In the
case of a fake sample, all discriminators have to identify it correctly. Thus the following standard loss
is added to equation 3:

Le(x̃) = −
Ng∑
j=1

M∑
m=1

log(1−Dm(G(zj);φm)). (4)

Generator We train the generator with respect to the gradients given by the expert models to
encourage the generator to find the closest mode given z. With another indicator variable uj,m for zj ,
the expert loss for the generator is given by

Le(x̃) =

Ng∑
j=1

M∑
m=1

uj,m log(1−Dm(G(zj ; θ));φm), (5)

where
∑M

m=1 uj,m = k.

4.2 NON-EXPERT TRAINING

The non-expert discriminators should not be over-confident to real example while it is desirable to
produce higher scores for real samples than fake ones. For this requirement, we give a uniform soft
label, e.g., y = [0.5, 0.5] for non-expert discriminators and regularize them with some weight. To be
precise, we obtain the following non-expert loss term corresponding to equation 3:

Lne(x) =

Nd∑
i=1

M∑
m=1

(1− vi,m)`ce(Dm(xi), y), (6)
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with the same vi,m defined in equation 3 and `ce(·, y) is the cross-entropy loss function given a target
label y. The other counterpart for equation 5 is derived similarly as

Lne(x̃) =

Ng∑
j=1

M∑
m=1

(1− uj,m)`ce(Dm(G(zj)), y). (7)

The non-expert model training is effective to handle the overconfidence issue, but the model may still
suffer from the data deficiency problem of the standard MCL framework because each discriminator
can see only a subset of the whole dataset. To ameliorate this limitation, our discriminators share the
parameters of all layers for feature extraction while branching the last layer only. This implementation
is also sensible in that the discriminators partially have the same objective to distinguish the fake
examples. The common representations of all real samples are likely to be learned in the earlier layers
despite being clustered in the different subsets whereas the critical information for the high-level
classification is often found in the last layer. Moreover, the number of training parameters and training
time are saved sigificantly while taking advantage of ensemble learning.

4.3 BALANCED ASSIGNMENT OF DISCRIMINATORS

On top of the adversarial losses, we introduce another loss for balanced updates of discriminators. As
our training does not include any supervision for the specialized factor for certain discriminator, e.g.,
class labels or feature embeddings, it may be difficult to reasonably distribute real samples to expert
models from the beginning. Since the abilities of individual discriminators are severely off-balanced,
they are highly prone to assign all samples to few specific models. Especially at an early phase of
training, the model’s capability is more sensitive to the number of updates in the discriminators.

To tackle this challenge, we propose another loss, namely a balance loss, that gives discriminators
balanced chances to be updated. We let the selection of expert discriminators approximately follow a
categorical distribution with a parameter µ = [µ1, . . . , µM ]. Then the loss is computed by the KL
divergence of the probability distribution of discriminators for being selected as experts from µ. To
obtain the probability for discriminator selection, we apply the softmax function to the vector of M
predictions of discriminators—more precisely, logits before sigmoid function—for each example
since the discriminator with the highest score is guaranteed to be chosen as an expert. We average
these probability vectors over the training batch. i.e., q = 1

Nd

∑Nd

i=1 s([D1(xi), . . . , DM (xi)]; τ),
where s(·; τ) denotes a vector-valued softmax function with temperature τ given an input vector. To
sum up, the balance loss is given by

Lbal(x) = DKL(µ‖q). (8)

In practice, we set µm = 1
M ,∀m to update the discriminators evenly, which is because the true

distribution is unavailable. This assumption may not be congruent to the real distribution of the
dataset and excessively forced assignment would not result in an optimal clustering for specialization.
We, therefore, decrease the weight for the balance loss gradually during training. Eventually, each
example will be naturally assigned to its best model with a very small weight of the balance loss.
This adjustment helps stabilize training and naturally cluster the reference data. Note that the models
are balanced within a few epochs and the weight reduction helps generate higher quality samples.

Likewise, a small enforcement on the distribution of the generator’s output facilitates balanced
generation when the statistics of generated samples are skewed. For this case, we use the distribution
of the discriminators’ assignments instead of arbitrarily chosen µ, i.e.,

Lbal(x̃) = DKL(q‖o). (9)

where o = 1
Ng

∑Ng

j=1 s([D1(G(zj)), . . . , DM (G(zj))]; τ).

4.4 TOTAL LOSS

Altogether, the total loss is summarized as follows:
L = Le + αLne + βLbal, (10)

where β is different for discriminators and generator. Although we describe the loss functions based
on the standard GAN, it is applicable to other GAN formulations with different adversarial losses.
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Figure 2: Snapshots of 256 random samples drawn from the generators of the baseline and MCL-GAN.
Data sampled from the true distribution are in orange while the generated ones are in green.

4.5 CHOICE OF NUMBER OF DISCRIMINATORS

A remaining concern is that we need to find the optimal number of discriminators while such
information is not available in general as in many clustering tasks. If the number of discriminators is
much larger than the optimal one, it is more desirable to focus on training a subset of discriminators
than dividing the dataset into many minor clusters forcefully.

To ease this issue, we employ L1 regularization on the outputs of the discriminators, which encourages
the sparsity of the discriminator selection and leads to more desirable clustering results. Hence, even
in the case that we are given an excessively large number of discriminators, our algorithm converges
at good points by using a small number of discriminators in practice. It is true that this strategy may
not always lead to the optimal number of discriminators and has conflict with the balance loss in
equation 8. However, the balance loss fades away as training goes, and our model identifies a proper
number of clusters by deactivating a subset of discriminators. This sparsity loss may be useful when
we learn on the examples drawn from unknown distributions.

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We first perform toy experiments to verify the main idea of the proposed method intuitively. We
consider a 2D mixture of 8 isotropic Gaussians whose centers are aligned on a circle with a radius

√
2

while their standard deviation in each dimension is set to 0.05. We employ 8 discriminators for training
with the standard GAN loss while utilizing 2 discriminators for the model with Hinge loss (Lim &
Ye, 2017). We choose one expert discriminator for each sample (k = 1) in all experiments.

Figure 2 illustrates the snapshots of random samples through iterations generated by the baselines
and MCL-GANs. Unlike the base models (m = 1) fail to cover all 8 modes, MCL-GANs learn to
identify diverse modes quickly and produce the samples at all modes eventually.

Appendix A presents that, when MCL-GANs are learned with an excessive number of discriminators,
e.g., m = 20, they mostly utilize 8 or 16 expert discriminators in a wide range of weight for the L1

loss. This implies that MCL-GAN covers all the modes effectively and robustly.

5.2 UNCONDITIONAL GAN ON IMAGE DATASET

We run the unconditional GAN experiment on four distinct datasets including MNIST (LeCun
& Cortes, 2010), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and
CelebA (Liu et al., 2015), where two types of network architectures are employed—DCGAN (Radford
et al., 2016) and StyleGAN2 (Karras et al., 2020). The images are resized to 32×32 except for CelebA
dataset: 64×64 for DCGAN and 128×128 for StyleGAN2 experiment. For StyleGAN2 experiments
on CelebA, we use the first and the last 30K images from the align&cropped version for a train and a
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Table 1: Precision and recall scores from PRD curves on MNIST, Fashion-MNIST and CelebA
datasets with the DCGAN architecture.

Loss Method m
MNIST Fashion-MNIST CelebA

Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑
Base (Radford et al., 2016) 1 0.896 0.778 0.936 0.900 0.834 0.839
GMAN (Durugkar et al., 2017) 5 0.968 0.976 0.909 0.955 0.888 0.873

GAN GMAN (Durugkar et al., 2017) 10 0.964 0.977 0.928 0.946 0.921 0.923
MCL-GAN 5 0.985 0.977 0.972 0.925 0.945 0.953
MCL-GAN 10 0.976 0.975 0.964 0.914 0.940 0.938
Base 1 0.977 0.957 0.928 0.866 0.923 0.943

LSGAN (Mao et al., 2017) GMAN (Durugkar et al., 2017) 10 0.966 0.973 0.953 0.952 0.934 0.906
MCL-GAN 10 0.983 0.980 0.963 0.911 0.950 0.952
Base 1 0.790 0.785 0.936 0.853 0.905 0.883

Hinge (Lim & Ye, 2017) MCL-GAN 5 0.957 0.965 0.959 0.916 0.914 0.925
MCL-GAN 10 0.978 0.968 0.949 0.885 0.928 0.931

Table 2: FID scores on CIFAR-10 with the DCGAN architecture.
Model # Disc. (m) # Gen. FID ↓
DCGAN Radford et al. (2016) 1 1 37.70
GMAN Durugkar et al. (2017) 10 1 37.11
Albuquerque et al. Albuquerque et al. (2019) 10 1 30.26
MGAN Hoang et al. (2018) 1 10 26.70
MSGAN Mao et al. (2019) (conditional) 1 1 28.73
MCL-GAN 10 1 26.87

validation set following (Yu et al., 2020). With the DCGAN architecture, we apply our method on
three different GAN loss functions: the vanilla GAN (Goodfellow et al., 2014), LSGAN (Mao et al.,
2017) and Hinge loss (Lim & Ye, 2017). Appendix I describes more details of our setting.

5.2.1 QUANTITATIVE RESULTS

We present the quantitative performance of MCL-GAN with the DCGAN and StyleGAN2 backbones
using Precision Recall Distribution (PRD) (Sajjadi et al., 2018) and Frèchet Inception Distance
(FID) (Heusel et al., 2017). More details about the evaluation metrics is provided in Appendix J.

DCGAN backbone Table 1 summarizes the precision and recall scores of our methods compared
to the baseline models with different GAN objectives. MCL-GAN achieves outstanding performance
in terms of both recall and precision compared to the baseline and GMAN on MNIST and CelebA. For
Fashion-MNIST, we observe the different property of our method from GMAN while both methods
surpass their baseline models; MCL-GAN focuses on improving the mode coverage (diversity) and
GMAN cares about the image quality more than the diversity. Among many combinations of the
number of discriminators (m) and experts (k) for our method, we discuss the results when m = 5, 10
and k = 1 for the moment and leave the thorough analysis on the hyperparameters in Appendix F.

Table 2 compares the FID scores on CIFAR-10 with other GAN models. MCL-GAN outperforms
DCGAN, GMAN and Albuquerque et al. (2019) by large margins while it is as competitive as MGAN.
This is encouraging because MGAN relies on multiple generators, 10 in this case. MSGAN results
are obtained given class labels. This result implies that MCL-GAN is effective to maintain the
multi-modality in the underlying distribution with relatively small memory footprint and without
extra supervision.

StyleGAN2 backbone Table 3 presents that MCL-GAN is also effective in the state-of-the-art
backbone model, StyleGAN2, and outperforms not only StyleGAN2 but also Inclusive GAN (Yu
et al., 2020) in terms of all metrics. For CelebA30K, we evaluates the performances on both train and
validation sets. Note that Inclusive GAN uses the sample-wise reconstruction loss by regarding each
image as a mode, which appears to improve recall. However, note that this goal is different from the
objective of the standard GAN, estimating the underlying distribution. Also, the model may suffer
from sampling bias and scalability issue.

5.2.2 QUALITATIVE RESULTS

We investigate the quality of images generated by MCL-GAN and compare its performance with
GMAN (Durugkar et al., 2017), which is an existing approach based on multiple discriminators.
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Table 3: FID, precision and recall scores on CIFAR-10 and CelebA datasets with the StyleGAN2
architecture, where 10 and 5 discriminators are adopted, respectively, while k = 1. The asterisk (∗)
means that results are copied from (Yu et al., 2020) except for our method.

CIFAR-10 CelebA30K∗

Method FID↓ Rec.↑ Prec.↑ FID↓ Rec.↑ Prec.↑
- - - Train Val Train Val Train Val

StyleGAN2 (Karras et al., 2020) 9.06 0.979 0.984 9.37 9.49 0.730 0.741 0.855 0.844
Inclusive GAN (Yu et al., 2020) - - - 11.56 11.28 0.849 0.848 0.927 0.941
MCL-GAN 7.13 0.985 0.989 8.41 8.61 0.988 0.990 0.985 0.983

(a) MCL-GAN (b) Real (c) GMAN

Figure 3: Qualitative comparison between MCL-GAN and GMAN on MNIST (top) and Fashion-
MNIST (bottom). MCL-GAN generates more semantically faithful and diverse images than GMAN.

Figure 3 illustrates clear difference between MCL-GAN and GMAN on MNIST and Fashion-MNIST.
For MNIST, the generated images by GMAN is sometimes hard to recognize or too thin and crisp
compared to the real examples. The images for Fashion-MNIST are lacking in diversity; the types
of generated bags and shoes are rather simple. On the other hand, MCL-GAN generates the images
that are faithful to the true distribution in semantics and diversity and are indistinguishable from real
images. More qualitative results are available in Appendix C.1.

5.3 CONDITIONED IMAGE SYNTHESIS

We apply the MCL-GAN to image-to-image translation and text-to-image synthesis tasks, which
require more complex architectures to generate high-resolution images. In this experiment, the
mode-seeking regularizer introduced in MSGAN (Mao et al., 2019) has been applied to alleviate the
mode collapse issue in conditional GANs. Then, we observe whether the mode seeking technique
and the use of multiple discriminators create synergy, using FID, NDB/JSD (Richardson & Weiss,
2018), and LPIPS (Zhang et al., 2018) following (Mao et al., 2019).

Image-to-image translation We choose DRIT (Lee et al., 2018; 2020) as our baseline, which
is an unpaired image-to-image translation technique based on the cycle consistency. We employ
MCL-GAN with m = 3 and k = 1 in each discriminator for distinguishing the real and the translated
images. As shown in Table 4, MCL-GAN significantly improves the diversity measure, LPIPS,
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Table 4: Quantitative results on Yosemitee (Summer
Winter) and Cat
Dog dataset. The best
results are obtained when MCL component is added in most cases. The asterisk (∗) means that results
are copied from (Mao et al., 2019).

Dataset Metric DRIT∗ +MS (DRIT++)∗ +MCL +MCL+MS

Winter→ Summer

FID ↓ 47.37 ± 3.25 46.23 ± 2.45 49.41 ± 1.29 41.94 ± 1.43
NDB ↓ 30.60 ± 2.97 27.80 ± 3.03 23.40 ± 1.52 24.20 ± 3.27
JSD ↓ 0.049 ± 0.009 0.038 ± 0.004 0.033 ± 0.002 0.030 ± 0.005
LPIPS ↑ 0.097 ± 0.000 0.118 ± 0.001 0.153 ± 0.001 0.248 ± 0.001

Dog→ Cat

FID ↓ 62.85 ± 0.21 29.57 ± 0.23 20.61 ± 0.05 27.16 ± 0.20
NDB ↓ 41.00 ± 0.71 31.00 ± 0.71 16.40 ± 0.89 20.20 ± 1.48
JSD ↓ 0.272 ± 0.002 0.068 ± 0.001 0.024 ± 0.001 0.031 ± 0.001
LPIPS ↑ 0.102 ± 0.001 0.214 ± 0.001 0.429 ± 0.001 0.482 ± 0.000

Table 5: Quantitative results on CUB-200-2011. We obtained improved results consistently by adding
the proposed MCL component. The asterisk (∗) means that results are copied from (Mao et al., 2019).

StackGAN++∗ +MS∗ +MCL +MCL+MS
FID ↓ 25.99 ± 4.26 25.53 ± 1.83 22.91 ± 0.80 25.44 ± 0.41
NDB ↓ 38.20 ± 2.39 30.60 ± 2.51 28.80 ± 3.63 23.20 ± 3.03
JSD ↓ 0.092 ± 0.005 0.073 ± 0.003 0.079 ± 0.004 0.053 ± 0.002
LPIPS ↑ 0.362 ± 0.004 0.373 ± 0.007 0.629 ± 0.001 0.624 ± 0.002

while achieving high-fidelity data generation performance in terms of other metrics. In particular,
our approach works better on more challenging task, cat
dog, due to object shape changes across
domains. Table 6 presents the translation results in the opposite directions on the two datasets.

Text-to-image synthesis This experiment is based on StackGAN++ (Zhang et al., 2017) trained on
CUB-200-2011 (Wah et al., 2011) with a mode-seeking regularizer. StackGAN++ has a hierarchical
structure that each set of a discriminator and a generator is responsible for a certain resolution. We
adopt its 3-stage version and trains an MCL-GAN with m = 3 and k = 1 only at the last stage,
which handles images with size 256× 256. Table 5 illustrates that the integration of MCL improves
performance consistently, especially in terms of the diversity measure, LPIPS.

6 DISCUSSION

MCL-GAN is a model-agnostic ensemble algorithm with multiple discriminators. Our experiments
imply that the specialized discriminators on the well-clustered subsets are beneficial compared to
independently trained ones on the whole dataset or its random subsets. Although MCL-GAN does
not rely on class labels for discriminator specialization, its performance is as competitive as the
discriminator assignment based on the class labels (see Appendix E). The proposed approach runs
efficiently because it is free from any time-consuming clustering procedure for sample assignment.

One drawback is that our method carries additional hyperparameters including the weights for several
loss terms and the number of discriminators, and one might question about the robustness of MCL-
GAN with respect to the variations of the hyperparameters. From our analysis on the hyperparameter
setting, presented in Appendix F, the performance of the proposed method improves significantly
by the expert training and the balanced assignment of discriminators while the rest of the loss terms
make stable contributions over a wide range of their weights. Also, since MCL-GAN adjusts the
number of active discriminators that participate in learning as experts, its performance is robust to the
number of discriminators.

7 CONCLUSION

We presented a generative adversarial network framework with multiple discriminators, where each
discriminator behaves as an expert classifier and covers a separate mode in the underlying distribution.
This idea is implemented by incorporating the concept of multiple choice learning. The combination
of generative adversarial network and multiple choice learning turns out to be effective to alleviate
the mode collapse problem. Also, the integration of the sparsity loss encourages our model to identify
the proper number of discriminators and estimate a desirable distribution. We demonstrated the
effectiveness of the proposed algorithm on various GAN models and datasets.

9
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Reproducibility statement We provide implementation and evaluation details in Appendix I and J
to facilitate reproduction of the results presented in Section 5. The source code is available in the
supplementary material. We will release the code.

Ethics statement Deep generative models have some potentials to be used for adverse or abusive
applications. Although our work involves unconditional image generations based on face datasets,
this is rather a generic framework based on GANs to mitigate the mode collapse and dropping
problems hampering sample diversity. Our algorithm is not directly related to particular applications
with ethical issues, and we believe that the proposed approach can alleviate the bias and fairness
issues by identifying the minority groups in a dataset effectively.
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A EFFECT OF L1 LOSS ON SYNTHETIC DATA

To examine the behaviour of L1 loss, we run the experiment with 20 discriminators which exceeds
the actual number of modes of 8 Gaussians dataset. Figure 4 shows each expert discriminator per
generated sample by different colors. Training with m = 20 without L1 loss, 16 discrimantors are
utilized to cluster the true distribution. Since two discrimantors are assigned per each mode, the
diversity within the mode is improved. By adding a small L1 loss, we discover only 8 discrimantors
are effectively used in training, one for each mode. These results show that the L1 regularization
helps identify the proper number of discriminators to generate high-fidelity data efficiently.

step 50K step 50K

(a) γ = 0 (b) γ = 0.00001

Figure 4: Effect of L1 loss weight (γ). Each random sample is colored by its expert discriminator.
True data are in orange. Bar graphs demonstrate the update statistics of individual discriminators.

B QUANTITATIVE RESULTS

We include the all image-to-image translation results on Yosemitee (Summer
Winter) and cat
dog
dataset in Table 6 in addition to Table 4 of the main paper. MCL-GAN improves the diversity measure
(LPIPS) for all cases while achieving better or competitive quality of images.

Table 6: Quantitative results on Yosemitee (Summer
Winter) and Cat
Dog dataset. The best
results are obtained when MCL component is added in most cases. The asterisk (∗) means that results
are copied from (Mao et al., 2019).

Dataset Metric DRIT (Lee et al., 2018)∗ +MS (DRIT++)∗ +MCL +MCL+MS

Summer→Winter

FID ↓ 57.24 ± 2.03 51.85 ± 1.16 53.77 ± 1.36 49.74 ± 2.74
NDB ↓ 25.60 ± 1.14 22.80 ± 2.96 25.40 ± 1.14 30.00 ± 2.55
JSD ↓ 0.066 ± 0.005 0.046 ± 0.006 0.036 ± 0.004 0.044 ± 0.005
LPIPS ↑ 0.115 ± 0.000 0.147 ± 0.001 0.199 ± 0.002 0.263 ± 0.003

Winter→ Summer

FID ↓ 47.37 ± 3.25 46.23 ± 2.45 49.41 ± 1.29 41.94 ± 1.43
NDB ↓ 30.60 ± 2.97 27.80 ± 3.03 23.40 ± 1.52 24.20 ± 3.27
JSD ↓ 0.049 ± 0.009 0.038 ± 0.004 0.033 ± 0.002 0.030 ± 0.005
LPIPS ↑ 0.097 ± 0.000 0.118 ± 0.001 0.153 ± 0.001 0.248 ± 0.001

Cat→ Dog

FID ↓ 22.74 ± 0.28 16.02 ± 0.30 20.64 ± 0.13 15.36 ± 0.16
NDB ↓ 42.00 ± 2.12 27.20 ± 0.84 29.80 ± 1.10 22.20 ± 2.77
JSD ↓ 0.127 ± 0.003 0.084 ± 0.002 0.048 ± 0.002 0.031 ± 0.002
LPIPS ↑ 0.245 ± 0.002 0.280 ± 0.002 0.511 ± 0.000 0.553 ± 0.000

Dog→ Cat

FID ↓ 62.85 ± 0.21 29.57 ± 0.23 20.61 ± 0.05 27.16 ± 0.20
NDB ↓ 41.00 ± 0.71 31.00 ± 0.71 16.40 ± 0.89 20.20 ± 1.48
JSD ↓ 0.272 ± 0.002 0.068 ± 0.001 0.024 ± 0.001 0.031 ± 0.001
LPIPS ↑ 0.102 ± 0.001 0.214 ± 0.001 0.429 ± 0.001 0.482 ± 0.000
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C QUALITATIVE RESULTS

C.1 UNCONDITIONAL GAN ON IMAGE DATASETS

Figure 5 compares the results of generated examples by MCL-GAN and GMAN together with real
data on Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and CelebA (Liu
et al., 2015). The samples are drawn randomly rather than cherry-picked. For CIFAR-10, MCL-GAN
generate relatively clear images and some of them are recognizable as vehicles or animals (see
Figure 6) whereas most images obtained from GMAN look incomplete and noisy. For CelebA,
GMAN produces high quality images, but we discover more distorted and unnatural images than
MCL-GAN. Some selected examples from MCL-GAN with DCGAN backbone on Fashion-MNIST,
CIFAR-10, and CelebA are displayed in Figure 6. Figure7 shows random samples generated by
MCL-GAN with StyleGAN2 backbone on CIFAR-10 and CelebA30K.

(a) MCL-GAN (b) Real (c) GMAN

Figure 5: Qualitative comparison between MCL-GAN and GMAN on Fashion-MNIST (top), CIFAR-
10 (middle) and CelebA (bottom). MCL-GAN generates more realistic images with less failure cases
than GMAN.

C.2 CONDITIONED IMAGE SYNTHESIS

Figure 11 and 12 qualitatively compare the diversity of the generated images between the baselines
and MCL-GANs. For all methods including the baselines, mode-seeking regularization (Mao et al.,
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(a) Fashion-MNIST (b) CIFAR-10 (c) CelebA

Figure 6: Selected samples generated by MCL-GAN with DCGAN architecture.

(a) CIFAR-10 (b) CelebA30K

Figure 7: Random samples generated by MCL-GAN with StyleGAN2 architecture. For generation,
truncation ψ = 0.8 is applied.

2019) is applied. As shown in Figure 11(a), images generated by MCL-GAN have more variations in
edges and expressions of dogs. Regarding Yosemitee results (Figure 11(b)) which the shapes of the
contents are fixed, colors are more diverse and vivid in MCL-GAN results. For Figure 12, we fix
the text code for each text description to remove the diversity effect of text embedding and produce
images with the same set of latent vectors. MCL-GAN produces more diverse bird images, in terms
of shape, orientation and size with high quality. We present more qualitative results of MCL-GAN in
Figure 13 and 14.

D SPECIALIZATION OF EACH DISCRIMANTOR

Figure 8 qualitatively presents how successfully the discriminators in MCL-GAN are specialized
to the subsets of the whole datasets. We learn the model with 10 discriminators, and illustrate the
generated images. Note that the panel corresponding to each dataset consists of 10×10 images and
the images in the same row belong to the same discriminators. We can observe semantic consistency
of images within the same row in MNIST and Fashion-MNIST clearly. The images in the same row
of CIFAR-10 also have some similarities although the signal is not as strong as the other two datasets.
We believe that this is partly due to the inherent characteristics of the dataset that are more difficult to
recognize.
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(a) MNIST (DCGAN) (b) Fashion-MNIST (DCGAN) (c) CIFAR-10 (StyleGAN2)

Figure 8: Cluster by discrimantors. Each row represents the subcluster of each discriminator. Close
similarities are discovered among the images if they are in the same row.

E CLUSTERING VIA MCL VS. GROUND-TRUTH LABEL

We additionally run the same multi-discriminator framework by clustering using ground-truth labels
instead of MCL on real dataset. This is to verify the effectiveness of the specialized discriminators
on our learning framework and check if the clustering by MCL is sufficiently reliable compared to
the results by true labels. As presented in Table 7, the performance of MCL is as competitive as the
method based on true labels in terms of both metrics.

Table 7: Recall and precision scores given by different clustering methods: MCL vs. ground-truth
label. The model ‘Label’ assigns an expert discriminator of each real sample by the ground-truth
label under our multi-discriminator framework.

MNIST Fashion-MNIST
Model m k Recall Precision Recall Precision
DCGAN 1 1 0.891 0.789 0.927 0.903
MCL-GAN 5 1 0.983 0.977 0.977 0.929
MCL-GAN 10 1 0.976 0.973 0.967 0.916
Label 10 1 0.978 0.966 0.969 0.935

F ANALYSIS ON HYPERPARAMETERS

F.1 NON-EXPERT LOSS WEIGHT

Table 8 shows the effect of non-expert training regularization when training 10 discriminators with
the standard GAN loss on MNIST. The performance increase is mostly driven by expert training.
The best score is obtained with α = 0.01 while all positive α improves the precision scores, which
supports the effect of the lowered confidence of non-expert discriminators.

Table 8: Effect of non-expert loss weight (α) when m = 10 and k = 1 on MNIST.

α 0 0.01 0.1 0.2 0.5 0.75 1
Recall 0.983 0.984 0.978 0.982 0.983 0.976 0.976

Precision 0.951 0.977 0.965 0.968 0.974 0.972 0.971

F.2 BALANCE LOSS WEIGHTS

We denote the balance loss weights of discriminator and generator by βd and βg, respectively. We
conduct the ablation studies on several (βd, βg) combinations for 10 discriminators with Hinge loss
on MNIST. In Table 9, we observe that βd plays an important role in boosting the performance of
GAN. This is mainly because βd is responsible for distributing the chances of being an expert to
multiple discriminators; Only a few discriminators are utilized in training if βd is zero or too small.
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βg has a relatively smaller effect on the performance than βd. However, it helps improve recall
scores without sacrificing precision as the best score is obtained when (βd, βg) = (0.5, 10). Note
that the performance does not change drastically for all cases where βd > 0 and surpasses a single
discriminator GAN with a large margin.

Table 9: Effect of balance loss weights (βd and βg) when m = 10 and k = 1 on MNIST.

βd βg Recall Precision
vanilla 0.803 0.765
0 0 0.926 0.856

0.2 0 0.973 0.966
0.5 0 0.971 0.970
0 5 0.931 0.894

0.2 5 0.978 0.963
0.5 5 0.977 0.967
0 10 0.949 0.883

0.2 10 0.978 0.966
0.5 10 0.981 0.972

F.3 NUMBER OF DISCRIMANTORS AND L1 LOSS WEIGHT

We conduct the experiment under a various number of discriminators and illustrate the results in
Table 10. It turns out that the performance of the proposed method is fairly robust to the number
of discriminators quantitatively and adding the L1 loss does not incur noticeable differences in
terms of precision/recall measure. However, interestingly, the L1 loss plays a crucial role in finding
modes in the underlying distribution. Figure 9 illustrates the impact of the L1 loss on MNIST and
Fashion-MNIST when we train the model with 40 discriminators. According to our results, only a
fraction of the discriminators are specialized to data, and the number of active discriminators is fairly
coherent to the number of classes in the dataset.

Table 10: Comparisons by number of discriminators (m).
MNIST Fashion-MNIST

m Recall Precision Recall Precision
1 0.883 0.795 0.928 0.904
5 0.979 0.976 0.974 0.929

10 0.974 0.972 0.965 0.934
20 0.972 0.958 0.958 0.922
40 0.977 0.970 0.974 0.938

20 (+L1) 0.967 0.964 0.967 0.939
40 (+L1) 0.973 0.960 0.966 0.914

γ
=
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Discriminator ID
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(a) MNIST (b) Fashion-MNIST

Figure 9: Effect of L1 loss weight (γ). The update statistics of individual discriminators when 40
discriminators are used for training on MNIST and Fashion-MNIST datasets.
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F.4 NUMBER OF EXPERTS PER EXAMPLE

We evaluate our model on the various numbers of experts k for m = 5 and 10, and present the results
on MNIST and CIFAR-10 in Table 11. The number of optimal k may be different in each dataset,
however, choosing too many experts tend to drop the scores relevant to recall metric.

Figure 10 shows how the specialization characteristics of discriminators differ by the number of
experts per sample, i.e., k ∈ {1, 3, 5}, when there are 10 discriminators on MNIST and Fashion-
MNIST. As k increases, the models get less specialized by sharing more data each other so the
subclusters become less distinctive.

Table 11: Comparisons by number of experts per sample (k).
MNIST CIFAR-10

m k Recall Precision Recall Precision
5 1 0.983 0.975 0.903 0.942
5 3 0.983 0.981 0.896 0.948

10 1 0.973 0.973 0.902 0.937
10 3 0.973 0.969 0.913 0.946
10 5 0.975 0.964 0.917 0.948
10 7 0.960 0.927 0.912 0.951

k = 1 k = 3 k = 5

Figure 10: Specialization results for k ∈ {1, 3, 5} with 10 discriminators on MNIST and Fashion-
MNIST. The images in each row correspond to the same discriminators.

G STABILITY TO HYPERPARAMETER CHANGE

We conduct experiments on MNIST with m = 10, 20, 40 using L1 regularization multiple times
and observe that the accuracies (precision and recall) are very stable regardless of the number of
discriminators for expert training as in Table 12. Note that we performed each experiment 4 times
with random initialization.
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Table 12: Stability of model performances and the number of active discriminators when m =
10, 20, 40 and γ = 0.0002 on MNIST.

m Recall Precision # active discriminators
10 (+L1) 0.965 ± 0.004 0.965 ± 0.006 8.3 ± 1.0
20 (+L1) 0.966 ± 0.004 0.964 ± 0.002 12.0 ± 1.2
40 (+L1) 0.968 ± 0.005 0.963 ± 0.009 10.0 ± 1.4

H COMPUTATIONAL OVERHEADS

Table 13 compares the training time per iteration and memory usage with the DCGAN baselines when
training on CelebA dataset (64×64 sized). While independent training of multiple discriminators,
e.g., GMAN (Durugkar et al., 2017), requires more than four times the resources and time, additional
overheads are marginal for MCL-GAN due to feature sharing. We used a machine with a Titan Xp
GPU for the measurement.

Table 13: Comparisons of computational overheads on CelebA.
DCGAN (m = 1) MCL-GAN (m = 10) GMAN (m = 10)

Time (s/iteration) 0.4412 0.4584 2.6369
Memory (MB) 2443 2991 11857

I IMPLEMENTATION DETAILS

I.1 SYNTHETIC DATA

We reuse the experimental design and implementation1 following (Gulrajani et al., 2017).

I.2 UNCONDITIONAL GAN ON IMAGE DATASETS

DCGAN backbone We mostly follow the training convention proposed in DCGAN (Radford et al.,
2016). We use Adam optimizer (Kingma & Ba, 2015) with β = (0.5, 0.999) and set 64 and 128 as
size of the mini-batch for real data and latent vectors, respectively. We use the same learning rate
and temperature in balance loss for all networks, i.e., lr = 0.0001, τ = 0.1 for LSGAN experiments
and lr = 0.0002, τ = 1.0 for the others. The weights for balance loss of discrimantors, βd, is
chosen in the range [0.05, 1.0] and we choose the best performance. For the weights for balance loss
of generator, βg = 0 produces fairly good results on all cases while positive βg gives particularly
significant improvement in some LSGAN and Hinge loss experiments. We choose βg ∈ {1.0, 2.0}
for LSGAN experiments on all datasets and βg ∈ {5.0, 10.0} for Hinge loss experiments on MNIST.
For implementing standard GAN loss, we use the modified minimax objective for the generator, i.e.,
min−Ez∼pz logD(G(z)).

StyleGAN2 backbone We adopt the configuration E architecture among the StyleGAN2 variations
and use default hyperparameters for training using the official implementation2 without applying data
augmentation option. We set the batch size at 64 and 16 for CIFAR-10 and CelebA30K, respectively.

GMAN settings We used the official implementation3 of GMAN. Among its varients, we use three
versions that use the arithmetic mean of softmax, i.e., GMAN-1, GMAN-0 and GMAN*, and choose
the best scores among them to report in Table 1 and 2. For differentiating discriminators, we apply
different dropout rates in [0.4, 0.6] and split of mini-batches for the input of discriminators while
adopting the same architectures as DCGAN.

1https://github.com/caogang/wgan-gp
2https://github.com/NVlabs/stylegan2-ada-pytorch
3https://github.com/iDurugkar/GMAN
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I.3 CONDITIONED IMAGE SYNTHESIS

We apply the MCL components to the official codes of DRIT++4, StackGAN++5 and MSGAN6

and use the default settings of their original implementations.

J EVALUATION DETAILS

J.1 UNCONDITIONAL GAN ON IMAGE DATASETS

Evaluation metrics We measure precision/recall based on Precision Recall Distribution (PRD) (Saj-
jadi et al., 2018). We adopt F8 and F1/8 scores from the PRD curve as a recall and precision of each
model, respectively. We use the official implementations of PRD7 and FID8 for the measurement.

DCGAN backbone We run the the experiment on MNIST (LeCun & Cortes, 2010), Fashion-
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015)
until 40, 50, 150 and 30 epochs, respectively. We generate 60K random examples for MNIST and
Fashion-MNIST and 50K random samples for the other datasets, and then compare them with the
reference datasets with the same number of examples.

StyleGAN2 backbone We run the the experiment on CIFAR-10 (Krizhevsky et al., 2009) and
CelebA30K (Liu et al., 2015) until 300 epochs and choose the best model in terms of FID. We generate
50K and 30K random examples for CIFAR-10 and CelebA30K, respectively, and then compare them
with the whole train (/validation) set. We do not use the truncation trick when generating samples for
quantitative evaluations.

J.2 CONDITIONED IMAGE SYNTHESIS

We measure FID, NDB/JSD9 and LPIPS10 using their official implementations. We follow all
evaluation details in MSGAN (Mao et al., 2019) which is referenced for comparision. Note that NDB
counts the number of statistically different bins based on the clusters made by k-means clustering
while LPIPS measures the average feature distances of sample pairs. JSD is calculated based on the
results (clusters) of NDB.

4https://github.com/HsinYingLee/DRIT
5https://github.com/hanzhanggit/StackGAN-v2
6https://github.com/HelenMao/MSGAN
7https://github.com/msmsajjadi/precision-recall-distributions
8https://github.com/bioinf-jku/TTUR
9https://github.com/eitanrich/gans-n-gmms

10https://github.com/richzhang/PerceptualSimilarity
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Input DRIT++ (Lee et al., 2020) MCL-GAN

(a) Cat→ Dog

(b) Winter→ Summer

Figure 11: Diversity comparison of image-to-image translation on Yosemitee (Summer
Winter) and
Cat
Dog dataset.

Input: This bird has wings that are black and has a yellow belly.

Input: This bird is white with blue and has a very short beak.

(a) StackGAN++ (Zhang et al., 2017) (b) MCL-GAN

Figure 12: Diversity comparison of text-to-image synthesis on CUB-200-2011.
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Input Outputs

Figure 13: More image-to-image translation results by MCL-GAN on Cat
Dog.
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Input: This bird has a pointed beak, yellow breast and belly, brown wings and yellow neck.

Input: This bird is white with black and has a very short beak.

Figure 14: More text-to-image synthesis results by MCL-GAN on CUB-200-2011.
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