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Abstract

Knowledge distillation (KD) is a core component in the training and deployment
of modern generative models, particularly large language models (LLMs). While
its empirical benefits are well documented—enabling smaller student models to
emulate the performance of much larger teachers—the underlying mechanisms by
which KD improves generative quality remain poorly understood. In this work, we
present a minimal working explanation of KD in generative modeling. Using a
controlled simulation with mixtures of Gaussians, we demonstrate that distillation
induces a trade-off between precision and recall in the student model. As the teacher
distribution becomes more selective, the student concentrates more probability
mass on high-likelihood regions at the expense of coverage—a behavior modulated
by a single entropy-controlling parameter. We then validate this effect in a large-
scale language modeling setup using the SmolLLM?2 family of models. Empirical
results reveal the same precision—recall dynamics observed in simulation, where
precision corresponds to sample quality and recall to distributional coverage. This
precision-recall trade-off in LLMs is found to be especially beneficial in scenarios
where sample quality is more important than diversity, such as instruction tuning
or downstream generation. Our analysis provides a simple and general explanation
for the effectiveness of KD in generative modeling.

1 Introduction

Knowledge distillation (KD) has become a foundational technique in modern machine learning. Orig-
inally introduced as a method to compress large classification models by transferring knowledge from
a teacher to a smaller student model [[10], KD has since proven effective in improving generalization
and aligning model behavior in several domains [21} 14} [23]]. Its influence is especially prominent
in generative modeling, where KD is now a standard component in the training and deployment of
large language models (LLMs). From neural machine translation [[12] to the latest instruction-tuned
LLMs [13} 11} 8], distillation enables smaller models to generate coherent and high-quality text by
mimicking the output distributions of larger models [9, 2 [26]. Despite its ubiquity, however, the
mechanisms by which KD improves generative performance remain poorly understood, particularly
in how distillation shapes the generative behavior of the student model.

While several studies have attempted to explain KD in the context of classification—emphasizing
representation alignment, label smoothing effects, or decision boundary refinement [[19, 17, 22]]—
these analyses do not generalize naturally to autoregressive generative models. In particular, there is
little theoretical understanding of how KD enables smaller generative models to achieve performance
comparable to much larger models, even with significantly reduced capacity. Why do student models
trained via KD generate higher-quality outputs than their maximum likelihood-trained counterparts?
What inductive bias does the teacher introduce during distillation that improves sample quality?
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These questions remain open, despite KD’s critical role in the development of high-performing yet
efficient LLMs.

In this paper, we provide a minimal working explanation of knowledge distillation in generative
models by analyzing how distillation reshapes the student’s learned distribution. We begin with
a controlled simulation using mixtures of Gaussians and show that distillation induces a trade-off
between precision and recall: as the teacher distribution becomes lower in entropy, the student
concentrates more probability mass on high-likelihood regions while sacrificing coverage. This
behavior is governed by a single temperature-like parameter that controls the selectivity of the
teacher’s output. We then validate this insight in a large-scale language modeling setting. Specifically,
we use SmolLM2 1.7B [3]] as the ground-truth distribution to generate samples, on which we pretrain
a 360M teacher model. This teacher is subsequently distilled into a 135M student model. Empirical
results corroborate our theoretical predictions: as the teacher becomes more selective, the student
produces sharper generations (i.e., higher precision) at the cost of reduced recall—mirroring the
trade-off observed in the Gaussian mixture setup. These findings suggest that distillation enables
smaller generative models to concentrate probability mass on high-density regions of the output space,
effectively producing sharper and more fluent generations. This trade-off is especially desirable in
practical scenarios such as instruction tuning or task-specific generation, where sample quality is
prioritized over full coverage. Our contributions are summarized as follows:

* We provide a minimal working explanation of knowledge distillation in generative models,
highlighting a precision—recall trade-off that emerges from teacher entropy.

» Through a controlled Gaussian mixture setup, we show that distillation shifts the student’s
focus toward a selective subset of the data distribution emphasized by the teacher, leading to
improved precision at the cost of recall.

» We validate this mechanism in large-scale language models, where precision—recall dynamics
observed in simulation are replicated via multistage distillation from SmolLM?2 1.7B to
360M to 135M.

2 Related Work

Knowledge distillation. = Knowledge distillation (KD) was originally introduced as a model
compression technique that transfers knowledge from a large teacher model into a smaller student [[1O].
By matching the teacher’s softened output probabilities, the student can capture richer inter-class
similarity patterns, leading to improved generalization and efficiency [4, [24]. This foundational
idea has inspired a range of extensions. Born-Again Networks [7]] demonstrate that students can
outperform their teachers through repeated distillation, while FitNets [21] leverage intermediate
feature representations to guide deeper students during training. Recent work further suggests that
KD can improve generalization even when the teacher and student have identical capacities [[11} 22],
indicating that the utility of KD extends well beyond model compression.

Broader use of KD across domains. KD has become a central component in modern NLP systems
and generative modeling. In neural machine translation, sequence-level KD was proposed to improve
generation quality while reducing model size [12]]. More recently, state-of-the-art LLM frameworks
such as DISTILLM [13]], Phi-4-Mini [1]], and LLaMA 3 [8] have adopted KD as a core technique
for post-training alignment and efficient deployment. Beyond language models, KD has also been
applied in diverse domains such as self-supervised learning [23]], speech recognition [6], and continual
learning [[14} 5], often to transfer behaviors from larger or prior models into smaller or adaptive ones.
Despite its broad adoption, most implementations of KD treat it as a black-box heuristic—lacking a
clear understanding of its internal mechanisms, particularly in generative settings.

Why does KD work? A number of theoretical efforts have attempted to explain why KD works. In
linear models, soft targets have been shown to produce more robust and smoother decision bound-
aries [19]]. KD has also been connected to label smoothing, suggesting that it introduces an implicit
regularization effect [[17]. Empirical studies have confirmed that KD improves generalization across
a variety of conditions, even when teacher and student architectures are identical [22]]. Additional
work frames KD as a trade-off between knowledge inheritance and exploration [11]. However, these
interpretations have been largely developed in the context of classification tasks. There remains a
significant gap in understanding how KD influences the generative behavior of models, particularly
autoregressive language models—a gap that our work aims to address.



Recent studies on KD for generative models have explored related concepts like mode-seeking
behavior [9, 2 26]. Often, achieving such behavior involved proposing specialized objectives,
like reverse KL divergence [9, 26] or tailored loss functions [2]. In contrast, our work provides a
different perspective by demonstrating how this precision-enhancing effect naturally arises within
the standard forward KL divergence framework, simply by controlling the teacher distribution’s
selectivity. Furthermore, we analyze this phenomenon not just between teacher and student, but
within a broader three-stage framework (ground truth — teacher — student), offering a fundamental,
distribution-level explanation based on a precision-recall trade-off for why common KD practices
improve sample quality relative to the original data distribution.

3 Distillation in Generative Modeling: Analysis via Gaussian Mixtures

To understand the core effect of knowledge distillation in generative modeling, we introduce a simple
yet expressive setup based on mixtures of Gaussians. This construction allows us to precisely control
the complexity of the data distribution and quantify how the student model responds to different
teacher behaviors. By modulating the entropy of the teacher distribution through a temperature-like
parameter (3, we adjust how selectively the teacher emphasizes certain regions of the data space. This
minimal setting reveals a key trade-off between precision and recall in the student model, providing
insight into how distillation alters the student’s learned distribution.

3.1 The precision-recall trade-off induced by distillation

Let D = {x1,...,xn} be a dataset sampled from a ground-truth distribution p*(x; 0*) defined as a
mixture of K Gaussians:

K
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where o > 0 for all k£, and Zszl ap = 1. We assume that the component means {} are
distinct and that all covariance matrices X, are finite. Such a mixture model serves as a universal
approximator for continuous distributions when K is sufficiently large.

Fitting a teacher model. Assume we have fit a teacher distribution p’(x; 6) as a mixture of K/ < K
Gaussians:

K/
p(w:0) =D af N(w; i, Th), M
k=1

using KL divergence minimization KL(p*||p"). In the ideal case, there exists a (possibly one-to-many)
mapping o : {1,..., K’} — {1,..., K} such that each component &’ in the teacher distribution p’
covers a subset of components in p*.

In the extreme case of K’ = K, o would ideally be a permutation operator, and all the parameters
are well recovered up to some noise due to the finite number of samples within D. This noise is an
important aspect here, which implies that even if o, = % we would never end up with the uniform
.. In the other extreme case of K’ = 1, o(k’) = 1 for all £/, and we end up with
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An interesting aspect of this low-end extreme is that the region of high probability density concentra-
tion under p’(x; 8') with K’ = 1 has minimal overlap with those of p*. In other words, the samples
drawn from p* will be lowly scored by p'(z;0") with K’ = 1 and vice-versa.

A lower-entropic reparametrization of the teacher model. To control the selectivity of the teacher
distribution, we reparameterize the mixture weights o/, using a temperature-like parameter 8 > 1:

1(8) = exp(Bloga},) .
S exp(Blogal)



When 3 = 1, this recovers the original mixture weights. As [ increases, the distribution over
components becomes increasingly peaked, reducing entropy and concentrating mass on components
with higher original weight. In the limit 5 — oo, this reduces to a deterministic selection of the
highest-weight component:

1, if k = argmax; o
/ _ ’ 7
ok (00) {0, otherwise.

Note that noise in learning (e.g. due to the finite sample D) implies that we would always end up
with such an extreme case of zero-entropy . (c0). Even if we magically end up with a uniform /s,
we can always add a small amount of noise to break the tie. As a result, this yields a modified teacher
distribution,

K/
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which emphasizes a narrower subset of components as [ increases. In effect, larger 5 values
induce a lower-entropy teacher p’(x; 0, 5 — o0) that selectively focuses on a few modes of the
original distribution, such as o(arg maxy «},). Samples from such a teacher are likely to lie in
high-density regions under p* but do not reflect the full diversity of the underlying distribution. This
reparameterization provides a simple knob to control the difficulty of the student’s task: high-3
teachers provide cleaner, more concentrated training signals, while low- teachers preserve broader
coverage. We refer to such entropy-controlled distributions as teacher models in the remainder of the
paper.

Training a student model. Let us consider training a student model p’ (x;6"), which is also a
mixture of K" <« K Gaussians, against the teacher model by minimizing

KL (z; 8)||p" (x)) = — /p'(m;ﬁ) logp”(z)dx + const., )

(a)

where we omitted ¢’, since there is no confusion here. We will also omit 6" unless it is explicitly
needed. To better understand this objective, we expand term (a) using Jensen’s inequality:
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Here, (a’) captures the joint weighting of each pair of teacher and student components, while (b”)
measures the cross-entropy between individual Gaussians. Term (a’) encourages alignment between
the mixture coefficients of the student and teacher: components with larger ), (/) exert more
influence, pushing the student to allocate higher weights to the corresponding «f,,. Due to the
normalization constraint ), )/, = 1, student components not aligned with high-weight teacher
modes are implicitly suppressed.

Term (b’) incentivizes geometric alignment: each student component is encouraged to match the
shape and location of teacher components it overlaps with. However, this matching is modulated by
the weighting in (a’). Only those component pairs for which both o}, (8) and o}, are substantial
will contribute meaningfully to the loss. Intuitively, this means that distillation focuses the student’s
capacity on faithfully representing the most emphasized regions of the teacher distribution.

This formulation reveals how the entropy of the teacher—controlled by S—governs the selectivity of
the student’s focus. Larger /3 values lead to a more peaked teacher distribution, which in turn biases
the student toward modeling fewer but sharper modes.

Controlling the difficulty for training the student model. As shown above, the influence of
each teacher component on the student is governed by its corresponding mixture weight o, (5).
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Figure 1: (a) Contours show the probability density of the ground-truth distribution p*, with dots
representing samples drawn from it. (b) The contours correspond to the student model trained directly
without distillation.

When «}, () is close to zero, the student is effectively relieved from modeling the %’-th component,
regardless of its support in the original distribution p*. In other words, components of p* mapped to
low-weight regions of the teacher via o(k’) are unlikely to be covered by the student. Consequently,
the student model is ignoring all the components of the original distribution p* included in o (k') (that
is, the ones that were mapped to the k’-th component in the teacher model). The student model only
needs to capture and cover those teacher’s components with large ¢}, ’s, and thereby Uar, >1-e0 (k')

of the original distribution p*.

We define the difficulty of training the student model as the discrepancy between its capacity K" (the
number of student’s components) and Uar, >1—e0 (K )‘ (the number of active components in p* that
are emphasized by the teacher):

Difficulty < K" — | | ] o(k)].

This quantity closely correlates with the number of emphasized teacher components, i.e.,

Z,If,:l 1(a), > 1 —€). Crucially, this difficulty is directly modulated by the temperature-like
parameter 3, which controls the entropy of the teacher distribution. Higher 3 values yield more
selective (lower entropy) teachers, concentrating training signals on a smaller subset of p* and thereby
reducing the student’s modeling burden.

The resulting student model. Let p”’(z; 6", 3) denote the student model trained to match the
B-modulated teacher p’(z;6’, 3). We evaluate the quality of the learned distribution using two
complementary metrics:

Precision(8) = Epr (z,0,5) [log p* (;67)] . 3)
Recall(8) = E - (4;0+) [log p” (20", B)] . C)

Intuitively, precision measures how well samples generated by the student are supported under the
true distribution p*, while recall quantifies how thoroughly the student covers the modes of p*. As
B — o0, the teacher distribution becomes increasingly selective, concentrating mass on a small subset
of high-density regions. The student, in turn, learns to model these regions accurately—leading to
high precision but reduced recall. Conversely, when 3 ~ 1, the teacher approximates the full support
of p*, and the student is encouraged to match the entire distribution. This maximizes recall but often
comes at the cost of lower precision due to limited capacity.

By modulating §3, distillation provides a simple mechanism to control this trade-off. Our analysis
reveals that this precision-recall dynamic emerges naturally from the structure of the distillation
objective and offers a principled explanation for why distillation can improve sample quality in
generative models, even under constrained capacity.
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Figure 2: (a) Contour plot of the teacher distribution p’, with samples from the true distribution
p* overlaid as blue dots. (b) Samples (green) drawn from the S-modulated teacher distribution
p'(z; 60, B = 100), showing strong concentration on the bottom three modes of p*. (c) Contours of
the student models: the dashed black contour corresponds to a student trained directly on p* samples,
while the green contour represents a student trained on teacher samples (distillation). The distilled
student clearly focuses on a narrower region emphasized by the teacher. This setup corresponds
to a low-difficulty case: with 8 = 100, the teacher concentrates on a single dominant component
(o), ~ 1), and the student has just enough capacity (K"’ = 1) to match it, resulting in the Difficulty
measure close to 0.

3.2 Simulation

To empirically illustrate the mechanisms discussed above, we construct a toy generative task using a
mixture of Gaussians. The ground-truth distribution p* consists of eight well-separated components
arranged in a rectangular grid (Fig.[Th). We begin by fitting a student model composed of a single
Gaussian directly on samples from p*. As shown in Fig.[Ib, this model places its density around
the center of the space—an area with near-zero mass under p*—demonstrating the difficulty of
approximating a complex multimodal distribution with a simple model under standard MLE training.

Next, we fit a teacher model p” with four Gaussian components. Each teacher component approxi-
mately covers two modes of p*. The learned mixture weights are:

o =[0.15,0.26,0.24, 0.33].

We then sample training data from a temperature-modulated version of the teacher, p’(z; 8 = 100).
At this high value of 3, sampling concentrates on the teacher component with the largest weight,
yielding data that primarily covers the bottom three modes of p* (Fig. [2h-b).

A new student model is then trained on these samples. Fig. 2k compares the density contours of the
directly trained student (dashed black) and the distilled student (green). The distilled model clearly
focuses on a smaller region of p* where the teacher emphasized high-density modes, while ignoring
other parts of the support.

To quantify this trade-off, we report the following metrics:

¢ Direct student: Precision = —20.26, Recall = —2.64
« Distilled student (5 = 100): Precision = —0.70, Recall = —42.45

These results confirm our theoretical prediction: as the teacher becomes more selective (higher 53),
the student learns to place greater mass on high-likelihood regions at the cost of covering the full
distribution. In conclusion, knowledge distillation enables simpler models to generate sharper, more
concentrated outputs—a desirable property when sample quality is prioritized over full coverage.

4 Connection to Autoregressive Language Models

4.1 From Gaussian mixtures to autoregressive language models

While the previous section focused on synthetic data from Gaussian mixtures, the core mechanism we
observed—namely, a trade-off between precision and recall modulated by teacher entropy—extends



naturally to autoregressive language models. Distillation has long been a standard technique in
training such models [12], and is now integral to large-scale language model (LLM) pipelines, from
instruction tuning to efficient deployment in resource-constrained environments [[13| [1, [8].

Our Gaussian mixture setup provides a useful abstraction: each component corresponds to a mode of
the data distribution. In language models, this analogy holds at the token level, where the next-token
distribution is modeled as a categorical distribution over a vocabulary. Formally, an autoregressive
language model defines a joint distribution as:

T

p($17.'1}2, R Z’T) = Hp(xt|x<t)’
t=1

and can be reinterpreted as a mixture of trajectory conditionals:

p(xe,...,27) = Z p(x1 =v) - p(xg, ..., zrlx1 =),
veV
mirroring the mixture structure seen in Gaussian models. Moreover, it is common practice to apply
entropy-reducing techniques—such as temperature scaling, top-k, or top-p sampling [25]—to produce
sharper generations. This is analogous to our S-modulated teacher distributions.

Prior work [27]] further shows that the expressivity of each token distribution is upper-bounded by
the dimensionality of the model’s hidden states. Since this dimensionality scales with model size,
smaller models inherently represent fewer modes, and thus face similar capacity bottlenecks to those
seen in our mixture of Gaussian setting.

In the following section, we test whether the precision—recall trade-off observed in simulation also
emerges in LLMs. We perform multistage distillation using the SmolLM?2 [3]] family of models, and
examine how increasing teacher selectivity (controlled via a S-like parameter) affects the student’s
precision and recall.

SmolLM2 T Dataset
360M: p'(D) . D),

Pretrained

SmolLM2 Dataset

1.7B: p* D Data sampling

SmolLM2 Pretraining

135M: p”(D)

Figure 3: Overview of our LLM distillation setup. We first treat the pretrained SmolLM2 1.7B
model as the ground-truth distribution p* and sample 10M sequences to construct dataset D. We then
pretrain a 360M teacher model p’ on D using next-token prediction loss. To control the teacher’s
entropy, we sample from p’ with varying temperature values 7 to generate distillation datasets D7,
Finally, we train a 135M student model p” on each D’ and evaluate its precision and recall with
respect to p*.

4.2 Experimental setup

To test whether the precision—-recall dynamics observed in our synthetic setting also manifest in
real-world models, we conduct a series of distillation experiments using the SmolLM?2 [3] family.
Fig. B] provides an overview of our experimental pipeline, which mirrors the generative structure
outlined in Section[3] We conduct each experiment with five different random seeds.

We begin by treating the pretrained SmolLM?2 1.7B model as the ground-truth distribution p*. To
generate samples from p*, we use the fixed prompt "The" as a consistent start-of-sequence token and
decode with temperature 7 = 1.0 and top-k set to the full vocabulary size. For each generation, we
sample up to 512 tokens, yielding well-formed sentences. We repeat this process to generate 10M
sequences, which we denote as the training dataset D sampled from p*.

To construct the teacher model p’ (Equation , we randomly initialize a 360M parameter SmolLM?2
model and pretrain it from scratch on D using the standard next-token prediction loss. Training



is conducted using 4 GPUs with a total batch size of 256, optimized using AdamW [[15] (initial
learning rate Se-4) with a warmup-square-decay scheduler [28]. We train for 5 epochs and follow
hyperparameter settings from the original SmolLM2 release, with minor adjustments for training
stability as detailed in the Supplementary. We select the best-performing teacher checkpoint based
on the lowest perplexity evaluated on a held-out validation set Dy, of 100,000 sentences sampled
independently from p*.

Next, we distill this teacher model into a 135M student model p”’ (in Equation [2) using temperature-
scaled generations from p’. Specifically, we sample from the pretrained teacher p’ using multiple
temperatures (7 € {0.8,0.875,0.95,1.0}), which correspond to varying levels of entropy in the
output distribution—lower temperatures produce more selective (i.e., lower-entropy) teachers. For
each temperature 7, we generate a new dataset D’ consisting of 10M sequences. We then train the
student model p” from scratch on each D’ using the same training setup and hyperparameters as for
the teacher.

Finally, we measure the student model’s precision and recall with respect to the original 1.7B model
p* using the definitions in Equations [3| and 4l Precision is computed using 100,000 validation
sequences (Dy,, ) sampled with top-k using temperature 7 = 1.0 from the student model p” (D)
, while recall is measured using the same number of samples from the ground-truth p* (i.e., from
Dyq). This evaluation allows us to observe how the precision-recall trade-off evolves as the teacher
becomes more selective via temperature scaling.

4.3 Experimental result

Precision Recall
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Figure 4: Score distribution of Precision (left) and Recall (right) based on the 7 parameter and the
P (D) model. Each box plot illustrates the interquartile range across five seeds, with the orange line
indicating the arithmetic mean. Higher (less negative) values on the y-axis denote better result.

Fig. 4| reports the precision and recall of student models p”’ (SmolLM2 135M) distilled from the
teacher p’ (SmolLM2 360M) under varying sampling temperatures 7, with evaluation performed
against the ground-truth model p* (pretrained SmolLM2 1.7B). Each 7 in x-axis corresponds to
a specific distillation setup, where p” is trained on samples drawn from p’ using temperature 7
(p"”(D)). The final one, p”'(D), represents a baseline where the student is trained directly on data
sampled from p*, without any intermediate teacher.

We observe that as the sampling temperature T decreases, the student model p”’ exhibits higher
precision but lower recall—favoring high-likelihood regions while sacrificing coverage. This behavior
suggests that lower temperatures lead the teacher to produce more peaked outputs, concentrating mass
on dense modes, which the student mimics—trading off coverage for sharpness. The result closely
mirrors our earlier findings in the Gaussian mixture setting, where distillation from a low-entropy
teacher led the student to replicate only the most prominent modes of the original distribution.

These results provide empirical evidence that the geometric behavior of knowledge distillation—
trading off recall for increased selectivity—persists even in large-scale language models. Rather
than merely compressing the teacher’s output space, distillation reshapes the student’s distribution to
emphasize its high-density core. This effect is especially useful in scenarios where sample quality is



more critical than diversity, such as instruction tuning or downstream generation tasks. Our findings
thus reinforce the interpretation of distillation as a mechanism for inducing controlled distributional
concentration, consistent with the minimal setting analyzed earlier.

«  p"(D'r=0.95)

(a7 =0.95 b)T=0.8
Figure 5: 2D UMAP projections of sentence embeddings generated by the ground-truth model
p* (gray) and student models p”(D’) (red) trained via distillation with varying teacher sampling
temperatures 7. As T increases, the student’s output distribution becomes more dispersed in the
embedding space, covering a broader portion of the support of p*. Conversely, lower 7 values result
in tighter clustering around specific regions, reflecting the student’s emphasis on high-likelihood
modes guided by the teacher’s selectivity.

4.4 Embedding space visualization

To further examine how distillation affects the generative behavior of student models, we visualize
the distribution of generated samples from p* and p” (D) in a shared embedding space using Nomic
Embed v2 [18]. While the true distribution p* in language space cannot be directly plotted, sentence
embeddings provide a meaningful proxy for analyzing geometric properties of generated text. Fig.[3]
presents 2D projections (via UMAP [[16]) of sampled sentences from two sources: the ground-truth
model p* (gray) and student models trained via distillation from the teacher using different sampling
temperatures (red). Each subplot corresponds to a different value of 7 used during teacher sampling.

For 7 = 0.95, the student’s generated samples broadly span the same region as p* in the embedding
space, indicating relatively high recall and modest precision. In contrast, for 7 = 0.8, the student’s
samples concentrate in a narrower subregion of the p* embedding space. This tighter clustering
reflects the student’s increased focus on high-probability modes emphasized by the more selective
teacher, consistent with higher precision and reduced recall.

These results confirm that the distributional narrowing induced by distillation—previously observed
in the Gaussian mixture setup and through quantitative precision-recall metrics—also manifests
geometrically in large-scale language models. While embedding projections provide only a coarse
approximation of semantic structure, they visually reinforce our interpretation of distillation as
inducing controlled concentration in the student’s output distribution.

We provide a comprehensive description of all experimental settings in the Appendix.

5 Concluding Remarks

A principled explanation for knowledge distillation in generative modeling. = Despite its
widespread adoption in modern LLM pipelines, knowledge distillation remains largely treated
as a heuristic—a black-box technique assumed to work without a concrete understanding of how or
why. In this paper, we presented what we believe to be the first principled analysis of how distillation
affects generative behavior, both in theory and in practice. Starting from a controlled mixture of
Gaussians setup, we demonstrated that distillation naturally induces a precision—recall trade-off
governed by the entropy of the teacher distribution. Crucially, this theoretical behavior was not only
consistent across simulations but also emerged clearly in experiments with autoregressive language
models.



A minimal yet important working explanation. By systematically varying the selectivity of the
teacher and quantifying the resulting student behaviors, we provided a minimal working explanation
of what knowledge distillation actually does in the generative context: it reshapes the student’s
distribution to concentrate on high-probability regions prioritized by the teacher. This effect is
especially pronounced when the teacher is low in entropy (e.g., via temperature scaling), leading to
sharper but less diverse outputs. When sample quality is preferred over full coverage—a common
scenario in instruction tuning and downstream generation—this trade-off becomes not just acceptable,
but desirable. We believe our framework fills a critical gap in the literature by offering a geometric,
distribution-level interpretation of distillation applicable to both toy and large-scale generative models.

Limitations and future directions. While our analysis offers a foundational step toward demystify-
ing knowledge distillation, several limitations remain. Most notably, our LLM experiments focus
on the pretraining phase—distilling from synthetic teacher data generated via next-token prediction.
However, in practice, distillation is also widely applied during post-training stages, such as instruction
tuning, alignment, or preference modeling. Future work should examine whether the same preci-
sion—recall trade-off persists in these settings, and how it interacts with additional fine-tuning signals.
We anticipate that the underlying dynamics observed in this study will remain valid, but merit further
validation in applied settings.

Societal impact. Our findings suggest that distillation can improve generation efficiency and
reduce deployment cost, contributing positively to accessibility and energy consumption. However,
compressing generative capabilities into smaller models may also lower barriers to misuse (e.g., spam
or disinformation), warranting careful access control and monitoring during deployment.

In summary, we view this work as a step toward grounding the use of distillation in generative
modeling in theoretical and empirical understanding. By identifying and validating a minimal
working explanation, we hope to shift distillation from a rule of thumb to a principled design
tool—one that can be better tuned, adapted, and trusted in the development of future generative model
design.
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A Appendix for Experiment Section

A.1 Pretraining setup

We pretrain two models based on the SmolLM2 architecture to serve as the teacher and student
distributions: a 360M-parameter model for the teacher distribution p’(D) and a 135M-parameter
model for the student distributions p” (DZ.). Both models are trained from scratch using the same
hyperparameter configuration to ensure fair and consistent evaluation.

p'(D) is trained for 5 epochs using 4 NVIDIA V100 GPUs, with DeepSpeed [20] ZeRO Stage 2
optimization and FP16 mixed-precision enabled. The global batch size is 256, achieved using a
per-device micro-batch size of 32 and a gradient accumulation step size of 2. We use the AdamW
optimizer [13] with a learning rate of 5 x 1074, (31, B2) = (0.9,0.95), and no weight decay. We
apply a WSD learning rate schedule [28]]: the first 1% of training steps are reserved for linear warmup,
followed by a stable learning rate phase, and a final linear decay over the last 20% of steps. p” (D..)
is trained with the same settings, except it is only trained for one epoch. All models are initialized
from the HuggingFace checkpoints: HuggingFaceTB/SmolLM2-{size}V, and their weights are
fully reinitialized prior to training.

The training corpus consists of autoregressive language modeling prompts in JSON format. Each
sample includes a single response string, which is tokenized with a maximum sequence length of
512 and padded to full length. We sample 100 files containing 100,000 examples each, resulting in
a total of 10 million training sentences per model. Specifically, p’(D) is trained on 10M samples
generated by a pretrained 1.7B model with the temperature 7 = 1 and top-k set to the full vocabulary
size, while each p” (D) is trained on 10M samples generated by p’(D) with temperature-controlled
decoding for 7 € {0.8,0.875,0.95,1.0}.

Model selection is based on perplexity evaluated on a held-out validation set of 100,000 samples
(Dyar).- We set the temperature 7 = 1 and top-k set to the full vocabulary size when we generate
validation datasets. The checkpoint with the lowest perplexity is used for evaluation. The selected
p’ (D) is used to generate synthetic training data for distillation.

A.2 UMAP-Based visualization setup

To analyze the distributional characteristics of the learned models, we project sentence embeddings
into a 2D space using UMAP [[16]]. For each model distribution (e.g., p*, p” (D’)), we randomly sam-
ple 4,000 responses from p* and 1,000 responses from each p”’(D.), and compute their embeddings
using the all-mpnet-base-v2 model provided by Nomic Embed v2 [18]. The UMAP projection is
configured with n_neighbors=5, min_dist=0.001, and metric="‘cosine’.

B Additional Discussion

B.1 How the precision-recall trade-off manifests across different downstream tasks

Our framework, which identifies knowledge distillation (KD) as inducing a precision-recall trade-
off, can be extended to provide a principled explanation for how distilled models behave across a
spectrum of distinct downstream tasks, such as summarization, reasoning, or Chain-of-Thought (CoT)
generation.

We can conceptualize the modes in our generative simulation (Fig. [Th) as analogies for the data
distributions of these distinct capabilities. In this view, each mode represents a specific skill or task.
A large, generalist teacher model must possess broad capabilities, requiring it to cover this entire
multi-modal landscape. This corresponds to achieving high recall over the complete set of tasks.

Our work demonstrates that the distillation process, particularly with a selective, lower-entropy
teacher (as modulated by (3 in our simulation or a low temperature 7 in language models), guides
the student to concentrate its probability mass on a specific subset of these modes (as empirically
shown in Fig. 2k and Fig. [5). This results in a student model that achieves high precision: it develops
a strong, focused competence on the targeted tasks, often matching or even exceeding the teacher’s
performance on those specific skills.
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This gain in precision, however, occurs concurrently with a reduction in recall. The student model
may lose its generalist abilities or perform poorly on the non-targeted tasks (modes) that were de-
emphasized during distillation. This provides a distribution-level explanation for a widely observed
empirical phenomenon: distilled student models frequently exhibit a loss of general capability while
demonstrating exceptional performance on the specific tasks for which they were optimized.

To offer a concrete example, consider distilling a model for CoT reasoning. Our framework suggests
that the resulting student might become highly proficient at generating a particular style or format
of reasoning chain (high precision), especially if that style was dominant in the teacher’s selective
demonstrations. However, this student might simultaneously lose the ability to generate more diverse,
exploratory, or alternative reasoning paths (low recall) that the original generalist teacher was capable
of producing.
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Answer: [Yes]
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Answer: [Yes]
Justification: We added the limitation section.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
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tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: We provided the full set of assumptions of Gaussian mixtures.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We included experimental details in both the manuscript and supplementary
materials.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will include our implementation code to supplementary materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided all experimental details in both the manuscript and supplementary
materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We conducted experiments using LLMs and reported distribution of the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We will include all details in supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We confirmed Code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed it in the conclusion section.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the paper that produced the code and model.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* The answer NA means that the paper does not release new assets.
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collector.
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