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ABSTRACT

Approximating parameter posteriors in likelihood-free settings is a practical chal-
lenge common to many scientific disciplines. While recent advances in both
computer simulation and generative modeling have paved the way for tractable
inference in high-fidelity environments, they often require prohibitively large sam-
ple sizes in practice. Sequential posterior estimation methods attempt to mitigate
this by iteratively producing proposal distributions that refine the inverse model,
but they lack explicit selection mechanisms for reducing information overlap in
proposed simulations. In this work, we introduce a mutual information-based
acquisition scheme for identifying informative simulation parameters, operating
on disagreement in the parameter space across a weighted posterior ensemble of
atomic proposals. Our approach crucially leverages only an inverse model, making
it compatible with existing direct posterior estimation procedures. We further ex-
tend this approach to the batched setting and formulate a fast approximate algorithm
that preserves posterior convergence guarantees. We demonstrate the potential of
this method on several common simulation-based inference (SBI) benchmark tasks,
and observe performance advantages over non-ensemble counterparts in low-data
regimes.

1 INTRODUCTION

The intractability of likelihood functions is a common barrier to Bayesian inference in complex,
real-world settings. While high-fidelity simulators may be readily available as models of underlying
generative processes, they often do not admit a closed-form likelihood. Simulation-based inference
(SBI) methods work around this limitation by assuming such models can only generate samples, and
attempt to learn a posterior distribution from the resulting simulation data (Cranmer et al., 2020).

Early success in this direction involved easy-to-use methods such as Approximate Bayesian Computa-
tion (ABC) and extensions of kernel density estimation (Rubin, 1984; Beaumont et al., 2002; Sisson
et al., 2007; Marjoram et al., 2003). These methods struggle to scale with the dimensionality of
most real-world applications, however, and neural network-based methods (Papamakarios & Murray,
2016; Lueckmann et al., 2017; Greenberg et al., 2019) have since been proposed to better address this
challenge. Newer methods offer greater flexibility in the approximated probabilistic form used by the
inference pipeline, namely the posterior (Papamakarios & Murray, 2016; Deistler et al., 2022), the
likelihood (Papamakarios et al., 2019; Lueckmann et al., 2019), and likelihood ratio (Hermans et al.,
2020; Durkan et al., 2020). These methods also support a variety of underlying neural density estima-
tors (NDEs), including mixture density networks (Bishop, 1994) and normalizing flows Rezende &
Mohamed (2016); Papamakarios et al. (2021), along with popular extensions (e.g., Real NVP Dinh
et al. (2017), MAE Germain et al. (2015), MAF Papamakarios et al. (2018), etc). Diffusion-based
approaches leverage score estimation and flow matching (Geffner et al., 2023a; Sharrock et al., 2022;
Dax et al., 2023) to the same end, but offer different tradeoffs in scalability and efficiency.

In this work, we introduce the following:

1. An ensembling scheme for managing a collection of posterior models across several rounds
of inference. This scheme provides a tractable means of updating and combining NDEs
qϕ(θ|x) into valid atomic proposals under the model weight posterior p(ϕ|D).
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2. A mutual information-based acquisition scheme that prioritizes parameters expected to
reduce NDE model uncertainty while preserving posterior convergence guarantees. This
approach operates under a notion of residual mutual information and critically does not
require a surrogate likelihood (forward) model. We provide theoretical foundations for this
approach and describe how it can be implemented efficiently in practice.

3. A fully batched version of the mutual information-based scheme described above. Sequential
SBI methods often collect simulation data in parallel, and therefore must commit to batches
of parameter samples in between model updates. The proposed batch acquisition function
provides a holistic means of addressing high information overlap over samples from the
proposal distribution by modeling the joint effects of candidate batches. We further describe
a greedy (1− 1/e− ϵ)-approximate random algorithm for computing the optimal batch.

We evaluate the proposed methods on benchmark datasets against state-of-the-art SBI baselines and
demonstrate that our approach achieves superior performance compared to existing posterior-direct
methods (e.g., SNPE), requiring only a marginal increase in computational cost. These results
highlight the practicality of our method for real-world tasks where sample efficiency is critical, and
we provide ablations to clarify the cost-to-performance tradeoffs for practitioners navigating the
method landscape.

2 BACKGROUND

2.1 NEURAL POSTERIOR ESTIMATION

Simulation-based inference seeks to approximate the posterior distribution p(θ|x) under a stochastic
model p(x|θ). We assume p(x|θ) is defined implicitly via a simulation-based program, and while
samples x ∼ p(x|θ) can be drawn, direct evaluation of the likelihood value p(x|θ) is not possible.
We further focus on the sequential (non-amortized) case, wherein an observational data point of
interest xo is known ahead of time, and we place particular emphasis on learning a high-quality
approximation of p(θ|xo).

Neural Posterior Estimation (NPE) methods approximate the posterior distribution directly by training
an NDE qϕ(θ|x) via maximum likelihood on samples {(θi, xi)}Ni=1, where θi ∼ p(θ) and xi ∼
p(x|θi), i.e., by minimizing the loss

L(ϕ) = Eθ∼p(θ)Ex∼p(x|θ) [− log qϕ(θ|x)] , (1)

where ϕ are the model’s learnable parameters. So long as qϕ is sufficiently expressive, by Proposition
1 of Papamakarios & Murray (2016) qϕ(θ|x) will converge to the true posterior p(θ|x) in the limit as
N → ∞.

Sequential Neural Posterior Estimation (SNPE) methods divide the inference process into multiple
iterations of NPE, improving sample efficiency by leveraging the observation that p(θ|x = xo) is
typically much narrower than p(θ). SNPE methods leverage this by drawing θ values expected to
be more informative about p(θ|xo), using a proposal distribution p̃(θ) at each round that reflects the
model’s current posterior approximation qϕ(θ|x = xo). Training an NDE qϕ on samples θ ∼ p̃(θ)
when p̃ differs from the true prior results in convergence to a proposal posterior,

p̃(θ|x) = p(θ|x) p̃(θ)p(x)
p̃(x)p(θ)

, (2)

rather than the true posterior (where p̃(x) =
∫
Θ
p(x|θ)p̃(θ)dθ). Different SNPE variants correct

for this in distinct ways: SNPE-A (Papamakarios & Murray, 2016) trains qϕ(θ|x) to approximate
p̃(θ|x) at each round and applies importance reweighting afterward; SNPE-B (Lueckmann et al.,
2017) minimizes an importance-weighted loss directly alongside calibration kernels and Bayesian
mixture density networks; and SNPE-C (Greenberg et al., 2019), also known as Automatic Posterior
Transformation (APT), enables directly training posterior models under flexible atomic proposals.

2.2 ATOMIC PROPOSALS WITH APT

Greenberg et al. (2019) observe that minimizing the loss L̃(ϕ) = −
∑N

i=1 log q̃ϕ(θi|x), where

2
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Figure 1: Depiction of the batch active ESNPE pipeline. Candidate parameters θi are drawn the
current round’s proposal p̃(θ), filtered to a sample of size B according to Alg. 2, and run through the
simulator p(x|θ) to generate pairs {(θi, xi)}(r)1:B in round r. The posterior ensemble is subsequently
reweighted, resampled, and retrained (see Appendix E). The next round’s proposal p̃r+1(θ) is then
produced by conditioning the ensembled posterior on the target observation xo.

q̃ϕ(θ|x) =
qϕ(θ|x) (p̃(θ)/p(θ))∫

Θ
qϕ(θ|x) (p̃(θ)/p(θ)) dθ

(3)

produces qϕ(θ|x) → p(θ|x) as N → ∞. This is (again) by virtue of Prop. 1 of Papamakarios &
Murray (2016); L̃(ϕ) is minimized only when q̃ϕ(θ|x) = p̃(θ|x), and thus qϕ(θ|x) = p(θ|x) by Eq.
2. The authors further extend this scheme to arbitrary “atomic proposals,” subverting the need for
closed-form normalization constants in q̃ϕ(θ|x). The atomic loss scheme sets a uniform proposal prior
p̃(θ) = UΘ over a fixed batch of parameters Θ = {θ1, . . . , θM}, producing a categorical q̃ϕ(θ|x):

q̃ϕ(θ|x) =
qϕ(θ|x)/p(θ)∑

θ′∈Θ qϕ(θ′|x)/p(θ′)
(4)

The loss L̃ now no longer relies on any earlier choice of proposal prior (once Θ has been fixed), and
as before, Eθ∼UΘ,x∼p(x|θ)[L̃], is minimized when q̃ϕ(θ|x) is the true proposal posterior p̃(θ|x).

3 METHODOLOGY

While APT ensures the NDE model converges to the true posterior in the limit as N → ∞, in practice
we often face several challenges: the NDE can get “stuck” in certain regions of the parameter space
or require a large number of samples before the true posterior shape begins to emerge. We first seek
to stabilize round-by-round posterior estimates by ensembling several posterior approximations, and
do so in a manner that preserves posterior convergence while maintaining component alignment with
the model weight posterior p(ϕ|D).

3.1 SEQUENTIAL POSTERIOR ENSEMBLES

Given access to the posterior p(ϕ|D) over NDE models qϕ(θ|x), one can marginalize over ϕ to
produce a posterior predictive distribution

qΦ(θ|x,D) =

∫
Φ

qϕ(θ|x)p(ϕ|D)dϕ, (5)

independent of any particular selection of model weights ϕ, conditional on all observed simulation data
D. Access to p(ϕ|D) further enables uncertainty quantification over the learned models, e.g., variance
in the posterior estimate Vϕ|D [qϕ(θ|x)] as explored in Järvenpää et al. (2019); Lueckmann et al.
(2019); Griesemer et al. (2024); Krouglova et al. (2025), but exhibit limitations that prevent existing
methods from applying to atomic proposals in sequential inference settings (detailed discussion

3
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Algorithm 1 Ensemble Sequential Neural Posterior Estimation (ESNPE)
Input: Prior p(θ), target observation xo, round-wise selection size B, round-wise sample size N ,
total rounds R, inference prior p(θ), model prior p(ϕ)
Output: Ensemble posterior approximation q̄Φ(θ|xo)

Let D(0) = {}
Let p̃(0)(θ) = p(θ)
Initialize K NDEs ϕ1, . . . , ϕK ∼ p(ϕ)
for r ∈ [1, . . . , R] do

Draw N samples {θi}1:N ∼ p̃(r−1)(θ)
Actively acquire parameter batch {θi}1:B // (optional) see Alg. 2
for b ∈ [1, . . . , B] do

Simulate xb ∼ p(x|θb)
Set D(r−1) = D(r−1) ∪ {(θb, xb)}

Set D(r) = D(r−1)

for k ∈ [1, . . . ,K] do
Compute SNIS weight w̃(r)

k // see Eq. 7
Resample and rejuvenate qϕk

// see Appendix E

Let q̄(r)Φ (θ|x) =
∑K

j=1 w̃
(r)
j qϕj

(θ|x)
Set p̃(r)(θ) = q̄

(r)
Φ (θ|xo)

return q̄
(R)
Φ (θ|xo)

provided in Appendix F.2). We therefore seek a flexible means of approximating p(ϕ|D) via an
ensemble of atomic proposal distributions qϕi

(θ|x) which can be updated under the most recent
observations, i.e., p

(
ϕ|D(r)

)
at each round r.

Notice that, via Bayes’ rule, for a set of observations {(θ′i, x′
i)}Ni=1,

p(ϕ|D′) =
p(ϕ|D)

∏N
i p(θ′i|x′

i, ϕ)∫
ϕ
p(ϕ|D)

∏N
i p(θ′i|x′

i, ϕ)dϕ
, (6)

where D′ = D ∪ {(θ′i, x′
i)}Ni=1. A model ϕ ∼ p(ϕ|D) can therefore be brought up-to-date, in terms

of its likelihood p(ϕ|D′), by calculating its (normalized) support under the new pairs D′ \D. This
update can be approximated under a collection of K models with self-normalized importance weights
(SNIS; Elvira & Martino (2021)); we want our models to appear as if drawn from p(ϕ|D′) when they
are in fact from p(ϕ|D). For the jth component model qj(θ|x), we calculate its updated weight under
new simulation data D(r) = D ∪ {(θ(r)i , x

(r)
i )}Nr

i=1 observed at round r as

w̃
(r)
j =

p(ϕj |D)
∏Nr

i qϕj

(
θ
(r)
i |x(r)

i

)
∑K

k=1 p(ϕk|D)
∏Nr

i qϕk

(
θ
(r)
i |x(r)

i

) , (7)

where w̃
(r)
j ≈ p(ϕj |D(r)), and is asymptotically consistent as K → ∞. The ensemble posterior

model for round r is then q̄
(r)
Φ (θ|x) =

∑K
j=1 w̃

(r)
j qϕj

(θ|x), which serves as an approximation to the
posterior predictive qΦ(θ|x,D). Each component model can individually be retrained under the APT
loss from Eq. 4 over the shared, fixed batch Θ(r+1) ∼ p̃(r+1) (see Appendix D.1 for more on atomic
ensembles). We further set the next round’s proposal p̃(r+1)(θ) = q̄Φ(θ|xo, D) and repeat until the
simluation budget is reached. This routine is summarized in Algorithm 1.

Note that computing weight updates for large batches can be challenging in practice, often resulting in
a low effective sample size (ESS) and assigning all weight to a single model. Further, model diversity
is key after reweighting, and retraining under the standard atomic loss can hinder the posterior
coverage of p(ϕ|D). We introduce an augmented atomic loss under weighted likelihood bootstraps
(WLB) (Newton & Raftery, 1994) to better rejuvenate ensemble components after each round and
combat premature homogeneity. See Appendix E additional details.
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Figure 2: Iterative batch-wise parameter selection. This diagram depicts the mutual information-
adjusted proposal p̃i as it is actively updated during the batch collection process. The proposals shown
are taken from an intermediate round of a run reported in Table 1 for Batch MI ESNPE on the Two
Moons task, and the plots show proposal likelihoods over the prior support. Blue stars indicate the
parameter θi ∼ p̃i selected at the i-th stage in the batch, while red points show previously collected
points.

Algorithm 2 Random (1− 1/e− ϵ)-approximate joint MI batch collection algorithm
Input: Unweighted sample ϕ1, . . . , ϕK ∼ p(ϕ|D), batch size B, candidate parameters {θ1, . . . , θN},
dataset D
Output: Parameter batch S = {θ′1, . . . , θ′B}

Let S = {}
Let D0 = D
Let q̄(θ|x) =

∑
i qϕi

(θ′|x)
for b ∈ [1, . . . , B] do

for i ∈ [1, . . . , N ] do
Calculate Mi = I[ϕ; θ|xo, D(b−1) ∪ {(xo, θi)}]
Let p̃b(θi) = q̄(θi|xo)exp (−βϵ,NMi) // see Appendix C

Draw θ̃b ∼ p̃b(θ)

Set Db = Db−1 ∪ {(θ̃b, xo)}
Set S = S ∪ {θ̃b}

return S

The shared parameter “suggestion” step takes place when the ensembled proposal prior is constructed
pre-simulation, and the collective “wisdom” is disseminated back to each model post-simulation.
By Eq. 3 we know that each model converges to the true posterior, but due to variability in ϕj , this
may take place at different rates. Figure 3 illustrates this on an example inference run, empirically
demonstrating how several underlying models can contribute to a steady rate of convergence while
any singular model may converge more slowly on its own.

3.2 RESIDUAL MUTUAL INFORMATION

Training with an atomic loss as in APT (Greenberg et al., 2019) can be intuitively likened to “quizzing”
the model qϕ(θ|x) with multiple choice questions. This is illustrated in Eq. 3: given the M possible
options in the batch Θ, the model must learn to correctly assign the most mass to the (θ, x) pair that
was actually observed.

As an extension to this analogy, we posit the following: which questions are the best to ask? Put
another way, which questions stand to “teach” our model the most about the target posterior p(θ|xo)?
Here we turn to mutual information as a means of measuring how much we expect to learn from
certain observations, and weight the prospective impact of those outcomes by how likely the model
currently believes them to be. In particular, we want to calculate

I[ϕ; θ|xo, D
′] = Ep(ϕ|xo,D′) [DKL (p(θ|xo, ϕ,D

′)||p(θ|xo, D
′))] (8)

= H [θ|xo, D
′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]] , (9)
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Figure 3: Posterior plots for the Two Moons task. (A) Two Moons posterior slices under x1, x2, x3,
as reported in Table 1. (B) Approximate posteriors of p(θ|x1) for the Two Moons task after just 128
simulation draws (broken over two rounds of 64 samples).

i.e., the mutual information between simulation parameters θ and posterior model parameters ϕ,
conditional on observational data of interest xo and a prospective new dataset D′ = D ∪ {(θ′, xo)}.
This term in part mirrors the “active SBI” motivations of Griesemer et al. (2024), but we crucially
aim to approximate the mutual information directly as a strategy for sampling guidance (as opposed
to strict acquisition optimization of an alternative objective).

Note that D′ makes a concrete assumption as to the outcome of any candidate θ′: because we
only assume access to an inverse model qϕ(θ|x), we cannot generate alternative possible simulation
outputs (e.g., x′ ∼ p(x|θ′); see details regarding expected mutual information in Appendix B). It is
in this sense that the approach is considered "residual:" we quantify the remaining information after
having added the pair to our dataset. We assume θ′ will yield xo, and weight the resulting mutual
information estimate according to qϕ(θ

′|xo), the current posterior belief of such an outcome. We can
therefore naturally re-weight this model before its use as a proposal prior in a manner that preserves
the full prior support, e.g.,

p̃(θ′) ∝ qϕ(θ
′|xo)exp (−I[ϕ; θ|xo, D

′]) , (10)

where we note the negative exponentiation of the mutual information reflects the goal of minimizing
this term in the face of our beliefs. This preserves posterior convergence guarantees broadly applicable
to atomic proposals, as p̃(θ′) > 0 when θ′ is in the prior support (see Appendix D.2 for details on
posterior convergence under proposal reweighting).

A critical practical challenge when calculating this term is the need to leverage only the current
ensemble component models ϕ ∼ p(ϕ|D) without performing intermediate retraining for every
parameter candidate θ′ (infeasible for even small SBI tasks). We can, however, rewrite Eq. 8 such
that it depends only on p(ϕ|D) and approximate Eq. 9 accordingly:

H [θ|xo, D
′] ≈ − 1

M

M∑
θi∼θ|xo,D

[(
P ′
K

p(θ′|xo, D)p(θi|xo, D)

)
log

(
P ′
K

p(θ′|xo, D)

)]
(11)

Eϕ|D′ [H [θ|ϕ, xo]] ≈ − 1

MK

K∑
ϕi∼ϕ|D

p(θ′|xo, ϕi)

p(θ′|xo, D)

M∑
θj∼θ|xo,ϕi

log p(θj |ϕi, xo)

 (12)

where P ′
K = 1

K

∑K
ϕj∼ϕ|D [p(θ′|xo, ϕj)p(θi|xo, ϕj)]. See Appendix A.1 for a full derivation and A.2

for implementation details.

3.3 BATCH ACQUISITION WITH JOINT MUTUAL INFORMATION

Sequential SBI methods collect simulation data in parallel when possible, drawing a batch of
parameters θ1, . . . , θB ∼ q̃(r) from the current round’s proposal. The reweighting scheme introduced
in Section 3.2 leverages model uncertainty to drive useful parameter exploration, but as with many
myopic acquisition schemes, greedily sampling or optimizing to produce a batch can lead to worse-
than-random performance, over-representing regions of uncertainty (Kirsch et al., 2019). Batch-aware

6
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Table 1: Results comparing ESNPE variants with baseline methods for C2ST (means and 95% CIs
over 10 trials) on Two Moons, Gaussian mixture, and Bernoulli GLM tasks.

Observation
Simulator Method p(θ|x1) p(θ|x2) p(θ|x3)

Two
moons

SMC-ABC 0.986± 0.001 0.983± 0.001 0.994± 0.001
NPSE 0.905± 0.027 0.872± 0.022 0.956± 0.010
FMPE 0.991± 0.006 0.968± 0.006 0.995± 0.005

SNPE-C 0.898± 0.055 0.869± 0.056 0.927± 0.039
TSNPE 0.948± 0.035 0.929± 0.027 0.967± 0.028
ASNPE 0.815± 0.024 0.846± 0.032 0.903± 0.044

ESNPE 0.804± 0.022 0.802± 0.038 0.871± 0.039
ESNPE (MI) 0.808± 0.027 0.812± 0.029 0.872± 0.025

ESNPE (Batch MI) 0.799± 0.021 0.798± 0.036 0.862± 0.016

Gaussian
mixture

SMC-ABC 0.921± 0.006 0.878± 0.005 0.909± 0.006
NPSE 0.758± 0.004 0.712± 0.007 0.754± 0.014
FMPE 0.914± 0.016 0.882± 0.008 0.891± 0.025

SNPE-C 0.765± 0.049 0.746± 0.050 0.765± 0.081
TSNPE 0.812± 0.039 0.773± 0.021 0.786± 0.010
ASNPE 0.730± 0.005 0.707± 0.013 0.709± 0.008

ESNPE 0.729± 0.006 0.709± 0.011 0.711± 0.012
ESNPE (MI) 0.731± 0.004 0.708± 0.008 0.706± 0.009

ESNPE (Batch MI) 0.723± 0.014 0.705± 0.006 0.712± 0.010

Bernoulli
GLM

SMC-ABC 0.991± 0.001 0.994± 0.000 0.994± 0.001
NPSE 0.917± 0.021 0.924± 0.011 0.915± 0.011
FMPE 0.940± 0.036 0.933± 0.035 0.973± 0.022

SNPE-C 0.793± 0.056 0.802± 0.052 0.755± 0.069
TSNPE 0.966± 0.042 0.965± 0.044 0.926± 0.036
ASNPE 0.823± 0.048 0.809± 0.054 0.731± 0.034

ESNPE 0.774± 0.059 0.765± 0.046 0.736± 0.052
ESNPE (MI) 0.816± 0.095 0.834± 0.080 0.728± 0.031

ESNPE (Batch MI) 0.763± 0.054 0.807± 0.068 0.743± 0.038

acquisition, however, can produce diverse sample sets by jointly optimizing over the entire batch,
selecting a coherent collection of samples and reduce information overlap.

We extend the mutual information term I[ϕ; θ|xo, D
′] to allow D′ to include arbitrary batches of

points, i.e., D′ = D ∪ {(θ′i, xo)}1:B . Equations 11 and 12 can be extended accordingly (see
Appendix C), but computation of the term for all possible batches quickly becomes infeasible as
the candidate pool and B grow. To combat this, we formulate a randomized greedy approximation
algorithm for sampling batches with high-information content. Note that deterministically optimizing
our batch selection as

{θ∗1 , . . . , θ∗B} = argmax{θ1,...,θB}I[ϕ; θ|xo, D
′] (13)

breaks the requirement that the effective proposal p̃ must assign non-zero likelihood to θ in the prior
support. We balance these two objectives – finding jointly informative batches while preserving
posterior convergence guarantees – by introducing a stochastic greedy algorithm for selecting high-
information batches, yielding a (1−1/e−ϵ)-approximation in expectation. See Alg. 2 for a summary
of this scheme; Appendix C.2 provides details for approximation guarantees and Appendix D.3 for
details on posterior convergence under joint acquisition. Figure 2 depicts the batch selection process
in action as samples are collected for inference on the Two Moons task. As points are selected from
each (greedily) updated proposal, the conditional model uncertainty changes to reflect previously
selected points. For instance, after collecting θ′2 (a fairly central point in the prior support), the
component models become better aligned through the mid-point (fewer disagreeing fibers near (0, 0)).

4 EXPERIMENTAL RESULTS

To quantify the impact of the proposed ESNPE scheme and its active variants, we evaluate our
method on five SBI benchmark tasks Lueckmann et al. (2021) and compare against several existing
NPE-adjacent approaches. Each task presents with samples from several ground-truth posterior
slices p(θ|xi), allowing for precise evaluation of posterior fit. We primarily report the classifier

7
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two-sample test (C2ST) accuracy between ground-truth and approximate samples; a score of 0.5
indicates the classifier finds the two samples indistinguishable, whereas a score of 1.0 indicates the
samples originate from distinctly different distributions.

4.1 BASELINE NPE METHODS

Benchmark tasks are evaluated on several available NPE baseline methods. SMC-Approximate
Bayesian computation (SMC-ABC) Rubin (1984); Beaumont et al. (2002); Sisson et al. (2007);
Marjoram et al. (2003) is the only non-neural network-based method. Flow-matching Dax et al. (2023),
and score estimation Geffner et al. (2023b) estimation are considered as they directly approximate
the posterior, but their formulations do not support multi-round inference under flexible proposals,
and instead draw their entire simulation budget from the prior. SNPE-C Greenberg et al. (2019)
and ASNPE Griesemer et al. (2024) are both multi-round inference procedures that leverage atomic
losses, and therefore have the most in common with our method. TSNPE (Deistler et al., 2022) is
also a multi-round inference method, but it explicitly truncates the prior in producing the posterior
approximation. We report results for the non-active ESNPE scheme, as well as the single MI and
batch MI acquisition variants introduced in Sections 3.2 and 3.3, respectively.

4.2 COMMON SBI BENCHMARKS

Table 1 reports C2ST scores for each baseline method on three common SBI benchmark tasks:
Two Moons, Gaussian mixture, and Bernoulli GLM Lueckmann et al. (2021). These tasks vary in
difficulty for direct posterior estimation methods. For each task, we evaluate the baseline methods
on three different posterior slices to capture more breadth under the simulation dynamics (some xi
yield far simpler posteriors, for instance). The simulation budget for each setting is fixed at 1,024
samples, with multi-round methods carrying out inference across four rounds of 256 samples. Across
every task and observation, ESNPE-based methods report the best C2ST scores, with the Batch
MI acquisition generally yielding a larger performance advantage. Figure 3 visualizes each of the
evaluated posterior slices, and highlights posteriors from SNPE-C and ESNPE on an example Two
Moons inference round. In the latter case, the posterior plot shows the individual component models
as they seek to find a consistent representation of the data; in low-data settings, component posteriors
can disagree heavily, as seen with the many “tendrils” stemming from a unified mode in the top right
corner.

4.3 DIFFERENTIAL EQUATION-BASED ENVIRONMENTS

Table 2: C2ST and MMD scores for SNPE-C and ESNPE on
the Lotka-Volterra and SIR tasks.

Metric
Task Obs. Method C2ST MMD

Lotka
Volterra

x1
SNPE-C 0.94± 0.01 0.47± 0.01
ESNPE 0.91± 0.02 0.33± 0.01

x2
SNPE-C 0.89± 0.03 0.30± 0.17
ESNPE 0.87± 0.02 0.29± 0.03

SIR
model

x1
SNPE-C 0.91± 0.10 0.87± 0.35
ESNPE 0.89± 0.13 0.88± 0.52

x2
SNPE-C 0.66± 0.12 0.14± 0.15
ESNPE 0.57± 0.02 0.01± 0.01

We additionally evaluate ESNPE
on the more challenging Lotka-
Volterra and SIR tasks, both of
which have simulation dynamics de-
scribed by differential equations and
produce time series observations.

SIR model: The SIR (susceptible-
infected-removed) model captures
simple disease spreading dynamics
in human populations. Its dynamics
are governed by two parameters: a
contact rate β and recovery rate γ.
Simulations produce the number of
infected individuals as a 10-sample
time series in the evolution of the
spreading disease across the popula-
tion.

Lotka-Volterra: Lotka-
Volterra Wangersky (1978); Lotka (1927) is a classic predator-prey model in ecology. Its
dynamics are determined by four parameters governing birth and death rates in the population, and
observations are drawn over a sequence of 20 days.
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A
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Figure 4: Posterior plots for the Lotka-Volterra task. (a) Approximate posterior slice p(θ|x2)
learned by ESNPE, visualized as pairplots in the 4-D parameter space. (b) Noise in the output
space as seen by samples xi ∼ p(x|θ) for θ ∼ p(θ|x2). (c) Noise in the output space under the
approximate posterior, i.e., xi ∼ p(x|θ) for θ ∼ qΦ(θ|x2). The red plus in subplot (a) corresponds to
the posterior MAP, and fill area corresponds to a 5%-95% envelope around the median path. The
discrete subsample points represent the 20-dimensional reference observation x2.

In Table 2, we report C2ST and maximum mean discrepancy (MMD) scores for two observations
across both tasks. Here we highlight the SNPE-C and ESNPE methods in order to isolate the effects
of the ensemble dynamics. Both models are run for eight inference rounds, collecting 256 samples
per round. We observe that ESNPE attains a consistent performance advantage over SNPE-C in each
setting and on both metrics, with the exception of the MMD score under x1 of the SIR model.

Figure 4 shows reference samples for the Lotka-Volterra simulator. Subplot (c) shows several draws
from the posterior approximation learned by ESNPE under observation x2. While the reference
observation (the discrete subsample points) is covered under the posterior draws, there are distinct
indications of mis-calibrated posterior mass that show in the observation space (e.g., t ≈ 8, t ≈ 14
for the predator sample).

The results seen across common SBI benchmarks, as well as the more challenging differential
equation-based settings, indicate ESNPE’s broad performance advantage with respect to key posterior
quality metrics like C2ST and MMD. The dependence of ESNPE on several underlying models can
increase the computational cost, however, especially when parallelization is difficult. Please see
Appendix F for additional in-depth analyses, including a discussion on differences across batched and
non-batched method performance, time complexity and empirical runtimes, etc. Appendix G provides
additional experimental results and hyperparameter ablations that may help guide practitioners when
evaluating the compute-to-performance tradeoffs.

5 CONCLUSION

Recent advances in SBI methods have significantly improved the feasibility of performing accurate
likelihood-free inference in challenging real-world settings. Operating in low-data settings remains
a core practical consideration, however, especially when working with slow/expensive simulation
systems. In this work, we proposed a general ensembling scheme for collectively training and
combining groups of atomic proposal priors across rounds of sequential posterior estimation. We
extended this scheme by proposing a means of approximating the information content of prospective
simulation parameter candidates, further capitalizing on model uncertainty and guiding sampling
toward useful regions of the parameter space. We extended this scheme to the batch setting and
formulated a fast, greedy approximation algorithm that retains posterior convergence guarantees while
targeting informative batches of simulation parameters. Across several common SBI benchmarks, we
observe the ensemble schemes outperform baseline methods on relevant measures of posterior quality
when operating under tight simulation budgets. These results indicate carefully balanced ensemble
methods with active selection schemes are strong contenders for tackling challenging SBI tasks in a
more stable, sample-efficient manner than existing approaches.
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A MUTUAL INFORMATION UNDER PROSPECTIVE DATA

In Section 3.2, we formulate a notion of residual mutual information where we seek to quantify the
remaining information after having observed individual parameter prospects. Fully calculating this
term requires entire ensemble updates (as discussed in Section E), which can be computationally
expensive for even moderately sized K or parameter pools.

A.1 DEPENDENCE UNDER p(ϕ|D)

In this section, we decompose the mutual information as presented in Eq. 8 to arrive at a means of
approximating entropy terms when we only permit a conditional dependence on the current dataset
D (i.e., assuming we can’t explicitly perform model updates under every candidate θ′ in practice).

Let D′ = D ∪ {(θ′, xo)}. Then we have the mutual information between inference parameters θ and
posterior model parameters ϕ:

I[ϕ; θ|xo, D
′] =

∫
Φ

∫
Θ

p(θ, ϕ|xo, D
′) log

(
p(θ, ϕ|xo, D

′)

p(θ|xo, D′)p(ϕ|xo, D′)

)
dθdϕ

=

∫
Φ

∫
Θ

p(θ|ϕ, xo, D
′)p(ϕ|xo, D

′) log

(
p(θ|ϕ, xo, D

′)p(ϕ|xo, D
′)

p(θ|xo, D′)p(ϕ|xo, D′)

)
dθdϕ

=

∫
Φ

p(ϕ|xo, D
′)

[∫
Θ

p(θ|ϕ, xo, D
′) log

(
p(θ|ϕ, xo, D

′)

p(θ|xo, D′)

)
dθ

]
dϕ

=

∫
Φ

p(ϕ|xo, D
′) [DKL (p(θ|ϕ, xo, D

′)||p(θ|xo, D
′))] dϕ

= Ep(ϕ|xo,D′) [DKL (p(θ|ϕ, xo, D
′)||p(θ|xo, D

′))] .

(14)

The mutual information can also be expressed in terms of entropies:

I[ϕ; θ|xo, D
′] =

∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log

(
p(ϕ, θ|xo, D

′)

p(ϕ|xo, D′)p(θ|xo, D′)

)
dϕdθ

=

∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log

(
p(ϕ|θ, xo, D

′)p(θ|xo, D
′)

p(ϕ|xo, D′)p(θ|xo, D′)

)
dϕdθ

=

∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log p(ϕ|θ, xo, D

′)dϕdθ

−
∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log p(ϕ|xo, D

′)dϕdθ

= −H [ϕ|θ, xo, D
′]−

∫
Θ

∫
Θ

p(θ|ϕ, xo, D
′)p(ϕ|xo, D

′) log p(ϕ|xo, D
′)dϕdθ

= −H [ϕ|θ, xo, D
′]−

∫
Θ

p(ϕ|xo, D
′) log p(ϕ|xo, D

′)

[∫
Θ

p(θ|ϕ, xo, D
′)dθ

]
dϕ

= −H [ϕ|θ, xo, D
′] +H [ϕ|xo, D

′]

= H [ϕ|xo, D
′]− Eθ∼p(θ|D′) [H [ϕ|θ, xo]] ,

(15)

and by symmetry of the joint factorization, we have generally

I[ϕ; θ|xo, D
′] = Ep(θ|xo,D′) [DKL (p(ϕ|θ, xo, D

′)||p(ϕ|xo, D
′))]

= Ep(ϕ|xo,D′) [DKL (p(θ|ϕ, xo, D
′)||p(θ|xo, D

′))]

= H [θ|xo, D
′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]]

= H [ϕ|xo, D
′]− Eθ∼p(θ|D′) [H [ϕ|θ, xo]] .

(16)

Out of convenience, we seek to approximate the form

I[ϕ; θ|xo, D
′] = H [θ|xo, D

′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]] . (17)
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We first note that, by Bayes’ rule,

p(ϕ|D′) =
p(θ′|xo, ϕ)p(ϕ|D)

p(θ′|xo, D)
, (18)

which can be used to rewrite a posterior dependence on D′ in terms of D:

p(θ|xo, D
′) =

∫
p(θ|xo, ϕ)p(ϕ|D′)dϕ

=

∫
p(θ|xo, ϕ)

[
p(θ′|xo, ϕ)p(ϕ|D)

p(θ′|xo, D)

]
dϕ

=
1

p(θ′|xo, D)

∫
p(θ|xo, ϕ)p(θ

′|xo, ϕ)p(ϕ|D)dϕ

=
1

p(θ′|xo, D)
Eϕ|D [p(θ|xo, ϕ)p(θ

′|xo, ϕ)] ,

(19)

The entropy terms can be rewritten accordingly, yielding a representation of I[ϕ; θ|xo, D
′] when we

just have access to a model p(θ|xo, D) and model weight posterior p(ϕ|D) trained up to data D
(rather than D′ explicitly). For the “marginal entropy”:

H [θ|xo, D
′] = Eθ|xo,D′ [− log p(θ|xo, D

′)]

= −Eθ|xo,D

[(
p(θ|xo, D

′)

p(θ|xo, D)

)
log p(θ|xo, D

′)

]
= −Eθ|xo,D

[(Eϕ|D [p(θ′|xo, ϕ)p(θ|xo, ϕ)]

p(θ′|xo, D)p(θ|xo, D)

)
log

(Eϕ|D [p(θ′|xo, ϕ)p(θ|xo, ϕ)]

p(θ′|xo, D)

)]
= −Eθ|xo,D

[(
P ′
K,θ

p(θ′|xo, D)p(θ|xo, D)

)
log

(
P ′
K,θ

p(θ′|xo, D)

)]
(20)

where

P ′
K,θ =

1

K

K∑
ϕj∼ϕ|D

[p(θ′|xo, ϕj)p(θ|xo, ϕj)] , (21)

and the “expected conditional entropy”

Eϕ|D′ [H [θ|ϕ, xo]] = Eϕ|D′
[
Eθ|xo,ϕ [− log p(θ|ϕ, xo)]

]
= Eϕ|D

[
p(θ′|xo, ϕ)

p(θ′|xo, D)
Eθ|xo,ϕ [− log p(θ|ϕ, xo)]

]
.

(22)

A.2 EFFICIENT APPROXIMATION

With the mutual information term represented in ϕ|D, expectations can be approximated via an MC
estimate over K current ensemble components, i.e.,

H [θ|xo, D
′] ≈ − 1

M

M∑
θi∼θ|xo,D

[(
P ′
K,θi

p(θ′|xo, D)p(θi|xo, D)

)
log

(
P ′
K,θi

p(θ′|xo, D)

)]
(23)

and

Eϕ|D′ [H [θ|ϕ, xo]] ≈ − 1

LK

K∑
ϕi∼ϕ|D

p(θ′|xo, ϕi)

p(θ′|xo, D)

L∑
θj∼θ|xo,ϕi

log p(θj |ϕi, xo)

 (24)

These terms can be calculated efficiently over a candidate pool of size N . We define the following
matrices:
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• Matrix P ′
NK shaped N × K, where (P ′

NK)n,k = p(θ′n|xo, ϕk) for the n-th candidate
parameter θ′n and k-th posterior model ϕk.

• Matrix PMK shaped M × K, where (PMK)m,k = p(θm|xo, ϕk), and θm ∼ p(·|xo, D).
Note that θm are indeed drawn from the entire ensemble (which is composed of individual
ϕk), but the stored values include each of the K models’ evaluated likelihoods on those
parameters.

• Matrix PLK shaped L×K, where (PLK)ℓ,k = p(θℓ|xo, ϕk), and θℓ ∼ p(·|xo, ϕk) for k-th
posterior model ϕk. Here the parameters evaluated under each model are not shared across
component models but drawn and evaluated under each model individually.

These matrices can be computed upfront for each round of inference, given the current set of ensemble
components {ϕ1, . . . , ϕK} and parameter candidate pool {θ′1, . . . , θ′N}. The necessary quantities for
the entropy approximations can then be calculated efficiently in a vectorized manner:

• Parameter candidate marginals: p(θ′|xo, D) = 1
KP ′

NK1K,1

• Ensemble marginals: p(θ|xo, D) = 1
KPMK1K,1

• Component log-likelihood sums:
∑L

θj∼θ|xo,ϕi
log p(θj |ϕi, xo) = P⊤

LK1L,1

• Expected component joint likelihood: P ′
K = 1

KPNKP⊤
MK , where

P ′
K,i =

1

K

K∑
ϕj∼ϕ|D

[p(θ′|xo, ϕj)p(θi|xo, ϕj)] .

where 1K,1 is a K-sized column vector of 1s. This structure is amenable to a dynamic programming
approach for larger batch sizes, and can be trivially expanded under the routine in Alg. 2 and detailed
further in Appendix C. See further runtime analyses in Appendix F.3.

B LIKELIHOOD SURROGATE EXTENSION

The prospective mutual information terms discussed in Sections 3.2 and C explicitly consider the
impact of observing xo for parameter candidates. This is a convenient option provided it only requires
an inverse model (we can draw likely θ′ ∼ p(θ|xo) directly), but this perspective can yield a shallow
estimate given it only incorporates a single output target. In theory our prospective terms could
include an outer expectation over likely parameter outputs for each candidates, i.e.,

max
θ′∼θ|xo

Ex′∼x|θ′ [I[ϕ; θ|xo, D ∪ {(θ′, x′)}]] .

While such a scheme may yield a more holistic estimate of a prospective parameter’s impact, we avoid
this form due to its reliance on an independent forward model p(x′|θ′) which can run counter to the
uncertainty present across the direct posterior models being used to produce round-wise proposals.

C BATCH ACQUISITION

C.1 PROSPECTIVE BATCH FORMULATION

Section A formulates the mutual information term around a prospective dataset D′ = D ∪ {(θ′, xo)},
i.e., only considering the impact of a single pair (θ′, xo). In the batched setting, however, we want
to consider the impact of an entire collection of points {(θi, xi)}1:B . This enables the selection
method to better coordinate the collective impact of the simulation points being considered for the
next inference round.

Here we consider a similar formulation to that used in Section A, but include joint probabilities over
several candidates under D′ = D ∪ {(θi, xi)}1:B :

p(ϕ|D′) =

∏
i [p(θ

′
i|x′

i, ϕ)] p(ϕ|D)∏
i p(θ

′
i|x′

i, D)
, (25)
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with the associated expansion of the marginal p(θ|xo, D
′):

p(θ|xo, D
′) =

∫
p(θ|xo, ϕ)p(ϕ|D′)dϕ

=

∫
p(θ|xo, ϕ)

[∏
i [p(θ

′
i|x′

i, ϕ)] p(ϕ|D)∏
i [p(θ

′
i|x′

i, D)]

]
dϕ

=
1∏

i [p(θ
′
i|x′

i, D)]
Eϕ|D

[∏
i

p(θ′i|x′
i, ϕ)

]
.

(26)

Finding the optimal batch over the associated mutual information term term, i.e.,

{θ∗1 , . . . , θ∗B} = argmin
{θ1,...,θB}⊆Θ′

H [θ|xo, D
′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]] , (27)

where Θ′ is an N > B-sized set of candidate parameters, is computationally infeasible due to the
combinatorially large number of batches to consider. As in Section C, we also consider constraints
when only an inverse model is available, namely drawing candidates from the current posterior
θ′ ∼ qϕ(θ|xo) and considering the impact under xo with post-hoc reweighting.

C.2 RANDOM GREEDY (1− 1/e− ϵ)-APPROXIMATION

The greedy approximation procedure described in Alg. 2 seeks to optimize the joint mutual infor-
mation of the selected batch, but with two concessions: 1) an efficient, greedy approximation, and
2) randomized selection to preserve prior support. Below we show the former yields a (1 − 1/e)-
approximate algorithm via submodularity, and relax this to a (1 − 1/e − ϵ) approximation in
expectation to meet the latter.

C.2.1 PROOF OF SUBMODULARITY

Nemhauser et al. Nemhauser et al. (1978) provide an analytical basis for simple greedy approxi-
mations when maximizing a monotone submodular set function. Submodularity captures a notion
of diminishing returns, which intuitively applies when optimizing mutual information-based terms
point-by-point.
Definition C.1. Let f be a real-valued function defined on subsets of a universe U . f is submodular
if, for all S ⊆ T ⊆ U and u ̸∈ T ,

f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ) (28)

Let M(Θ) = I[ϕ; θ|xo, D ∪ {(θ′, xo)}θ′∈Θ], a real-valued set function representing the batch-wise
mutual information under a batch of parameters Θ ⊆ Θ′, where Θ′ is a fixed set of candidates (see
also Eq. 27).
Lemma C.1. Let ΘS = {i ∈ S|Θi}. The marginal difference in M under the additional simulation
parameter θu is

∆u(ΘS) = M(ΘS ∪ {θu})−M(ΘS) = −I[θu; θ|xo, D,ΘS ]. (29)

Proof. Given the existing batch selection ΘS and an additional simulation parameter θs, the marginal
difference under M can be expanded as

M(ΘS ∪ {θu})−M(ΘS) = I[ϕ; θ|xo, D,ΘS , θu]− I[ϕ; θ|xo, D,ΘS ] (30)

By definition, we have the information interaction

I (ϕ; θ; θu|xo, D,ΘS) = I[ϕ; θ|xo, D,ΘS ]− I[ϕ; θ|xo, D,ΘS , θu] (31)

Note that the information interaction is symmetric for any random triple (X,Y, Z)

I(X;Y ;Z|W ) = I[Y ;Z|W ]− I[Y ;Z|W,X]. (32)
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We therefore write the information interaction I (ϕ; θ; θu|·) as

I (ϕ; θ; θu|xo, D,ΘS) = I[ϕ; θ|xo, D,ΘS ]− I[ϕ; θ|xo, D,ΘS , θu]

= I[θ; θu|xo, D,ΘS ]− I[θ; θu|xo, ϕ,D,ΘS ]
(33)

Since considered parameters θu are drawn θu ∼ p(θ|xo, ϕ), ϕ ∼ p(ϕ|D), we have conditional
independence in the rightmost mutual information term above, and thus I[θ; θu|xo, ϕ,D,ΘS ] = 0.
In total, this yields

∆u(ΘS) = M(ΘS ∪ {θu})−M(ΘS)

= I[ϕ; θ|xo, D,ΘS , θu]− I[ϕ; θ|xo, D,ΘS ]

= −I (ϕ; θ; θu|xo, D,ΘS)

= −I[θ; θu|xo, D,ΘS ].

(34)

Lemma C.2. M is submodular over sets Θ ⊆ Θ′.

Proof. Let ΘS ⊆ ΘT ⊆ Θ′. For θu ̸∈ ΘT ,

I[θ; θu|xo, D,ΘS ] ≤ I[θ; θu|xo, D,ΘT ] (35)

which follows from the general “information never hurts” principle Krause & Guestrin (2012)
I[X;Y |Z,W ] ≤ I[X;Y |Z] for any random variables X,Y, Z,W . This is equivalent to

∆u(ΘS) ≥ ∆u(ΘT )

=⇒ M(ΘS ∪ {θu})−M(ΘS) ≥ M(ΘT ∪ {θu})−M(ΘT )
(36)

using the form derived in lemma C.1. This is exactly the desired submodularity inequality from
Eq. 28; hence M is submodular over sets Θ ⊆ Θ′.

Note further that the (conditional) mutual information is non-negative and thus ∆u(ΘS) ≤ 0, ensuring
the objective is monotone non-increasing. Hence our objective is monotonic and submodular; by
Nemhauser et al. Nemhauser et al. (1978), greedy selection of candidates under M yields a (1− 1/e)-
approximate algorithm for the optimal batch.

C.2.2 STOCHASTIC RELAXATION

Deterministic optimization via a greedy (1− 1/e)-approximate routine as shown in Section C.1 can
violate posterior convergence guarantees by effectively assigning zero likelihood to parameters in the
support of the prior. Here we preserve the greedy framework to loosely uphold the optimal batch
approximation, but introduce a random sampling step to ensure all candidates in the prior support
have some possibility of selection (with an ϵ-factor concession).

Nemhauser et al. (Nemhauser et al., 1978) further show that if one greedily selects items with marginal
gain at least (1− ϵ)∆max(S), then after B steps f(SB) ≥ (1− 1/e− ϵ)f(OPTB), where OPTB is
the maximal B-sized set under f . We seek to show our scheme attains this in expectation at each
step, i.e.,

E[∆it(St−1)] ≥ (1− ϵ) max
j ̸∈St−1

∆j(St−1). (37)

We say the resulting scheme attains a (1− 1/e− ϵ)-approximation in expectation.

Lemma C.3. Let βϵ,N (Mbi) = αϵ,N (Mbi − Mb−1) = αϵ,N∆bi(Θb−1), where Mbi =
I[ϕ; θ|xo, Db−1 ∪ {(xo, θbi)}], θbi is the i-th candidate being considered at step b, and Mb−1 is
the MI term for the candidate selected in step b− 1. Then

E[∆(Θb−1)] ≥ (1− ϵ) max
θj ̸∈Θb−1

∆j(Θb−1) (38)

when p̃b(θbi) ∝ q̄(θi|xo)exp (−βϵ,N (Mbi)) (from Alg. 2) and αϵ,N ≥ logN
ϵ∆max

.
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Proof. Expanding, we have

p̃b(θbi) =
exp (αϵ,N∆bi(Θb−1))∑
j exp

(
αϵ,N∆bj (Θb−1)

) (39)

(note that we temporarily ignore q̄(θi|xo), as it’s a post-hoc re-weight given the assumed output).

Then the expectation

Ep̃b
[∆(Θb−1)] =

∑
θj ̸∈Θb−1

p̃bj∆bj (Θb−1) =
L

αϵ,N
− H[p]

αϵ,N
(40)

where L = log
∑

j exp
(
αϵ,N∆bj (Θb−1)

)
. We then bound each term in the expanded expectation,

with H[p] ≤ logN (by entropy convexity) and L ≥ αϵ,N∆max (by definition of L). Hence

Ep̃b
[∆(Θb−1)] ≥ ∆max −

logN

αϵ,N
, (41)

and when αϵ,N ≥ logN
ϵ∆max

, plugging in yields Ep̃b
[∆(Θb−1)] ≥ (1− ϵ)∆max.

D POSTERIOR CONVERGENCE

In Sections 3.1, 3.2, and 3.3, we introduce changes to otherwise valid atomic proposal distributions.
Here we show that these modifications yield valid atomic proposals or otherwise observe necessary
posterior convergence guarantees.

D.1 ATOMIC ENSEMBLE PROPOSALS

In ESNPE (Algorithm 1), we ensemble K atomic proposal distributions produced under the APT
loss scheme, as shown in Eq. 3. In particular, the round-wise proposal is defined as

q̄
(r)
Φ (θ|x) =

K∑
j=1

w̃
(r)
j qϕj (θ|x), (42)

which is merely a linear combination of atomic proposals. After the round’s parameters Θ =
{θ1, . . . , θB} are drawn i.i.d. from the proposal distribution, the loss scheme (as shown in Eq. 4) no
longer depends on the form of the proposal distribution itself. Further, each component distribution
in the ensemble is an individually valid proposal (it’s part of its own APT trajectory), so each
component assigns non-zero likelihoods to parameters in the prior support. Therefore any setting of
w̃(r), including the extreme case where a single component receives all of the weight (recall that w̃ is
self-normalized), yields an ensemble that is a valid atomic proposal covering the entire prior support.

D.2 WEIGHTED RESAMPLING

As highlighted in Sections 2.2 and D.1, APT’s atomic loss scheme does not explicitly depend
on the form of the proposal distribution once a batch of parameters Θ has been drawn. Hence
any reweighting of a valid proposal remains valid, so long as it upholds the same support. Let
w : Θ → R be an arbitrary real-valued weighting function defined over the parameter space Θ. Then
p̃w(θ) ∝ p̃(θ) exp(w(θ)) is a valid atomic proposal when p̃ is, as exp(w(θ)) > 0 for all θ ∈ Θ.

D.3 JOINT ACQUISITION

Proposition 1 of Greenberg et al. (2019) shows that the APT loss scheme recovers the full posterior
shape in the limit as N → ∞ in expectation under data collected Θ ∼ V, θ ∼ UΘ, x ∼ p(x|θ),
where V (Θ) is a joint “hyperproposal” defined over parameter batches Θ. V is generally allowed to
range over parameter batches that include data drawn from previous rounds, and therefore collected
under different point-wise proposals. The batch scheme introduced in Alg. 2 can simply be seen as
factorizing a particular choice of V (where each factor is atomic and covering the prior support) at
each round, where batches Θ ∼ V are drawn collectively, and as seen in the standard APT scheme
can range over previously drawn θ from arbitrary atomic proposals.
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Algorithm 3 ENSPE update step (ensemble rejuvenation)
Input: Unweighted sample ϕ1, . . . , ϕK ∼ p(ϕ|D), batch size B, candidate parameters {θ1, . . . , θN},
current round r, dataset D(r)

Output: Rejuvenated, unweighted ensemble ϕ̂1, . . . , ϕ̂K

[Re-weight] Compute weights w(r)
i for i = 1, . . . ,K

[Re-sample] Draw ϕ̂i ∼ Cat
(
w

(r)
1 , . . . , w

(r)
K

)
[Re-train] Run S SGD steps under each component qϕ̂i

via WLB under D(r)

E SAMPLING FROM p(ϕ|D)

In Section 3.1, we alluded to more in-depth strategies for rejuvenating ensemble components beyond
simply re-weighting component contributions. Here we include additional details for a routine that
updates posterior models in a particle filtering-like manner. Note that this scheme can be seen as
an optional extension to the re-weighting scheme presented in Section 3.1 in terms of theoretical
implications, but in practice it may have a significant impact on performance depending on the size
of batch updates.

1. Re-weight: As seen in Eq. 7, we compute each particle’s support on the new data batch:

u
(r)
i =

Nr∏
j

qϕi

(
θ
(r)
j |x(r)

j

)βr

; w
(r)
i =

u
(r)
i∑K

k=1 u
(r)
k

(43)

where ϕ1, . . . , ϕK are assumed to initially make up an unweighted sample from p(ϕ|D),
and βr is a round-wise annealing schedule {0, . . . , 1} (smooths sharp weight updates for
large Nr). The effective model weights under the newly updated posterior can then be seen
as

p(ϕi|D(r+1)) =
p(θ′|x′, ϕi)p(ϕk|D(r))

p(θ′|x′, D(r))
(44)

= w
(r)
i · p(ϕi|D(r)) (45)

2. Re-sample: Draw an unweighted particle group by resampling ϕ̂i ∼
Categorical

(
w

(r)
1 , . . . , w

(r)
K

)
.

3. Re-train: Run S SGD steps to rejuvenate and diversify each model under a weighted
likelihood bootstrap (WLB) scheme: νj ∼ Dirichlet(1, . . . , 1) for each (θj , xj) ∈ D(r).

Note that this procedure can be run several times of the dataset collected at the current D(r) to
approximate increasingly small, refined steps through the model space Φ. A balanced practical
scheme should identify a trade-off between the frequency of chunked updates each round and
computational budget; frequent re-weighting and re-training can be expensive, for instance, but
generally facilitates better preservation of model diversity between sampling stages.

F ADDITIONAL ANALYSES

F.1 TRADEOFFS WITH BATCHED METHODS

Non-active ESNPE can occasionally outperform the active mutual information variants, as can be
seen in Table 1. While each method is unbiased and will converge to the true posterior in the limit
as N → ∞, behavior over small sample sizes in data scarce settings is subject to large amounts
of variation. Ensembling in general can help improve consistency and robustness in these settings
(compared to single SNPE-C runs, for instance), and naturally features a form of active selection
when refining the posterior estimate round after round during inference. Ideally, the MI selection
procedure helps capitalize on model uncertainty to improve parameter guidance, but estimating
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model uncertainty is itself subject to noise and can at times lead the model astray. Across our
experiments, we find the full batch MI variant is the single best go-to method, but in practice one
should not expect a one-size-fits-all approach or realistically expect the active methods to uniformly
outperform non-active ESNPE. We hypothesize that the active MI approaches are more likely to
exhibit a performance advantage when there is early disagreement across component models under
the prior. For instance, in Figure 3B, one can see explicit variability across component models as
the ensemble attempts to find a consistent explanation for the first few rounds of simulations. This
clear “disagreement” across models was more apparent on the Two Moons setting in our experiments,
which may go some way to explaining the consistent batch MI outperformance on that environment
in particular.

F.2 LIMITATIONS OF EXISTING UNCERTAINTY-DRIVEN SBI METHODS

In Section 3.1, we referenced four related works (Järvenpää et al., 2019; Lueckmann et al., 2019;
Griesemer et al., 2024; Krouglova et al., 2025) that leverage the posterior over model weights, in
one form or another, to capitalize on uncertainty in the density estimator. Each approach has express
limitations that make it incompatible or non-trivial to adapt to the APT setting, which in part motivates
the flexibility in our formulation. In short, each existing method either cannot operate over arbitrary
proposal distributions or involves optimizations that bias the posterior estimate:

1. In Järvenpää et al. (2019), the authors recognize explicitly that their use of an acquisition
function (Eq. 2 in the paper) can bias the proposal distribution, “causing the density
estimate to diverge from the true posterior.” They further acknowledge that leveraging
atomic proposals could be one way to correct for this, but avoid embracing any such
corrective factor due to leakage concerns and complications adapting their proposed loss
function.

2. In Lueckmann et al. (2019), the proposed approach leverages an ensemble of likelihood
surrogates, not posterior models. This entails an entirely different set of tradeoffs, and
cannot be directly used in the APT scheme. Further, this approach shares similar constraints
to Järvenpää et al. (2019) in that parameters are selected via explicit optimization of an
acquisition function (due to not upholding prior support, for instance), and is not compatible
with arbitrary proposal distributions (making its adaptation to sequential settings non-trivial).

3. In Krouglova et al. (2025), the authors present several means of quantifying uncertainty
in the posterior estimate, but they rely entirely on the use of Gaussian processes (GPs) for
density estimation. This severely limits the portability of these techniques to new classes
of generative models, e.g., flow-based models, and like Järvenpää et al. (2019) leverage
optimization of an acquisition function that may violate the prior support across multi-round
inference.

4. In Griesemer et al. (2024), a BNN / MC-dropout approach is used to implicitly model
uncertainty in the posterior estimate. This is formulated as a variation of SNPE, but like
Järvenpää et al. (2019), can bias the posterior estimate due to “blind spots” where the
acquisition step effectively assigns zero likelihood during parameter selection.

F.3 COMPUTATIONAL COMPLEXITY AND EMPIRICAL RUNTIMES

The non-active ESNPE ensembling scheme has an increased training time burden linear in K
compared to SNPE-C. Let TN be the time it takes to train a neural density estimator (NDE) over
N samples for one round of SNPE-C. If we carry out inference across R rounds, the training time
complexity of SNPE-C is O(RTN ). Non-active ESNPE increases this to O(KRTN ), accounting for
the K models that will each be trained on all N samples each round. Note that the inference pipeline
has a bottleneck during simulation: we must train the NDE before drawing proposal parameters for
simulation, but we only simulate once per round. We can therefore parallelize the training of the K
ensemble models over the previous round’s data, easing the additional training burden. In Table 3, we
report wallclock times for full ESNPE inference runs with values of K = 4, 8, 16 with and without
the batch MI selection step, as well as reference times under SNPE-C and T-SNPE. Reported times
are averaged over five runs on the three benchmark environments from Table 1.
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Table 3: Wallclock runtimes for batched and non-batched methods of ESNPE at various values of K,
along with baseline runtimes of SNPE-C and TSNPE routines.

Metric
Simulator Method Wallclock time (s) Wallclock time, batched (s)

Two
moons

SNPE-C 17.3± 1.2 –
T-SNPE 34.9± 1.5 –

ESNPE (K = 4) 30.1± 1.1 30.3± 2.8
ESNPE (K = 8) 61.1± 6.1 65.1± 0.5

ESNPE (K = 16) 118.2± 13.4 126.4± 9.3

Gaussian
mixture

SNPE-C 15.0± 2.1 –
T-SNPE 34.5± 2.7 –

ESNPE (K = 4) 25.2± 1.3 26.1± 1.5
ESNPE (K = 8) 46.4± 2.3 47.99± 1.4

ESNPE (K = 16) 101.1± 15.5 102.2± 2.4

Bernoulli
GLM

SNPE-C 26.1± 3.7 –
T-SNPE 103.0± 3.2 –

ESNPE (K = 4) 44.8± 1.5 48.5± 1.5
ESNPE (K = 8) 108.7± 2.7 118.2± 3.5

ESNPE (K = 16) 304.9± 6.3 307.2± 27.1

Here we find that parallel processing brings the ESNPE training time multiplier on TN to roughly
K/2 (on our hardware): across each setting, we see that the K = 4 incurs approximately double the
wallclock time of the single-model SNPE-C reference, for instance. Training ESNPE with K = 4 is
often faster than single-model T-SNPE (which incurs additional time due to sampling), demonstrating
parity with commonly used SBI methods with a small but feasible setting of K. Recall that all
experiments reported in the manuscript ran ESNPE with K = 8.

Additionally note the marginal extra time burden of batched MI ESNPE. While the full batch MI
selection procedure has a time complexity of O(BMNK) (see Appendix A.2 for full details), it
consists almost entirely of fast matrix multiplication on the GPU and employs dynamic programming
to minimize wasted computation across the B selected points. Above we find that the additional time
incurred for the selection procedure is more or less negligible at this scale (B = 256, N = 1024,
M = 256, K = {4, 8, 16}).

G ADDITIONAL RESULTS

G.1 TASK DIMENSIONALITY

Table 4 captures a brief summary of the parameter and output dimensionality for each of the
tasks/environments reported in the paper.

Table 4: Task θ and x dimensions.

Task θ-dim x-dim
Two moons 2 2

Gaussian mixture 2 2
Bernoulli GLM 10 10

SIR 2 10
Lotka Volterra 4 20
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Table 5: Results comparing ESNPE variants with baseline methods for C2ST (means and 95% CIs
over 10 trials) on the Bernoulli GLM, Gaussian mixture, and Two moons tasks. Metrics include both
C2ST and MMD, and each trial averages over all 10 reference posterior slices p(θ|x1), . . . , p(θ|x10).

Metric
Simulator Method C2ST MMD

Two
moons

SMC-ABC 0.986± 0.003 0.068± 0.102
FMPE 0.966± 0.036 0.194± 0.095
NPSE 0.890± 0.045 0.017± 0.026

TSNPE 0.936± 0.015 0.069± 0.053
SNPE-C 0.843± 0.037 0.018± 0.011

ESNPE 0.811± 0.025 0.014± 0.005
ESNPE-B-MI 0.828± 0.030 0.019± 0.014

Gaussian
mixture

SMC-ABC 0.888± 0.012 0.357± 0.081
FMPE 0.884± 0.015 0.368± 0.057
NPSE 0.737± 0.028 0.120± 0.068

TSNPE 0.779± 0.016 0.189± 0.062
SNPE-C 0.717± 0.012 0.023± 0.013

ESNPE 0.716± 0.010 0.022± 0.012
ESNPE-B-MI 0.716± 0.015 0.020± 0.008

Bernoulli
GLM

SMC-ABC 0.991± 0.002 0.256± 0.077
FMPE 0.956± 0.021 0.199± 0.045
NPSE 0.901± 0.042 0.215± 0.157

TSNPE 0.952± 0.013 0.230± 0.125
SNPE-C 0.760± 0.066 0.124± 0.108

ESNPE 0.739± 0.048 0.098± 0.098
ESNPE-B-MI 0.733± 0.070 0.064± 0.042

G.2 BENCHMARKING ALL REFERENCE POSTERIORS

The three individual observations originally provided in Table 1 were selected and reported inde-
pendently to highlight method performance across variable reference data, as opposed to averaging
out performance across all available xo samples (with differences in posterior shape visualized in
Figure 3, for instance). To provide a more holistic analysis, we ran the same experiments from Table 1
across all available reference observations in Lueckmann et al. (2021) for the three primary tasks,
and report both the average C2ST and MMD scores in Table 5. Note that we only re-evaluated the
non-active and full batch MI ESNPE variants for ease of comparison.

Here we find our method exhibits a performance advantage across all settings similar to that observed
on the three individual observations reported in the paper, and the MMD metric tends to agree with
C2ST in terms of the best scoring approach.

G.3 HYPERPARAMETER ABLATIONS

We carried out several ablations across hyperparameters K and B to shed light on how the method
performs under variable conditions. When holding the number of simulation samples constant
(N = 256 across R = 4 rounds, just as reported in Table 1), we find a clear trend in performance as
we increase the number of component models K in Table 6.

The values for each metric are means with standard deviations calculated across five runs. Here we
more or less observe the expected relationship between ensemble size and performance: the more
component models we have, the more stable the posterior approximation round-by-round, and these
compounding often translate to increased posterior quality. Note that "ESNPE" here refers to the
non-active variant of the method.
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Table 6: Ablations for non-batched ESNPE under variable settings of K.

Metric
Simulator Hyperparam C2ST MMD

Two
moons

K = 1 0.961± 0.005 0.064± 0.029
K = 4 0.954± 0.002 0.064± 0.003
K = 8 0.929± 0.025 0.049± 0.004
K = 16 0.928± 0.025 0.039± 0.009

Gaussian
mixture

K = 1 0.901± 0.006 0.655± 0.042
K = 4 0.753± 0.009 0.165± 0.019
K = 8 0.744± 0.006 0.024± 0.013
K = 16 0.736± 0.021 0.014± 0.006

Bernoulli
GLM

K = 1 0.999± 0.001 0.738± 0.045
K = 4 0.992± 0.008 0.803± 0.271
K = 8 0.956± 0.009 0.480± 0.030
K = 16 0.933± 0.017 0.321± 0.032

Table 7: Ablations for batched ESNPE under different numbers of inference rounds R.

Metric
Simulator Hyperparam C2ST MMD

Two
moons

R = 2 0.805± 0.002 0.011± 0.001
R = 4 0.856± 0.014 0.014± 0.002
R = 8 0.925± 0.002 0.025± 0.009

Gaussian
mixture

R = 2 0.692± 0.016 0.018± 0.006
R = 4 0.707± 0.012 0.022± 0.010
R = 8 0.713± 0.022 0.026± 0.002

Bernoulli
GLM

R = 2 0.769± 0.056 0.182± 0.058
R = 4 0.811± 0.019 0.216± 0.050
R = 8 0.823± 0.003 0.230± 0.007

We additionally run ablations over the number of samples drawn per round, or the batch size of the
active MI ESNPE. Values are reported in Table 7. As before, we hold the total number of simulation
samples N = 1024 fixed across the entire inference run with K = 8, but vary the number of round
R over which those samples are collected. Smaller values of R therefore correspond to larger batch
sizes for the MI selection mechanism.

We observe a fairly clear trend here as well, but perhaps counter-intuitively find that having fewer
rounds reliably leads to better performance. Generally, we might expect more rounds to provide
more opportunity for the proposal distribution to be updated to the current posterior approximation.
However, given the relatively small value of N , smaller R translates to more stable collections of
samples from the simulator across rounds. For R = 8, each round provides just 128 samples, often
yielding noisy updates in the density estimators that counteract the active selection mechanism.

H ADDITIONAL EXPERIMENTAL DETAILS

The NDE model used for all experiments reported in Table 1 is a conditional masked autoregres-
sive flow (MAF) comprised of 5 MADE transforms, each with two 50-unit residual blocks. For
experiments in Table 2, MAFs with 5 transformers and 128-unit residual blocks were used. Each
MAF was trained with 10 atoms, and we use most of the training core as implemented in the sbi
Python package Tejero-Cantero et al. (2020). In Table 1, sequential methods were run across four
inference rounds with 256 samples per round, for a total of 1024 training examples. In Table 2, 256
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samples per round was kept fixed, but inference runs were carried out across eight rounds, for a total
of 2048 training examples. No embedding networks were employed across any of the tasks, and the
sbibm package Lueckmann et al. (2021) was adapted to provide true posterior references and metric
calculations for each reported task.

All experimentation code was written and packaged in Python 3.13. Experiments were performed
on local hardware: an Arch linux-based machine running an Intel(R) Core(TM) i9-10900X CPU @
3.70GHz 64GB memory and NVIDIA GeForce RTX 2080 Ti. All experiments, baseline models, and
benchmark environments are reproducible from a centralized Python package, to be released upon
publication.

H.1 REPRODUCIBILITY DETAILS

All reported baseline methods use default implementation and hyperparameters, unless otherwise
specified, as set in the open source sbi Python package Tejero-Cantero et al. (2020), allowing
for independently verifiable results rooted in out-of-the-box standards. The pinned version of sbi
used for all experiments is the stable 0.24.0 release. Although all tasks/environments for our
experiments were adapted directly from the data reported in Lueckmann et al. (2021), one can
reproduce the exact numbers reported in Table 5, for instance, with the convenient sbibm-mini
module that ships with the sbi package. Below is a minimal sketch for quickly verifying these
results:

1. Download the source of the v0.24.0 stable release of the sbi package from Github
(v0.24.0 was used for all experiments) and install locally (with [dev] extras) in an
isolated Python 3.11 environment.

2. Under the sbi package root in tests/bm_test.py:
(a) on line 20, set: NUM_SIMULATIONS = 1024
(b) on line 21, set: NUM_EVALUATION_OBS = 10
(c) on line 22, set: NUM_ROUNDS_SEQUENTIAL = 4

3. Run pytest for each benchmark mode, yielding amortized evaluation over all 10 observa-
tions, e.g., pytest -bm -bm-mode=fmpe.

4. Run the same pytest commands above for 10 seeds (manually setting the SEED variable
on line 18 to values 1, . . . , 9; the default SEED=0 assumed to be run in the above step).

Taking the mean and standard deviation across the 10 seeds should yield nearly identical results,
for both C2ST and MMD across all methods, to those reported in Table 5. Do note that FMPE
and NPSE are not sequential methods, and therefore produce an amortized posterior that is evalu-
ated under all 10 reference observations. SNPE-C, on the other hand, is used as a non-amortized
method, conditioning on a single reference observation x

(i)
o across inference rounds, and the result-

ing posterior is evaluated only under x(i)
o . The sbibm-mini module as is requires changing the

NUM_EVALUATION_OBS_SEQ variable across individual benchmark runs to recover non-amortized
evaluation over all 10 observations.
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