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Abstract
Vision-language models (VLMs) pre-trained on
web-sourced image-text pairs have achieved re-
markable success in multimodal tasks. Incorpo-
rating synthetic text captions during pre-training
has been shown to enhance image-text alignment,
significantly improving model performance. De-
spite these empirical advances, the theoretical un-
derstanding of how VLMs align modalities, ex-
tract features, and achieve zero-shot capabilities
remains limited. This paper provides the first the-
oretical analysis of VLM training dynamics with
nonlinear activation functions and offers the first
theoretical support for synthetic text captions in
enhancing pre-training performance. Specifically,
we analyze the impact of misaligned image-text
pairs, showing that neurons trained on noisy data
learn mixtures of true and spurious features, de-
grading generalization. In contrast, text gener-
ated by image-grounded text decoders reduces
spurious correlations and improves model accu-
racy, enabling success in zero-shot multi-class
classification where models trained on raw text
fail. While our analysis uses simplified models for
theoretical tractability, our findings are validated
through experiments on state-of-the-art VLMs,
such as BLIP.

1. Introduction
Vision-language models (VLMs) have recently demon-
strated remarkable progress across various multimodal tasks
including vision-language understanding and generation.
State-of-the-art methods, such as CLIP (Radford et al., 2021)
and SimVLM (Wang et al., 2021), leverage contrastive learn-
ing to pre-train on large-scale image-text pairs sourced from
the web. These models achieve outstanding performance on
downstream tasks, particularly in zero-shot settings, where
predictions are made on entirely unseen data or classes with-
out task-specific training.

Web-sourced image-text pairs, however, often contain noisy
and low-quality text. In many cases, the text includes spu-
rious or irrelevant information that does not directly cor-

respond to the image. Training on such low-quality data
can lead to a misalignment of image and text features, un-
dermining the model’s generalization capability on down-
stream tasks. For instance, Nguyen et al. (2024) highlight
an example of a blue Mercedes-Benz car in a parking lot,
accompanied by a raw text caption: “2003 Mercedes-Benz
C240 sedan, Leather, MUST BE SEEN - $6199.” The price
information in this caption is only superficially correlated
with the image and does not contribute meaningfully to
understanding the image context.

To address this issue, text generation methods (Nguyen
et al., 2024; Wang et al., 2022b; An et al., 2022; Rotstein
et al., 2024; Hu et al., 2022; Wang et al., 2022a) are widely
adopted during VLM training to produce high-quality syn-
thetic text captions that are more faithful to their respective
images compared to raw text. For instance, BLIP (Li et al.,
2022a) has demonstrated that incorporating synthetic text
captions can greatly improve the quality and diversity of
the training data, resulting in significantly enhanced model
performance. To further validate the quality of synthetically
generated text, Nguyen et al. (2024) show that the image-
text cosine similarity between the synthetic text captions
generated by BLIP2 (Li et al., 2023a) and the original image
is higher than that for raw text paired with the image.

Despite the impressive success of large VLMs and the prac-
tical advancements driven by synthetic text captions, their
theoretical foundations remain relatively underdeveloped.
Several critical questions remain mostly open:

• How do VLMs align different modalities during pre-
training, extract feature representations, and achieve
zero-shot capabilities from noisy image-text pairs?

• How do synthetic text captions generalization provably
enhance generalization performance?

Addressing these theoretical challenges could provide
deeper insights into pre-trained VLMs, offering principled
explanations and guidelines to advance their development.

Notably, even the theoretical understanding of vanilla multi-
modal contrastive learning is yet to be fully developed. For
instance, built on the spectral contrastive loss (HaoChen
et al., 2021), Zhang et al. (2023a) connects its multimodal
counterpart to matrix factorization, demonstrating the ex-
istence of good solutions and characterizing their general-
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Table 1: Comparison with existing theoretical works on contrastive learning

Theoretical Works
Training

Dynamics
Nonlinear
Activation

Zero-shot
Generalization

Synthetic Text Captions
Enhancement Multi-modal

Wen & Li (2021) ✓ ✓
Nakada et al. (2023) ✓ ✓
Chen et al. (2024) ✓ ✓ ✓
Lee et al. (2021) ✓ ✓
Zhang et al. (2023a) ✓
This paper ✓ ✓ ✓ ✓ ✓

ization gaps. Furthermore, Huang et al. (2021), Lee et al.
(2021), and Zadeh et al. (2020) show that, under certain
conditions, multimodal models outperform single-modal
models with better representation learning. However, these
studies assume convergence to the optimal training loss,
lacking analysis of the training dynamics that yield models
with good generalization and thus overlooking challenges
posed by the loss function’s non-convexity. Additionally,
they do not address the zero-shot capabilities of the learned
VLMs. Chen et al. (2024) characterize CLIP’s zero-shot
performance by proving its ability to learn shared features
while disregarding self-standing features, however, their
framework does not account for the practical challenges
posed by misaligned features. Additionally, Nakada et al.
(2023) introduce a new contrastive loss leveraging unpaired
datasets to detect ground-truth pairs and enhance perfor-
mance, but their results are limited to linear networks with-
out non-linear activations. No existing works theoretically
analyze the impact of synthetic data on VLM performance.

Contributions: To the best of our knowledge, this work
provides the first theoretical support for the enhanced
zero-shot generalization performance of synthetically gen-
erated data in pre-training VLMs, especially when web-
sourced raw data contains spurious or irrelevant information.
We provide the training dynamics analysis of multimodal
contrastive learning with generalization guarantees using
stochastic gradient descent (SGD) in the presence of spuri-
ous alignment in the data model. Our analysis also moves
from linear models to non-linear models, by analyzing the
one-hidden-layer neural network model, which remains
widely used in theoretical analysis of uni-modal contrastive
learning (Wen & Li, 2021) and supervised learning (Li et al.,
2023b; Allen-Zhu & Li, 2022; Zhang et al., 2023b). Fur-
thermore, all theoretical insights are validated on practical
VLMs, such as the BLIP model. Table 1 compares our work
with existing theoretical works on contrastive learning. Our
specific contributions include:

1. Theoretical training dynamics analysis of contrastive
learning in nonlinear VLMs. We provide a theoretical
demonstration of how neurons learn correlated image and
text features using contrastive loss. Prior training dynamics
analyses of multi-modal contrastive learning Chen et al.

(2024); Nakada et al. (2023) are limited to linear neural
networks, while our analysis applies to nonlinear neural
networks with ReLU activation functions.

2. Theoretical characterization of the impact of mis-
aligned image-text pairs on pre-training performance.
We analyze a data model where a fraction of text contains
features spuriously related to image features. Our results
show that neurons in the resulting model learn a mixture
of true features and spurious features together, preventing
the VLM from accurately distinguishing these features and
leading to degraded generalization performance.

3. Theoretical justification of enhanced out-of-domain
generalization through pre-training with synthetic text
captions. We demonstrate that a properly trained image-
grounded text decoder can generate text containing fewer
spurious features than raw text data. Then the model trained
with synthetic text captions can align image and text fea-
tures properly, resulting in accurate results in a zero-shot
multi-class image classification problem, whereas the model
trained on the original data is guaranteed to fail.

1.1. Related Works
Vision-language Models: VLMs (Yu et al., 2022; Wang
et al., 2023a; Radford et al., 2021; Jia et al., 2021; Li et al.,
2020; 2021) rely on contrastive learning with large-scale
image-text pairs from the web. Building on the CLIP model,
a series of studies (Li et al., 2022b; Alayrac et al., 2022; Yao
et al., 2022) have emerged with the primary goal of further
improving its zero-shot performance. However, spurious
alignments in noisy and web-curated datasets significantly
limit their performance. Data selection has emerged as a
critical challenge in pre-training VLMs, driving the devel-
opment of recent filtering methods (Li et al., 2023a; Wang
et al., 2024; Kim et al., 2025; Li et al., 2024) to overcome
this issue. For instance, BLIP (Li et al., 2022a) effectively
uses synthetic text captions to filter noisy image-text pairs,
showcasing enhanced robustness and reliability in zero-shot
performance.

Theory of Contrastive Learning: Many studies (Saunshi
et al., 2022; Tian et al., 2020; Saunshi et al., 2019) have
provided theoretical guarantees for contrastive learning in
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unimodal settings. Tian et al. (2021); Wang et al. (2023b)
provides a comprehensive theoretical understanding of the
dynamics of self-supervised learning. (Wen & Li, 2021)
demonstrated the training dynamics of contrastive learning
and explained how neurons learn specific features through
proper data augmentation, even in the presence of noise.
However, these studies overlook multimodal scenarios and
do not address the misalignment arising from noisy web-
sourced image-text pairs, impacting vision-language align-
ment and performance.

2. Problem Formulation and Algorithm
Preliminary on Pre-training Vision-Language Models
(VLMs). In general, VLMs leverage large-scale web-based
datasets containing paired visual and textual data to pre-train
two separate encoders: an image encoder f and a text en-
coder h, parameterized by weights W and V, respectively.
Contrastive learning serves as the core framework, ensuring
the learned embeddings of matching pairs are closer while
separating mismatching pairs.

Specifically, let S be the indices of the image-text pairs, e.g.,
(xp, yp) with p ∈ S. (xp, yp) is referred to as a positive pair,
while (xp, yn) with p ̸= n is referred to as a negative pair.
We minimize the following spectral loss function:

min
W,V

L(f, h), where L(f, h) =
∑
p∈S

[
− ⟨f(xp), h(yp)⟩+

∑
n∈S\{p}

(⟨f(xn), h(yp)⟩)2

2τ
+

∑
n∈S\{p}

(⟨f(xp), h(yn)⟩)2

2τ

]
(1)

where the hyper-parameter τ > 0 is referred as the tem-
perature. The spectral contrastive loss L in (1) has been
extensively utilized in recent theoretical works (HaoChen
et al., 2021; Shen et al., 2022; Zhang et al., 2023a). Al-
though it differs from the commonly used SimCLR (Chen
et al., 2020) in practice, the spectral contrastive loss closely
resembles SimCLR numerically (HaoChen et al. (2021)).

2.1. Training Framework
Let S = Sh ∪ Sw include human-annotated high-quality
image-text pairs with indices in Sh and noisy web low-
quality dataset with indices in Sw. Due to the inherently
noisy nature of web data, the learned embeddings from (1)
may be suboptimal. Instead, practical training frameworks,
such as BLIP (Li et al., 2022a), incorporate synthetic text
captions to enhance the quality and diversity of image-text
pairs. The algorithm can be divided into four stages:

1. Image-text contrastive pre-training (ITCP) on raw
data: The image encoder f and text encoder h are trained
using the image-text pairs {(xp, yp)}p∈S by minimizing
the contrastive loss as in (1). Let W and V denote the
learned weights in f and h. We then estimate the image and

text embeddings of (xp, yp) by z′xp
= fW(xp) and z′yp

=
hV(yp). Due to the low-quality data in Sw when training
the encoders, these estimations might not be accurate.

2. Generating text captions: We use the high-quality
data pairs in Sh to train an image-grounded text decoder
G, which maps an image xp to text through G(xp). Then,
the learned G is applied to every image-text pair (xp, yp) in
Sw to generate a synthetic caption ŷp = G(xp). Next, the
estimated text embedding of ŷp is computed as

ẑyp = hV(ŷp) = hV(G(xp)), (2)

whereV represents the weights of h learned from stage 1.

3. Filtering: For every p in Sw, we compute the cosine sim-
ilarity between the estimated image embedding z′xp

and the
text embeddings z′yp

, ẑyp
, respectively. If the pair (z′xp

, ẑyp
)

is closer than the pair (z′xp
, z′yp

), (xp, yp) is replaced with
(xp, ŷp). Let S̃w denote the index set of the resulting data
pairs. By replacing noisy captions in Sw with synthetic cap-
tions that better align with image embeddings, S̃w becomes
a cleaner dataset.

4. ITCP on synthetic data: We use the data in S̃ = Sh∪S̃w

to solve (3), where the data set S is replaced with S̃, and the
resulting contrastive loss is denoted by L̃(f, h),

min
W,V

L̃(f, h), where L̃(f, h) =
∑
p∈S̃

[
− ⟨f(xp), h(yp)⟩+

∑
n∈S̃\{p}

(⟨f(xn), h(yp)⟩)2

2τ
+

∑
n∈S̃\{p}

(⟨f(xp), h(yn)⟩)2

2τ

]
(3)

Let W̃ and Ṽ denote the resulting learned weights. f
W̃

and
g
W̃

can produce improved embeddings compared with fW
and gV.

(1) and (3) are nonconvex. We apply the vanilla SGD with
step size η and later provide the training dynamics analysis
and convergence guarantee in Section 4.

2.2. Downstream Tasks
The pre-trained model (f

W̃
, gṼ) is evaluated on a down-

stream image classification task in a zero-shot setting. Un-
like the downstream regression and binary classification
tasks used for uni-modal contrastive learning in (Wen &
Li, 2021), we consider a K-classification problem for any
constant K ≥ 2. Each class label is associated with a given
text prompt yk, where k ∈ [K]. For any image x with its
ground-truth label lx ∈ [K], the zero-shot predicted label
by the pre-trained models (f

W̃
, gṼ) is computed as:

arg max
k∈[K]

⟨f
W̃
(x), gṼ(yk)⟩. (4)
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3. Technical Assumptions and Setups
We introduce a set of assumptions that are either derived con-
ceptually from the real data distribution or follow existing
approaches in contrastive learning theory.

3.1. Backbone of the Encoders
We use a one-hidden-layer neural network with ReLU ac-
tivation functions as the backbone for both our image and
text encoder networks, which are formally defined as
Definition 3.1. The image encoder fW : Rd1 → Rm and
text encoder hV : Rd1 → Rm is expressed as

f(x) = (f1(x), . . . , fm(x))
⊤ ∈ Rm,

fi(x) = σ (⟨wi, x⟩ − bi)− σ (−⟨wi, x⟩ − bi)
(5)

h(y) = (h1(y), . . . , hm(y))
⊤ ∈ Rm,

hi(y) = σ (⟨vi, y⟩ − bi)− σ (−⟨vi, y⟩ − bi)
(6)

where σ denotes the ReLU function, and W =
[w1, w2, . . . , wm]⊤, V = [v1, v2, . . . , vm]⊤ ∈ Rm×d1 .

The one-hidden-layer neural network model, though simple,
is challenging for training dynamics analysis due to its non-
linearity and is considered SOTA in supervised learning
(Allen-Zhu & Li, 2022; Zhang et al., 2023b). Prior studies
mainly focus on simpler settings, like one-hidden-layer uni-
modal networks (Wen & Li, 2021) or linear multi-modal
encoders (Nakada et al., 2023; Chen et al., 2024).

3.2. Data Formulation for ITCP
Our data model defined in Definition 3.2 extends the sparse
coding in (Allen-Zhu & Li, 2022; Wen & Li, 2021) for
uni-modal images to multi-modal image and text pairs con-
trastive learning. This sparse coding model is both favored
in theoretical analyses (Arora et al., 2014; Barak et al., 2015;
Gregor & LeCun, 2010) and effective in modeling both NLP
(Arora et al., 2016; 2018; Prokhorov et al., 2021; Deng et al.,
2023) and image data (Yang et al., 2011; Xiao et al., 2025;
Yang et al., 2009).
Definition 3.2 (Image and text pairs). For an image-text
pairs (xp, yp) where p ∈ S, the image xp ∈ Rd1 and the
text yp ∈ Rd1 are generated i.i.d. from the following sparse
coding form:

xp = Mzxp + ξxp , yp = Hzyp + ξyp . (7)

where zxp and zyp ∈ Rd. We refer to zxp and zyp as the
sparse signal and ξ as the noise. We assume d1 = poly(d)
for simplicity.

We assume the following on M,H, z, ξ, respectively:
Assumption 3.3. M,H, z, ξ satisfy the following

(a) The image dictionary matrix M = [M1, . . . ,Md] ∈
Rd1×d is a column-orthonormal matrix, and satisfies
∥Mj∥∞ ≤ Õ

(
1√
d1

)
for all j ∈ [d].

(b) The text dictionary matrix H = [H1, . . . ,Hd] ∈
Rd1×d is a column-orthonormal matrix, and satisfies
∥Hj∥∞ ≤ Õ

(
1√
d1

)
for all j ∈ [d].

(c) We call M⊥ = [Mj ]j∈[d1]\[d] (the orthogonal comple-
ment of M) the noisy features, which are the undesired
features. H⊥ is defined similarly.

(d) The noise ξxp
, ξyp

∼ N (0, σ2
ξId1

), and the variance
satisfies ω( 1

d1
) ≤ σ2

ξ ≤ O( 1d )
1.

(e) The coordinates of zxp
= (z1xp

, . . . , zdxp
)T take val-

ues from {1, 0,−1} independently and are symmetric
around zero, following∣∣∣zjxp

∣∣∣ ∼ Bernoulli (Cz/d) , for i = 1, 2, . . . , d, (8)

where Cz is a constant.

Since ω( 1
d1
) < σ2

ξ ≤ O

(√
log d
d1+c0

)
where c0 ∈ (0, 1), the

ℓ2-norm of ξ becomes ∥ξ∥22 ≫ Θ(1)≫ ∥Mz∥2. However,
whenever there is one zj ̸= 0, we have |⟨Mz,Mj⟩| = Θ(1)

while |⟨ξ,Mj⟩| ≤ O
(

1√
d

)
with high probability.

To capture the characteristics of high-quality and low-quality
data in S, we introduce Assumptions 3.4 and 3.5.

Assumption 3.4 (High-quality image-text pairs). Every
high-quality image-text pair (xp, yp) with p ∈ Sh has a per-
fect alignment, i.e., zyp = zxp . Moreover, |Sh| = Θ(d2).

To model the misaligned features in low-quality pairs in Sw,
where spurious correlations occurs at a non-negligible level,
we assume

Assumption 3.5 (Low-quality image-text pairs). There ex-
ists a constant Cs ∈ (ω(1/ log d), 1/2) such that every im-
age feature Mj (j ∈ [d]) is spuriously correlated with ex-
actly one text feature Hj′ (j′ ̸= j) in a low-quality pair
(xp, yp) with p ∈ Sw, with

Pr
(
zj

′
yp = zjxp

|
∣∣zjxp

∣∣ = 1
)
= Cs

Pr
(
zj

′
yp = 0 |

∣∣zjxp

∣∣ = 1
)
= 1− Cs

(9)

Similarly, the image feature Mj′ is spuriously correlated
with exactly the text feature Hj . Moreover, |Sw| =
poly(d)≫ ω(d2).

For example, consider the blue Mercedes-Benz car dis-
cussed by Nguyen et al. (2024) and referenced in the In-
troduction. Here, Mj corresponds to the image feature of
the car, Hj represents the text feature describing the car,

1We follow the conventional notations that f =
O(x), o(x),Ω(x), ω(x),Θ(x) describes the growth rate of
f relative to x, indicating whether f grows at most, strictly slower,
at least, strictly faster, or exactly at the order of x, respectively. Õ,
Ω̃, and Θ̃ notations to hide poly-logarithmic factors.
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and Hj′ corresponds to the price information, which is
spuriously correlated with Mj in this image-text pair. (9)
indicates that such spurious correlations exist with a con-
stant probability. Although we assume pair-wise spurious
correlations among features to simplify the analysis, our the-
oretical results are validated on a more general case where
an arbitrary number of spurious features may exist for any
feature i ∈ [d], as demonstrated in Section 5.1. Finally, it is
worth noting that the number of low-quality pairs is order-
of-magnitude larger than the number of high-quality pairs,
which may significantly degrade the model’s performance.

3.3. Image-Grounded Text Decoder G in Stage 2
Recall that G is introduced in Stage 2 to generate synthetic
text captions. In practice, the core idea behind the widely
adopted approaches (Li et al., 2022a; Yu et al., 2022; Wang
et al., 2023a) is to train the encoder-decoder model G on
high-quality image-text pairs Sh. In this paper, we consider
a simplified form of G, given by:

G(xp) = VTσ(Wxp), (10)

where σ denotes the ReLU function. The parameters W
and V are learned by solving

min
W,V

LC =
∑
p∈Sh

1

2

∥∥∥VTσ(Wxp)− yp

∥∥∥2

2
, (11)

initialized at W and V, using SGD with step size η. Al-
though G in (10) is a conceptual simplification, where
σ(Wxp) acts as the encoder and VT as the decoder, it
serves as a realistic abstraction to illustrate the underlying
advantages of synthetic text caption generation.

3.4. Zero-Shot Generalization on Image Classification
To formally quantify the generalization performance of the
K-classification problem described in Section 2.2, we con-
sider the following testing data setup:

Out-of-domain image data. Each testing image x has a
sparse coding representation similar to the training images,

x = Mzx + ξx, (12)

where the noise ξx follows the same distribution as the train-
ing data (as stated in Assumption 3.3(d)). We consider
the more general out-of-domain setting where the distri-
bution of zx differs from the training data. Specifically,
|zjx| ∼ Bernoulli (C ′

z/d) for all j ∈ [d], where C ′
z may not

equal Cz from (8).

Text prompts. The text prompt yk for every class k also
has a sparse representation:

yk = Hzyk + ξyk , k ∈ [K], (13)

where each zyk
is a binary vector and |zjyk

| ∼
Bernoulli (Θ(1/d)). Moreover, if x belongs to class k, i.e.,

lx = k, then among all these K binary vectors, zx is the
most aligned with zyk

,

⟨zx, zyk ⟩ > ⟨zx, zyk′ ⟩, ∀k′ ̸= k, when lx = k (14)

This aligns with the intuition that x belongs to class k if its
sparse signal is the most similar to the sparse signal of class
k’s text prompt.

4. Main Results
4.1. Intuition and Informal Insights
Before formally presenting our main results, we first pro-
vide an intuitive explanation for the success of the encoder-
learner. For a properly trained pair of image encoder f and
text encoder g to learn the latent representation z from (x, y),
each feature pair (Mj ,Hj) needs to be exclusively learned
by at least one neuron pair (wi, vi), without interference
from spurious features, ensuring purified representations.
This is referred to as feature alignment. Under these con-
ditions, we have ⟨wi, x⟩ ≈ zjx and ⟨vi, y⟩ ≈ zjy, ensuring
that the pair f and g successfully captures the full latent
space z. However, in practical scenarios where the dataset
contains limited high-quality pairs in Sh but is dominated by
low-quality pairs with misaligned features in Sw, training
f and g to achieve the above desirable properties becomes
challenging. Our main theoretical insights include:

1. SGD provably solves the nonconvex training problems
(1) and (3). The existing training dynamics and convergence
analyses are limited to either single-modal contrastive learn-
ing (Wen & Li, 2021) or linear networks (Chen et al. (2024);
Nakada et al. (2023)). Theorem 4.1 provides a convergence
analysis of SGD for solving the nonconvex ITCG problem
when the network contains nonlinear activations.

2. Failure of feature alignment due to spurious correla-
tions. Theorem 4.3 provides a negative result: if f and g are
directly trained on the raw data S = Sh ∪ Sw, the model in-
evitably learns Mj and Mj′ together via some wi, and Hj

and Hj′ together via some vi. As a result, the model fails
to distinguish between these spuriously correlated features.

3. Successful feature alignment on synthetic data. The-
orem 4.5 states that training f and g on the synthetic data
S̃ = Sh ∪ S̃w enables the resulting encoder pair to learn pu-
rified representations of Mj and Hj accurately, as if trained
solely on high-quality data. However, since |Sh| ≪ |Sw|,
training solely on Sh is insufficient to achieve the result in
Theorem 4.5. This highlights the necessity of leveraging the
synthetic data S̃w.

4. Enhanced zero-shot image classification accuracy due
to synthetic text captions. The advantage of using syn-
thetic text captions is further validated in downstream tasks.
As shown in Theorem 4.7, for a zero-shot out-of-domain
multi-class image classification task, ITCP trained using S̃
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achieves high accuracy, whereas ITCP directly using S fails
to generalize accurately.

4.2. Impact of Synthetic Data on Feature Alignment of
Convergent Models

We first characterize the training dynamics and convergence
of solving (1) and (3) using SGD. Let L∗ and L̃∗ denote the
optimal values of (1) and (3), respectively.
Theorem 4.1 (Convergence of ITCP). Suppose Assump-
tions 3.3 to 3.5 hold. Let the model complexity be m =

d1.01, initialized at w(0)
i , v

(0)
i ∼ N (0, σ2

0Id1
), where σ2

0 =

Θ
(

1
d1poly(d)

)
. After T = Θ

(
d2 log d

)
SGD iterations with

batch size Ω(d) and η = O(1), the returned weights to solve
(1), denoted by W and V, achieves a loss that is sufficiently
close to L∗, i.e.,

(L(fW, hV)− L∗)/ |L∗| ≤ o(1). (15)

Similarly, the returned weights to solve (3), denoted by W̃
and Ṽ, achieves a loss that is sufficiently close to L̃∗, i.e.,

(L̃(fW̃, hṼ)− L̃∗)/
∣∣∣L̃∗

∣∣∣ ≤ o(1). (16)

Remark 4.2. Theorem 4.1 demonstrates that SGD iterations
can converge to weights that achieve a near optimal loss of
(1) and (3), respectively. This result is of independent inter-
est, as existing training dynamics and convergence analyses
for contrastive loss are limited to linear networks. Here,
we extend such analysis to nonconvex optimization settings
where the network contains nonlinear ReLU activations.
Next we characterize the feature alignment property of the
learned models.
Theorem 4.3 (Unsuccessful feature alignment of ITCP
on raw data S). Each neuron pairs (w̄i, v̄i) in (W,V)
(i ∈ [m]) mainly learn the features in the set Ni ⊆ [d] with
|Ni| ≥ 2, while ignoring other features. Specifically,

w̄i =
∑
j∈Ni

αi,jMj +
∑

j∈[d]\Ni

βi,jMj +
∑

j∈[d1]\[d]

γi,jM
⊥
j

v̄i =
∑
j∈Ni

αi,jHj +
∑

j∈[d]\Ni

βi,jHj +
∑

j∈[d1]\[d]

γi,jH
⊥
j

(17)
where α2

i,j = Θ(1)(∥w̄i∥22 + ∥v̄i∥
2
2),

βi,j

αi,j
≤ O( 1√

d
), and

γi,j

αi,j
≤ O( 1√

d1
) for all i. Moreover, for every spuriously

correlated pair (j, j′) satisfying Assumption 3.5, there exists
at least Ω(1) many i ∈ [m] such that Ni = {j, j′}.
Remark 4.4. Theorem 4.3 indicates that the model learned
by ITCP on raw data only achieves some level of feature
alignment. Specifically, a neuron pair (w̄i, v̄i) learns a mix-
ture of image features and text features in Ni, respectively.
Due to spurious correlations in (j, j′), Mj and Mj′ are
always mixed together, as are Hj and Hj′ . Consequently,
the model with weights W and V cannot yet achieve the
desired feature alignment of (Mj ,Hj).

We next show the feature alignment is enhanced in the model
by ITCP using synthetic data.
Theorem 4.5 (Successful feature alignment when pre–
training on synthetic data S̃). Each neuron pair (w̃i, ṽi)

in (W̃, Ṽ) (i ∈ [m]) mainly learn the features in the set
Ñi ⊆ [d], while ignoring other features, i.e.,

w̃i =
∑
j∈Ñi

α̃i,jMj +
∑

j∈[d]\Ñi

β̃i,jMj +
∑

j∈[d1]\[d]

γ̃i,jM
⊥
j

ṽi =
∑
j∈Ñi

α̃i,jHj +
∑

j∈[d]\Ñi

β̃i,jHj +
∑

j∈[d1]\[d]

γ̃i,jH
⊥
j

(18)

where α̃2
i,j = Θ(1)(∥w̃i∥22 + ∥ṽi∥22),

β̃i,j

α̃i,j
≤ O( 1√

d
) and

γ̃i,j

α̃i,j
≤ O( 1√

d1
). Moreover, for every j ∈ [d], there exists at

least Ω(1) many i ∈ [m] such that Ñi = {j}.
Remark 4.6. Theorem 4.5 differs from Theorem 4.3 mainly
in the last sentence. For every image and text feature pair
(Mj ,Hj), there exists at least one neuron pair (w̃i, ṽi) such
that (w̃i, ṽi) primarily learn (Mj ,Hj), while the contribu-
tions of other features are order-wise smaller. As a result, the
model with weights W̃ and Ṽ achieves the desired feature
alignment.

4.3. Performance Comparison on Downstream Tasks
We next compare the performance of the models (fW, gV)
and (f

W̃
, gṼ) on the zero-shot image classification problem

with out-of-domain data described in Sections 2.2 and 3.4.
Theorem 4.7 (Zero-Shot Image Classification). For the K-
class image classification problem with a setup in Section
3.4, the model (fW, gV) from ITCP using raw data has a
constant failure probability:

Pr

(
arg max

k∈[K]
⟨fW(x), gV(yk)⟩ = lx

)
= 1−Θ(1); . (19)

In contrast, the model (f
W̃

, gṼ) from ITCP using synthetic
data succeeds with high probability:

Pr

(
arg max

k∈[K]
⟨fW̃(x), gṼ(yk)⟩ = lx

)
= 1− o(1). (20)

Remark 4.8. Theorem 4.7 first demonstrates that the zero-
shot performance of (fW, gV) is unsatisfactory. This is due
to the lack of accurate feature alignment in (fW, gV), as
established in Theorem 4.3. Theorem 4.7 further shows that
(f

W̃
, gṼ) achieves accurate classification. This success is

attributed to the precise feature alignment in (f
W̃
, gṼ), as

described in Theorem 4.5. Note that Theorem 4.7 holds for
image data with a distribution shift from the training data.

5. Experiment
5.1. Simulated Experiment
Experiment setup. We first evaluate our results through
simulated experiments, applying the same training frame-
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work in Section 2.1. We simulate a more general model for
spurious correlation than Assumption 3.5, where every Mj

can be spuriously correlated with any text feature Hj′ for
any j′ ̸= j, while keeping the total conditional probability
of spurious correlation in the raw data as Cs in (9).

We set d1 = 2500, d = 50, |Sw| = 5000, and |Sh| = 1000.
M and H are generated from a standard Gaussian distribu-
tion and subsequently processed using QR decomposition to
ensure orthonormality. zx follows a Bernoulli distribution
with parameter p = 0.1, and the noise variance is set to
σ2
ξ = 1/d. The learner model employs m = 80 neurons.

The batch size for SGD is 500, and the step size is 0.001.
The learned encoders are evaluated on a downstream 5-class
classification task,, where the downstream data is generated
with zx following a Bernoulli distribution with parameter
p = 0.2. The vectors zyk

are constructed by partitioning
the feature space d into K disjoint segments. All results are
averaged over 20 independent experiments. (W,V) and
(W̃, Ṽ) denote the model weights learned using raw data
and filtered data, respectively.

(a) (b)

(c)

Figure 1: Performance comparison of ITCP on raw data and syn-
thetic data when the probability of spurious correlation Cs changes.
(a) Number of features that have purified representation in the
model (b) Average magnitude of purified presentations (c) Zero-
shot out-of-domain classification accuracy.

Improved feature representation using synthetic cap-
tions. A weight w̄i learns a purified representation of Mj

if its projection along Mj achieves the largest magnitude
and satisfies |⟨w̄i,Mj⟩|/∥w̄i∥ > 0.5. The same applies to
(W̃, Ṽ). Figure 1(a) shows the number of features Mj (out
of d = 50 total features) for which at least one neuron in W
(or W̃, respectively) learns a purified representation. The
results indicate that ITCP applied to synthetic data can learn
purified representations for almost all features, even when
the spurious correlation probability Cs is as high as 0.3. In
contrast, ITCP on raw data shows degraded performance,

with its ability to learn purified representations decreasing
more rapidly as Cs increases. This observation is consistent
with Theorems 4.3 and 4.5, as well as Remark 4.6.

Larger magnitude of purified representation using syn-
thetic data. Figure 1(b) presents the average of the largest
magnitude of projections over neurons that learn purified
representations. The largest projection magnitude achieved
by W̃ (from ITCP on synthetic data) is higher than that
achieved by W, further demonstrating that W̃ learns better-
purified representations.

Improved zero-shot out-of-domain performace using
synthetic data. Figure 1(c) compares the classification
accuracy of both models on zero-shot out-of-domain data.
The model trained on synthetic data consistently outper-
forms the one trained on raw data, with the performance gap
widening as spurious correlations in the raw data increase.

Figure 2: Histogram of |⟨v̄i,Hj⟩|/∥v̄i∥ for ITCP on raw data and
|⟨ṽi,Hj⟩|/∥ṽi∥ for ITCP on synthetic data (split into two figures
to highlight the significant differences in the value distributions).

Neurons trained on synthetic data exhibit a more con-
centrated distribution. Figure 2 visualizes the histograms
of |⟨v̄i,Hj⟩|/∥v̄i∥ and |⟨ṽi,Hj⟩|/∥ṽi∥ for all i ∈ [m] and
j ∈ [d]. The values of |⟨ṽi,Hj⟩|/∥ṽi∥ are more concen-
trated, typically around 0.05 and 0.7. In contrast, the values
for |⟨v̄i,Hj⟩|/∥v̄i∥ are less concentrated. This phenomenon
is consistent with Theorem 4.5, which indicates that for ev-
ery Hj , certain neurons ṽi in Ṽ predominately learns Hj . In
such cases, |⟨ṽi,Hj⟩| approaches 1, while |⟨ṽi,Hj′⟩|/∥ṽi∥
approaches 0 for j′ ̸= j. The concentrated values of 0.05
and 0.7 observed in Figure 2 are due to noise in the data. In
contrast, feature alignment is less significant for V, leading
to less concentration of the corresponding values. Similar
results are obtained for |⟨wi,Mj⟩|, deferred to Figure 6 in
the appendix.

Enhanced class separation of downstream tasks by ITCP
with synthetic data. Figure 3 visualizes the t-distributed
stochastic neighbor embedding (t-SNE) of the feature em-
beddings generated by the two models, computed as fW(xp)
and f

W̃
(xp) for each xp, respectively. The t-SNE method

projects the high-dimensional embeddings onto a two-
dimensional map. One can see that the embeddings from
different groups are more distinctly separated in the model
trained using ITCP on synthetic data, indicating that this
approach achieves better feature alignment.
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(a) (b)

Figure 3: t-SNE visualization of feature embeddings (probability
of spurious correlation Cs = 0.3. (a) ITCP on raw data. (b) ITCP
on synthetic data.

5.2. Experiments on Practical Data and Models
BLIP ViT-B/16, with 200M parameters (Li et al., 2022a),
is a vision-language model pre-trained on 14M images, in-
cluding a small amount of high-quality human-annotated
datasets and a large amount of noisy web image-text pairs.
It is an enhanced version of the earlier ALBEF model (Li
et al., 2021), sharing the same model architecture and train-
ing data. The key difference is that ALBEF is trained using
ITCP with raw data, whereas BLIP is trained using ITCP
with synthetic caption data. Extensive experimental results
in (Li et al., 2022a) demonstrate BLIP’s improved general-
ization performance over ALBEF due to the use of synthetic
text. Thus, we do not repeat those efforts here.

The BLIP/ALBEF model employs transformer-based archi-
tectures for both its image and text encoders, incorporating
an image-text similarity loss. Both the image and text en-
coders consist of 12-layer transformers that output features
in R768. These features are then passed through linear pro-
jection layers, mapping them into a shared low-dimensional
embedding space in R256, respectively.

Enhanced separation of images in the COCO dataset by
BLIP. We select 10 classes from the COCO dataset (Lin
et al., 2014) and visualize the image feature embeddings in
R256 produced by the BLIP and ALBEF models. Figure
4 compares the t-SNE visualizations of these embeddings.
BLIP’s embeddings exhibit much clearer separation among
different image classes, whereas ALBEF’s embeddings of-
ten show overlaps between classes, such as “sports ball” and
“tennis racket.” This observation further verifies our theoret-
ical result that synthetic data improves feature alignment.

Enhanced text feature representation learning by BLIP.
The final text projection layer in BLIP/ALBEF consists of
256 neurons and bears functional similarity to V in our
simplified model in (6). Each neuron associated with a
weight vector vi ∈ R768. Figure 5 (a) presents a histogram
of the normalized inner products ⟨vj , vj′⟩/(∥vj∥∥vj′∥) for
all j, j′ ∈ {1, 2, . . . , 256} in BLIP and ALBEF. The values

(a) (b)

Figure 4: t-SNE visualization of image feature embeddings of 10
classes in COCO: (a) ALBEF (b) BLIP

in BLIP are more concentrated around zero compared to
ALBEF, indicating that the weight vectors exhibit a higher
degree of orthogonality. This result aligns with Theorem
4.5, which suggests that training with synthetic data allows
certain neurons to specialize in learning individual features
from a set of orthogonal features, leading to a stronger
concentration of values around zero. Similar results on
image features are shown in Figure 7 in the Appendix.

(a) (b)

Figure 5: (a) Histogram of ⟨vj , vj′⟩/(∥vj∥∥vj′∥) of the text linear
projection layer of ALBEF and BLIP (b) Histogram of image-text
cosine of raw web data and BLIP generated synthetic data

Enhanced image-text alignment on synthetic captions.
We randomly sample 1% of three raw web datasets:
Conceptual Captions (Sharma et al., 2018), Conceptual
12M (Changpinyo et al., 2021), and SBU Captions (Or-
donez et al., 2011), which are used for training both BLIP
and ALBEF. We compute the cosine similarity between the
image and its corresponding raw web caption, as well as the
cosine similarity between the image and its BLIP-generated
synthetic caption. Figure 5 (b) presents the histogram of
cosine similarities for these two cases. BLIP-generated
captions achieve significantly higher image-text cosine sim-
ilarity, with a mean similarity of 0.26 compared to 0.24 for
raw captions.

6. Conclusion
This paper presents a comprehensive theoretical analysis
of the training dynamics of contrastive learning in VLMs
with nonlinear functions. Our theoretical findings highlight
the crucial role of synthetic captions in enhancing feature
alignment and zero-shot performance, which we validate on
practical models and datasets. Future directions including
analzying contrastive learning on Transformer architectures
and exploring more complex tasks, such as image-text re-
trieval and visual question answering.
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Impact Statement
This paper aims to theoretical analysis of VLM and syn-
thetic text captions. No potential societal consequences are
associated with our work.
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A. Preliminaries
We first restate some important notations used in the Appendix, which are summarized in Table 2.

Table 2: Summary of Notations

Notations Annotation
M ∈ Rd1×d, H ∈ Rd1×d M is the image dictionary matrix, H is the text dictionary matrix.
W ∈ Rm×d1 , V ∈ Rm×d1 W is the weight of image encoder, V is the weight of text encoder.
xp ∈ Rd1 , yp ∈ Rd1 xp and yp represent an image and a text data, respectively.
zxp , zyp ∈ Rd zxp

and zyp
are the sparse signals of image and text, respectively. zyk

is the sparse signal for
the text prompt yk.

zjxp
, zjyp zjxp

is the j-th coordinate of zxp
; zjyp

is the j-th coordinate of zyp
.

L, LC L is the loss for ITCP; LC is the loss for Image-grounded Text Decoding.
S = Sh ∪ Sw Sw is the noisy web low-quality dataset; Sh is the human-annotated high-quality dataset.
S̃ = Sh ∪ S̃w S̃w replaces noisy captions in Sw with synthetic captions.
T1 Stage I of ITCP with b

(t)
i = 0.

T2 Stage II of ITCP with b
(t+1)
i = (1 + η

d )b
(t)
i .

T3 Stage III of ITCP with b
(t+1)
i = b

(T2)
i .

TC Stage of training caption generators.
Sj,sure The set of well-initialized neurons (wi, vi) on features (Mj ,Hj).

A.1. Feature Coupling and Expected Values in Sw

Assumption A.1 (High and low quality pairs). The high-quality image-text pairs in Sh have size |Sh| = Θ(d2). The
low-quality image-text pairs in Sw have size |Sw| = poly(d)| ≫ ω(d2)

In Sh, for a positive pair (xp, yp), we assume perfect alignment, meaning zxp = zyp . Consequently, the following holds:

E
[
zjxp

zjyp

]
=

Cz

d
, E

[
zjxp

zj
′

yp

]
= Θ

(
1

d2

)
, j′ ̸= j (21)

To model the misaligned features in low-quality pairs in Sw, where spurious misalignment occurs at a non-negligible level,
we assume [d] can be divided into d/2 disjoint sets, each containing exactly two entries. Let (j, j′) ⊂ [d] denote one such set,
referred to as a “spuriously correlated set.” The following assumptions capture the nature of spurious and true alignments:

Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) = Θ(1) <
1

2
,

Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) + Pr(|zjyp
| = 1 | |zjxp

| = 1) = 1.
(22)

These assumptions imply that true alignment dominates, with Pr(|zjyp
| = 1 | |zjxp

| = 1) > 1
2 , while spurious alignment

exists at a constant percentage level, making it non-negligible. The intuition behind this assumption is that each feature j is
paired with exactly one spuriously correlated feature j′, ensuring that j is not associated with any other feature j′′ ̸= j′.
This design simplifies the analysis while effectively capturing the key challenges posed by low-quality data.

Then, for a positive pair (xp, yp) with p in Sw, we have:

E
[
zjxp

zjyp

]
+ E

[
zjxp

zj
′

yp

]
=

Cz

d
,

E
[
zjxp

zj
′

yp

]
= Θ

(
1

d

)
<

Cz

2d
.

(23)

where (j, j′) is a spuriously correlated set.

For negative pairs (xp, yq), where p ̸= q, and p, q ∈ S, we have:

E
[
zjxp

zj
′

yq

]
= Θ

(
1

d2

)
, ∀j, j′ ∈ [d]. (24)
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In Sw, mismatched text and image pairs are prevalent compared to Sh. For a postive pair (xp, yp), we assume log(1/c0)
2 log d <

Pr(|zj′yp
| = 1 | |zjxp

| = 1) < 1
2 . To model this, we assume that for each primary feature j ∈ [d], there exists exactly one

spurious feature j′ such that j and j′ are uniquely coupled. This implies that j cannot be associated with any other feature
j′′ ̸= j′. Mathematically, the coupling is defined as:

Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) + Pr(|zjyp
| = 1 | |zjxp

| = 1) = 1. (25)

For a positive pair (xp, yp) in Sw, the probabilities of spurious and aligned features are further constrained:

log(1/c0)

2 log d
< Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) <
1

2
, (26)

The lower bound is established in Lemma B.9.

and:

Pr(|zjyp
| = 1 | |zjxp

| = 1) = 1− Pr(|zj
′

yp
| = 1 | |zjxp

| = 1). (27)

Under these assumptions, the expected values for the aligned and spurious features are calculated as follows:

For the aligned feature j, we have:

E
[
zjxp

zjyp

]
= Pr(|zjyp

| = 1, |zjxp
| = 1) = Pr(|zjyp

| = 1 | |zjxp
| = 1) · Pr(|zjxp

| = 1) = Pr(|zjyp
| = 1 | |zjxp

| = 1) · Cz

d
.

(28)

For the spurious feature j′, we have:

E
[
zjxp

zj
′

yp

]
= Pr(|zj

′

yp
| = 1, |zjxp

| = 1) = Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) · Pr(|zjxp
| = 1) = Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) · Cz

d
(29)

The total expected value across both aligned and spurious features satisfies:

E
[
zjxp

zjyp

]
+ E

[
zjxp

zj
′

yp

]
=

Cz

d
(30)

Here, j′ denotes the spurious feature associated with j.

A.2. Gradient

The contrastive loss in vision-language models (VLM) is defined as follows:

L(f (t), h(t)) =
∑
p∈S

−⟨f (t)(xp), h
(t)(yp)⟩+

∑
xn∈N′

(
⟨f (t)(xn), h

(t)(yp)⟩
)2

2τ
+
∑

yn∈N′

(
⟨f (t)(xp), h

(t)(yn)⟩
)2

2τ

 , (31)

where τ > 0 is a temperature parameter.

We perform stochastic gradient descent (SGD) on this contrastive loss. Let f (t) and h(t) be the image encoder and text
encoder networks at iteration t, respectively. The network parameters are updated as follows:

w
(t+1)
i ← w

(t)
i − η∇wi

L(f (t), h(t)), (32)

v
(t+1)
i ← v

(t)
i − η∇viL(f

(t), h(t)), (33)

where b
(t)
i , the bias term, is manually tuned during training and thus excluded from gradient updates.

13
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The gradient of L(f (t), h(t)) with respect to w
(t)
i at iteration t is given by:

∇wiL(f
(t), h(t)) =− ⟨v(t)i , yp⟩xp · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑

xn∈N

⟨f (t)(xn), h
(t)(yp)⟩⟨v(t)i , yp⟩xn

τ
· 1∣∣∣⟨w(t)

i ,xn⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑
yn∈N

⟨f (t)(xp), h
(t)(yn)⟩⟨v(t)i , yn⟩xp

τ
· 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yn⟩

∣∣∣≥b
(t)
i

.

(34)

Similarly, the empirical gradient of L(f (t), h(t)) with respect to v
(t)
i is:

∇viL(f
(t), h(t)) =− ⟨w(t)

i , xp⟩yp · 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑

xn∈N

⟨f (t)(xn), h
(t)(yp)⟩⟨w(t)

i , xn⟩yp
τ

· 1∣∣∣⟨w(t)
i ,xn⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑
yn∈N

⟨f (t)(xp), h
(t)(yn)⟩⟨w(t)

i , xp⟩yn
τ

· 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yn⟩

∣∣∣≥b
(t)
i

.

(35)

A.3. Alignment Updates

We analyze how each neuron i ∈ [m] aligns with the feature Mj during each iteration of SGD. The alignment can be
described by the following update rule:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − ⟨∇wi
L(f (t), h(t)),Mj⟩

= ⟨w(t)
i ,Mj⟩+ ηzjxz

j
y⟨v

(t)
i ,Hj⟩+ ηzjxz

j′

y ⟨v
(t)
i ,Hj′⟩ ± Errt.

(36)

Similarly, for ⟨v(t+1)
i ,Hj⟩, the update rule becomes:

⟨v(t+1)
i ,Hj⟩ = ⟨v(t)i ,Hj⟩ − ⟨∇viL(f

(t), h(t)),Hj⟩

= ⟨v(t)i ,Hj⟩+ ηzjxz
j
y⟨w

(t)
i ,Mj⟩+ ηzjxz

j′

y ⟨w
(t)
i ,Mj′⟩ ± Errt.

(37)

Using Lemma B.7, we know that with high probability,
∑

xn∈N
⟨f(t)(xn),h

(t)(yp)⟩
τ ≤ O( 1d ), so in Eq (34) and Eq (34) the

sum of second term and third term is always less than the first term, until ⟨f (t)(xn), h
(t)(yp)⟩ = Θ(d).

The updates for the components ⟨w(t+1)
i ,Mj⟩, ⟨v(t+1)

i ,Hj⟩, ⟨w(t+1)
i ,Mj′⟩, and ⟨v(t+1)

i ,Hj′⟩ (where j′ represents the
spurious aligned feature corresponding to j) can be expressed concisely in matrix form as follows:

⟨w(t+1)
i ,Mj⟩
⟨v(t+1)

i ,Hj⟩
⟨w(t+1)

i ,Mj′⟩
⟨v(t+1)

i ,Hj′⟩

 =


a b 0 c
b a c 0
0 c a b
c 0 b a



⟨w(t)

i ,Mj⟩
⟨v(t)i ,Hj⟩
⟨w(t)

i ,Mj′⟩
⟨v(t)i ,Hj′⟩

± Errt, (38)

where the coefficients are defined as:

a = 1, b = zjxz
j
y · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

,

c = zjxz
j′

y · 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

.

14



Theoretical Analysis of Contrastive Learning in VLM pre-training: The Role of Synthetic Text Captions for Feature Alignment

Therefore, we have

⟨w(t)
i ,Mj⟩ = ⟨v(t)i ,Hj⟩ =

(a+ b+ c)t + (a+ b− c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
)

+
(a+ b+ c)t − (a+ b− c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩
) (39)

and

⟨w(t)
i ,Mj′⟩ = ⟨v(t)i ,Hj′⟩ =

(a+ b+ c)t + (a+ b− c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩
)

+
(a+ b+ c)t − (a+ b− c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
) (40)

This matrix representation highlights the interactions between the alignment of true and spurious features during SGD
updates. The diagonal elements a dominate the contribution from existing alignments, while the off-diagonal terms b, c
capture the mutual influence between paired features and spurious alignments. Note that if c is very small, it indicates that
the spurious alignment (j′) has minimal influence, allowing wi to focus on learning purified features. Conversely, if c is
large, the spurious alignment could significantly interfere with the learning process, hindering the purification of features.
The error term Errt accounts for higher-order noise or unmodeled effects in the update process.

B. Technical Lemmas
Definition B.1 (Neuron Characterization). Let us define a few notations to characterize each neuron w

(t)
i ’s behavior. For

every constant c0 ∈ (0, 1) and γ ∈ (0, 0.1), by choosing c1 = 2 + 2(1− γ)c0 and c2 = γc0, we define:

1. Let S(t)j,sure ⊆ [m] be those neurons i ∈ [m] satisfying

• ( 1n
∑n

i=1⟨w
(t)
i ,Mj⟩)2 ≥ (c1+c2) log d

d ∥MM⊤w
(t)
i ∥22

• ( 1n
∑n

i=1⟨w
(t)
i ,Mj′⟩)2 < (c1−c2) log d

d ∥MM⊤w
(t)
i ∥22

2. Let S(t)j,pot ⊆ [m] be those neurons i ∈ [m] satisfying

• ⟨w(t)
i ,Mj⟩2 ≥ (c1−c2) log d

d ∥MM⊤w
(t)
i ∥22

Lemma B.2 (Geometry at initialization). We initialize the parameters by w
(0)
i ∼ N (0, σ2

0Id1
), where σ2

0 = Θ
(

1
d1poly(d)

)
.

We have with probability ≥ 1− o(1/d3) over the random initialization, for all j ∈ [d]:∣∣∣S(0)j,sure

∣∣∣ = Ω
(
d

γ
4 c0
)
=: Ξ1∣∣∣S(0)j,pot

∣∣∣ ≤ O
(
d2γc0

)
=: Ξ2

Proof. If g is standard Gaussian, then for every t > 0,

1√
2π

(t)

t2 + 1
e−t2/2 < Pr

g∼N (0,1)
[g > t] <

1√
2π

1

(t)
e−t2/2. (41)

We initialize the parameters by w
(0)
i ∼ N (0, σ2

0Id1
), where σ2

0 = Θ
(

1
d1poly(d)

)
. We have 1

n

∑n
i=1⟨w

(0)
i ,Mi⟩ ∼

N
(
0,

σ2
0

n

)
.

Therefore, for every i ∈ m and j ∈ d, we have

p1 = Pr

[
(
1

n

n∑
i=1

⟨w(0)
i ,Mj⟩)2 ≥ (c1 + c2)

σ2
0

n
log d

]
= Θ

(
1

log d

)
· 1

d(c1+c2)/2
= Θ

(
1√
log d

)
· 1

d · d(1−γ/2)c0
(42)

p2 = Pr

[
(
1

n

n∑
i=1

⟨w(0)
i ,Mj′⟩)2 ≥ (c1 − c2)

σ2
0

n
log d

]
= Θ

(
1

log d

)
· 1

d(c1−c2)/2
= Θ

(
1√
log d

)
· 1

d · d(1−3γ/2)c0
(43)
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Let S(0)j,sure ⊆ [m] be those neurons i ∈ [m] satisfying

• ( 1n
∑n

i=1⟨w
(0)
i ,Mj⟩)2 ≥ (c1+c2) log d

d ∥MM⊤w
(0)
i ∥22

• ( 1n
∑n

i=1⟨w
(0)
i ,Mj′⟩)2 < (c1−c2) log d

d ∥MM⊤w
(0)
i ∥22

By concentration with respect to all m choices of i ∈ [m], we know with probability at least 1 − o
(

1
d3

)
it satisfies∣∣∣S(0)j,sure

∣∣∣ = Ω
(
d

γ
4 c0
)
.

Let S(0)j,pot ⊆ [m] be those neurons i ∈ [m] satisfying

• ⟨w(0)
i ,Mj⟩2 ≥ (c1−c2) log d

d ∥MM⊤w
(0)
i ∥22

By concentration with respect to all m choices of i ∈ [m], we know with probability at least 1 − o
(

1
d3

)
it satisfies∣∣∣S(0)j,pot

∣∣∣ = O
(
d2γc0

)
.

More details of the proof can be found in Lemma B.2 of (Allen-Zhu & Li, 2022).

Lemma B.3. With high probability 1− 1
poly(d) , for every i ∈ [m], the following holds:

Pr

[
(
1

2n

n∑
i=1

⟨w(0)
i ,Mj⟩ − ⟨w(0)

i ,Mj′⟩)2 ≥
1

d

σ2
0

2n
log d

]
≥ 1−O(

1√
d
) (44)

Lemma B.4. With high probability 1− 1
poly(d) , for every i ∈ [m], the following holds:

∥MM⊤w
(0)
i ∥

2
2 + ∥HH⊤v

(0)
i ∥

2
2 ∈ 2dσ2

0

[
1− Õ

(
1√
d

)
, 1 + Õ

(
1√
d

)]
. (45)

Proof. Let X ∼ χ2
n. By standard properties of the chi-squared distribution, we know that with probability at least 1− δ,

|X − n| ≤ 2
√

n log(1/δ). (46)

In our case, we consider ∥MM⊤w
(0)
i ∥2

2+∥HH⊤v
(0)
i ∥2

2

σ2
0

∼ χ2
2d. Setting δ = 1

poly(d) , we have n = 2d, and thus, with high

probability 1− 1
poly(d) , the following holds:∣∣∣∣∣∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

σ2
0

− 2d

∣∣∣∣∣ ≤ 2
√

2d log(poly(d)). (47)

Rearranging and incorporating the scaling factor σ2
0 , we get:

∥MM⊤w
(0)
i ∥

2
2 + ∥HH⊤v

(0)
i ∥

2
2 ∈ 2dσ2

0

[
1− Õ

(
1√
d

)
, 1 + Õ

(
1√
d

)]
. (48)

Lemma B.5 (Noise Projection Bound). For the spurious dense noise ξxp
∼ N (0, σ2

ξId1
), where the variance satisfies

ω
(

1
d1

)
≤ σ2

ξ ≤ O
(
1
d

)
, the following holds with high probability 1− e−Ω(d1):

|⟨wi, ξ⟩|2 ≤ O

(
∥wi∥22
d1+c0

)
, ∀i ∈ [m]. (49)

Proof. For all j ∈ [d1], by the properties of the Gaussian distribution, we have:

Pr
ξ

[
⟨Mj , ξ⟩2 ≤ O

(
1

d1+c0

)]
≥ 1− e−Ω(d1). (50)
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Now, consider the term |⟨wi, ξ⟩|2. We decompose it as:

|⟨wi, ξ⟩|2 =
∑
j∈[d]

|⟨wi,Mj⟩|2 · |⟨Mj , ξ⟩|2 +
∑

j∈[d1]\[d]

|⟨wi,M
⊥
j ⟩|2 · |⟨M⊥

j , ξ⟩|2. (51)

For the first term, since |⟨Mj , ξ⟩|2 ≤ O
(

1
d1+c0

)
with high probability, we have:

∑
j∈[d]

|⟨wi,Mj⟩|2 · |⟨Mj , ξ⟩|2 ≤
∑
j∈[d]

O

(
|⟨wi,Mj⟩|2

d1+c0

)
. (52)

Similarly, for the second term:

∑
j∈[d1]\[d]

|⟨wi,M
⊥
j ⟩|2 · |⟨M⊥

j , ξ⟩|2 ≤
∑

j∈[d1]\[d]

O

(
|⟨wi,M

⊥
j ⟩|2

d1+c0

)
. (53)

Combining these, we have:

|⟨wi, ξ⟩|2 ≤ O

(
∥MM⊤wi∥22

d1+c0
+
∥M⊥M⊥⊤

wi∥22
d1+c0

)
. (54)

Since ∥MM⊤wi∥22 + ∥M⊥M⊥⊤
wi∥22 = ∥wi∥22, we conclude:

|⟨wi, ξ⟩|2 ≤ O

(
∥wi∥22
d1+c0

)
. (55)

Thus, the lemma holds.

Lemma B.6 (Tail Bound for Matrix Product). Let Q ∈ Rn×n be a symmetric matrix, and let w, v be independent zero-mean
Gaussian random vectors with covariance matrix In. Define

Z :=

n∑
i,j=1

Qijwivj . (56)

Then, for any δ > 0, the following tail bound holds:

Pr[|Z| ≥ δ] ≤ 4 exp

(
− δ2

4∥Q∥2F + 4δ∥Q∥op

)
. (57)

Lemma B.7 (Bound Inner Product). Consider the inner product between the feature vectors at initialization:

⟨f(x), h(y)⟩ = ⟨Wx,Vy⟩ =
m∑
l=1

w⊤
l xy

⊤vl =

m∑
l=1

d1∑
i,j=1

(x⊤
i yj)w

⊤
l vl. (58)

Here, using Lemma B.6, Q = xy⊤, with ∥Q∥op = Θ(1), ∥Q∥F = Θ(1) and σ2
0 = Θ

(
1

d1poly(d)

)
. Then, at initialization

(t = 0), the following holds:
Pr[|⟨f (t)(x), h(t)(y)⟩| ≥ Ω(1)] ≤ e−poly(d), (59)

Lemma B.8 (Concentration bound for empirical loss and gradients). There exist N ≥ poly(d) for some sufficiently large
polynomial and all ∥wi∥2 ≤ O(d), i ∈ [m] , it satisfies∣∣∣∣∣∣ 1N

∑
p∈[N ]

L(f (t), h(t); (xp, yp))− E(xp,yp)∈D[L(f (t), h(t); (xp, yp))]

∣∣∣∣∣∣ ≤ O(
1

d
) (60)

∥∥∥∥∥∥ 1

N

∑
p∈[N ]

∇wiL(f
(t), h(t); (xp, yp))− E(xp,yp)∈D[∇wiL(f

(t), h(t); (xp, yp))]

∥∥∥∥∥∥
2

≤ O(
1

d
) (61)
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Proof. The proof can be done by trivial VC dimension or Rademacher complexity arguments similarly to Lemma A.2.
(Allen-Zhu & Li, 2022).

Lemma B.9 (Misalignment Probability Bound). The probability of spurious alignment satisfies:

log
(

1
2γc0

)
2 log d1

d

< Pr(|zjyp
| = 1 | |zj

′

xp
| = 1) <

1

2
. (62)

Proof. By concentration over all m choices of i ∈ [m], we find that with probability at least 1 − o
(

1
d3

)
, the number of

neurons satisfying: (
1

n

n∑
i=1

⟨wi,Mj⟩

)2

< (c1 + 4c2)
σ2
0

n
log d (63)

is o(1).

In addition, for all neurons, we have:

max
(
⟨w(T1)

i ,Mj′⟩2
)
≤ c1 + 3c2

2

log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (64)

Define:

∆(T1) =
(a+ b− c)T1

4

∣∣∣⟨w(0)
i ,Mj⟩+ ⟨v(0)i ,Hj⟩ − ⟨w(0)

i ,Mj′⟩ − ⟨v(0)i ,Hj′⟩
∣∣∣ . (65)

Thus:

⟨w(T1)
i ,Mj′⟩2 =

∣∣∣max
(
⟨w(T1)

i ,Mj′⟩
)
−∆(T1)

∣∣∣2 ≥ c1 − c2
2

log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (66)

We begin by expressing a+ b− c and a+ b+ c as functions of P1 = Pr(|zjyp
| = 1 | |zj′xp

| = 1) and P2 = Pr(|zjyp
| = 1 |

|zjxp
| = 1), where P1 + P2 = 1:

a+ b− c = 1− ηλ+ η
(P1 − P2)Cz log log d

d
, (67)

a+ b+ c = 1− ηλ+ η
(P1 + P2)Cz log log d

d
. (68)

Using Eq (66), Eq (39) and Eq (40), we derive:

(a+ b− c)2T1

(a+ b+ c)2T1
≤

(√
c1 + 3c2

2
−
√

c1 − c2
2

)2

≤ 2c22. (69)

Substituting back, we find:

log
(

1
2γc0

)
2 log d1

d

< P1 <
1

2
. (70)

For example, setting c0 = 0.1, γ = 0.005, d = 100, and d1 = 10000, we calculate:

1

4
≤ Pr(|zjyp

| = 1 | |zj
′

xp
| = 1) <

1

2
. (71)

This concludes the proof by bounding Pr(|zjyp
| = 1 | |zj′xp

| = 1) under the given conditions.
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C. ITCP on Raw Data I
In this section we analyze stage I of ITCP on Raw Data as the training iterations t ≤ T1, where T1 = Θ

(
d log d

η

)
is the

iteration when all ∥w(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 ≥ ∥w(0)
i ∥22 + ∥v

(0)
i ∥22. When t ≤ T1, we set b(t)i = 0. For every neuron i ∈ [m], the

weights wi and vi exhibit an increase in alignment along the direction of informative features M and H, while showing
negligible increase in alignment along the direction of noise features M⊥ and H⊥.

Based on subsection A.1, we have Pr(|zjyp
| = 1 | |zj′xp

| = 1) = Θ(1), so E
[
zjxz

j
y

]
and E

[
zjxz

j′

y

]
both in Θ

(
1
d

)
. In this

case, w(t+1)
i is jointly influenced by Mj and Mj′ , with both features contributing comparably to the updates.

To simplify our analysis, we consider the worse case where Pr(|zj′yp
| = 1 | |zjxp

| = 1) = Pr(|zjyp
| = 1 | |zjxp

| = 1) = 1
2

such that E
[
zjxz

j
y

]
= E

[
zjxz

j′

y

]
= Cz

2d , so using Eq (39), Eq (40) and b
(t)
i = 0 we have

⟨w(t)
i ,Mj⟩ =

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩

)
(72)

⟨w(t)
i ,Mj′⟩ =

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩

)
(73)

This represents the worst-case scenario as the contributions of the aligned feature E
[
zjxz

j
y

]
and the spurious feature

E
[
zjxz

j′

y

]
are identical. Under real circumstances, we expect E

[
zjxz

j
y

]
< E

[
zjxz

j′

y

]
, which would result in ⟨w(t+1)

i ,Mj⟩ >

⟨w(t+1)
i ,Mj′⟩. However, in this worst-case scenario, the equality of contributions prevents the network from prioritizing

purified features, resulting in equal magnitudes for ⟨w(t+1)
i ,Mj⟩ and ⟨w(t+1)

i ,Mj′⟩, thereby hindering effective feature
separation.

We first provide a lower bound for ∥MM⊤w
(t)
i ∥22 for iterations t ≤ t1. From Eq (124) and Eq (73) we have:

∥MM⊤w
(t)
i ∥

2
2 =

d∑
i=1

[
(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
)
+

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v0i ,Hj′⟩
)]2

=

(
1 +

ηCz

d

)2t ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

(74)

∥M⊥(M⊥)⊤w
(t)
i ∥

2
2≤
(
1 +

1

poly(d)

)
∥M⊥(M⊥)⊤w

(0)
i ∥

2
2. (75)

The detailed proof of Eq (75) can be found in Hypothesis C.4 of (Wen & Li, 2021).

A similar result holds for ∥HH⊤v
(t)
i ∥22 and ∥H⊥(H⊥)⊤v

(t)
i ∥22.

Eq (74) and Eq (75) shows that the image and text dictionary features M,H can grow exponentially, while the noisy features
M⊥,H⊥ remain almost unchanged when t ≤ T1.

For M⊥
j where j ∈ [d1] \ [d], using Eq (75), we obtain:

|⟨w(t+1)
i ,M⊥

j ⟩|2 ≤ O

(
1

d1

)
∥w(0)

i ∥
2
2 ≤ O

(
1

d1

)
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (76)

This result demonstrates that the noisy features M⊥
j experience nearly no increase during this phase, remaining insignificant

in their contribution to the alignment of wi.

C.1. Lower Bound of Alignment for i ∈ Sj,sure

This section provides a analysis of the alignment growth for neurons i ∈ Sj,sure. Specifically, we demonstrate that for
every j ∈ [d], if i ∈ Sj,sure, the alignment ⟨Mj , w

(t)
i ⟩2 and its spurious alignment ⟨M′

j , w
(t)
i ⟩2 increase exponentially when

t ≤ T1.
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We now prove the lower bound of |⟨w(T1)
i ,Mj⟩|2 for i ∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj′⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj⟩

4

)2

♢
≥
(
1 + η

Cz

d

)2T1

· (c1 + c2) log d

d
· ∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

♡
=

(c1 + c2) log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

♣
≥ (c1 + c2) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22 − ∥w

(0)
i ∥22 − ∥v

(0)
i ∥22

2

♠
>

(1 + c0 − γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2

(77)

In ♢ we use Definition B.1. In ♡ we use Eq (74). In ♣ we use ∥w(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 ≥ ∥w(0)
i ∥22 + ∥v(0)i ∥22. In ♠ we use

c1 + c2 > 2(1 + c0 − γc0).

Similarly, |⟨w(T1)
i ,Mj′⟩|2 have the same lower bound.

C.2. Upper Bound of Alignment for i /∈ Sj,pot

In this subsection, we analyze the alignment of neuron i /∈ Sj,pot with the feature Mj and provide an upper bound for
|⟨w(T1)

i ,Mj⟩|2. While neurons i /∈ Sj,pot still exhibit exponential growth in their alignment, their weaker initialization
results in significantly smaller alignment compared to neurons in Sj,sure, limiting their contribution to learning the feature
Mj .

To establish the bound, we begin with the following expression:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj′⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj⟩

4

)2

♢
≤
(
1 + η

Cz

d

)2T1

· (c1 − c2) log d

d
· ∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

=
(c1 − c2) log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2
.

(78)

Here, in ♢, we use Lemma B.1, which captures the reduced alignment for neurons outside Sj,pot.

Similar to the analysis for i ∈ Sj,sure, the alignment strength for i /∈ Sj,pot is weaker, as c1 − c2 is less than 2(1 + c0 − γc0),
leading to:

|⟨w(T1)
i ,Mj⟩|2 <

(1 + c0 − 3γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (79)

This inequality highlights the slower alignment for neurons outside Sj,pot, distinguishing their behavior from neurons in
Sj,sure. Consequently, i /∈ Sj,pot contributes less significantly to the alignment of Mj , reinforcing the importance of initial
affinity for effective alignment.

C.3. Summary

At this stage (t ≤ T1), we do not consider the worst-case scenario where the probability bounds for feature coupling satisfy

log(1/c0)

2 log d
< Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) <
1

2
< Pr(|zjyp

| = 1 | |zjxp
| = 1) < 1

(as assumed in Subsection A.1). Thus, we summarize the results when t ≤ T1 as follows:
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1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 > |⟨w(T1)

i ,Mj′⟩|2 >
(1 + c0 − γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
, (80)

where j′ represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 <

(1 + c0 − 3γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (81)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (82)

These results demonstrate that when t ≤ T1, all features in M increase, but the alignment for i ∈ Sj,sure, including the
corresponding spurious alignment, grows significantly larger due to favorable initialization. In contrast, noisy features M⊥

remain unchanged.

D. ITCP on Raw Data II
The stage II of ITCP on Raw Data is defined as the training iterations T1 < t ≤ T2, where T2 − T1 = Θ

(
d log d

η

)
.

At the beginning of this phase, we set the bias threshold as:

b
(T1)
i =

√
(1 + c0 − 2γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (83)

During training, the bias threshold is iteratively updated as:

b
(t+1)
i =

(
1 +

η

d

)
b
(t)
i , (84)

until all neurons satisfy:
∥w(T2)

i ∥22 ≥ Ω(d)∥w(T1)
i ∥22. (85)

In this phase, the dynamics of alignment vary depending on whether a neuron belongs to Sj,sure or not:

• For i /∈ Sj,pot: The weights wi and vi show negligible alignment growth with both the informative features Mj , Hj

and the noise features M⊥, H⊥. This is due to their weaker initialization, as shown in Stage I, and the effect of
the indicator function when t ≥ T1 which prevents them from being activated. As a result, their capacity to learn
meaningful alignments during this phase is significantly limited.

• For i ∈ Sj,sure: The weights wi and vi exhibit continued alignment growth with the informative features Mj , Hj .
Additionally, their alignment with the corresponding spurious features Mj′ , Hj′ also increases due to their strong
initialization, as shown in Stage I, and the effect of the indicator function when t ≥ T1, which ensures they are always
activated.

By the end of this stage (t = T2), the weights wi, vi will predominantly focus on the features Mj , Hj if i ∈ Sj,sure, while
largely ignoring the features Mj , Hj if i /∈ Sj,pot, as well as the noise features M⊥, H⊥. This separation lays the foundation
for the stage II of ITCP on Raw Data, where spurious alignments are expected to further diminish due to the dominance of
true feature alignments.

Similarly to the proof of t ≤ T1 To simplify our analysis, we still consider the worse case where Pr(|zj′yp
| = 1 | |zjxp

| =
1) = Pr(|zjyp

| = 1 | |zjxp
| = 1) = 1

2 such that E
[
zjxz

j
y

]
= E

[
zjxz

j′

y

]
= Cz

2d .
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D.1. Alignment for i ∈ Sj,sure

This section provides a analysis of the alignment growth for neurons i ∈ Sj,sure. Specifically, we demonstrate that for
every j ∈ [d], if i ∈ Sj,sure, the alignment ⟨Mj , w

(t)
i ⟩2 and its spurious alignment ⟨M′

j , w
(t)
i ⟩2 increase exponentially when

T1 < t ≤ T2.

For i ∈ Sj,sure, using Lemma B.5, the following holds with high probability 1− e−Ω(d1) when T1 < t ≤ T2 :

∣∣∣⟨w(t)
i , ξ⟩

∣∣∣2 ≤ O


∥∥∥w(t)

i

∥∥∥2
2

d1+c0

 < b
(t)
i (86)

Therefore, with high probability 1− e−Ω(d1), using Eq (80) and Eq (83) the indicator function satisfies the condition when
t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1, (87)

we can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
=

Cz

d
. (88)

Using Eq (118) we know that
(
1 + ηCz

2d

)
>
(
1 + η

d

)
and using Eq (38) we have

|⟨w(t+1)
i ,Mj⟩| > (1 +

η

d
)b

(t)
i = b

(t+1)
i . (89)

This implies that when t > T1, the alignment strength of informative features surpasses the updated bias threshold b
(t)
i .

Consequently, the indicator functions become consistently activated T1 < t ≤ T2 such that

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1, (90)

Using Eq (38), the weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as when T1 < t ≤ T2:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)( ⟨w(t)
i ,Mj⟩+ ⟨v(t)i ,Hj′⟩+ ⟨w(t)

i ,M⊥
j ⟩+ ⟨v

(t)
i ,Hj⟩

4

)
. (91)

Similarly, |⟨w(T1)
i ,Mj′⟩|2 have the same result.

D.2. Alignment for i /∈ Sj,pot

In this section, we analyze the alignment behavior for neurons i /∈ Sj,pot. Specifically, we demonstrate that for every j ∈ [d],
if i /∈ Sj,pot, the alignment ⟨Mj , w

(t)
i ⟩2 exhibits negligible growth during the interval T1 < t ≤ T2.

For i /∈ Sj,pot, using Eq (158), Eq (83) and Eq (80), we have with high probability 1− e−Ω(d1), similarly to the proof of
i ∈ Sj,sure, the indicator function satisfies the condition when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 0, (92)

We can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
≤ o

(
1

d2

)
. (93)

Using Eq (118) we know that
(
1 + o( η

d2 )
)
<
(
1 + η

d

)
and using Eq (38) we have

|⟨w(t+1)
i ,Mj⟩| < (1 +

η

d
)b

(t)
i = b

(t+1)
i . (94)
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This implies that when t > T1, the alignment strength of informative features does not surpass the updated bias threshold
b
(t)
i . Consequently, the indicator functions become consistently not activated T1 < t ≤ T2 such that

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 0, (95)

Using Eq (38), the weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as when T1 < t ≤ T2:

|⟨w(t+1)
i ,Mj⟩| ≤

(
1 + o

( η

d2

))t( ⟨w(T1)
i ,Mj⟩+ ⟨v(T1)

i ,Hj′⟩+ ⟨w(T1)
i ,Mj′⟩+ ⟨v(T1)

i ,Hj⟩
4

)
(96)

Because
(
1 + o

(
η
d2

))T2 ≤ 1 + o
(
1
d

)
, the growth in |⟨w(T2)

i ,Mj⟩| is negligible. Consequently, we have:

|⟨w(T2)
i ,Mj⟩|2 ≤

(
1 + o

(
1

d

))
|⟨w(T1)

i ,Mj⟩|2. (97)

D.3. Summary

When T2 = Θ
(

d log d
η

)
, we know

(
1 + ηCz

d

)T2
= poly(d). Using Eq (80), we can ensure that when all neurons satisfy the

following condition:
∥w(T2)

i ∥2 ≥ Ω(d)∥w(T1)
i ∥2, (98)

we terminate the training process at T2 = Θ
(

d log d
η

)
. This ensures that the alignment has sufficiently progressed for

effective learning.

Thus, using Eq (97) and Eq (75) we have

|⟨w(T2)
i ,Mj⟩|2 + |⟨w(T2)

i ,Mj′⟩|2 = ∥w(T2)
i ∥22 −

∑
j∈[d],j /∈Ni

⟨w(T2)
i ,Mj⟩2 −

∑
j∈[d1]\[d]

⟨w(T2)
i ,M⊥

j ⟩2

≥ ∥w(T2)
i ∥22 − (1 + o(

1

d
))(∥w(T1)

i ∥22 − |⟨w
(T1)
i ,Mj⟩|2 − |⟨w(T1)

i ,Mj′⟩|2)

≥ ∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22 − o(

∥w(T1)
i ∥22
d

)

(99)

Thus, at this stage (T1 < t ≤ T2), we do not consider the worst-case scenario where the probability bounds for feature
coupling satisfy

log(1/c0)

2 log d
< Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) <
1

2
< Pr(|zjyp

| = 1 | |zjxp
| = 1) < 1

We summarize the results when T1 < t ≤ T2 as follows:

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T2)
i ,Mj⟩|2 > |⟨w(T2)

i ,Mj′⟩|2 ≥
1

4

∥w(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(100)

where j′ represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
) · ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(101)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
· ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
. (102)

These results demonstrate that when T1 < t ≤ T2, the alignment for i ∈ Sj,sure, including the corresponding spurious
alignment, grows significantly larger. In contrast, the alignment strength for i /∈ Sj,pot and noisy features M⊥ remains
unchanged. Similar results also hold for vi.
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E. ITCP on Raw Data III Convergence
In the previous section, we demonstrated that for t ≤ T2, the neurons (wi, vi) are sparsely activated and remain consistently
activated for i ∈ Sj,sure. Building on this result, this section establishes the convergence of these neurons to sparse solutions,
providing a detailed analysis of their behavior during Stage III of ITCP on Raw Data. The following theorem outlines the
convergence guarantees under these conditions.

The Stage III of ITCP on Raw Data is defined as the training iterations T2 < t ≤ T3, where T3 − T2 = Θ(d). At the
beginning of this phase, we fix the bias threshold as b(t)i = bT2

i for T2 < t ≤ T3. Because b
(T2)
i =

(
1 + η

d

)Θ(d log d/η)
b
(T1)
i ,

it is easy to know that for t ≥ T2, only when (xp, yp) and (xn, yn) contain the true feature j and its corresponding spurious
feature j′, the indicator functions remain consistently activated for i ∈ Sj,sure.

Consequently, using Eq (31), Eq (34), and Eq (35), the loss function L becomes convex with respect to wi and vi
independently when (xp, yp) and (xn, yn) contain the true feature j and its corresponding spurious feature j′ .

At the end of Stage II, using Eq (85), we know that ∥w(T2)
i ∥2 ≥ Ω(d). Consequently, we cannot only consider

−⟨f (t)(xp), h
(t)(yp)⟩, and the error term Errt becomes non-negligible.

Specifically, based on Eq (31), it can be observed that the term −⟨f (t)(xp), h
(t)(yp)⟩ is convex and li,j,1 = ∥xp∥2∥yp∥2 =

Θ(1)-smooth. This ensures that the true features contribute consistently to the optimization process.

Additionally, Li,j,2 =
(⟨f(t)(xn),h

(t)(yp)⟩)
2

2τ is also convex, and we further establish its smoothness to provide a rigorous
understanding of its behavior.

To analyze the li,j,2-smoothness, we aim to find an upper bound that satisfies:

∥∇wi,viL2(wi,1, vi,1)−∇wi,viL2(wi,2, vi,2)∥2 ≤ li,j,2∥(wi,1 − wi,2, vi,1 − vi,2)∥2. (103)

The gradient difference for wi is given by:

∥∇wi
Li,j,2(wi,1, vi,1)−∇wi

Li,j,2(wi,2, vi,2)∥2 =
∥∥∥ (x⊤W⊤

1 V1y
)
x(vi,1y)

⊤ −
(
x⊤W⊤

2 V2y
)
x(vi,2y)

⊤
∥∥∥
2
/(2τ)

≤ lwi,1

2τ
∥wi,1 − wi,2∥2 +

lwi,2

2τ
∥vi,1 − vi,2∥2,

(104)

where lwi,1 = ∥xn∥22∥yp∥22∥vi,1∥2∥vi,2∥2 ≤ O(d) and lwi,2 = ∥xn∥22∥yp∥22
(
∥vi,1∥2∥wi,2∥2 + ∥wi,1∥2∥vi,1∥2

)
≤ O(d).

Similarly, the gradient difference for vi is:

∥∇viLi,j,2(wi,1, vi,1)−∇viLi,j,2(wi,2, vi,2)∥2 ≤
lvi,1
2τ
∥wi,1 − wi,2∥2 +

lvi,2
2τ
∥vi,1 − vi,2∥2, (105)

where lvi,1 ≤ O(d) and lvi,2 ≤ O(d).

Combining the results, we find:

li,j,2 =

√
l2wi,1

+ l2wi,2
+ l2vi,1 + l2vi,2

2τ
≤ O(1). (106)

Thus, the total smoothness constant is:
li,j = li,j,1 + li,j,2 = Θ(1). (107)

These results demonstrate that the loss function L remains convex and li,j-smooth for neurons (wi, vi) when (xp, yp) and
(xn, yn) contain the true feature j and its corresponding spurious feature j′ during Stage III of ITCP on Raw Data, ensuring
their convergence to sparse solutions while maintaining consistency in their activation patterns.

We verify that the following inequality holds

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )+

〈
∇Lj(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+
li,j
2

∥∥(w(t+1)
i −w(t)

i , v
(t+1)
i −v(t)i

)∥∥2
(108)
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Let L = maxi∈m(li,j/(2τ)) = Θ(1) and η = 1
L to ensure a monotonic decrease, plug Eq (32) and Eq (33) into Eq (180),

we have
Lj(w

(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )− η

2
∥∇Lj(w

(t)
i , v

(t)
i )∥2. (109)

Under our data assumptions for Sw and conclusion in Eq (100) , we define w∗
i = α∗

i,jMj + α∗
i,j′Mj′ , v

∗
i = α∗

i,jHj +
α∗
i,j′Hj′ . Thus, Lj(w

∗
i , v

∗
i ) captures both the alignment with the true feature Mj ,Hj and the spurious feature Mj′ ,Hj′ ,

representing the minimal loss achievable under the influence of both true and spurious features in the optimization process.
Using Eq (85), we know w

(T2)
i = Θ(d), so Lj(w

∗
i , v

∗
i ) = −Θ(d).

By the property of smoothness, we have

∥∇Lj(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
Lj(w

(t)
i , v

(t)
i )− Lj(w

∗
i , v

∗
i )
)

(110)

Take the telescope sum of from T2 to T3, we have

1

T3 − T2

T3∑
t=T2

Lj(w
(t)
i , v

(t)
i )≤Lj(w

∗
i , v

∗
i ) +

L2∆0

T3 − T2

♢
≤ Lj(w

∗
i , v

∗
i ) + Θ(1)

(111)

where ∆0 = Lj(w
(T1)
i , v

(T1)
i )− Lj(w

∗
i , v

∗
i ) = Θ(d). In ♢, we use T3 − T2 = Θ(d), and L = Θ(1) .

Generalized to every j ∈ d, the same convergence holds for all i ∈ Sj,sure when (xp, yp) and (xn, yn) contain feature j, j′.
For all (xp, yp) and (xn, yn) in Sw, the following inequality holds:

1

T2

T2∑
t=0

L(f (T2), h(T2)) ≤ L(f∗, h∗) + Θ(1). (112)

As a result, the relative difference is bounded by:

L(f (T2), h(T2))− L(f∗, h∗)

|L(f∗, h∗)|
≤ Θ

(
1

d

)
. (113)

F. Captioning
In this stage, the model fine-tunes the pre-trained encoder parameters W and V to obtain the updated parameters Ŵ and V̂
through Image-Text Contrastive Pre-training (ITCP) on raw data.

Given an image-text pair (xp, yp) in Sw, the decoder generates synthetic captions ŷp = V̂Tσ(Ŵxp), where σ(·) denotes
the activation function. The Image-Grounded Text Decoder, initialized with W and V from the pre-trained encoders, is
fine-tuned on Sh by minimizing the following loss function:

LC = E(xp,yp)∈Sh

[
1

2

∥∥VTσ(Wxp)− yp
∥∥2
2

]
, (114)

where ∥ · ∥2 denotes the Euclidean norm. This fine-tuning process refines the model to generate captions that are more
closely aligned with the target text data in Sh.

During the captioning, we sample a batch of image-text pairs S(t)
h = {(xp, yp)}Bp=1 ⊆ Sh. We perform stochastic gradient

descent on LC . At each iteration, we update as

w
(t+1)
i ← w

(t)
i − η∇wiL

(t)
C (115)

v
(t+1)
i ← v

(t)
i − η∇viL

(t)
C (116)
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At the beginning of this phase, we set the bias threshold as:

b
(0)
i =

√
∥w(T2)

i ∥22 − ∥w
(T1)
i ∥22

2
(117)

During training, the bias threshold is iteratively updated as:

b
(t+1)
i =

(
1 +

η

d

)
b
(t)
i , (118)

The gradient of LC with respect to w
(t)
i , v(t)i , W, and V at iteration t is given by:

∇
w

(t)
i
LC = v

(t)
i (yp −VTWxp)x

T
p · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

(119)

∇
v
(t)
i
LC = w

(t)
i xp(yp −VTWxp)

T · 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

(120)

The alignment can be described by the following update rule:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − ⟨∇wi
LC ,Mj⟩

= ⟨w(t)
i ,Mj⟩+ η · tr(v(t)i (yp −VTWxp)x

T
p Mj · 1|⟨wi,xp⟩|≥b

(t)
i
)

(121)

⟨v(t+1)
i ,Hj⟩ = ⟨v(t)i ,Hj⟩ − ⟨∇viLC ,Hj⟩

= ⟨v(t)i ,Hj⟩+ η · tr(w(t)
i xp(yp −VTWxp)

THj · 1|⟨wi,xp⟩|≥b
(t)
i
)

(122)

F.1. Alignment for i ∈ Sj,sure

This section analyzes the alignment growth for neurons i ∈ Sj,sure. Specifically, we show that when t ≤ TC , the alignment
with the true feature Mj grows exponentially if xp contains the true feature Mj . In contrast, the alignment with the spurious
feature Mj′ exhibits negligible growth, even for neurons i ∈ Sj,sure. Specially,

1. For the true feature Mj , based on the result in Eq (100) and the bias threshold in Eq (117), the indicator functions are
always activated. This ensures that the neuron can consistently increase its alignment in the direction of the true feature Mj .

2. For the spurious feature Mj′ , based on the result in Eq (100) and the bias threshold in Eq (117), the indicator functions
remain non-activated. This prevents the neuron from increasing its alignment in the direction of the spurious feature Mj′ .

The details of proof as follow:

Using Eq (99), we know

∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22 ≥ |⟨w

(T2)
i ,Mj⟩|2 + |⟨w(T2)

i ,Mj′⟩|2 ≥ ∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22 − o(

∥w(T1)
i ∥22
d

) (123)

Using Eq (39) and Eq (40), we have

⟨w(t)
i ,Mj⟩ − ⟨w(t)

i ,Mj′⟩ =
(a+ b− c)t

2

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩ − ⟨w(0)
i ,Mj′⟩ − ⟨v(0)i ,Hj′⟩

)
+ Errt (124)

Using Eq (44) and (a+ b− c)
T1+T2 ≥ Ω(d2), with high probability 1−O( 1√

d
) we have,

|⟨w(T2)
i ,Mj⟩|2 − |⟨w(T2)

i ,Mj′⟩|2 ≥ Ω(
∥w(T1)

i ∥22
d

) (125)
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Therefore, with high probability 1−O( 1√
d
) we have

|⟨w(T2)
i ,Mj⟩|2 >

∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22

2
> |⟨w(T2)

i ,Mj′⟩|2 (126)

We set b(0)i =

√
∥w(T2)

i ∥2
2−∥w(T1)

i ∥2
2

2 , and using Eq (126), so similarly to the proof of Eq (90) we can prove:

1. For i ∈ Sj,sure and xp contain the true feature Mj , with high probability 1 − O( 1√
d
) the indicator functions become

consistently activated 0 ≤ t ≤ TC such that:
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

= 1 (127)

2. For i ∈ Sj,sure and xp contain the corresponding spurious aligned feature Mj′ , with high probability 1 − O( 1√
d
) the

indicator functions become consistently activated 0 ≤ t ≤ TC such that:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 0 (128)

3. For i /∈ Sj,pot and M⊥
j where j ∈ [d1] \ [d], we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 0 (129)

For the residual loss in Eq (121) and Eq (122), we bound the difference if 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 1:

Hjz
j
xp
zjyp

♢
≥ (yp −VTWxp)x

T
p Mj · 1|⟨wi,xp⟩|≥b

(t)
i

= (Hjz
j
xp
zjyp
−

m∑
i=1

⟨vi,Hj⟩⟨wi,Mj⟩Hjz
j
xp
zjyp

) · 1⟨wi,xp⟩≥b

♡
≥ Hjz

j
xp
zjyp
−O(dγc0)⟨vi,Hj⟩⟨wi,Mj⟩Hjz

j
xp
zjyp

(130)

In ♢, we employ the approximation ypx
⊤
p Mj ≈ Hjz

j
xp
zjyp

, based on the observation that zjxp
zj

′

yp
≪ zjxp

zjyp
when j ̸= j′.

In ♡, we utilize Eq (42). There are at most O(dγc0) neurons capable of learning Mj , which satisfy the condition 1⟨wi,xp⟩≥b.

For i ∈ Sj,sure and for xp contain Mj , using Eq (130), Eq (121) and Eq (128) we have:

⟨w(t+1)
i ,Mj⟩ ≥ ⟨w(t)

i ,Mj⟩+ η · tr
(
v
(t)
i · (1− α2

t )HjE
[
zjxp

zjyp

])
≥ ⟨w(t)

i ,Mj⟩+ η
Cz(1− α2

t )

d
⟨v(t)i ,Hj⟩,

(131)

Similar to Eq (39), we have

|⟨w(t)
i ,Mj⟩| ≥

(
1 + η

Cz · (1− α2
t )

d

)t
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)
(132)

Similarly, for i ∈ Sj,sure and xp contain the corresponding spurious aligned feature Mj′ , because Pr[1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

=

0] ≥ 1−O( 1√
d
), we have

⟨w(t+1)
i ,Mj′⟩ ≤ ⟨w(t)

i ,Mj′⟩+O(
η

d1.5
)⟨v(t)i ,Hj′⟩ (133)

and

|⟨w(t)
i ,Mj′⟩| ≤

(
1 +O(

η

d1.5
)
)t( ⟨w(T2)

i ,Mj′⟩+ ⟨v(T2)
i ,Hj′⟩

2

)
(134)
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At TC = Θ
(

d log(d)
η

)
, we have:

|⟨w(TC)
i ,Mj⟩|

|⟨w(TC)
i ,Mj′⟩|

>

(
1 + η

Cz·(1−α2
t )

d

)TC

(
1 +O( η

d1.5 )
)TC

≥ Ω(d) (135)

Therefore, we summarize that when t = TC , the alignment with the true feature Mj dominates, satisfying:

|⟨w(TC)
i ,Mj⟩|

|⟨w(TC)
i ,Mj′⟩|

≥ Ω(d), (136)

highlighting the significant separation between the true feature Mj and the spurious feature Mj′ for neurons i ∈ Sj,sure. A
similar result holds for vi, where the alignment with the true feature Hj similarly dominates over the spurious feature Hj′ .

F.2. Convergence

For i ∈ Sj,sure, when xp, yp contains the true feature j, the indicator functions remain consistently activated. Consequently,
the loss function LC becomes convex with respect to wi and vi independently. We verify that the following inequality holds

LC,j(w
(t+1)
i , v

(t+1)
i ) ≤ LC,j(w

(t)
i , v

(t)
i )+

〈
∇LC,j(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+
li
2

∥∥(w(t+1)
i −w(t)

i , v
(t+1)
i −v(t)i

)∥∥2
(137)

where li = O(Czd
2γc0)(

∥∥∥v(t)i

∥∥∥2
2
∥xp∥22 +

∥∥∥v(t)i

∥∥∥2
2
∥xp∥22) = Θ(1). This means LC,j(w

(t)
i , v

(t)
i ) is li-smooth for all

i ∈ Sj,sure when xp, yp contains the true feature j. Let L = maxi∈m(li) = Θ(1)

Let η = 1
L to ensure a monotonic decrease, plug Eq (119) and Eq (120) into Eq (137), we have

LC,j(w
(t+1)
i , v

(t+1)
i ) ≤ LC,j(w

(t)
i , v

(t)
i )− η

2
∥∇LC,j(w

(t)
i , v

(t)
i )∥2. (138)

By the property of smoothness, we have

∥∇LC,j(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
LC,j(w

(t)
i , v

(t)
i )− LC,j(w

∗
i , v

∗
i )
)
. (139)

Take the telescope sum of from 0 to TC , we have

1

TC

TC∑
t=0

LC,j(w
(t)
i , v

(t)
i )≤LC,j(w

∗
i , v

∗
i ) +

L2∆0

TC

♢
≤ LC,j(w

∗
i , v

∗
i ) + Θ(

1

d
)

♡
= Θ(

1

d
)

(140)

where ∆0 = LC,j(w
(0)
i , v

(0)
i ) − LC,j(w

∗
i , v

∗
i ). In ♢, we use TC = Θ(d), and ∥w(t)

i ∥22 = ∥v(t)i ∥22 = Θ(1). In ♡, we use
w∗

i = α∗
i,jMj , V

∗
i = α∗

i,jHj and LC,j(w
∗
i , v

∗
i ) = Θ( 1d ) if xp contains the true feature Mj .

Therefore, for all j ∈ d and all (xp, yp) ∈ Sh, when TC = Θ(d2), we can ensure

LC = E(xp,yp)∈Sh

[
1

2

∥∥VTσ(Wxp)− yp
∥∥2
2

]
≤ Θ(

1

d
) (141)

F.3. Summary

After TC iterations, the parameters W and V are updated to WTC = Ŵ and VTC = V̂, respectively, using the dataset Sh.
The generated caption is given by:

ŷp = V̂Tσ(Ŵxp), (142)
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where the expected loss satisfies:

E
[
1

2
∥ŷp − yp∥22

]
= LC ≤ Θ

(
1

d

)
. (143)

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(TC)
i ,Mj⟩|2 = Θ(1)

∥∥∥w(TC)
i

∥∥∥2
2

(144)

and
|⟨w(TC)

i ,M′
j⟩|2 ≤ O(

1

d
)
∥∥∥w(TC)

i

∥∥∥2
2

(145)

where j′ represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
)
∥∥∥w(TC)

i

∥∥∥2
2

(146)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O(
1

d1
)
∥∥∥w(TC)

i

∥∥∥2
2

(147)

G. Filtering
During filtering, we sample the synthetic image-text pair (xp, ŷp) in Ŝw and the corresponding image-text pair (xp, yp) in
Sw. The image encoder f and text encoder h trained on raw data are employed to obtain the corresponding embeddings.

z′xp
= f(xp), ẑyp

= h(ŷp), z′yp
= h(yp) (148)

Then, we calculate the cosine similarity of ⟨z′xp
, ẑyp
⟩ and ⟨z′xp

, z′yp
⟩, and select the image-text pair with higher cosine

similarity denoted as (x, ỹ). In this way, we replace the noisy pairs in Sw with synthetic pairs in Ŝw. The resulting dataset is
denoted as S̃ = S̃w ∪ Sh.

The decoder generates synthetic captions ŷp = V̂Tσ(Ŵxp). Using Eq (143), for each data pair (xp, yp) which contain
feature (Mj ,Hj) in Sh we have

E(xp,yp)

[
Ej∈d

[
1

2

∥∥∥Hjz
j
ŷp
−Hjz

j
yp

∥∥∥2
2

]
||zjyp
| = 1

]
≤ E(xp,yp)

[
1

2
∥ŷp − yp∥22 ||z

j
yp
| = 1

]
= LC ≤ Θ(

1

d
) (149)

Therefore, using ∥Hj∥2 = 1 and zxp = zyp in Sh, we have

Exp,j∈d

[
zjŷp

zjxp
||zjxp
| = 1

]
≥ 1−Θ(

1

d
) (150)

Base on Assumption 8 zjxp
∼ Bernoulli

(
Cz

d

)
, we have

Pr(zjŷp
= 1 | |zjxp

| = 1) ≥ 1−Θ(
1

d
) (151)

Using Eq (136) and Eq (151), we have

Pr(zj
′

ŷp
= 1 | |zjxp

| = 1) ≤ Θ(
1

d
) (152)

Therefore, after replace all noisy text yp in Sw by synthetic caption ŷp in Ŝw
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1. for a positive pair (xp, yp), we have

E
[
zjx̃p

zjỹp

]
= Θ(

1

d
), E

[
zjx̃p

zj
′

ỹp

]
= Θ

(
1

d2

)
, ∀j′ ̸= j. (153)

2. for negative pairs (xp, yq), where p ̸= q, we have:

E
[
zjxp

zj
′

yq

]
= Θ

(
1

d2

)
, ∀j, j′ ∈ [d]. (154)

H. ITCP on Synthetic Data

During ITCP on Raw Data, we use a noisy dataset S. Based on Subsection A.1, we have E
[
zjxz

j
y

]
and E

[
zjxz

j′

y

]
both in

Θ
(
1
d

)
. In this scenario, for i ∈ Sj,sure, w(t)

i is jointly influenced by Mj and Mj′ , with both features contributing comparably
to the updates. However, during ITCP on Data, we sample image-text pairs from the dataset S̃. Using Eq. (153), we find
that E

[
zjx̃p

zj
′

ỹp

]
= Θ

(
1
d2

)
. In this case, for i ∈ Sj,sure, w(t)

i is influenced solely by Mj , without interference from spurious
features, ensuring purified representations.

The only difference between ITCP on Raw Data and Data lies in the E
[
zjx̃p

zj
′

ỹp

]
; all other training processes remain largely

the same. Therefore, we simplify our proof accordingly.

H.1. Stage I of ITCP on Data

The stage I of ITCP on Data is defined as the training iterations t ≤ T1, where T1 = Θ
(

d log d
η

)
is the iteration when all

∥w(T2)
i ∥22 = 2∥w(0)

i ∥22. Before T1, we set b(t)i = 0. For every neuron i ∈ [m], the weights wi, vi will mostly ignore the
noise features M⊥, H⊥ and learn to emphasize the features M, H.

If Pr(|zjyp
| = 1 | |zj′xp

| = 1) < 0.1, we have E
[
zjxz

j
y

]
≫ E

[
zjxz

j′

y

]
and (a+ b+ c)t ≈ (a+ b− c)t. In this case, w(t+1)

i is
predominantly influenced by Mj , with minimal contributions from Mj′ . The updates are thus primarily driven by the single
feature Mj , ensuring that spurious interactions from Mj′ are negligible.

∥MM⊤w
(t)
i ∥

2
2 =

d∑
i=1

[
(a+ b+ c)t

2

(
⟨w(t)

i ,Mj⟩+ ⟨v(t)i ,Hj⟩
)]2

=

(
1 +

ηCz

d

)2t ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4
.

(155)

i ∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)2

≥
(
1 + η

Cz

d

)2T1

· c1 log d
d

· ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4

=
c1 log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

≥ c1 log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22 − ∥w

(0)
i ∥22 − ∥v

(0)
i ∥22

2

≥ (1 + c0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2

(156)

Because ∥w(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 = ∥w(0)
i ∥22 + ∥v

(0)
i ∥22 and c1 > 2(1 + c0)
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i /∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)2

≤
(
1 + η

Cz

d

)2T1

· c2 log d
d

· ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4

=
c2 log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

≤ log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2

(157)

|⟨w(t+1)
i ,M⊥

j ⟩|2 ≤ O( 1
d1
)
∥w(T1)

i ∥2
2+∥v(T1)

i ∥2
2

2

H.2. Stage II:

The Stage II of ITCP on Data is defined as the training iterations t ≤ T2, where T2 − T1 = Θ
(

d log d
η

)
is the iteration.

We set b(t)i =

√
log d
d · ∥w

(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 and b
(t+1)
i = (1 + η

d )b
(t)
i until all ∥∥w(T2)

i ∥2 ≥ Ω(d)∥w(T1)
i ∥2,. In this phase,

the weights (wi, vi) will mostly ignore the features Mj , Hj if i /∈ Sj,sure and the noise features M⊥, H⊥, and learn to
emphasize the features Mj , Hj if i ∈ Sj,sure.

For i ∈ Sj,sure, using Lemma B.5, the following holds with high probability 1− e−Ω(d1) when T1 < t ≤ T2 :

∣∣∣⟨w(t)
i , ξ⟩

∣∣∣2 ≤ O


∥∥∥w(t)

i

∥∥∥2
2

d1+c0

 < b
(t)
i (158)

Under the assumption that, with high probability, the indicator function satisfies the condition when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1, (159)

we can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
=

Cz

d
. (160)

The weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)(
⟨w(t)

i ,Mj⟩+ ⟨v(t)i ,Hj⟩
2

)
. (161)

Given that
(
1 + ηCz

d

)
>
(
1 + η

d

)
, and ⟨w(t)

i ,Mj⟩+⟨v(t)
i ,Hj⟩

2 > b
(t)
i , it follows that:

|⟨w(t+1)
i ,Mj⟩| > b

(t+1)
i . (162)

Thus, with high probability, for t ≤ T2, we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1. (163)

so for T1 < t ≤ T2 we have

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)t
(
⟨w(T1)

i ,Mj⟩+ ⟨v(T1)
i ,Hj⟩

2

)
(164)
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For i /∈ Sj,sure, the projection of weights onto a generic feature ξ at iteration T1 satisfies:

Pr

(
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1

)
≤ o

(
1

d

)
. (165)

We can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
= o

(
1

d2

)
. (166)

The weight dynamics for |⟨w(t+1)
i ,Mj⟩| can now be expressed as:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + o

( η

d2

))( ⟨w(t)
i ,Mj⟩+ ⟨v(t)i ,Hj⟩

2

)
. (167)

Given that
(
1 + o

(
η
d2

))
<
(
1 + η

d

)
, and ⟨w(t)

i ,Mj⟩+⟨v(t)
i ,Hj⟩

2 < b
(t)
i , it follows that:

|⟨w(t+1)
i ,Mj⟩| < b

(t+1)
i . (168)

If |⟨w(T1)
i ,Mj⟩| < b

(T1)
i , then |⟨w(t)

i ,Mj⟩| < b
(t)
i for t ≤ T2. Thus, with high probability, for t ≤ T2, we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 0. (169)

|⟨w(t+1)
i ,Mj⟩| ≤

(
1 + o

( η

d2

))t( ⟨w(T1)
i ,Mj⟩+ ⟨v(T1)

i ,Hj⟩
2

)
(170)

There exists T2 = Θ
(

d log d
η

)
such that the following conditions hold:

(
1 + η

Cz

d

)T2

= Θ(d), (171)

indicating that |⟨w(t+1)
i ,Mj⟩| for i ∈ Sj,sure increase iteratively until:

∥w(T2)
i ∥2 ≥ Ω(d)∥w(T1)

i ∥2 (172)

while, for i /∈ Sj,sure, the updates diminish, such that:(
1 + o

( η

d2

))T2

≤ 1 + o

(
1

d

)
, (173)

indicating negligible growth in |⟨w(t+1)
i ,Mj⟩|.

Thus we have
|⟨w(T2)

i ,Mj⟩|2 = ∥w(T2)
i ∥22 −

∑
j∈[d],j /∈Ni

⟨w(T2)
i ,Mj⟩2 −

∑
j∈[d1]\[d]

⟨w(T2)
i ,M⊥

j ⟩2

≥ ∥w(T2)
i ∥22 − (1 + o(1))∥w(T1)

i ∥22 − (1 + o(1))∥w(0)
i ∥

2
2

≥ (1− o(1))∥w(T2)
i ∥22.

(174)

Finally, for i /∈ Sj,sure, we have:

∥w(T2)
i ,Mj∥2 ≤ (1 + o(

1

d
)) ·O

(
∥w(T1)

i ∥2√
d

)
≤ O

(
∥w(T2)

i ∥2√
d

)
, (175)
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and for noise components:

|⟨w(T2)
i ,M⊥

j ⟩|2 ≤ O

(
∥w(T2)

i ∥2√
d1

)
. (176)

We summarize the results when T1 < t ≤ T2 as follows:

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T2)
i ,Mj⟩|2 > (1− o(1))

∥w(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(177)

without j′ that represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
) · ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(178)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
· ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
. (179)

Similar results also hold for vi.

H.3. Stage III Convergence of ITCP on Data

Similarly to convergence stage in ITCP on Raw Data, using Eq (31), Eq (34), and Eq (35), the loss function L becomes
convex with respect to wi and vi independently when (xp, yp) and (xn, yn) contain the true feature j.

We verify that the following inequality holds

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )+

〈
∇Lj(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+
li,j
2

∥∥(w(t+1)
i −w(t)

i , v
(t+1)
i −v(t)i

)∥∥2
(180)

Let L = maxi∈m(li,j/(2τ)) = Θ(1) and η = 1
L to ensure a monotonic decrease, plug Eq (32) and Eq (33) into Eq (180),

we have
Lj(w

(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )− η

2
∥∇Lj(w

(t)
i , v

(t)
i )∥2. (181)

Under our data assumptions for Sw and conclusion in Eq (100) , we define w∗
i = α∗

i,jMj , v
∗
i = α∗

i,jHj . Thus, Lj(w
∗
i , v

∗
i )

captures both the alignment with the true feature Mj ,Hj and the spurious feature Mj′ ,Hj′ , representing the minimal loss
achievable under the influence of both true and spurious features in the optimization process. Using Eq (85), we know
w

(T2)
i = Θ(d), so Lj(w

∗
i , v

∗
i ) = −Θ(d).

By the property of smoothness, we have

∥∇Lj(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
Lj(w

(t)
i , v

(t)
i )− Lj(w

∗
i , v

∗
i )
)

(182)

Take the telescope sum of from T2 to T3, we have

1

T3 − T2

T3∑
t=T2

Lj(w
(t)
i , v

(t)
i )≤Lj(w

∗
i , v

∗
i ) +

L2∆0

T3 − T2

♢
≤ Lj(w

∗
i , v

∗
i ) + Θ(1)

(183)

where ∆0 = Lj(w
(T1)
i , v

(T1)
i )− Lj(w

∗
i , v

∗
i ) = Θ(1). In ♢, we use T2 = Θ(d), and L = Θ( 1d ) .
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Generalized to every j ∈ d, the same convergence holds for all i ∈ Sj,sure when (xp, yp) and (xn, yn) contain feature j, j′.
For all (xp, yp) and (xn, yn) in Sw, the following inequality holds:

1

T3 − T2

T3∑
t=T2

L(f (T3), h(T3)) ≤ L(f∗, h∗) + Θ(1). (184)

I. Downstream Task
In the zero-shot downstream task, we consider a multi-class classification task given image data x. The task involves
K = Θ(1) text prompts defined as {yk : yk = Hzyk

+ ξyp , k ∈ [K]}, where each prompt corresponds to one of K classes.
The entries of the {zyk

} are binary and zjyk
∼ Bernoulli

(
Θ
(
1
d

))
, i.e., each (zyk

)i ∈ {0, 1} and ∥zyk
∥0 = Θ(1). The goal

is to classify x into the class associated with the text prompt yk that best matches x.

For a given image data x = Mzx + ξx, where zjx ∼ Bernoulli
((

C′
z

d

))
, the goal is to predict its label among K classes.

Using Eq. (100) and Eq. (146), let f(x) and h(y) represent the image encoder and text encoder of ITCP on Raw Data,
respectively. Given a data sample x containing Mj and y containing Hj′ , where j′ is the spurious feature corresponding to
j, it holds with high probability that: 〈

f(x)

∥f(x)∥2
,

h(y)

∥h(y)∥2

〉
= Θ(1). (185)

This result implies that the image and text encoders of ITCP on Raw Data struggle to distinguish between features j and j′,
leading to misclassification caused by spurious correlations.

However, using Eq. (177) and Eq. (178), f̃(x) and g̃(yk) represent the image encoder and text encoder of ITCP on Data,
respectively. Given a data sample x containing Mj and y containing Hj′ , where j′ is the spurious feature corresponding to
j, it holds with high probability 1−Θ

(
1
d

)
that:〈

f̃(x)

∥f̃(x)∥2
,

g̃(y)

∥g̃(y)∥2

〉
≤ Θ

(
1

d

)
. (186)

This result implies that the image and text encoders of ITCP on synthetic Data are capable of effectively distinguishing the
true feature from the spurious feature.

Because K = Θ(1) and ∥zyk
∥0 = Θ(1), we only have constant class classification and constant features in images. Thus,

we have:

1. For the image encoder f(x) and text encoder h(yk) of ITCP on Raw Data, it holds that:

Pr

(
argmax

k
⟨f(x), h(yk)⟩ = kx

)
= 1−Θ(1) (187)

2. For the image encoder f̃(x) and text encoder g̃(yk) of ITCP on synthetic Data, it holds that:

Pr

(
argmax

k
⟨f̃(x), g̃(yk)⟩ = kx

)
= 1− o(1) (188)

J. Experiment
Appendix: Analysis of Image Feature Representation. As shown in Figure 7, the alignment properties of the image
projection weights differ significantly between BLIP and ALBEF. Specifically, |⟨w̃i,Mj⟩| in BLIP exhibits a more
concentrated distribution, demonstrating improved orthogonality and alignment compared to ALBEF.

Appendix Figure 7 provides histograms comparing the distribution of |⟨wi,Mj⟩| values in the image projection layers of
BLIP and ALBEF:

1. Left Subplot: Focuses on lower value ranges (0 to 0.4), showing that BLIP reduces spurious correlations, concentrating
values around smaller scores.

34



Theoretical Analysis of Contrastive Learning in VLM pre-training: The Role of Synthetic Text Captions for Feature Alignment

2. Right Subplot: Highlights higher value ranges (0.4 to 0.8), demonstrating that BLIP increases alignment, concentrating
values around 0.6 to 0.7.

These observations are consistent with Theorem 4.5, which indicates that training on synthetic data promotes orthogonality
and alignment, enabling neurons to specialize in distinct image features and improving feature representation.

Figure 6: Histogram of |⟨w̄i,Mj⟩|/|w̄i| for ITCP on raw data and |⟨w̃i,Mj⟩|/w̃i for ITCP on synthetic data (split into two figures to
highlight the significant differences in the value distributions).

Image Feature Representation Learning. The final image projection layer in BLIP/ALBEF shares functional similarities
with W in our simplified model in (5). Similar to the analysis of text projection layers in Figure 5, Figure 7 presents the
histogram of normalized inner products ⟨wj , wj′⟩/(∥wj∥∥wj′∥) for all j, j′ ∈ {1, 2, . . . , 256}. The comparison shows that
the weight vectors in BLIP exhibit a stronger concentration around zero, demonstrating a higher degree of orthogonality
than those in ALBEF. This aligns with our theoretical results in Theorem 4.5, which suggest that training on synthetic data
promotes orthogonality among weight vectors, enabling improved feature separation and alignment. Such orthogonality
ensures that individual neurons specialize in learning distinct image features, thereby enhancing representation learning.

Figure 7: Histogram of ⟨wj , wj′⟩/(∥wj∥∥wj′∥) of the image linear projection layer of ALBEF and BLIP.
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