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Abstract

Large language models (LLMs) excel across001
many natural language processing tasks but002
face challenges in domain-specific, analytical003
tasks such as conducting research surveys. This004
study introduces ResearchArena, a benchmark005
designed to evaluate LLMs’ capabilities in con-006
ducting academic surveys—a foundational step007
in academic research. ResearchArena models008
the process in three stages: (1) information dis-009
covery, identifying relevant literature; (2) infor-010
mation selection, evaluating papers’ relevance011
and impact; and (3) information organization,012
structuring knowledge into hierarchical frame-013
works such as mind-maps. Notably, mind-map014
construction is treated as a bonus task, reflect-015
ing its supplementary role in survey-writing.016
To support these evaluations, we construct an017
offline environment of 12M full-text academic018
papers and 7.9K survey papers. To ensure eth-019
ical compliance, we do not redistribute copy-020
righted materials; instead, we provide code to021
construct the environment from the Semantic022
Scholar Open Research Corpus (S2ORC). Pre-023
liminary evaluations reveal that LLM-based ap-024
proaches underperform compared to simpler025
keyword-based retrieval methods, underscoring026
significant opportunities for advancing LLMs027
in autonomous research.028

1 Introduction029

Large language models (LLMs) have demonstrated030

exceptional performance in natural language un-031

derstanding, text generation, and a range of other032

tasks across domains (Liang et al., 2022; Bang033

et al., 2023; Qin et al., 2023a; Laskar et al., 2023).034

By integrating LLMs with external tools—such as035

code interpreters, vector databases, and search en-036

gines—their capabilities can be further enhanced,037

enabling the creation of autonomous agents that038

simulate human-like behavior through feedback-039

driven task execution (Wang et al., 2024; Zhou040

et al., 2023; Qin et al., 2023b; Qian et al., 2023).041

However, the ability of LLMs to handle domain- 042

specific expertise and advanced analytical tasks, 043

such as conducting rigorous academic research, re- 044

mains underexplored. 045

The challenge of conducting domain-specific re- 046

search is particularly relevant in an era character- 047

ized by rapid knowledge expansion across multi- 048

ple fields. Traditional methods for composing aca- 049

demic surveys are labor-intensive, often requiring 050

months of effort by expert researchers to synthe- 051

size relevant findings. An LLM capable of inde- 052

pendently conducting research on topics outside 053

its training data could bypass the need for contin- 054

uous re-training and manual updates, offering a 055

scalable and efficient solution for navigating the 056

ever-growing body of scientific literature. 057

While autonomous agents have shown success 058

in executing relatively straightforward tasks—such 059

as online shopping or playing card games (Zhou 060

et al., 2023; Liu et al., 2023b)—they face far greater 061

challenges in complex tasks that demand exten- 062

sive domain expertise and analytical depth. Recent 063

developments in agentic capabilities, such as the 064

“Deep Research” features from both Gemini and 065

OpenAI, highlight a growing focus on multi-step re- 066

search planning and the synthesis of large-scale, di- 067

verse information sources (Google, 2024; OpenAI, 068

2025). However, progress in systematically evalu- 069

ating these agents’ capacity for rigorous research 070

remains limited, with few standardized benchmarks 071

designed for advanced, domain-specific scenarios. 072

To promote the development of research agents 073

capable of conducting comprehensive surveys, we 074

introduce the ResearchArena benchmark. This 075

benchmark emphasizes academic papers due to 076

their depth of research and structured format, qual- 077

ities that are often more reliable than other sources 078

like general web pages. The ResearchArena pro- 079

vides an offline environment where autonomous 080

agents can collect and organize information for re- 081

search across diverse topics. It comprises three 082
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sub-tasks for evaluation: information discovery, in-083

formation selection, and information organization.084

These sub-tasks emulate general methodologies085

used by human researchers during literature sur-086

veys.087

Conducting a literature survey involves defin-088

ing the scope, establishing a search protocol, and089

iteratively analyzing and organizing findings into090

a cohesive structure. Based on this process, Re-091

searchArena introduces tasks to simulate and evalu-092

ate these stages, excluding text generation. This de-093

cision stems from the premise that the pre-writing094

research phase is foundational to successful article095

composition (Rohman, 1965). Moreover, evaluat-096

ing complete articles is fraught with challenges due097

to variability in individual writing styles; hence,098

such assessments are reserved for future work.099

For information discovery, LLMs identify and100

retrieve academic papers relevant to a designated101

research topic by navigating vast scholarly corpora.102

Information selection challenges LLMs to critically103

assess the relevance and impact of these papers, pri-104

oritizing significant contributions. As a bonus task,105

information organization requires LLMs to synthe-106

size selected research into structured knowledge107

representations, such as mind maps, to highlight108

key insights and relationships within the topic.109

Preliminary evaluations reveal that LLMs un-110

derperform compared to simpler keyword-based111

search methods in tasks requiring analytical depth.112

For example, using survey titles as retrieval queries113

consistently yields superior recall and precision114

compared to LLM-driven information discovery115

and selection tasks. Additionally, under the task of116

information organization, LLMs face challenges in117

constructing coherent structures without the oracle118

guidance, underscoring the need for improvements119

in organizational and analytical capabilities.120

The dataset supporting ResearchArena com-121

prises 12M full-text academic papers and 7.9K122

survey papers, curated from the Semantic Scholar123

Open Research Corpus (S2ORC) (Lo et al., 2019).124

This corpus ensures scholarly rigor and relevance,125

offering a robust foundation for benchmarking126

LLM performance across diverse domains. Fur-127

thermore, our released pipeline supports weekly128

updates from Semantic Scholar, which enables eval-129

uations to incorporate recent advancements, ensur-130

ing ongoing relevance.131

2 Related Work 132

Previous research has employed diverse method- 133

ologies to compile datasets featuring academic sur- 134

vey papers. For instance, BigSurvey dataset (Liu 135

et al., 2023a) aggregates over 7K survey papers 136

from arXiv and includes approximately 434K ref- 137

erences from Microsoft Academic Service and Se- 138

mantic Scholar. This dataset underwent extensive 139

preprocessing by removing duplicates, unprocess- 140

able files, and normalizing text. On the other hand, 141

Surfer100 dataset (Li et al., 2021) includes 100 142

surveys emulating Wikipedia page structures, com- 143

piled by eight annotators who summarized con- 144

tent from web pages. Each survey contains prede- 145

fined sections such as Introduction, History, Key 146

Ideas, Variations, and Applications, summarized 147

concisely in 50 to 150 words. 148

The BigSurvey dataset provides references in an 149

abstract-only format, offering a concise overview 150

of documents. Surfer100 utilizes Google search 151

results to compile references for each survey topic, 152

reflecting a broad spectrum of web-based informa- 153

tion. In contrast, our dataset emphasizes full-text 154

academic papers for a deeper understanding and 155

leverages bibliographic references from original 156

survey papers for enhanced authority and accuracy. 157

A closely aligned task for LLM agents in prior re- 158

search involves generating Wikipedia articles. Liu 159

et al. (2018) proposed a method for generating En- 160

glish Wikipedia articles by framing the task as a 161

multi-document summarization challenge. Their 162

approach employs a combination of extractive and 163

abstractive summarization techniques, identifying 164

salient information using methods such as TF-IDF 165

and TextRank (Mihalcea and Tarau, 2004). Sim- 166

ilarly, Shao et al. (2024) introduced the STORM 167

system, which tackles pre-writing challenges such 168

as research and outline preparation. STORM en- 169

hances the article generation process by simulating 170

multi-perspective conversations, wherein an LLM 171

poses questions and aggregates responses from re- 172

liable sources to develop detailed outlines. 173

Additionally, recent work by Gemini (Google, 174

2024) and OpenAI (OpenAI, 2025) has explored 175

“Deep Research” features that rely on multi-step 176

planning, iterative web browsing, and extended 177

context windows to generate comprehensive re- 178

ports. These agentic systems aim to automate in- 179

formation discovery and summarization by dynam- 180

ically adjusting their search strategies and synthe- 181

sizing insights into structured outputs. 182
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Table 1: Summary of the dataset composition, including
the counts of full-text accessible papers, survey papers,
and extracted mind-maps.

Category Count

Accessible Papers 12,034,505
Survey Papers 7,952

Extracted Mind-Maps 1,884

3 Collection Methodology183

This section describes the multi-stage methodology184

for assembling the dataset of academic surveys,185

which includes survey selection, reference linking,186

and mind-map extraction. Each stage has been187

designed to ensure the relevance and utility while188

addressing potential limitations in automation, do-189

main variability, and data access. The final output190

is a structured dataset that facilitates benchmarking191

the autonomous research challenge. The details for192

the prompts used in each stage of the collection193

process can be found in Appendix A.194

3.1 Survey Selection195

Survey selection is the foundational step in con-196

structing the dataset, focused on identifying aca-197

demic papers that provide organized overviews of198

specific research topics. This process involved199

leveraging the S2ORC corpus, which contains over200

80 million academic articles in machine-readable201

format. The selection process combined automated202

filtering and human evaluation to balance scale and203

accuracy.204

Initially, survey papers were identified by filter-205

ing for titles containing the term “survey.” While206

this heuristic served as an accessible baseline, it207

introduced potential biases, such as the exclusion208

of relevant papers that do not explicitly use the209

keyword in their titles. For example, in fields like210

medicine, the terms “systematic review” or “re-211

view” are more common and were largely over-212

looked. Recognizing these limitations, we further213

refined our selection using GPT-4 to analyze the214

titles and abstracts of candidate papers. GPT-4 was215

prompted to evaluate whether each paper met pre-216

defined criteria for surveys, such as presenting a217

comprehensive overview of a field.218

Through this two-stage approach, approximately219

85% of papers initially flagged by keyword filter-220

ing were excluded after GPT-4 evaluation. To val-221

idate this methodology, we conducted a manual222

inspection of a random sample of 100 papers from223

the final collection, achieving a 94% precision in 224

identifying relevant surveys. The details of this in- 225

spection are provided in Appendix C. Although this 226

method cannot guarantee perfect recall, we believe 227

it sufficiently represents the broader distribution of 228

survey literature in various domains. Additionally, 229

this stage prioritized full-text accessibility within 230

S2ORC to ensure the inclusion of rich contextual 231

details, reducing the corpus size to approximately 232

12 million documents. 233

3.2 Reference Linking 234

The second stage of the methodology involved ex- 235

tracting and linking bibliographic references cited 236

in the identified survey papers. This step is critical 237

for evaluating tasks related to information discov- 238

ery and selection, as it connects surveys to their 239

foundational sources. Reference data were sourced 240

directly from the S2ORC corpus, which includes 241

pre-resolved bibliographic metadata. 242

Despite the robustness of S2ORC’s reference ex- 243

traction capabilities, several challenges emerged, 244

including missing references or misclassified cita- 245

tion structures. Surveys without detectable bibli- 246

ographic sections—often due to formatting issues 247

in the source data—were excluded, resulting in 248

the removal of 406 survey papers. Additionally, 249

1,635 surveys were discarded because they lacked 250

accessible references, rendering them unsuitable 251

for downstream evaluations. 252

It is important to acknowledge that the reference 253

linking process—like human citation practices—is 254

inherently imperfect. Even expert researchers may 255

unintentionally omit relevant works or introduce 256

redundancies. Similarly, our automated approach 257

provides an approximation that, while robust, does 258

not guarantee perfect recall of influential refer- 259

ences. To mitigate this limitation, we applied a 260

supervised classification model inspired by Valen- 261

zuela et al. (2015) to distinguish influential from 262

non-influential citations, ensuring that the most im- 263

pactful references were prioritized. 264

Moreover, publication dates were annotated for 265

each retained reference, with conservative impu- 266

tation for missing months or days to minimize in- 267

formation leakage in temporal evaluations. While 268

these efforts improve the utility and reliability of 269

the dataset, we recognize that no methodology can 270

fully account for all relevant literature. Future en- 271

hancements, including integrating domain-specific 272

heuristics and engaging human annotators, may 273

further refine this process. 274
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3.3 Mind-Map Extraction275

Mind-map extraction is positioned as a bonus task276

within the benchmark, complementing the primary277

objectives of survey selection and reference link-278

ing. While mind-maps are not commonly found in279

academic survey papers, they provide valuable hier-280

archical visualizations of knowledge when present,281

offering an organized perspective on the topics.282

Limited by the text-only nature of the S2ORC283

corpus, we extended our dataset by sourcing figure-284

caption pairs from the Semantic Scholar website,285

specifically targeting surveys with accessible fig-286

ures. Using GPT-4, figures and their captions were287

analyzed to identify those likely representing mind-288

maps. Relevant figures were converted into JSON-289

encoded hierarchical structures, preserving their290

organizational logic, as illustrated in Figure 1.291

This task employed a two-step verification pro-292

cess: first, determining if the figure represented a293

valid taxonomy, and second, assessing its relevance294

to the survey topic. After the extraction, a manual295

review of 100 mind-maps yielded an accuracy rate296

of 78% for hierarchical representation and 70% for297

topic relevance. The details of this inspection are298

provided in Appendix C. While these scores high-299

light the limitations of automated extraction and300

domain variability, they underscore the utility of301

mind-maps as an auxiliary dataset feature for future302

exploratory research.303

3.4 Dataset Access304

To ensure compliance, we provide tools and code305

that enable users to reproduce the dataset using306

publicly accessible S2ORC. This approach avoids307

direct distribution of the corpus while empower-308

ing researchers to generate reproducible datasets309

tailored to their specific needs.310

Users must independently verify licensing re-311

quirements for the underlying data sources, as open312

access does not inherently guarantee permissive313

redistribution rights. Using February 06, 2024 re-314

lease of S2ORC, the dataset itself consists of ap-315

proximately 12 million full-text academic papers,316

including 7,952 survey papers and 1,884 extracted317

mind-maps.318

4 Analysis319

This section details the makeup of our dataset in320

terms of disciplinary diversity, reference coverage,321

and the structural complexity of derived typologies,322

reflecting on how these factors contribute to the ro- 323

bustness and applicability across various domains. 324

Disciplinary Distribution. We classified each 325

of the 12.0M papers in our public corpus and 7.9K 326

survey papers by the top-5 most popular academic 327

disciplines. This classification was based on the in- 328

dexing information provided by S2ORC. Frequen- 329

cies of papers per discipline were then aggregated 330

and visualized to identify trends and imbalances. 331

Figure 2a and 2b revealed significant disparities 332

in the frequency of disciplines between the public 333

corpus and the survey subset. Notably, Computer 334

Science is the most prevalent discipline within sur- 335

veys but less common in the broader corpus. This 336

could reflect the dynamic nature of the CS field, 337

which often necessitates comprehensive reviews 338

to synthesize rapid advancements and emerging 339

trends. 340

Reference Coverage. For each survey paper, 341

we calculated the coverage ratio as the proportion 342

of its references that were also available within 343

our full-text corpus. We plotted cumulative density 344

functions for each discipline to analyze how exten- 345

sively the surveys’ references are represented in the 346

broader corpus. As illustrated with Figure 2c, sim- 347

ilar patterns were observed across all disciplines, 348

where the density experienced exponential decay 349

as the coverage increases. Approximately 17.18% 350

of the survey subset (i.e., 1.3K survey papers) have 351

at least 50% of their references available. This lim- 352

itation is mainly attributed to copyright restrictions, 353

where full-text is not permitted by the publisher. 354

Mind-Map Complexity. We analyzed the struc- 355

tural complexity of the mind-maps extracted from 356

survey papers by counting the number of nodes 357

and measuring the maximal depth. These measures 358

provide insights into the conceptual breadth and 359

hierarchical depth of the topics covered. The scat- 360

ter plot from Figure 2d showed that typologies in 361

general have shallow depths but a broad range of 362

nodes, suggesting that while survey topics are ex- 363

tensively branched, they do not delve deeply into 364

sub-topics. In particular, most typologies have a 365

maximum depth ranging from 3 to 7 levels, where 366

the coefficient of the regression line in the scatter 367

plot is approximately 2.04. 368

5 Benchmark Tasks 369

This section presents a comprehensive overview of 370

the benchmark tasks designed to evaluate the capa- 371

bilities of research agents in discovering, selecting, 372
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{
"Pre-trained Models": {

"Left-to-Right LM": ["GPT", "GPT-2", "GPT-3"],
"Masked LM": ["BERT", "RoBERTa"],
"Prefix LM": ["UniLM1", "UniLM2"],
"Encoder-Decoder": ["T5", "MASS", "BART"],

}
}

Figure 1: Mind-map extraction from the figure to its JSON representation.
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Figure 2: Dataset composition analysis with disciplinary distribution, reference coverage, and mind-map complexity.
Each of these aspects is critical for benchmark evaluation. Fields of studies like Medicine (Med), Biology (Bio),
Physics (Phy), Environmental Science (ES), Computer Science (CS), Engineering (Eng), and Mathematics (Math)
are denoted with their abbreviations in the figures.

and organizing information. Each task targets a373

specific aspect of research proficiency, with rigor-374

ous constraints and evaluation metrics to ensure375

thorough and unbiased assessment.376

Information Discovery. Provided a topic ex-377

tracted from survey title, the task of information378

discovery requires research agents to identify a sub-379

set of documents R from a broader collection D.380

These documents in R should serve as supporting381

materials for the topic. Ideally, R should encom-382

pass all references cited in the original survey S.383

However, within the collection D, there may384

exist another survey S′ that delves into the same385

topic. If research agents were to use the references386

from S′ directly, it would circumvent the need for387

a thorough discovery, defeating the purpose of this388

task. To prevent information leakage, we impose389

the additional constraint such that documents in D390

must be non-survey and published before S.391

To evaluate performance, we employ standard in-392

formation retrieval metrics, Recall and Precision, to393

measure the proportion of relevant documents suc-394

cessfully retrieved and the proportion of retrieved395

documents that are relevant. Together, these met-396

rics determine the effectiveness and accuracy of the397

discovery process. For this task, the cutoff parame-398

ter K is set at 10 and 100.399

Information Selection. The task of information400

selection requires research agents to rank the dis-401

covered documents based on their importance to 402

the topic. The labels are distinctions between influ- 403

ential and non-influential citations, as elaborated 404

in Section 3. Normalized Discounted Cumulative 405

Gain (nDCG) (Järvelin and Kekäläinen, 2002) and 406

Mean Reciprocal Rank (MRR) (Voorhees, 1999) 407

are used for evaluation. 408

These measures are crucial because conducting 409

research involves more than merely summarizing 410

retrieved documents; it requires the presentation of 411

key insights from the most significant sources. Fur- 412

thermore, both human researchers and autonomous 413

agents are limited by their processing capacities. 414

Therefore, it is essential to prioritize and focus on 415

the most critical information first. 416

Information Organization (Bonus). For infor- 417

mation organization, research agents are required 418

to construct a hierarchical knowledge mind-map 419

M based on R. This mind-map should provide a 420

systematic overview of research work developed 421

on topic T . As an intermediate step, references R 422

from the original survey paper could be provided 423

to the agents, who would then focus exclusively 424

on constructing M . In contrast, for an end-to-end 425

version, R is the set of discovered documents from 426

the previous task. 427

For evaluation, two primary metrics are em- 428

ployed: Heading Soft Recall (Fränti and Mariescu- 429

Istodor, 2023) and Heading Entity Recall (Shao 430
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et al., 2024). These metrics compare the set of node431

labels from the original and the constructed knowl-432

edge mind-maps, referred to as A and B, respec-433

tively. To measure similarity of these labels, Head-434

ing Soft Recall (HSR) leverages SENTENCE-BERT435

(Reimers and Gurevych, 2019) embedding, while436

Heading Entity Recall (HER) employs Named En-437

tity Recognition from FLAIR (Akbik et al., 2019)438

for extraction. The formal definitions for each met-439

ric are presented in Equation 1, where S is the set440

of labels extracted from the mind-maps.441

While these metrics provide a measure of content442

similarity, they do not account for structural align-443

ment. Tree Editing Distance (Zhang and Shasha,444

1989) solves this concern by calculating the mini-445

mal number of operations (i.e., relabeling, deleting,446

and inserting nodes) required to transform one tree447

into another. Nonetheless, relying on Tree Edit-448

ing Distance alone might overlook the potential449

for non-exact label matches. To address this, we450

propose Tree Semantic Distance, which assigns no451

cost to editing operations involving nodes whose452

cosine similarity exceeds 0.8.453

C(S) =
|S|∑
i=1

1∑|S|
j=1 Sim(Si, Sj)

HSR(A,B) =
C(A) + C(B)− C(A ∪B)

C(B)

HER(A,B) =
|Ent(A) ∩ Ent(B)|

|Ent(A)|

(1)454

6 Benchmarking455

In this section, we present preliminary evaluations456

of existing techniques, describing their configura-457

tions and performance metrics. These techniques458

encompass both naive keyword-based methods,459

such as TITLE, and advanced LLM-based meth-460

ods, including STORM. The exact wording of the461

prompts used in each baseline can be found in Ap-462

pendix B.463

6.1 Baselines464

Information Discovery. For information discov-465

ery, research agents are equipped with retrieval466

tools that enable interaction with the public corpus467

by submitting queries to retrievers such as BM25468

and BGE (Xiao et al., 2023). These agents are eval-469

uated based on their ability to effectively leverage470

these tools by generating relevant queries. Since471

exploration is limited to previously published non-472

survey literature, retrievers retry with exponential 473

back-off until the cutoff parameter K is satisfied. 474

• TITLE: Assuming that research topics are en- 475

capsulated within survey titles, this method 476

directly employs the title from each survey 477

paper as a query to retrieve relevant materials 478

that support research on the topic. It is impor- 479

tant to note that title extraction using S2ORC 480

exhibits variable capitalization across differ- 481

ent documents. As a result, we normalize by 482

converting titles to lowercase. 483

• ZERO-SHOT: Assuming that existing LLMs 484

possess prior knowledge relevant to a survey 485

topic, this method extends the TITLE method 486

by instructing GPT-4 to derive a query from 487

the survey title. This approach leverages 488

the inherent capabilities of LLMs to generate 489

more sophisticated and contextually appropri- 490

ate queries. 491

• DECOMPOSER: As discovered by Tushar et 492

al. (Khot et al., 2022), decomposed prompt- 493

ing is more effective when individual rea- 494

soning steps of a task are difficult to learn. 495

This principle is applicable to our case, as 496

a survey topic may consist of multiple sub- 497

topics, making it challenging to directly gen- 498

erate a single query that retrieves all relevant 499

papers. Consequently, we instruct GPT-4 to 500

first deconstruct the research topic into sev- 501

eral sub-questions. Each sub-question then 502

generates a corresponding sub-query. These 503

sub-queries are retrieved in batches, and the 504

results are amalgamated using reciprocal rank 505

fusion (Cormack et al., 2009). 506

• SELF-RAG: As proposed by Asai et al. (Asai 507

et al., 2023), SELF-RAG adaptively retrieves 508

passages on demand and utilizes reflection to- 509

kens to determine which retrieved documents 510

are relevant to the instruction, thus continuing 511

the generation based on the pertinent infor- 512

mation. It serves as an enhanced version of 513

ZERO-SHOT, where the model is instructed 514

to generate a query from the topic. Because 515

the model refines its final query generation 516

based on the discovered information from in- 517

termediate retrievals, it operates as a research 518

agent. 519

• STORM: As presented in Section 2, STORM 520

conducts research through multi-perspective 521
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Table 2: Baseline performance on discovery task, evaluated with Recall@10, Recall@100, Precision@10, and
Precision@100, where the retrievers include BM25 and BGE.

Recall@10 Recall@100 Precision@10 Precision@100

Baseline BM25 BGE BM25 BGE BM25 BGE BM25 BGE

TITLE 0.0424 0.1012 0.1338 0.2697 0.0669 0.1541 0.0286 0.0586
ZERO-SHOT 0.0382 0.0832 0.1253 0.2287 0.0602 0.1232 0.0256 0.0464

DECOMPOSER 0.0434 0.0879 0.1431 0.2554 0.0717 0.1304 0.0312 0.0536
SELF-RAG 0.0380 0.0815 0.1210 0.2260 0.0595 0.1215 0.0256 0.0461

STORM 0.0281 0.0979 0.0693 0.1441 0.0446 0.1041 0.0130 0.0208

Table 3: Baseline performance on selection task, evaluated with nDCG@10, nDCG@30, nDCG@100, and MRR,
where the retrievers include BM25 and BGE.

nDCG@10 nDCG@30 nDCG@100 MRR

Baseline BM25 BGE BM25 BGE BM25 BGE BM25 BGE

TITLE 0.0711 0.1678 0.0775 0.1754 0.0941 0.2019 0.1903 0.3816
ZERO-SHOT 0.0634 0.1346 0.0692 0.1417 0.0856 0.1657 0.1743 0.3246

DECOMPOSER 0.0735 0.1445 0.0803 0.1554 0.0986 0.1838 0.1959 0.3510
SELF-RAG 0.0627 0.1341 0.0679 0.1415 0.0837 0.1646 0.1705 0.3233

STORM 0.0445 0.1275 0.0507 0.1322 0.0524 0.1267 0.1271 0.3206

conversations to compose Wikipedia articles522

on particular topics from scratch. It closely523

resembles our scenario, except that the en-524

vironment involves more rigorous academic525

papers. We record the retrieval history as526

STORM continues to probe for additional pa-527

pers. Upon concluding the final round of con-528

versations, every article within the retrieval529

history is considered part of the discovered530

information.531

• DEEP RESEARCH: While Deep Research532

demonstrates advanced multi-step web-based533

browsing and iterative information synthesis,534

it does not currently support offline corpora535

and relies on general web pages, prompting us536

to include a brief case study of its capabilities.537

Information Selection. For information selec-538

tion, documents are ranked based on the similarity539

scores obtained during the discovery phase. For540

BGE retriever, we rely on FAISS (Johnson et al.,541

2019) to retrieve based on L2 distance in the embed-542

ding space. On the other hand, STORM does not543

explicitly rank the retrieved documents. We treat544

documents discovered earlier in the conversations545

of higher relevance.546

Information Organization. For information or-547

ganization, the CLUSTERING approach employs548

Ward’s method for hierarchical clustering on the549

BGE embedding of every reference article, and550

the final dendrogram is extracted as typology. The551

label in each node is computed as the most impor- 552

tant TF-IDF word, with ngrams ranging from 1 553

to 3. FEW-SHOT is achieved by providing a few 554

random examples of extracted typologies and in- 555

structing GPT-4 to generate another topic-oriented 556

mind-map. Lastly, the article outline generated 557

by STORM is converted to typology, with head- 558

ings and their nested sub-headings representing the 559

hierarchy. 560

6.2 Evaluation Results 561

The baseline experiments were conducted on a sin- 562

gle machine equipped with 8 NVIDIA RTX A6000 563

GPUs, 96 CPU cores, and 128GB RAM. Discus- 564

sion on the performance metrics is presented below. 565

Information Discovery. As demonstrated in Ta- 566

ble 2, the task of information discovery remains 567

challenging for all baseline models. This is illus- 568

trated by the Recall@100 metric, which falls below 569

0.15 for BM25 and 0.27 for BGE. Moreover, agent 570

baselines such as SELF-RAG and STORM consis- 571

tently achieve the lowest rankings, irrespective of 572

the retrievers employed. This limitation highlights 573

the critical need for more advanced retrieval mech- 574

anisms to manage large volumes of documents ef- 575

fectively during information discovery. 576

Information Selection. The performance with 577

information selection is presented in Table 3. The 578

results indicate a consistent trend wherein agent 579

baselines underperform compared to keyword- 580

based methods. The evaluation of nDCG at various 581
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Table 4: Baseline performance on organization task, evaluated with Heading Soft Recall, Heading Entity Recall,
and Tree Semantic Distance, across intermediate and end-to-end conditions.

Oracle Baseline Heading Soft
Recall (↑)

Heading Entity
Recall (↑)

Tree Semantic
Distance (↓)

Yes CLUSTERING 0.6074 0.2104 45.69
STORM 0.7325 0.3098 60.04

No
FEW-SHOT 0.8408 0.2446 49.83

STORM.BM25 0.7940 0.2938 66.65
STORM.BGE 0.7842 0.2693 65.93

levels of document retrieval, such as nDCG@10,582

nDCG@30, and nDCG@100, provides a quantita-583

tive assessment of the ranking performance. No-584

tably, for the TITLE method using the BGE re-585

triever, the nDCG@100 score is 0.2019, which sig-586

nificantly surpasses the score of STORM, which587

stands at 0.1267. Improvements during the informa-588

tion discovery phase have the potential to enhance589

overall performance in the selection phase, as evi-590

denced by DECOMPOSER, which ranks the second591

behind TITLE in discovery and selection tasks.592

Information Organization. The evaluation on593

task of information organization under intermedi-594

ate (i.e., with oracle) and end-to-end (i.e., without595

oracle) conditions are documented in Table 4. No-596

tably, the metrics exhibit discrepancies across each597

other, which contrasts with the uniformity observed598

in previous discovery and selection tasks. This di-599

vergence is expected due to the distinct nature of600

the metrics: Heading Soft Recall and Heading En-601

tity Recall assess content similarity, whereas Tree602

Semantic Distance evaluates structural alignment.603

In the intermediate version, where references604

are provided to LLMs, the proportion of correctly605

included entities, as measured by Heading Entity606

Recall, is slightly higher. Specifically, STORM607

achieved a recall rate of 0.3098, outperforming the608

end-to-end condition. Conversely, when it comes609

to constructing the hierarchy, CLUSTERING outper-610

forms advanced LLM-based agents, as evidenced611

by its attainment of the lowest Tree Semantic Dis-612

tance of 45.69 among all baseline methods.613

Deep Research. We conducted a brief inves-614

tigation on two distinct topics, transfer learning615

and LiDAR scanning mechanisms, using Gemini616

Deep Research, as shown in Appendix D. Due to617

its sole reliance with online resources, we don’t618

have a direct quantitative comparison with other619

baselines. Nevertheless, the generated summaries620

illustrate Gemini Deep Research’s capacity to syn-621

thesize diverse online sources into coherent find-622

ings, highlighting its potential to support high-level 623

exploration when specialized academic databases 624

are not immediately required. 625

7 Conclusion 626

In conclusion, ResearchArena introduces a rig- 627

orous benchmark designed to evaluate LLMs in 628

conducting research surveys on designated topics. 629

By systematically decomposing the survey process 630

into distinct tasks like information discovery, selec- 631

tion, and organization, this benchmark provides a 632

detailed framework for evaluating autonomus re- 633

search agents. Our findings underscore the poten- 634

tial of LLMs to revolutionize academic research, 635

provided that future advancements can bridge the 636

existing performance gaps. Grounded in Semantic 637

Scholar Open Research Corpus, this work estab- 638

lishes a robust foundation for the future, aiming 639

to improve the ability of LLMs to autonomously 640

conduct expertise-level, domain-specific research. 641

8 Limitations 642

Despite the robust framework and extensive dataset 643

provided by ResearchArena, this study has sev- 644

eral limitations. Firstly, the offline environment, 645

though comprehensive, may not accurately repre- 646

sent the dynamic and interconnected nature of live 647

databases and the internet. This discrepancy could 648

potentially limit the applicability of the findings in 649

real-world research settings. Additionally, due to 650

copyright constraints, not every full-text reference 651

of the survey papers could be included. This omis- 652

sion could affect the comprehensive understanding 653

of the survey topics under investigation. Finally, 654

there is no evaluation on text generation but mostly 655

the surveying process. However, even if this is just 656

the first step of conducting research, LLM agents 657

have already shown deficiencies. Future iterations 658

of ResearchArena should address this issue, partic- 659

ularly as these agents improve. 660
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A Prompts for the Dataset Collection812

Instructions to analyze whether an academic paper813

fits under the research survey category.814
815

"""816
The point of a survey paper is to provide an817

organized view on the current state of the818
field. If it relies heavily on external819
information, such as the results of a820
population questionnaire, do not include821
it. Using the above criteria, is the822
following article a survey paper? Respond823
either "True" or "False".824

"""825826

Instructions to extract the survey mind-maps into827

JSON-encoded representations.828

829
""" 830
Identify the figure that most likely 831

illustrates a taxonomy or overview. Your 832
response should be limited to the filename, 833
or NULL if not found. The provided figure 834
presents a hierarchy. Extract as 835
JSON-encoded tree whose children are 836
NULL-terminated. 837

""" 838839

B Prompts for the Experiments 840

Instructions used by DECOMPOSER for the infor- 841

mation discovery task, adopted from the Researchy 842

Questions by Rosset et al. (2024). 843
844

""" 845
### Below is an example on how to decompose a 846

complex question into sub-questions and 847
search queries. 848

849
Question: should the death penalty be legalized? 850

851
<Decomposition> 852

- What are the arguments in favor of the 853
death penalty? 854
- Does the death penalty serve as a 855

deterrent to crime? 856
- Is the death penalty a just punishment 857

for certain crimes? 858
- How does the death penalty compare to 859

other forms of punishment in terms 860
of cost and effectiveness? 861

- What are the arguments against the death 862
penalty? 863
- What is the risk of executing innocent 864

people with a death penalty? 865
- Are there any ethical concerns 866

surrounding the death penalty? 867
- To what extent is the death penalty 868

applied fairly and without bias? 869
- In practice, how expensive is the 870

death penalty? 871
- What is the current legal status of the 872

death penalty in various jurisdictions? 873
- In which countries or states is the 874

death penalty currently legal? 875
- What are the trends in death penalty 876

legislation and public opinion? 877
- What are the alternatives to the death 878

penalty? 879
- How effective are alternative 880

punishments to the death penalty, 881
e.g. life imprisonment? 882

- What are the costs and benefits of 883
alternatives to the death penalty? 884

- How do the pros and cons of the death 885
penalty compare to its alternatives? 886

</Decomposition> 887
888

<Queries> 889
- arguments in favor of the death penalty 890
- death penalty as a deterrent to crime 891
- death penalty as a just punishment 892
- death penalty cost and effectiveness 893

comparison 894
- arguments against the death penalty 895
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- risk of executing innocent people with896
death penalty897

- ethical concerns surrounding the death898
penalty899

- fairness and bias in death penalty900
application901

- current legal status of the death penalty902
worldwide903

- trends in death penalty legislation and904
public opinion905

- alternatives to the death penalty906
- effectiveness of life imprisonment without907

parole908
- costs and benefits of death penalty909

alternatives910
</Queries>911

912
Question: {x}913

914
### Instructions:915

916
1. What sub-questions do I need to know in917

order to fully understand and answer the918
above Question.919
- Format your response as a bullet-point920

style outline of questions and921
sub-questions in the <Decomposition>922
tag.923

- Order your sub-questions such that one924
question comes after another if it925
needs to use the answer to the previous926
one.927

- Do not ask unnecessary or tangential928
sub-questions, only those that are929
critical to finding important930
information.931

2) Next, write a list of search queries that932
would likely lead to results addressing all933
the sub-questions.934
- Enumerate your queries in a bullet-point935

style list inside the <Queries> tag.936
937

You may refer to the example above for guidance.938
"""939940

Instructions used by ZERO-SHOT and SELF-941

RAG for the information discovery task.942
943

"""944
Create a search query that gathers supporting945

materials for writing a survey paper on the946
following topic: {x}.947

"""948949

Instructions used by FEW-SHOT for the informa-950

tion organization task.951
952

"""953
### Examples954

955
<topic>956
A Survey on LiDAR Scanning Mechanisms957
</topic>958

959
<typology>960
{"Opto-Mechanical Beam Deflection Mechanisms":961

{"Line Scanner": {"Slanted Plain Mirror":962
null, "Off-axis Parabolic Mirror": null,963
"Polygon Mirror": null}, "Area Scanner":964
{"Single Galvanometer Scanning Mirror":965

null, "Double Galvanometer Scanning 966
Mirror": null, "Gyroscopic Mirror": null, 967
"Risley Scanner": null}}} 968

</typology> 969
970

<topic> 971
A Survey on Large Language Models for 972

Recommendation 973
</topic> 974

975
<typology> 976
{"LLM4Rec": {"Discriminative LLM4Rec": 977

{"Fine-tuning": {"Prompt Tuning": null}}, 978
"Generative LLM4Rec": {"Non-tuning": 979
{"Prompting": null, "In-context Learning": 980
null}, "Tuning": {"Fine-tuning": null, 981
"Prompt Tuning": null, "Instruction 982
Tuning": null}}}} 983

</typology> 984
985

### Instructions 986
987

- Provided a topic, your task is to construct a 988
mind-map style typology that presents a 989
systematic understanding of the topic. 990

- Put your JSON-encoded response in the tag 991
`<typology>...</typology>`. You may refer 992
to the examples above for guidance. 993

994
<topic> 995
{x} 996
</topic> 997
""" 998999

C Inspection over Survey Passages 1000

A manual inspection of survey passages is con- 1001

ducted to assess the effectiveness of GPT-4 in iden- 1002

tifying survey papers. Following this, the extracted 1003

mind-map is analyzed and compared against the 1004

original paper to determine its accuracy and rele- 1005

vance in capturing key aspects of the topic under 1006

discussion. Details are presented in Table 5 and 6. 1007

D Case Study with Gemini Deep Research 1008

Generated report on the topic of LiDAR scanning 1009

mechanisms with sources attached in Figure 4. 1010
1011

# **LiDAR Scanning Mechanisms: A Comprehensive 1012
Overview** 1013

1014
LiDAR (Light Detection and Ranging) technology 1015

has revolutionized various industries, from 1016
autonomous vehicles and robotics to 1017
surveying and mapping. At the heart of 1018
LiDAR systems lie the scanning mechanisms 1019
that enable these systems to capture 1020
precise 3D spatial information about the 1021
surrounding environment. This article 1022
delves into the different types of LiDAR 1023
scanning mechanisms, exploring their 1024
working principles, advantages, 1025
disadvantages, applications, and the 1026
companies that manufacture them. We will 1027
also examine the latest advancements and 1028
future trends in LiDAR scanning technology. 1029
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1030
## **Types of LiDAR Scanning Mechanisms**1031

1032
LiDAR scanning mechanisms can be broadly1033

classified into three main categories:1034
1035

* **Mechanical:** These systems utilize moving1036
parts, such as rotating mirrors, to steer1037
the laser beam and scan the environment1.1038

* **Solid-state:** These systems have no1039
macroscopic moving parts and employ1040
techniques like MEMS mirrors or optical1041
phased arrays to steer the laser beam1042
electronically1.1043

* **Flash:** These systems illuminate the1044
entire scene with a single laser pulse,1045
capturing a 3D point cloud in an instant,1046
similar to a camera1.1047

1048
## **Mechanical LiDAR**1049

1050
Mechanical LiDAR, the oldest type of LiDAR,1051

employs a rotating assembly with mirrors or1052
prisms to direct the laser beam in a1053
360-degree scan1. This mechanism allows for1054
a wide field of view and high resolution,1055
making it suitable for applications that1056
require detailed 3D mapping2.1057

1058
### **How it Works**1059

1060
A mechanical LiDAR system typically consists of1061

a laser emitter, a rotating mirror or prism1062
assembly, and a detector. The laser emits1063
short pulses of light, which are directed1064
by the rotating assembly towards the target1065
area. The detector measures the time it1066
takes for the light to return, allowing the1067
system to calculate the distance to the1068
object4. The two kinds of LiDAR detection1069
schemes are "incoherent" or direct energy1070
detection (which principally measures1071
amplitude changes of the reflected light)1072
and coherent detection (best for measuring1073
Doppler shifts, or changes in the phase of1074
the reflected light)3. Coherent systems1075
generally use optical heterodyne detection.1076
This is more sensitive than direct1077
detection and allows them to operate at1078
much lower power, but requires more complex1079
transceivers. Both types employ pulse1080
models: either micropulse or high energy.1081
Micropulse systems utilize intermittent1082
bursts of energy.1083

1084
### **Advantages**1085

1086
* **Wide Field of View:** Mechanical LiDAR can1087

achieve a 360-degree horizontal field of1088
view, providing comprehensive coverage of1089
the surrounding environment5.1090

* **High Resolution:** The rotating mechanism1091
allows for precise control over the laser1092
beam, enabling high-resolution data1093
capture2.1094

* **Long Range:** Mechanical LiDAR systems can1095
achieve long-range measurements, making1096
them suitable for applications like aerial1097
surveying and mapping2.1098

1099

### **Disadvantages** 1100
1101

* **Moving Parts:** The presence of moving 1102
parts makes mechanical LiDAR systems 1103
susceptible to wear and tear, potentially 1104
affecting their reliability and lifespan2. 1105

* **Bulkiness:** Mechanical systems tend to be 1106
larger and heavier than solid-state LiDAR, 1107
making them less suitable for applications 1108
where size and weight are critical5. 1109

* **Cost:** The complexity of the mechanical 1110
design can contribute to higher 1111
manufacturing costs6. 1112

* **Environmental Factors:** LiDAR signals can 1113
be attenuated or scattered by fog, rain, 1114
and snow, which can limit their 1115
effectiveness in adverse weather 1116
conditions7. Additionally, LiDAR technology 1117
faces challenges in detecting and measuring 1118
certain types of surfaces, particularly 1119
non-reflective or highly absorbing ones. 1120
For instance, black asphalt, dark-colored 1121
objects, or water surfaces may not reflect 1122
sufficient energy from the laser pulses, 1123
making them difficult to detect or measure 1124
accurately7. 1125

1126
## **Solid-State LiDAR** 1127

1128
Solid-state LiDAR eliminates the need for 1129

macroscopic moving parts, offering improved 1130
durability and reliability compared to 1131
mechanical systems2. These systems utilize 1132
various technologies to steer the laser 1133
beam electronically, including MEMS 1134
(Microelectromechanical Systems) and OPA 1135
(Optical Phased Array). 1136

1137
### **How it Works** 1138

1139
#### **MEMS LiDAR** 1140

1141
MEMS LiDAR works by directing a single laser 1142

beam to a tiny mirror that can be tilted or 1143
rotated to scan the environment3. The size 1144
of the MEMS mirror is a critical factor in 1145
its performance8. A larger mirror allows 1146
for more photons to be emitted, increasing 1147
the chances of a sufficient number of 1148
photons returning to the detector for 1149
object detection. However, the mirror must 1150
also be large enough to deflect all the 1151
light collimated by the lens used to focus 1152
the laser beam. This ensures high 1153
resolution and accurate identification of 1154
even small objects8. While some MEMS 1155
systems operate in a single plane, others 1156
can achieve 2D scanning with dual-axis 1157
mirrors or multiple lasers3. 1158

1159
#### **OPA LiDAR** 1160

1161
OPA LiDAR, on the other hand, uses an array of 1162

optical antennas to create a beam that can 1163
be steered electronically by controlling 1164
the phase of the light emitted from each 1165
antenna1. 1166

1167
### **MEMS vs. Polygon Scanners** 1168

1169

12



MEMS mirrors and polygon scanners are both used1170
in LiDAR systems for beam steering, but1171
they have distinct characteristics and1172
trade-offs9. MEMS mirrors are smaller and1173
potentially more cost-effective, but they1174
can be more susceptible to vibrations and1175
temperature variations. Polygon scanners,1176
with their larger size and more robust1177
design, offer higher accuracy and longer1178
range, but they can be more expensive and1179
less compact.1180

1181
### **Advantages**1182

1183
* **Durability:** The absence of macroscopic1184

moving parts makes solid-state LiDAR more1185
robust and less prone to mechanical1186
failure2.1187

* **Compact Size:** Solid-state LiDAR systems1188
are typically smaller and lighter than1189
mechanical systems, making them suitable1190
for applications where space is limited6.1191

* **Faster Scanning:** Electronic beam steering1192
allows for faster scanning speeds compared1193
to mechanical systems10.1194

1195
### **Disadvantages**1196

1197
* **Limited Field of View:** Solid-state LiDAR1198

may have a more limited field of view1199
compared to mechanical systems, although1200
advancements in beam steering technology1201
are addressing this limitation5.1202

* **Shorter Range:** Solid-state LiDAR1203
typically has a shorter range than1204
mechanical LiDAR, although this is also1205
improving with advancements in technology5.1206

* **Cost:** While the cost of solid-state LiDAR1207
is decreasing, it can still be higher than1208
some mechanical systems11.1209

1210
## **Flash LiDAR**1211

1212
Flash LiDAR illuminates the entire scene with a1213

single laser pulse, capturing a 3D point1214
cloud instantaneously1. This approach1215
eliminates the need for scanning1216
mechanisms, resulting in a simpler and1217
potentially more cost-effective design.1218

1219
### **How it Works**1220

1221
Flash LiDAR systems use a wide-beam laser to1222

illuminate the entire field of view. The1223
reflected light is then captured by a1224
detector array, which measures the time of1225
flight for each pixel in the array. This1226
allows the system to generate a 3D image of1227
the scene in a single flash4.1228

1229
### **Advantages**1230

1231
* **No Moving Parts:** Flash LiDAR has no1232

moving parts, making it highly durable and1233
reliable1.1234

* **Fast Data Acquisition:** It captures an1235
entire scene in a single flash, enabling1236
rapid data acquisition2.1237

* **Compact Size:** Flash LiDAR systems can be1238
very compact, making them suitable for1239

integration into small devices1. 1240
1241

### **Disadvantages** 1242
1243

* **Limited Range:** Flash LiDAR typically has 1244
a shorter range compared to scanning LiDAR 1245
systems1. 1246

* **Lower Resolution:** The resolution of flash 1247
LiDAR can be lower than scanning LiDAR, 1248
especially at longer distances1. 1249

* **Eye Safety:** The high-power laser pulses 1250
used in flash LiDAR can pose eye safety 1251
concerns, requiring careful design and 1252
implementation7. The use of eye-safe 1253
wavelengths, such as 1550 nm, is one 1254
approach to mitigate this concern3. 1255

1256
## **Hybrid LiDAR** 1257

1258
Hybrid LiDAR systems combine elements of both 1259

solid-state and mechanical LiDAR 1260
technologies to optimize performance and 1261
address the limitations of each approach2. 1262

1263
### **How it Works** 1264

1265
Hybrid LiDAR systems may use a combination of 1266

MEMS mirrors and rotating elements to 1267
achieve a wider field of view and longer 1268
range. For example, the Hesai Pandar128, a 1269
hybrid solid-state LiDAR, integrates 128 1270
transmit-receive modules with a 360-degree 1271
spinning scanning module12. This 1272
combination allows for high resolution and 1273
a wide field of view while maintaining a 1274
compact design. 1275

1276
### **Advantages** 1277

1278
* **Balanced Performance:** Hybrid LiDAR offers 1279

a balance between the accuracy and range of 1280
mechanical systems and the durability and 1281
compact design of solid-state systems2. 1282

* **Adaptability:** It can adapt to the needs 1283
of different environments by leveraging the 1284
reliability of solid-state components and 1285
the detailed scanning capabilities of 1286
mechanical systems2. 1287

1288
### **Disadvantages** 1289

1290
* **Complexity:** Hybrid systems can be more 1291

complex to design and manufacture compared 1292
to purely mechanical or solid-state 1293
systems13. 1294

* **Cost:** The combination of technologies can 1295
lead to higher costs compared to some 1296
single-technology systems13. 1297

1298
## **Cost and Availability of LiDAR Systems** 1299

1300
The cost and availability of LiDAR systems vary 1301

significantly depending on several factors, 1302
including performance specifications, 1303
application requirements, durability, and 1304
integration needs14. 1305

1306
* **Performance Specifications:** Higher 1307

performance systems with greater range, 1308
resolution, and speed are generally more 1309
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expensive14. For example, automotive-grade1310
LiDAR, with its long-range and1311
high-resolution requirements, can be1312
significantly more costly than LiDAR used1313
for general surveying14.1314

* **Application Requirements:** LiDAR systems1315
designed for demanding applications, such1316
as autonomous vehicles, are typically more1317
expensive due to their stringent1318
performance and reliability requirements14.1319

* **Durability and Reliability:** LiDAR systems1320
built for harsh environments require robust1321
designs and materials, which can increase1322
costs14.1323

* **Integration and Maintenance:** Systems that1324
are easier to integrate and maintain can be1325
more cost-effective in the long run14.1326

1327
The cost of LiDAR systems has been decreasing1328

in recent years due to advancements in1329
technology and manufacturing15. However,1330
high-performance systems can still be1331
expensive. For example, a robust,1332
entry-level LiDAR system for drone1333
applications can cost around $23,000, while1334
a drone and associated accessories can add1335
another $10,000 to $26,000 to the total1336
cost16.1337

1338
## **LiDAR vs. Radar**1339

1340
While both LiDAR and radar are remote sensing1341

technologies used for object detection and1342
mapping, they have distinct characteristics1343
and strengths7. LiDAR uses laser light to1344
measure distances and create1345
high-resolution 3D maps, while radar uses1346
radio waves to detect objects and measure1347
their speed and direction. LiDAR offers1348
higher accuracy and resolution, especially1349
for detailed mapping and object1350
recognition, but it can be more sensitive1351
to adverse weather conditions. Radar, on1352
the other hand, is less affected by weather1353
and can operate at longer ranges, but it1354
typically provides lower resolution data.1355

1356
## **Applications of LiDAR**1357

1358
LiDAR technology has a wide range of1359

applications across various industries,1360
including:1361

1362
* **Autonomous Vehicles:** LiDAR is a crucial1363

sensor in self-driving cars, enabling them1364
to perceive their surroundings, navigate1365
autonomously, and avoid obstacles17.1366

* **Robotics:** LiDAR helps robots navigate,1367
map their environment, and interact with1368
objects17.1369

* **Surveying and Mapping:** LiDAR is used to1370
create detailed 3D maps of terrain,1371
infrastructure, and urban environments17.1372

* **Environmental Monitoring:** LiDAR is used1373
to monitor vegetation, assess natural1374
disaster impacts, and map forests17.1375

* **Urban Planning and Development:** LiDAR1376
provides data for urban planning,1377
infrastructure development, and1378
transportation management17.1379

* **Archaeology:** LiDAR helps uncover ancient 1380
structures and features hidden beneath 1381
vegetation or over time17. 1382

* **Disaster Management:** LiDAR is used to 1383
assess damage after natural disasters and 1384
aid in rescue efforts17. 1385

1386
## **Latest Advancements in LiDAR Scanning 1387

Mechanisms** 1388
1389

Research and development in LiDAR technology 1390
continue to advance, leading to innovative 1391
solutions that improve performance, reduce 1392
costs, and expand applications. Some of the 1393
latest advancements include: 1394

1395
* **Elastic LiDAR:** This technology utilizes 1396

elastic scattering of light to achieve 1397
precise measurements and environmental 1398
sensing18. 1399

* **Silicon-based LiDAR:** This approach 1400
leverages silicon photonics to create 1401
compact and cost-effective LiDAR systems. 1402
Silicon-based LiDAR is an ideal way to 1403
reduce the volume of the LiDAR and realize 1404
monolithic integration. It removes the 1405
moving parts in the conventional device and 1406
realizes solid-state beam steering19. 1407

* **Advanced Simulation Tools:** Tools like 1408
VPItransmissionMaker and VPIcomponentMaker 1409
enable detailed design and simulation of 1410
LiDAR systems, including modeling 1411
atmospheric conditions and photonic 1412
integrated circuits20. 1413

* **Smart Corner Solution:** Marelli's Smart 1414
Corner solution integrates LiDAR sensors 1415
into vehicle headlamps and grilles, 1416
addressing sensor placement and field of 1417
view challenges20. 1418

* **Deep Learning for Drone Detection:** Recent 1419
research has demonstrated the effectiveness 1420
of deep learning algorithms in processing 1421
LiDAR data for drone detection21. Studies 1422
have shown high accuracy (above 97%) in 1423
detecting drones even in noisy environments 1424
using deep learning models21. 1425

1426
## **The Future of LiDAR Scanning Mechanisms** 1427

1428
The future of LiDAR scanning mechanisms is 1429

likely to be shaped by several key trends: 1430
1431

* **Continued Miniaturization:** Solid-state 1432
and flash LiDAR technologies will continue 1433
to shrink in size, enabling their 1434
integration into smaller devices and 1435
expanding their applications15. 1436

* **Improved Performance:** Advancements in 1437
laser technology, detectors, and scanning 1438
mechanisms will lead to higher resolution, 1439
longer range, and faster scanning speeds15. 1440

* **Reduced Costs:** Innovations in 1441
manufacturing and design will drive down 1442
the cost of LiDAR systems, making them more 1443
accessible for various applications15. 1444

* **Increased Integration:** LiDAR systems will 1445
be increasingly integrated with other 1446
sensors and technologies, such as cameras 1447
and radar, to create more comprehensive and 1448
robust sensing solutions22. 1449
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1450
## **Conclusion**1451

1452
LiDAR scanning mechanisms are fundamental to1453

the operation and application of LiDAR1454
technology. Each type of scanning1455
mechanism, whether mechanical, solid-state,1456
flash, or hybrid, offers a unique set of1457
advantages and disadvantages. Mechanical1458
systems excel in providing a wide field of1459
view and high resolution, making them1460
suitable for applications like aerial1461
surveying and mapping. Solid-state LiDAR,1462
with its MEMS and OPA variants, offers1463
durability, compact size, and faster1464
scanning speeds, making it increasingly1465
popular for autonomous vehicles and1466
robotics. Flash LiDAR, while limited in1467
range and resolution, provides rapid data1468
acquisition and is suitable for short-range1469
applications. Hybrid systems combine the1470
strengths of different approaches to1471
optimize performance for specific needs.1472

1473
The choice of LiDAR scanning mechanism depends1474

on the specific application requirements,1475
considering factors such as range,1476
resolution, field of view, cost, and1477
environmental conditions. As LiDAR1478
technology continues to evolve, driven by1479
advancements in miniaturization,1480
performance improvement, and cost1481
reduction, we can expect to see even more1482
innovative scanning mechanisms emerge,1483
further expanding the applications and1484
impact of this transformative technology.14851486

Generated report on the topic of transfer learning1487

with sources attached in Figure 4.1488
1489

# **Transfer Learning: A Comprehensive1490
Overview**1491

1492
## **1\. Introduction**1493

1494
Transfer learning, a powerful machine learning1495

technique, has emerged as a game-changer in1496
the field of artificial intelligence (AI).1497
It leverages the knowledge gained from1498
solving one problem to improve performance1499
on a different but related problem. This1500
approach has gained significant traction in1501
recent years, particularly in deep1502
learning, where training models from1503
scratch can be computationally expensive1504
and require massive amounts of data. By1505
transferring knowledge from pre-trained1506
models, transfer learning enables faster1507
training, better performance, and the1508
ability to tackle problems with limited1509
data1.1510

1511
## **2\. Background**1512

1513
The concept of transfer learning is rooted in1514

the idea that humans can apply knowledge1515
learned in one context to new situations.1516
For example, learning to ride a bicycle can1517
make it easier to learn to ride a1518
motorcycle. Similarly, in machine learning,1519

transfer learning allows models to leverage 1520
pre-existing knowledge to accelerate 1521
learning and improve performance on new 1522
tasks2. 1523

1524
Early research on transfer learning dates back 1525

to the 1976s, with studies exploring 1526
knowledge transfer in neural networks1. 1527
Over the years, the field has evolved, with 1528
significant contributions from researchers 1529
like Lorien Pratt, who formulated the 1530
discriminability-based transfer (DBT) 1531
algorithm in 19921. By 1998, the field had 1532
expanded to include multi-task learning and 1533
more formal theoretical foundations1. 1534

1535
Andrew Ng, a prominent figure in AI, 1536

highlighted the importance of transfer 1537
learning in his NIPS 2016 tutorial, 1538
predicting that it would become a key 1539
driver of machine learning commercial 1540
success1. This prediction has come to 1541
fruition, with transfer learning now 1542
playing a crucial role in various AI 1543
applications, including image recognition, 1544
natural language processing, and speech 1545
recognition. 1546

1547
## **3\. Types of Transfer Learning** 1548

1549
Transfer learning can be categorized into 1550

different types based on the relationship 1551
between the source and target tasks and 1552
domains. Three common types are: 1553

1554
* **Inductive Transfer Learning:** In this 1555

type, the source and target tasks are 1556
different, but the domains are the same. 1557
This is often used in computer vision, 1558
where models pre-trained on large image 1559
datasets are adapted for specific tasks 1560
like object detection3. 1561

* **Transductive Transfer Learning:** Here, the 1562
source and target tasks are the same, but 1563
the domains are different. For example, a 1564
model trained on restaurant reviews could 1565
be adapted to classify movie reviews3. 1566

* **Unsupervised Transfer Learning:** This type 1567
involves unlabeled data in both the source 1568
and target domains. It is similar to 1569
inductive transfer learning but focuses on 1570
unsupervised tasks3. 1571

1572
These types of transfer learning offer 1573

flexibility in adapting models to different 1574
scenarios, depending on the availability of 1575
labeled data and the similarity between 1576
tasks and domains. 1577

1578
## **4\. Applications of Transfer Learning** 1579

1580
Transfer learning has found widespread 1581

applications in various domains, 1582
revolutionizing the way AI models are 1583
developed and deployed. Some notable 1584
applications include: 1585

1586
* **Image Recognition and Classification:** 1587

Transfer learning has significantly 1588
improved image recognition tasks by 1589
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leveraging pre-trained models on large1590
datasets like ImageNet. These models can be1591
fine-tuned for specific tasks, such as1592
medical image classification or identifying1593
species in wildlife images4.1594

* **Natural Language Processing (NLP):**1595
Transfer learning has been instrumental in1596
advancing NLP applications, including1597
sentiment analysis, text classification,1598
and machine translation. Pre-trained1599
language models like BERT and GPT can be1600
adapted for specific language processing1601
tasks, enabling more accurate and efficient1602
language understanding5.1603

* **Speech Recognition:** Transfer learning has1604
enhanced speech recognition systems by1605
transferring knowledge from general audio1606
models. This has led to improved accuracy1607
in voice commands, transcription, and other1608
speech-related tasks6.1609

* **Medical Diagnosis:** Transfer learning has1610
shown promise in improving medical1611
diagnosis by adapting models trained on1612
existing medical imaging datasets. This can1613
aid in faster and more accurate diagnoses,1614
leading to better patient outcomes7.1615

* **Recommendation Systems:** Transfer learning1616
can be used to improve recommendation1617
systems by leveraging knowledge from user1618
behavior data. This enables models to make1619
more personalized recommendations and1620
enhance user experiences6.1621

1622
These are just a few examples of how transfer1623

learning is being applied across different1624
domains. Its ability to adapt models to new1625
tasks and domains with limited data has1626
made it a valuable tool in various AI1627
applications.1628

1629
## **5\. Advantages and Disadvantages of1630

Transfer Learning**1631
1632

Transfer learning offers several advantages1633
over training models from scratch:1634

1635
* **Reduced Training Time:** By leveraging1636

pre-trained models, transfer learning1637
significantly reduces the time required to1638
train a model for a new task. This is1639
because the model already has a foundation1640
of knowledge, and only the final layers or1641
specific parameters need to be adjusted8.1642

* **Improved Performance:** Transfer learning1643
often leads to better performance,1644
especially when data for the new task is1645
limited. The pre-trained model has already1646
learned relevant features and patterns,1647
which can be beneficial for the new task3.1648

* **Lower Computational Costs:** Transfer1649
learning can reduce computational costs by1650
requiring less data and training time. This1651
is particularly important in deep learning,1652
where training models can be1653
computationally expensive3.1654

* **Enhanced Generalization:** Transfer1655
learning can improve the generalization1656
ability of models by incorporating1657
knowledge from other domains. This helps1658
models perform better on unseen data and1659

reduces the risk of overfitting3. 1660
1661

However, transfer learning also has some 1662
limitations: 1663

1664
* **Domain Mismatch:** If the source and target 1665

domains are significantly different, 1666
transfer learning may not be effective. The 1667
pre-trained model may not have learned 1668
features relevant to the new task, leading 1669
to poor performance9. 1670

* **Overfitting:** Fine-tuning a pre-trained 1671
model on a small dataset can lead to 1672
overfitting, where the model performs well 1673
on the training data but poorly on unseen 1674
data10. 1675

* **Negative Transfer:** In some cases, 1676
transferring knowledge from the source 1677
domain can negatively impact the 1678
performance on the target task. This can 1679
happen if the tasks are dissimilar or the 1680
source domain has irrelevant features1. 1681

1682
Despite these limitations, the benefits of 1683

transfer learning often outweigh the 1684
drawbacks, making it a valuable technique 1685
in many machine learning applications. 1686

1687
## **6\. Future of Transfer Learning** 1688

1689
Transfer learning is an evolving field with 1690

ongoing research and development. Some key 1691
areas for future exploration include: 1692

1693
* **Multi-domain Adaptation:** Developing 1694

models that can effectively transfer 1695
knowledge across multiple diverse domains11. 1696

* **Incremental Learning:** Enabling models to 1697
continuously learn and adapt to new 1698
information while retaining previously 1699
learned knowledge12. 1700

* **Model Compression:** Reducing the size of 1701
large pre-trained models without 1702
sacrificing performance, making them more 1703
suitable for deployment in 1704
resource-constrained environments12. 1705

* **Addressing Ethical Concerns:** Ensuring 1706
fairness, mitigating bias, and addressing 1707
privacy concerns in transfer learning 1708
applications13. 1709

1710
These advancements will further enhance the 1711

capabilities of transfer learning and 1712
expand its applications in various fields. 1713

1714
## **7\. Conclusion** 1715

1716
Transfer learning has become a highly effective 1717

approach in machine learning, allowing for 1718
faster training, enhanced performance, and 1719
the ability to address challenges with 1720
limited data. By utilizing pre-trained 1721
models, it has transformed numerous AI 1722
applications, such as image recognition, 1723
natural language processing, and speech 1724
recognition. Despite certain challenges and 1725
limitations, continuous research and 1726
development are driving its evolution, 1727
ensuring an even greater impact on the 1728
future of AI. 17291730
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Table 5: Manual evaluation of survey selection and
mind-map extraction for the first batch of 50 papers.

CorpusID IsSurvey AccurateMap RelevantMap

3524264 True True True
3644401 True True True
4503761 True True False
5058972 True True False
8034133 True True True
8922493 True True True
9935621 True False True

10934716 True True True
17513321 True True True
18750590 True True True
20774863 False False False
22727391 True True True
23384543 True True True
33413610 True True False
52841074 True True True
55254540 True True True
56895323 True True True
57721147 True False True
64256250 True False True

115523285 True True False
119297355 True False True
198933686 True True True
210865204 True True False
211010433 True True True
212665971 True True True
214743520 True True True
216056393 True True True
219316962 True True False
220302470 True False True
221446014 True True True
222095837 True True False
225029039 False False False
226227376 True True False
226300094 True True True
227228021 True True False
229363354 True False True
231149960 False False False
231698518 True True True
233722066 False False False
234213205 True True False
235352671 True False False
235458292 True True True
235485414 True True False
235490196 True True True
235669589 True True True
235766219 True True False
236090307 True True True
236772630 True True True
236976256 True True True
236986986 True True False

Table 6: Manual evaluation of survey selection and
mind-map extraction for the second batch of 50 papers.

CorpusID IsSurvey AccurateMap RelevantMap

237372527 True False True
237373628 True True True
237485263 True True True
238242214 True False True
238242941 True True True
238242941 True False False
238639787 True True False
244119139 True True True
244773222 True True True
245353469 True True True
245877584 False False False
247763152 True True True
248834382 True True False
249209981 True True False
249687282 True False False
250089226 True True True
250939903 True True True
251104722 True True True
251506514 True True True
251643467 True True False
252683270 True True True
252762319 True True False
253370610 True True True
253796900 True True True
254274880 True False True
254756520 True True True
255025269 True True True
256227178 True True True
256826729 True True True
257232619 True True False
257255597 True False True
257522478 True True False
258539255 True True True
258722762 True True True
259043594 True True True
259088696 True True True
259108865 True True True
259154569 False False False
259283502 True True True
259951356 True True True
260229544 True True True
260316174 True True True
260849783 True False True
261682162 True False True
263134374 True True False
263334211 True True True
263830273 True True True
263831409 True False True
263909496 True True True
264604532 True True True
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Figure 3: Sources used while asking Deep Research from Gemini to work on LiDAR Scanning Mechanisms.

Figure 4: Sources used while asking Deep Research from Gemini to work on transfer learning.
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