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ABSTRACT

Retrieval-Augmented Generation (RAG) improves the factuality of large language
models (LLMs) by grounding outputs in retrieved evidence, but faithfulness fail-
ures, where generations contradict or extend beyond the provided sources, remain
a critical challenge. Existing hallucination detection methods for RAG often rely
either on large-scale detector training, which requires substantial annotated data,
or on querying external LLM judges, which leads to high inference costs. Al-
though some approaches attempt to leverage internal representations of LLMs for
hallucination detection, their accuracy remains limited. Motivated by recent ad-
vances in mechanistic interpretability, we employ sparse autoencoders (SAEs) to
disentangle internal activations, successfully identifying features that are specif-
ically triggered during RAG hallucinations. Building on a systematic pipeline
of information-based feature selection and additive feature modeling, we intro-
duce RAGLens, a lightweight hallucination detector that accurately flags unfaith-
ful RAG outputs using LLM internal representations. RAGLens not only achieves
superior detection performance compared to existing methods, but also provides
interpretable rationales for its decisions, enabling effective post-hoc mitigation of
unfaithful RAG. Finally, we justify our design choices and reveal new insights
into the distribution of hallucination-related signals within LLMs. The code is
available at https://anonymous.4open.science/r/RAGLens/.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm for improving the
factuality of large language models (LLMs) (Lewis et al., 2020). By conditioning generation on
passages retrieved from external corpora, RAG systems aim to ground model outputs in verifiable
evidence. However, in practice, grounding does not eliminate unfaithfulness (Magesh et al., 2025;
Gao et al., 2023). Models may still contradict the retrieved content, introduce unsupported details,
or extrapolate beyond what the evidence justifies (Maynez et al., 2020; Rahman et al., 2025). These
faithfulness failures, commonly referred to as hallucinations in the RAG setting, undermine user
trust and limit deployment in domains where faithfulness to source information is critical (Huang
et al., 2025; Zakka et al., 2024).

Various approaches have been proposed to address this challenge. One direction is to fine-tune spe-
cialized detectors to distinguish faithful from unfaithful generations (Bao et al., 2024; Tang et al.,
2024a). While this method provides direct supervision, its effectiveness is often constrained by the
need for large amounts of high-quality annotated training data. Another line of work employs LLMs
as judges, where an auxiliary LLM is prompted to assess faithfulness given the retrieved passages
and generated answers (Zheng et al., 2023; Li et al., 2024). However, these approaches struggle to
detect hallucinations produced by the same model and introduce significant computational overhead
when relying on large-scale external LLMs. More recently, researchers have explored the use of
the LLM’s internal representations, such as hidden states or attention scores, to capture hallucina-
tions directly (Han et al., 2024; Sun et al., 2025; Zhou et al., 2025). While these methods show
promise, the extraction of reliable hallucination-related signals remains challenging, and detection
performance is often insufficient for practical deployment.

Meanwhile, recent advances in mechanistic interpretability have shown that sparse autoencoders
(SAEs) can disentangle specific, semantically meaningful features from the hidden states of LLMs
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(Huben et al., 2023). By enforcing sparsity, SAEs identify features that correspond to concrete
concepts, as evidenced by their consistent activation across similar cases (Bricken et al., 2023; Shu
et al., 2025). This property, known as monosemanticity, provides a transparent link between inter-
nal activations and model behaviors. While recent work has explored the use of SAEs to detect
signals associated with generic LLM hallucinations (Ferrando et al., 2025; Suresh et al., 2025; Ab-
daljalil et al., 2025; Tillman & Mossing, 2025; Xin et al., 2025), hallucinations in RAG settings pose
unique challenges due to the complex interplay between retrieved evidence and generated content.
It remains unclear whether SAE features can effectively capture these dynamics. In this work, we
directly investigate whether SAEs can identify interpretable features that are predictive of halluci-
nations in RAG, enabling both accurate detection and deeper insight into failure cases.

We present RAGLens, a lightweight SAE-based detector that flags unfaithful RAG outputs by lever-
aging LLM internal activations through a systematic pipeline of information-based feature selection
and additive feature modeling. Experimental results show that RAGLens identifies features highly
relevant to RAG hallucinations and achieves superior detection performance compared to existing
methods when evaluated on the same LLM. We further demonstrate the interpretability of RA-
GLens, enabled by its additive model structure and transparent input features, and highlight how
these interpretations facilitate effective post-hoc mitigation of unfaithfulness. Finally, our analy-
ses examine the design choices underlying RAGLens, revealing that mid-layer SAE features with
high mutual information about the labels are most informative for detecting RAG hallucinations,
and that generalized additive models (GAMs) are particularly well-suited for mapping SAE features
to hallucination predictions. To our knowledge, RAGLens is the first approach to systematically
demonstrate the effectiveness of SAE features for detecting hallucinations in RAG, and to compre-
hensively investigate design principles for building accurate and interpretable detectors. Here is a
summary of our contributions:

• We demonstrate that SAEs capture nuanced features specifically activated during RAG hal-
lucinations, establishing a strong foundation for detecting RAG unfaithfulness from LLM
internal representations.

• Building on these SAE features, we introduce RAGLens, a lightweight hallucination de-
tector that outperforms existing methods in detection accuracy while providing transparent
and interpretable feedback to aid in hallucination mitigation.

• Through detailed analyses, we justify the key design choices in RAGLens and offer new
insights into the distribution of hallucination-related signals within LLMs.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) integrates retrieval modules with large language mod-
els (LLMs) to ground responses in external knowledge sources (Lewis et al., 2020; Guu et al.,
2020). This design has improved factual accuracy in tasks such as open-domain question answer-
ing, knowledge-intensive dialogue, and domain-specific search (Shuster et al., 2021; Siriwardhana
et al., 2023; Oche et al., 2025). However, RAG systems remain vulnerable to faithfulness errors:
even when relevant passages are retrieved, models may contradict evidence, invent unsupported de-
tails, or extrapolate beyond the source (Niu et al., 2024; Sun et al., 2025). These failures have been
studied under terms such as hallucination, ungrounded generation, or source inconsistency, and are
increasingly recognized as a central obstacle to deploying RAG in real-world applications (Zhang
et al., 2025; Gao et al., 2023; Elchafei & Abu-Elkheir, 2025).

To address this challenge, a growing body of work has developed detectors to judge whether a
generated response is faithful to the retrieved evidence (Manakul et al., 2023; Sriramanan et al.,
2024). Early approaches focused on fine-tuning specialized detectors, which can be effective but
require large amounts of high-quality training data, particularly when adapting large models (Bao
et al., 2024; Tang et al., 2024a). With the rise of foundation models, researchers have begun using
LLMs as evaluators, prompting an auxiliary LLM to compare generated answers against source
passages and determine whether hallucination occurs (Zheng et al., 2023; Bui et al., 2024). However,
this often necessitates the use of larger LLMs, leading to high computational costs, sensitivity to
prompt design (Wang et al., 2024), and explanations that may be plausible but do not faithfully reflect
the underlying decision process (Turpin et al., 2023). More recent studies have explored leveraging
LLM internal representations for hallucination detection, but challenges such as the polysemanticity
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of neurons and the opacity of hidden states have limited the extraction of high-quality features,
resulting in insufficient detection performance (Elchafei & Abu-Elkheir, 2025; Sun et al., 2025).

Recent research has shown that sparse autoencoders (SAEs) can expose semantically meaningful
features within the hidden representations of LLMs (Huben et al., 2023; Shu et al., 2025). By
constraining activations through a sparsity-inducing bottleneck, SAEs learn dictionaries of features
that often correspond to human-interpretable concepts such as syntactic roles, entities, or factual
attributes (Bricken et al., 2023; Gujral et al., 2025). This capability has facilitated analysis of model
internals, enhanced interpretability, and even enabled targeted control of generative behavior (Shi
et al., 2025). The interpretability of SAE-derived features makes them attractive for tasks where
transparency is critical, such as hallucination detection.

3 RAGLENS: FAITHFUL RETRIEVAL-AUGMENTED GENERATION VIA
SPARSE REPRESENTATION PROBING

3.1 PROBLEM SETTING

Following prior work (Niu et al., 2024; Song et al., 2024; Sun et al., 2025), we use “RAG” to denote
any context-conditioned generation process in which an LLM produces an answer based on both
a user query/instruction and a provided context. The faithfulness detection task is to determine
whether the generated answer is consistent with the given context. In such tasks, each annotated
instance consists of: (1) a user query or instruction q; (2) a set of retrieved passages C; (3) an answer
sequence y1:T generated by an LLM, where T is the sequence length and y1:t denotes the prefix up
to position t; and (4) a binary label ℓ ∈ {0, 1} indicating whether the answer contains hallucination
relative to C. We assume access to a frozen LLM Φ and a corresponding SAE with encoder E trained
on the hidden states in the L-th layer of Φ. We denote by ΦL(·) the mapping that returns layer-L
hidden states. Given a generation y1:T , we obtain

ht = ΦL(y1:t, q, C), t = 1, . . . , T, (1)

and transform these via the SAE encoder into sparse features

zt = E(ht), zt ∈ RK , (2)

where K is the size of the dictionary and only a small number of features are active at each position.

Our goal is to examine whether the SAE features contain signals that help detect hallucinations
related to RAG. Section 3.2 presents our detection method, and Section 3.3 shows how the results
support explanation and mitigation. An overview is shown in Figure 1.

3.2 HALLUCINATION DETECTION

Instance-level Feature Summary. Because target labels are instance-level, we summarize token-
level activations into an instance representation via channel-wise max pooling:

z̄k = max
1≤t≤T

zt,k, k = 1, . . . ,K, (3)

where zt,k is the k-th element of zt ∈ RK and collect z̄ = (z̄1, . . . , z̄K) ∈ RK .

Information-based Feature Selection. We quantify the information of each pooled feature z̄k
(k = 1, · · · ,K) about the hallucination label ℓ using mutual information (MI):

I(z̄k; ℓ) =

∫
R

∑
ℓ∈{0,1}

p(z̄k, ℓ) log2
p(z̄k, ℓ)

p(z̄k) p(ℓ)
dz̄k. (4)

We rank features by MI and select the top K ′ dimensions:

S = argmax
|S|=K′

∑
k∈S

I(z̄k; ℓ), (5)

yielding ˜̄z ∈ RK′
as the subvector of z̄ restricted to indices S. In our experiments, MI is estimated

with a binning-based method applied to the pooled activations. While we do not explicitly utilize
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Figure 1: Overview of RAGLens for detecting, explaining, and mitigating hallucinations in retrieval-
augmented generation using interpretable sparse features.

the hidden states of the retrieved passages C, our encoding of the model output y in Equation 1 is
conditioned on C. This allows the SAE features to implicitly capture interactions between the gener-
ated answer and the retrieved content. Empirical results in Appendix H show that the selected SAE
features encode knowledge relevant to the retrieved passages, and their activations are dynamically
influenced by counterfactual interventions on C.

Transparent Prediction with Generalized Additive Models. After selecting informative SAE
features, we model the instance label from the pooled representation using a generalized additive
model (GAM) (Lou et al., 2012; Caruana et al., 2015; Hastie, 2017):

g(E[ℓ | ˜̄z]) = β0 +

K′∑
j=1

fj(˜̄zj), (6)

where g is the link function (e.g., logit for binary classification) and each univariate shape function
fj is learned using bagged gradient boosting (Nori et al., 2019). By selecting only K ′ features
(K ′ ≪ K), the fitted GAM serves as a lightweight detector, requiring the encoding of only a small
subset of SAE features. Our analysis in Section 5 further validates that GAM is well-suited for
modeling hallucination signals from SAE features, outperforming more complex predictors such as
MLP (Popescu et al., 2009) and XGBoost (Chen & Guestrin, 2016).

Justification of Max Pooling on Sparse Activations. Beyond the practical advantage of stor-
age efficiency, we provide a theoretical justification for using max pooling: in the sparse activa-
tion regime, it can help distinguish hallucination-related features from random noise by amplifying
signals associated with relevant targets. To facilitate the analysis, for any fixed feature index k,
suppressing the respective notation for clarity, we model the token-level activation zt ≥ 0 as condi-
tionally independent across tokens given the label ℓ ∈ {0, 1}, with a rare activation mechanism:

zt =

{
0, with probability 1− pℓ,

Vt, with probability pℓ,
t = 1, . . . , T, (7)

where the “active-value” random variable Vt has a distribution F supported on (0,∞) that is inde-
pendent of ℓ and i.i.d. across tokens. Let z̄ = max1≤t≤T zt and π = Pr(ℓ = 1).
Theorem 1 (Max pooling in the sparse-activation regime). If T × p̄ ≪ 1 with p̄ = 1

2 (p1 + p0), then

I(z̄; ℓ) =
π(1− π)

2 ln 2

T (∆p)2

p̄
+ O

(
(T p̄)2

)
, ∆p = p1 − p0, (8)

where I(z̄; ℓ) > 0 iff p1 ̸= p0. The leading dependence is linear in T and quadratic in ∆p.
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Proof sketch. Let A = 1{z̄ > 0}. Independence across tokens implies Pr(A=1 | ℓ) = qℓ =
1− (1− pℓ)

T , so I(A; ℓ) = h(πq1 + (1− π)q0)− [πh(q1) + (1− π)h(q0)]. For pℓ ≪ 1, qℓ ≈ Tpℓ
and a second-order expansion of h gives

I(A; ℓ) =
π(1− π)

2 ln 2

T (∆p)2

p̄
+O((T p̄)2). (9)

Since A is a deterministic function of z̄, I(A; ℓ) ≤ I(z̄; ℓ). In the single-hit regime (T p̄ ≪ 1), the
extra information in z̄ beyond A occurs only on rare multi-activation events, contributing O((T p̄)2).
Combining yields the claim. A full proof is in Appendix F.

3.3 HALLUCINATION EXPLANATION AND MITIGATION

Since the detection results are computed from SAE features within an additive modeling frame-
work, our approach naturally supports interpretability at both the local (instance-specific) and global
(instance-invariant) levels, which can then be leveraged to improve faithful RAG generation.

Local Explanations via Sparse Feature Attribution. Because our GAM operates additively on
a small set of selected SAE features, each prediction can be decomposed into a sum of feature
contributions. For any given example, we can attribute the hallucination prediction to the specific
sparse features that are most strongly activated. By aligning these activations with token positions,
we obtain token-level feedback that highlights which parts of the generation are likely ungrounded
relative to the retrieved passages. This fine-grained attribution enables users to directly pinpoint
fabricated factual inserts such as numbers, dates, or named entities.

Global Explanations via Intrinsic Model Interpretability. Beyond instance-specific attributions,
RAGLens also provides global, instance-invariant explanations. With the dictionary learning prop-
erty of SAEs, each SAE feature corresponds to a semantically coherent concept that can be sum-
marized as human-understandable knowledge. Furthermore, our use of GAMs in RAGLens enables
visualization of the learned shape function for each feature, offering a stable explanation of the map-
ping from feature magnitude to predicted hallucination risk. Practitioners can therefore inspect how
changes in a given feature systematically increase or decrease the prediction, enabling consistent
feature-level auditing.

Mitigation through Multi-level Feedback. The interpretability of our framework enables expla-
nation signals to be directly incorporated into mitigation strategies at inference time. Specifically,
detection results can be provided to LLMs as instance-level warnings, prompting the model to re-
consider and revise potentially hallucinated content. By aligning sparse activations with text spans
identified by local explanations, we can further highlight problematic tokens that may require edit-
ing, thereby guiding the model to refine its output.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We conduct experiments on two RAG hallucination benchmarks with Llama2 backbones: RAGTruth
(Niu et al., 2024) and Dolly (Accurate Context) (Hu et al., 2024), both of which include human
annotations for outputs generated by Llama2-7B/13B. To further evaluate generalizability across
architectures, we also test our method on Llama3.2-1B, Llama3.1-8B, and Qwen3-0.6B/4B using
two additional datasets, AggreFact (Tang et al., 2023) and TofuEval (Tang et al., 2024b), which
contain hallucinations produced by a variety of LLMs. For consistency with prior work (Sun et al.,
2025; Tamber et al., 2025), we report balanced accuracy (Acc) and macro F1 (F1).

We compare RAGLens with representative detectors based on (i) prompt engineering (e.g., Friel &
Sanyal, 2023), (ii) model uncertainty (e.g., Manakul et al., 2023), or (iii) LLM internal representa-
tions (e.g., Sun et al., 2025). We also include a fine-tuning baseline, “Llama2-13B(LR)”, following
existing work (Sun et al., 2025). For a fair comparison with methods that analyze internal signals
during LLM generation, we evaluate all detectors on Llama2-7B and Llama2-13B using the cor-
responding samples generated by these models in RAGTruth and Dolly. Table 1 lists the specific
baselines, with details in Appendix A. Implementation details are provided in Appendix B.
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4.2 PERFORMANCE ON RAG HALLUCINATION DETECTION

Table 1 summarizes the performance of RAGLens on RAGTruth and Dolly, with comparisons to pre-
vious methods using the same backbones. As the table shows, the SAE features of both Llama2-7B
and Llama2-13B contain sufficient information to accurately detect hallucinations, achieving AUC
scores greater than 80% on both datasets. More importantly, RAGLens consistently outperforms
existing baselines, demonstrating its effectiveness in identifying and leveraging internal knowledge
for RAG hallucination detection. These results highlight the strong potential of SAEs to serve as
powerful detectors by using knowledge already embedded within LLMs to identify hallucinations.

Table 1: Performance comparison of different hallucination detection methods on RAGTruth and
Dolly. The best results are highlighted in bold.

Method
RAGTruth (Llama2-7B) Dolly (Llama2-7B) RAGTruth (Llama2-13B) Dolly (Llama2-13B)

AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1

Prompt – 0.6700 0.6720 – 0.6200 0.5476 – 0.7300 0.6899 – 0.6700 0.5823
Llama2-13B(LR) – 0.6350 0.6572 – 0.6043 0.6616 – 0.7044 0.6725 – 0.5545 0.6664
LwMLM – 0.6940 0.7365 – 0.6550 0.7702 – 0.5956 0.7684 – 0.6800 0.7000
FAcTScore 0.5428 0.5333 0.6719 0.4813 0.5354 0.6849 0.5294 0.4533 0.6239 0.4389 0.4646 0.5954
FactCC 0.4976 0.5022 0.4589 0.6169 0.5758 0.5882 0.4753 0.4800 0.4121 0.6496 0.6162 0.5250
ChainPoll 0.6738 0.6841 0.7006 0.6593 0.6200 0.5581 0.7414 0.7378 0.7370 0.7070 0.6800 0.6004
RAGAS 0.7290 0.6822 0.6667 0.6648 0.6560 0.6392 0.7541 0.7080 0.6987 0.6412 0.6480 0.5306
TurLens 0.6510 0.6821 0.6658 0.6264 0.6800 0.6567 0.7073 0.6756 0.7063 0.6622 0.5700 0.3944
RefCheck 0.6912 0.6467 0.6736 0.6494 0.6100 0.5412 0.7897 0.7200 0.7823 0.6621 0.5700 0.3944
P(True) 0.7093 0.5648 0.6549 0.6191 0.5344 0.5095 0.8496 0.6266 0.7038 0.6422 0.5260 0.5240
SelfCheckGPT – 0.5844 0.4642 – 0.5300 0.3188 – 0.5844 0.4642 – 0.5300 0.3188
LN-Entropy 0.5912 0.5620 0.6850 0.6074 0.5656 0.6261 0.5912 0.5620 0.6850 0.6074 0.5656 0.6261
Energy 0.5619 0.5088 0.6657 0.6074 0.5656 0.6261 0.5619 0.5088 0.6657 0.6074 0.5656 0.6261
Focus 0.6233 0.5533 0.6522 0.6783 0.6212 0.6545 0.7888 0.6000 0.6758 0.7067 0.6500 0.6567
Perplexity 0.5091 0.5333 0.6749 0.6825 0.6363 0.7097 0.5091 0.5333 0.6749 0.6825 0.6363 0.7097
EigenScore 0.6045 0.5422 0.6682 0.6786 0.6596 0.7241 0.6640 0.5267 0.6637 0.7214 0.6211 0.7200
SEP 0.7143 0.6187 0.7048 0.6067 0.6060 0.7023 0.8098 0.7288 0.7799 0.7093 0.6800 0.6923
SAPLMA 0.7107 0.5155 0.6502 0.6500 0.6084 0.6653 0.8029 0.5488 0.6923 0.7088 0.6100 0.6605
ITI 0.6714 0.5667 0.6496 0.5494 0.5800 0.6281 0.8501 0.6177 0.6850 0.6530 0.5583 0.6712
ReDeEP 0.7458 0.6822 0.7190 0.7949 0.7373 0.7833 0.8244 0.7889 0.7587 0.8420 0.7070 0.7603
RAGLens (Ours) 0.8413 0.7576 0.7636 0.8764 0.7778 0.8070 0.8964 0.8333 0.8148 0.8568 0.7576 0.7895

4.3 CROSS-MODEL APPLICATION

While SAE features are not transferable across different LLMs, the RAGLens detector trained on one
LLM can be flexibly applied to text outputs generated by other LLMs. To examine whether LLMs
contain sufficient internal knowledge to detect hallucinations produced by other LLMs, we con-
duct cross-model evaluations by training a series of RAGLens detectors based on SAEs of multiple
open-source LLMs, and test their performance on RAG outputs from various LLMs in RAGTruth,
AggreFact, and TofuEval. Specifically, we prompt each LLM to assess the faithfulness of the RAG
output in a chain-of-thought (CoT) style (Wei et al., 2022), using the template from Luo et al. (2023),
and compare these results to those of the same model’s SAE-based detector via RAGLens.

Figure 2 shows the performance of all evaluated LLMs across different datasets. The SAE-based
detector consistently outperforms each model’s own CoT-style self-judgments. Larger LLMs ex-
hibit stronger internal knowledge, achieving higher detection performance with SAE-based detec-
tors. While earlier generation models such as Llama2-7B and Llama2-13B have lower CoT judg-
ments on certain datasets, their SAE-based detectors perform comparably to newer models of similar
size (e.g., Llama3.1-8B). Meanwhile, although Qwen3-0.6B achieves competitive CoT performance
on AggreFact and TofuEval, its SAE-based detector lags behind those of larger LLMs, suggesting
that the informativeness of internal knowledge correlates more with model size than with training
pipeline. Overall, these results indicate that models “know more than they tell” and that SAEs can
reveal latent faithfulness signals that are not consistently captured by CoT reasoning.

4.4 GENERALIZATION ACROSS DOMAINS

Beyond cross-model applications, we further assess whether the internal signals captured by RA-
GLens generalize across domains. Specifically, we train the RAGLens predictor on one domain and
evaluate its performance on other domains. Table 2 reports the generalization performance (AUC)
of RAGLens across different datasets and tasks.
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Figure 2: Comparison of LLM CoT-style self-judgment versus internal knowledge revealed by SAE
features for hallucination detection across datasets.

The left part of Table 2 presents cross-dataset results, showing that RAGLens generalizability de-
pends on the diversity of its training data. For example, a detector trained on RAGTruth significantly
outperforms the CoT baseline on AggreFact and TofuEval without retraining. In contrast, predictors
trained on AggreFact and TofuEval, while still outperforming CoT in most cases, do not generalize
as well as those trained on RAGTruth. This can be attributed to dataset differences: RAGTruth cov-
ers multiple subtasks, whereas AggreFact and TofuEval focus on single tasks. The results indicate
that RAGLens trained with diverse samples is more robust and generalizable to domain shifts.

Table 2: Generalization across datasets and subtasks. Left: RAGLens trained on a single dataset
and evaluated on others. Right: RAGLens trained on one RAGTruth subtask and evaluated on other
subtasks. “None” indicates zero-shot performance with CoT prompting. All scores are AUROC.

Train\Test RAGTruth AggreFact TofuEval

Llama2-7B

None 0.4842 0.5741 0.5562
RAGTruth 0.8806 0.8019 0.7637
AggreFact 0.5330 0.8330 0.6123
TofuEval 0.7747 0.6161 0.7846

Llama2-13B

None 0.4959 0.5285 0.5583
RAGTruth 0.8674 0.7831 0.7319
AggreFact 0.4669 0.8285 0.6239
TofuEval 0.7342 0.5727 0.7883

Train\Test Summary QA Data2txt

Llama2-7B

None 0.4924 0.4845 0.4949
Summary 0.8191 0.8253 0.6443
QA 0.7081 0.8835 0.6609
Data2txt 0.5386 0.6616 0.8454

Llama2-13B

None 0.5196 0.5088 0.4765
Summary 0.7539 0.8330 0.6627
QA 0.6619 0.8769 0.6669
Data2txt 0.5653 0.7373 0.8491

Generalization across task types is shown in the right part of Table 2. RAGLens, when trained
on one task, consistently transfers its learned knowledge to other tasks and outperforms the CoT
baseline. Among the three subtasks, the predictor trained on summarization (Summary) exhibits
the strongest generalizability, surpassing those trained on question answering (QA) or data-to-text
generation (Data2txt). Additionally, knowledge transfer between Summary and QA is more effective
than between Data2txt and the other tasks. These results suggest that RAGLens can capture common
signals shared across different RAG tasks, while also revealing the presence of task-specific signals
that limit generalization.

4.5 INTERPRETABILITY OF RAGLENS

In addition to strong performance, RAGLens provides interpretability for the hallucination detection
process. Since RAGLens uses SAE features that are disentangled and correspond to specific con-
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cepts, we can analyze which features are most indicative of hallucinations and what they represent.
With the deployment of the GAM classifier, RAGLens can transparently illustrate how each feature
contributes to the final prediction through learned shape functions. Table 3 presents two represen-
tative SAE features from Llama3.1-8B that are most predictive of hallucinations, as identified by
the GAM classifier trained on RAGTruth. For each feature, we show two example activations from
RAGTruth outputs, accompanied by a semantic explanation distilled by GPT-5 from 24 activation
cases. We also visualize the learned shape function for each feature, where the y-axis (feature effect
on hallucination prediction) is zero-centered, illustrating how the feature value (x-axis) influences
the likelihood of hallucination.

Table 3: Interpretation of two SAE features in Llama3.1-8B. Each row shows the feature ID, a brief
explanation of its semantic role, and example text spans where the feature is activated. Top activated
tokens in each example are shown in bold, while the hallucinated tokens are highlighted in red.
The shape functions learned by the GAM are visualized in the rightmost column, illustrating each
feature’s impact on hallucination prediction.

ID Explanation Examples Shape Plot

22790
unsupported
numeric/time
specifics

Context: no mention of age
Output: [...] at the age of 34 [...]

Context: no mention of release schedule
Output: [...] to be released in August [...]

17721
grounded,
high-salience
tokens

Context: [...] could be arrested on the spot [...]
Output: [...] could be arrested on the spot [...]

Context: [...] software can be licensed as a [...]
Output: [...] software can be licensed as a [...]

As shown in the table, Llama3.1-8B contains various types of features that help detect hallucinations
from different perspectives. For example, feature 22790 indicates potential hallucinations that are
related to unsupported numeric/time specifics. Its corresponding shape function (learned by GAM)
exhibits a monotonic increase in hallucination likelihood as activation strength rises. RAGLens also
uncovers SAE features that are negatively correlated with hallucinations, such as feature 17721,
which captures signals associated with grounded, high-salience tokens. This interpretability not
only clarifies how RAGLens works, but also provides insights into the internal knowledge of LLMs.
Additional examples from other LLMs are provided in Appendix G, and Appendix H presents case
studies using counterfactual perturbations to validate that these features are specifically sensitive to
hallucination patterns unique to RAG scenarios.

4.6 MITIGATION OF UNFAITHFULNESS WITH RAGLENS

Leveraging its detection and interpretation capabilities, RAGLens can provide post-hoc feedback to
LLMs to mitigate hallucinations. We evaluate this by applying Llama2-7B-based RAGLens to 450
Llama2-7B-generated outputs from RAGTruth, and prompting the same model to revise its original
output using RAGLens feedback. Specifically, we compare the effectiveness of instance-level feed-
back (detection results only) and token-level feedback (which includes additional explanations from
RAGLens interpretation) for hallucination mitigation.

Table 4 reports the resulting hallucination rates (lower is better) as judged by multiple automatic
LLM judges. In addition, two human annotators evaluated a subset of 45 outputs, with an inter-
annotator agreement of 78.3%. Although hallucination rates vary among different types of annota-
tors, the results consistently show that both types of RAGLens feedback effectively reduce halluci-
nations in the revised output. Notably, the more nuanced token-level feedback enabled by RAGLens
interpretability leads to further reductions compared to instance-level feedback. We further applied
a trained RAGLens detector (Llama3.1-8B based) to all 450 examples and found that instance-level
feedback converted 29 outputs from hallucination to non-hallucination, while token-level feedback
achieved 36 such conversions, confirming the advantage of token-level feedback.
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Table 4: Mitigation of Llama2-7B hallucinations using SAE-based internal knowledge. Hallucina-
tion rates (lower is better) are reported for original outputs and after applying instance- and token-
level feedback, as judged by Llama3.3-70B, GPT-4o, GPT-o3, and human annotators.

Llama3.3-70B GPT-4o GPT-o3 Human

Original 43.78% 37.78% 64.44% 71.11%
+ Instance-level Feedback 42.22% 36.44% 60.44% 62.22%
+ Token-level Feedback 39.11% 34.22% 58.88% 55.56%

5 DISCUSSIONS

Beyond the main results on hallucination detection, interpretation, and mitigation using SAE fea-
tures, we further analyze several key SAE-specific design choices in RAGLens, including the se-
lection of the LLM layer, the feature extractor, the number of selected features, and the predictor
architecture.

LLM Layer Selection. We first vary the layer from which SAE features are extracted, covering
the full depth of several LLMs (Llama3.2-1B, Llama3-8B, Qwen3-0.6B, and Qwen3-4B). Figure 3
presents the heatmaps of LLM performance on various subtasks in RAGTruth (RAGTruth-Summary,
RAGTruth-QA, and RAGTruth-Data2txt), where layer depths are normalized for direct comparison.
The results show that the performance trend in layers is consistent among LLMs but varies by task.
In the Summary and QA tasks of RAGTruth, the performance peaks around the middle layers,
whereas the Data2txt task exhibits a comparatively flat performance pattern across layers.
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Figure 3: Layer-wise analysis of Llama3.2-1B, Llama3-8B, Qwen3-0.6B, and Qwen3-4B on sub-
tasks in RAGTruth (RAGTruth-Summary, RAGTruth-QA, and RAGTruth-Data2txt).

Feature Extractor Comparison. We further compare different feature extractors, specifically
SAE and Transcoder (Dunefsky et al., 2024), as well as pre-activation versus post-activation signals
(i.e., features extracted before or after applying the activation function). Table 5 shows that pre-
activation features consistently outperform post-activation features for both extractors. Transcoder
and SAE achieve similar accuracy, indicating no clear advantage for either architecture. These re-
sults suggest that while both extractors are effective, the choice of activation point is more critical,
with pre-activations retaining more informative signals about RAG hallucinations.

Table 5: Comparison of SAE and Transcoder feature extractors, using pre- and post-activation sig-
nals, for hallucination detection with Llama3.2-1B across three datasets.

Architecture Activation
RAGTruth AggreFact TofuEval

Acc F1 Acc F1 Acc F1

SAE Pre-activation 0.7810 0.7892 0.7308 0.7388 0.6865 0.6876
Post-activation 0.7606 0.7700 0.6939 0.7091 0.5637 0.5642

Transcoder Pre-activation 0.7778 0.7830 0.7468 0.7586 0.6652 0.6666
Post-activation 0.7594 0.7684 0.7373 0.7525 0.6195 0.6178
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Analysis of Feature Count. We also examine how varying the number of selected features (K ′)
affects performance, using mutual information (MI) ranking to identify the most informative fea-
tures. Figure 4 shows the performance of Llama2-7B-based RAGLens as K ′ decreases from 1024
to 1, comparing MI-based selection to random selection (Rand.) starting with the same set of fea-
tures. As expected, performance drops as fewer features are used, but the decline is much more
gradual with MI-based selection, demonstrating that MI effectively prioritizes informative features
for hallucination detection. Differences in trends between datasets further highlight the varying
complexity of hallucination detection tasks.

10 8 6 4 2 0
log2 (K ′)

0.65

0.70

0.75

0.80

Sc
or

e

RAGTruth - Acc

10 8 6 4 2 0
log2 (K ′)

0.65

0.70

0.75

0.80
RAGTruth - F1

10 8 6 4 2 0
log2 (K ′)

0.5

0.6

0.7
TofuEval - Acc

10 8 6 4 2 0
log2 (K ′)

0.4

0.5

0.6

0.7
TofuEval - F1

10 8 6 4 2 0
log2 (K ′)

0.5

0.6

0.7
AggreFact - Acc

10 8 6 4 2 0
log2 (K ′)

0.4

0.5

0.6

0.7
AggreFact - F1

MI
Rand.

Figure 4: Effect of varying the number of selected features (K ′) on hallucination detection perfor-
mance, comparing mutual information (MI) ranking and random selection (Rand.).

Predictor Ablation. Lastly, we compare logistic regression (LR), generalized additive model
(GAM), multilayer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost) as predictors
for hallucination detection using the selected SAE features. Figure 5 shows that GAM consistently
outperforms LR and also surpasses more complex models such as MLP and XGBoost, despite its
additive structure. This suggests that while the effect of individual features on the output is of-
ten nonlinear, the overall contribution of SAE features can be effectively captured in an additive
manner. Consequently, GAM is particularly well-suited for leveraging SAE features, offering both
strong performance and interpretability.
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Figure 5: Comparison of logistic regression (LR) and generalized additive model (GAM), multi-
layer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost) as predictors for RAGLens,
evaluated across multiple models and datasets.

6 CONCLUSION

In summary, this work demonstrates that SAEs can serve as powerful and interpretable tools for
detecting RAG hallucinations. By leveraging internal representations of LLMs, our proposed RA-
GLens framework not only achieves state-of-the-art performance across multiple benchmarks, but
also provides transparent explanations at both local and global levels. Beyond detection, the in-
terpretability of RAGLens enables actionable feedback to mitigate hallucinations, improving the
reliability of RAG systems in practice. These findings highlight the broader potential of sparse rep-
resentation probing for enhancing model faithfulness and open up future directions for integrating
lightweight, interpretable SAE-based detectors into real-world applications where trust and accuracy
are critical.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, we provide comprehensive details and im-
plementation code for our method. Specifically, a complete proof of Theorem 1 is included in Ap-
pendix F, and full implementation details are provided in Appendix B. All code necessary to repro-
duce our experiments is available at https://anonymous.4open.science/r/RAGLens/.
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A DATASET AND BASELINE DETAILS

A.1 DATASETS

Here are the detailed descriptions of the datasets used in our experiments.

RAGTruth. RAGTruth (Niu et al., 2024) is a large-scale dataset featuring nearly 18000 naturally
generated responses from a range of open- and closed-source LLMs under retrieval-augmented gen-
eration settings. The benchmark includes three subtasks: summarization (RAGTruth-Summary),
data-to-text generation (RAGTruth-Data2txt), and question answering (RAGTruth-QA). We use the
training split of RAGTruth for feature selection and model fitting, and report results on the held-out
test set.

Dolly. For the Dolly dataset in the “Accurate Context” setting (Hu et al., 2024), each example
presents the model with a context document verified to be relevant and accurate. The model is
tasked with generating responses faithful to this context. Following Sun et al. (2025), we perform
two-fold cross-validation for model evaluation, alternating between halves of the test set for feature
selection and assessment.

AggreFact. AggreFact (Tang et al., 2023) compiles outputs and annotations from various summa-
rization and factual consistency datasets. Our experiments focus on the “SOTA” subset, consisting
of summaries produced by models such as T5, BART, and PEGASUS. Each summary is paired with
its source document, and factual consistency is annotated by humans. We use the validation set for
feature selection and model training, evaluating final performance on the designated test split.

TofuEval. TofuEval (Tang et al., 2024b) is a benchmark designed for topic-focused dialogue sum-
marization. We utilize its MeetingBank portion, which consists of multi-turn meeting transcripts
annotated with topic boundaries. LLMs are tasked with generating topic-specific summaries from
the full dialogue. Annotations include binary sentence-level factuality as well as free-form explana-
tions for inconsistent content. For this dataset, feature selection and model fitting are performed on
the development set, and evaluation is conducted on the test set.

A.2 BASELINES

We benchmark RAGLens against a diverse set of representative hallucination detection methods.
For clarity, we group all baselines into three main categories, detailed below.

Prompting-based Detectors. This category captures hallucination signals by leveraging the gen-
erative and reasoning capabilities of LLMs to produce token-level decisions. It encompasses various
prompting strategies, such as prompt engineering (Friel & Sanyal, 2023), multi-agent collaboration
(Cohen et al., 2023), as well as supervised fine-tuning. Following Sun et al. (2025), we include a
fine-tuned Llama2-13B(LR) baseline, where the detector is trained on RAGTruth using LoRA (Xu
et al., 2024). The full list of baseline detectors in this category includes: Prompt (Niu et al., 2024),
Llama2-13B(LR) (Sun et al., 2025), LMvLM (Cohen et al., 2023), FActScore (Min et al., 2023),
FactCC (Kryściński et al., 2020), ChainPoll (Friel & Sanyal, 2023), RAGAS (Es et al., 2024), Tru-
Lens (Truera, 2025), RefCheck (Hu et al., 2024), and P(True) (Kadavath et al., 2022).

Uncertainty-based Detectors. These methods assess hallucination likelihood based on the uncer-
tainty of LLM outputs, typically measured via sampled tokens or the distribution of output logits
prior to token generation. The complete list of detectors in this category includes: SelfCheckGPT
(Manakul et al., 2023), LN-Entropy (Malinin & Gales, 2021), Energy (Liu et al., 2020), Focus
(Zhang et al., 2023), and Perplexity (Ren et al., 2023).

Internal Representation-based Detectors. These approaches probe the internal representations
of the LLM, such as hidden states, attention patterns, or other intermediate representations, to iden-
tify unfaithful generations. By analyzing these internal model dynamics, these detectors aim to
capture subtle signals associated with hallucination that may not be reflected in output tokens or
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logits. Methods in this category include: EigenScore (Chen et al., 2024), SEP (Han et al., 2024),
SAPLMA (Azaria & Mitchell, 2023), ITI (Li et al., 2024), and ReDeEP (Sun et al., 2025).

B IMPLEMENTATION DETAILS

While a trained SAE is required for detection in RAGLens, the rapid development of the SAE
community (Shu et al., 2025) has led to the public release of many pre-trained SAEs for widely used
LLMs. Moreover, SAEs are typically trained on general-purpose corpora rather than task-specific
datasets, allowing for their reuse in analyses beyond the scope of this work. To demonstrate the
efficiency and practicality of our pipeline, we utilize publicly available SAEs whenever possible,
showing that our method does not require resource-intensive, specially tuned SAEs for effective
performance. Below, we list the specific SAEs used in our experiments:

• Llama2-7B: We use the pretrained SAE from https://huggingface.co/
yuzhaouoe/Llama2-7b-SAE, which includes SAEs for multiple layers. Specifically,
we select the SAE trained on “layers.15”, with an expansion factor of 32 and Top-K acti-
vation (K = 192).

• Llama2-13B: As no public SAE is available for Llama2-13B, we train our own using the
sparsify package1 with default settings. The SAE is trained on “layers.15”, with an
expansion factor of 16 and Top-K activation (K = 16).

• Llama3.2-1B: We use the pretrained SAE from https://huggingface.co/
EleutherAI/sae-Llama-3.2-1B-131k, which covers multiple layers. For results
in Section 4.3, we select the SAE trained on “layers.6.mlp”, and for the layer-wise analysis
in Section 5, we use all available SAEs. The SAEs have an expansion factor of 32 and
Top-K activation (K = 32).

• Llama3-8B: We use the pretrained SAE from https://huggingface.co/
EleutherAI/sae-llama-3-8b-32x, utilizing all available SAEs for the layer-wise
analysis in Section 5. The SAEs have an expansion factor of 32 and Top-K activation
(K = 192).

• Llama3.1-8B: We use the pretrained SAE from https://huggingface.co/
Goodfire/Llama-3.1-8B-Instruct-SAE-l19, which contains the SAE trained
on “layers.19”. The SAE has an expansion factor of 16 and ReLU activation.

• Qwen3-0.6B: As there is no public SAE for Qwen3-0.6B, we train our own using the
sparsify package with default settings. For results in Section 4.3, we select the SAE
trained on “layers.17”, and for layer-wise analysis, we use all trained SAEs. The SAEs
have an expansion factor of 32 and Top-K activation (K = 16).

• Qwen3-4B: Similarly, we train our own SAEs for Qwen3-4B. For Section 4.3, we select
the SAE trained on “layers.22”; for layer-wise analysis, we use all available SAEs. The
SAEs have an expansion factor of 32 and Top-K activation (K = 16).

To compute mutual information (MI) in RAGLens, we estimate the MI value of each continuous
SAE feature by discretizing feature values into bins using quantile thresholds. Specifically, we
partition the value range into 50 bins per feature and compute MI values in chunks for GPU acceler-
ation. After ranking features based on estimated MI, we select the top 1000 features for subsequent
Generalized Additive Model (GAM) fitting in RAGLens.

For GAM fitting, we deploy the Explainable Boosting Machine (EBM) (Nori et al., 2019), a high-
performance, tree-based GAM implementation that flexibly models nonlinear effects of features on
the target output. Across all experiments, we set the maximum number of bins in each feature’s
shape function to 32, a validation size of 10%, and a maximum of 1000 boosting rounds.

To generate semantic explanations for selected SAE features, we collect representative activation
cases by sampling 12 examples with the highest activations and 12 examples distributed across
quantiles from the RAGTruth training data. These cases are then provided to GPT-5, which summa-
rizes the underlying semantic concept captured by each feature using the template in Figure 7.

1https://github.com/EleutherAI/sparsify
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Prompt templates for all LLM text-generation calls are shown in Appendix I.

All experiments are conducted on a server equipped with an AMD EPYC 7313 CPU and four
NVIDIA A100 GPUs.

C CAUSAL INTERVENTION OF SAE FEATURES

For SAE features that consistently activate prior to hallucinated content, we investigate whether
direct intervention on these features can causally influence the model’s generation. Specifically, we
manipulate the activation values of selected SAE features at key tokens preceding hallucinated spans
and observe the resulting changes in model outputs. This analysis assesses whether these features
not only correlate with hallucination but also play a causal role in driving unfaithful generations.

Table 6 presents a case study on Feature 22790 from Llama3.1-8B, which reliably activates before
hallucinated numeric or temporal details (e.g., firing on the token “of” in the prefix “[...] at the age
of”, which often leads to unsupported ages). When we suppress this feature (e.g., set its value to
0 or -20), the model continues the problematic prefix with hallucinated, ungrounded numbers. In
contrast, manually setting the feature to a large positive value (e.g., 20) steers the model to remain
faithful to the context, producing follow-up tokens that avoid hallucinated specifics (e.g., using
an unspecified age or time). This suggests that Feature 22790 reflects the model’s awareness of
potentially hallucinated numeric or temporal details, and that overactivating it can encourage more
faithful behavior in such scenarios.

Table 6: Examples of causal interventions on Feature 22790 in Llama3.1-8B. This feature is consis-
tently activated prior to hallucinated numeric/time specifics. Tokens in red indicate the hallucinated
content.

Context Prefix Value Output

No mention of
the age

[...] at the
age of

-20.0 [...] of 30.

0.0 [...] of 25.

20.0 [...] of an unspecified age.

No mention of
the release date

[...] scheduled to
be released in

-20.0 [...] in 2016.

0.0 [...] in the future.

20.0 [...] in an unspecified time frame.

An additional case study on Feature 71784 in Llama2-13B is shown in Table 7. This feature is asso-
ciated with hallucinations about opening hours (day/time) and ratings, and typically activates only
when the hallucinated time or rating is already being produced (e.g., “Monday” in an inconsistent
hours-of-operation statement). For these cases, we perturb the feature value on the token immedi-
ately preceding the hallucinated word (e.g., “on” in “on Mondays”). The results also confirm that
manipulating SAE features identified by RAGLens can steer the model’s behavior and demonstrate
a causal relationship between these features and RAG hallucinations.

However, for features like the one in Table 7 that only activate concurrently with or after hallucinated
tokens, direct intervention is impractical for preventing hallucinations, as the problematic content
has already been generated by the time these features fire. Furthermore, the distance between the
hallucinated tokens and the token with high activation is not always consistent across features and
examples. Thus, while causal intervention on SAE features is feasible in certain scenarios, it is not
a universal solution for hallucination mitigation. This limitation motivates our focus on post-hoc
text-based feedback in the main mitigation pipeline.

D DISCUSSION ON SAE FEATURE VERSUS HIDDEN STATE

To further investigate the contribution of SAE-derived features to RAGLens performance, we con-
duct an ablation study by replacing SAE features with the raw hidden states of Llama2-7B, while
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Table 7: Examples of causal interventions on Feature 71784 in Llama2-13. This feature is consis-
tently activated on hallucinations about opening hours (day/time) and ratings. Tokens in red indicate
the hallucinated content.

Context Prefix Value Output

[...] ”Monday”:
”0:0-0:0” [...]

[...] Restaurants
Hours:

-20.0 [...]: the restaurant is open from
11:00 AM to 21:00 PM, Monday to Sunday.

0.0 [...]: the restaurant is open from
11:00 AM to 21:00 PM, Monday to Sunday.

20.0 [...]: Monday: 0:00 - 0:00 [...]

[...] ”Monday”:
”0:0-0:0” [...]

[...] no information
available for the
business’s hours on

-20.0 [...] on hours of operation on Mondays.

0.0 [...] on hours of operation on Mondays.

20.0 [...] on holidays.

retaining the MI-based feature selection and GAM classifier. Figure 6 compares hallucination de-
tection performance using hidden states versus SAE features across varying numbers of selected
dimensions (K ′). When K ′ is large, hidden states achieve performance comparable to SAE fea-
tures, which is expected since SAE features are derived from hidden states.
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Figure 6: Effect of varying the number of selected features (K ′) on hallucination detection perfor-
mance, comparing SAE features (SAE) and hidden states (Hidden).

However, as K ′ decreases, the performance of hidden states degrades more rapidly, especially on
single-task datasets such as AggreFact and TofuEval. This indicates that SAE features more effec-
tively disentangle hallucination-related signals from other information and concentrate them into
a compact set of dimensions, particularly when the predictor is applied to narrow domains. Such
compact representations improve interpretability and facilitate downstream applications like hal-
lucination mitigation, as only a small number of salient features need to be monitored to achieve
effective control.

E DISCUSSION ON SAE FEATURE INTERPRETABILITY

To validate the semantic consistency of SAE features, we extend the analysis in Table 3 by examining
top activated examples from the SAE’s pretraining corpus. Specifically, we compute activations for
Feature 22790 in Llama3.1 8B over the first 10,000 samples from the lmsys/lmsys chat 1m corpus2

and inspect the highest activation cases, as shown in Table 8. Although the pretraining corpus con-
tains diverse structures and languages, including clinical dialogue transcripts and telecom statements
in German, we find that Feature 22790 is consistently activated in scenarios where the response is
about to produce specific numbers or dates that are likely hallucinated. This pattern aligns with the
feature’s summarized semantic meaning from RAGTruth and the representative examples shown in
Table 3, demonstrating that the feature robustly captures hallucination related signals across both
task specific and pretraining data.

To further assess the robustness of the distilled feature explanation across diverse scenarios, we
prompt GPT-5 to predict the activation level of Feature 22790 on 24 held-out RAGTruth test cases

2https://huggingface.co/datasets/lmsys/lmsys-chat-1m
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Table 8: Examples from the pre-training corpus with high activations of Feature 22790 in Llama3.1-
8B. Tokens highlighted in red indicate locations of strong feature activation.

Sample Index Input Output

9384
TRANSCRIPT=’Hello doctor I have
fever and cough. Okay take paracetamol
and go home and rest.’ [...]

[...] Patient advises they have
been experiencing symptoms for
the past two days [...]

3298 User: Telekom Deutschland GmbH [...]
[...] ”summary”: ”Mobilfunk-
Rechnung für den Monat März
2023” [...]

(comprising 8 top-activated and 16 quantile-distributed examples), using only the natural-language
summary. For each case, the three most highly activated tokens are highlighted, and GPT-5 is asked
to rate the expected feature activation on a scale from 0 (feature not present) to 5 (very strong
match). Comparing these predicted scores to the actual SAE activations yields a Pearson correla-
tion of 0.6731 (p ¡ 0.05), suggesting that the explanation reliably captures when the feature should
activate across a broad range of examples.

However, while SAEs are designed to disentangle distinct semantic concepts from hidden states,
some SAE features may remain generic or polysemantic, limiting their interpretability, which is a
challenge widely recognized in current SAE research (Bricken et al., 2023; Huben et al., 2023).
Although RAGLens already achieves accurate and interpretable RAG hallucination detection using
existing SAE foundations, its architecture-agnostic design allows it to benefit from future advances
in SAE methods, which may enable even more transparent and effective detectors for RAG halluci-
nations.

F PROOF OF THEOREM 1

Theorem 2 (Restatement of Theorem 1). Fix a feature index k and suppress k in notation. For
tokens t = 1, . . . , T ,

zt =

{
0 with probability 1− pℓ,

Vt with probability pℓ,
independently over t, (10)

where Vt are i.i.d. from a label-independent distribution F on (0,∞). Let z̄ = max1≤t≤T zt,
π = Pr(ℓ = 1), p̄ = 1

2 (p1 + p0), and ∆p = p1 − p0. If T p̄ ≪ 1, then (in bits)

I(z̄; ℓ) =
π(1− π)

2 ln 2

T (∆p)2

p̄
+ O

(
(T p̄)2

)
. (11)

In particular, I(z̄; ℓ) > 0 iff p1 ̸= p0; the leading dependence is linear in T and quadratic in ∆p.

Proof. Write A = 1{z̄ > 0}, N =
∑T

t=1 1{zt > 0}, and h(u) = −u log2 u− (1− u) log2(1− u).

Step 1: Exact MI for the activation indicator. Independence across tokens implies

qℓ := Pr(A=1 | ℓ) = Pr(N ≥ 1 | ℓ) = 1− (1− pℓ)
T . (12)

Hence A | ℓ ∼ Bernoulli(qℓ) and

I(A; ℓ) = h
(
πq1 + (1− π)q0

)
−

[
π h(q1) + (1− π)h(q0)

]
. (13)

Step 2: Small-gap expansion of I(A; ℓ). Let r = πq1 + (1 − π)q0, q̄ = 1
2 (q1 + q0), and ∆q =

q1 − q0. A second-order Taylor expansion of h about q̄ gives

h(q1) = h(q̄) + ∆q
2 h′(q̄) + (∆q)2

8 h′′(q̄) +O((∆q)3), (14)
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h(q0) = h(q̄)− ∆q
2 h′(q̄) + (∆q)2

8 h′′(q̄) +O((∆q)3), (15)

h(r) = h(q̄) + (2π − 1)∆q
2 h′(q̄) + (2π−1)2(∆q)2

8 h′′(q̄) +O((∆q)3). (16)

Plugging into Equation 13, the linear terms cancel, and since h′′(u) = −[u(1− u) ln 2]−1,

I(A; ℓ) =
π(1− π)

2 ln 2

(∆q)2

q̄ (1− q̄)
+ O((∆q)3). (17)

Step 3: Relating I(z̄; ℓ) and I(A; ℓ), with a JS–TV bound. Because A = 1{z̄ > 0} is a deter-
ministic function of z̄, the chain rule gives

I(z̄; ℓ) = I(A; ℓ) + I(z̄; ℓ | A). (18)

When A = 0, z̄ = 0 almost surely, so I(z̄; ℓ | A = 0) = 0. When A = 1, one can write

pz̄|A=1,ℓ =
∑
n≥1

wℓ(n)F
(n), (19)

where wℓ(n) = Pr(N = n | A = 1, ℓ) and F (n) is the distribution of the maximum of n label-
independent draws from F . Thus given A = 1, the only dependence on ℓ is via the mixture weights
{w1(n)− w0(n)}.

By the definition of total variation (TV) distance,

TV
(
pz̄|A=1,1, pz̄|A=1,0

)
= 1

2

∫ ∣∣pz̄|A=1,1(z)− pz̄|A=1,0(z)
∣∣ dz

≤ Pr(N ≥ 2 | A = 1, 1) + Pr(N ≥ 2 | A = 1, 0),

(20)

up to constant factors.

Since mutual information conditioned on A = 1 is the Jensen–Shannon (JS) divergence between
these two conditional distributions (with weight Pr(ℓ = 1 | A = 1) over ℓ), one can invoke a
standard bound:

JS
(
pz̄|A=1,1, pz̄|A=1,0

)
≤ C TV

(
pz̄|A=1,1, pz̄|A=1,0

)2
, (21)

for some constant C depending on the mixing weight (Corander et al., 2021).

Thus,
I(z̄; ℓ | A = 1) = O

(
(Pr(N ≥ 2 | A = 1, 1) + Pr(N ≥ 2 | A = 1, 0))2

)
. (22)

Multiplying by Pr(A = 1) ≤ 1 gives

I(z̄; ℓ)− I(A; ℓ) = O
(
Pr(N ≥ 2 | 1)2 + Pr(N ≥ 2 | 0)2

)
, (23)

which, under rarity (T p̄ ≪ 1), is o((T p̄)2).

Step 4: Specializing to independence and the sparse regime. Under independence with per-
token rate pℓ,

Pr(N≥2 | ℓ) = 1− (1− pℓ)
T − Tpℓ(1− pℓ)

T−1 =

(
T

2

)
p2ℓ +O(T 3p3ℓ). (24)

Thus
I(z̄; ℓ) = I(A; ℓ) + O

(
T 2p̄ 2

)
, (25)

uniformly for pℓ with p̄ = 1
2 (p1 + p0).

Step 5: Substitute sparse approximations. For T p̄ ≪ 1,

qℓ = 1− (1− pℓ)
T = Tpℓ −

(
T

2

)
p2ℓ +O(T 3p3ℓ), (26)

q̄ = T p̄+O(T 2p̄ 2), (27)

∆q = T∆p+O(T 2p̄ |∆p|). (28)
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Plug these into Equation 17. Since 1− q̄ = 1 +O(T p̄),

(∆q)2

q̄(1− q̄)
=

T 2(∆p)2

T p̄
+ O

(
T 2(∆p)2 · T p̄

)
=

T (∆p)2

p̄
+ O

(
T 3p̄ (∆p)2

)
. (29)

Moreover, (∆q)3 = O
(
T 3|∆p|3

)
= o

(
T 2p̄ 2

)
under T p̄ ≪ 1 and bounded |∆p|. Hence

I(A; ℓ) =
π(1− π)

2 ln 2

T (∆p)2

p̄
+ O

(
T 2p̄ 2

)
. (30)

Combining Equation 30 with Equation 25 via Equation 18 yields

I(z̄; ℓ) =
π(1− π)

2 ln 2

T (∆p)2

p̄
+ O

(
T 2p̄ 2

)
, (31)

which is the claimed statement since T 2p̄ 2 = (T p̄)2.

G INTERPRETATION OF ADDITIONAL HALLUCINATION-RELATED FEATURES

Table 9 highlights additional representative features that RAGLens activates when detecting halluci-
nations across LLMs of varying scales. These features capture a wide range of hallucination patterns,
including overconfident numeric spans, incorrect temporal assertions, and ungrounded entity men-
tions. Notably, smaller LLMs tend to exhibit more generic hallucination signals (e.g., “overstated
concrete details”), whereas larger LLMs reveal more specific and nuanced patterns (e.g., “precise
numeric spans not grounded in retrieved passages”). This observation suggests that as LLMs in-
crease in size, they develop more specialized internal features for identifying complex hallucination
phenomena. This may contribute to the improved hallucination detection performance of larger
models with RAGLens, as shown in Figure 2.

H FURTHER ANALYSIS OF IDENTIFIED FEATURES VIA COUNTERFACTUAL
PERTURBATION

To further validate that the features identified by RAGLens capture meaningful hallucination patterns
in RAG-specific contexts, we conduct case studies using counterfactual perturbation on SAE feature
37877 from Llama3.1-8B, which detects “precise numeric spans not grounded in retrieved passages”
(see Table 9). We select representative samples from three RAGTruth subtasks, summarization,
data-to-text, and question answering, where this feature is highly activated and the generation is
hallucinated. For each, we manually edit the context to construct counterfactual scenarios: (1) the
output becomes consistent with the perturbed context, or (2) the output remains inconsistent, but in
a different way. For question answering, we also consider a version where the context is entirely
removed to examine feature activation in the absence of grounding.

Tables 10-12 present the results. For summarization (Table 10) and data-to-text (Table 12), when
the context is edited to make the output consistent, the feature value on previously highlighted
tokens drops significantly; if the context remains inconsistent, the feature stays highly activated.
In question answering (Table 11), feature activation drops when the context is either edited to be
consistent or removed, indicating that the feature is specialized for detecting ungrounded numeric
spans in context, rather than general hallucination. Overall, these case studies demonstrate that
RAGLens identifies features that robustly capture RAG-specific hallucination patterns.

I PROMPT TEMPLATES FOR LLM CALLING

This section presents the prompt templates we use for LLM calling in our experiments. Specifically,
for the summarized SAE explanations in Table 3, we use the template shown in Figure 7. The
hallucination mitigation approaches discussed in Section 4.6 are implemented with templates in
Figures 8 and 9 for the instance- and token-level feedback, respectively. The LLM evaluation shown
in 4 is implemented with the template in Figure 10, following Luo et al. (2023).
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Table 9: Explanation and examples of representative SAE features in Llama2-7B, Llama2-13B,
Llama3.2-1B, and Llama3.1-8B that enable interpretable hallucination detection. Spans highlighted
in red indicate tokens where the feature is highly activated. The table illustrates how these features
capture diverse hallucination patterns across models.

Feature ID Feature Explanation Example Output Example Explanation
Llama2-7B

120059 hallucination involving
entity swaps and in-
vented details.

[...] his castmates from
“Central Intelligence”
took a knee as he [...]

There is no mention of
Kevin Hart’s castmates
from “Central Intelli-
gence”.

127083 unsupported concrete ad-
ditions such as names,
pairings, numbers, legal /
evidentiary claims

[...] such as a Walker-
Rubio or Clinton-Kaine
pairing [...]

Clinton-Kaine is not
mentioned in the source
content

Llama2-13B

26530 “amenity assertion” de-
tector that spikes on the
outdoor seating phrase

The restaurant has a ca-
sual ambiance and offers
outdoor seating

Original text shows no
outdoor seating

71784 hallucinations on day/-
time (hours) and ratings

[...] no information avail-
able for the business’s
hours on Mondays [...]

Original text: closed on
Monday

Llama3.2-1B

78162 unsupported or swapped
named entities and pre-
cise facts

The team is now fac-
ing their in-state rivals,
the Los Angeles Dodgers
[...]

The Texas Rangers and
Los Angeles Dodgers are
not in-state rivals

121247 invented or overstated
concrete details

[...] He was also a pro-
fessor of film criticism at
NYU [...]

It is not mentioned in the
original source.

Llama3.1-8B

37877 precise numeric spans
that aren’t grounded in
the retrieved passages

[...] soft ball stage
occurs at a tempera-
ture of around 245-
250°Fahrenheit [...]

The firm ball stage at a
temperature of about 245
to 250 degrees Fahren-
heit

40779 overconfident claims
about hours, open/closed
days, and amenities

[...] the exception of
Friday when it closes at
20:00 PM

Friday opens from 11am
and closes by 10pm

J USE OF LARGE LANGUAGE MODELS

In this project, large language models (LLMs) are used for multiple purposes:

• We use checkpoints of open-source LLMs to extract hidden states, which are then analyzed
to identify interpretable SAE features that help detect RAG hallucinations.

• We use LLMs as judges to evaluate whether RAGLens feedback helps mitigate hallucina-
tions in the original model outputs.

• We use LLMs as summarizers to describe the semantic roles of different SAE features
based on their activations across multiple samples.

• We use LLMs to proofread the paper.
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Table 10: Counterfactual analysis of SAE feature 37877 from Llama3.1-8B on a RAGTruth-
Summary example. The table illustrates how feature activation changes in response to context
perturbations, highlighting its specificity for detecting ungrounded numeric spans in summariza-
tion. Key information in the original and updated contexts is highlighted in yellow. For the output,
tokens are highlighted in red, with the intensity of the red background indicating the relative activa-
tion value on each token.

Model Input

Summarize the following news within 78 words:
Iraq Service Campaign Medal Reinstated [...] According to a memorandum signed by then-
Under Secretary of Defense for Personnel and Readiness Gilbert Cisneros in August, the Pen-
tagon once again awarded the Inherent Resolve Campaign Medal to eligible service members
serving in Iraq. According to a document received by Military Times, the medal’s eligibility has
been renewed retroactive to January 1 and will continue through December 31, 2024. [...]

Model Output (annotated with feature activation)

The US Department of Defense has reinstated the Inherent Resolve Campaign Medal for service
members in Iraq due to renewed threats against US personnel in the Middle East. The medal’s
eligibility has been renewed retroactively from January 1, 2021, and will continue through De-
cember 31, 2024. The move was requested by the US Central Command, following Iraq’s re-
classification from a combat mission. The medal was initially created in 2016 to acknowledge
service in Iraq or Syria, but was limited to Syria in 2017.

Context Perturbation 1 (context inconsistent)

Original Context:
[...] the medal’s eligibility has been renewed retroactive to January 1 [...]

Updated Context:
[...] the medal’s eligibility has been renewed retroactive to January 1, 2023 [...]

Updated Activation:
[...] The medal’s eligibility has been renewed retroactively from January 1, 2021, and will

continue through December 31, 2024 [...]

Context Perturbation 2 (context consistent)

Original Context:
[...] the medal’s eligibility has been renewed retroactive to January 1 [...]

Updated Context:
[...] the medal’s eligibility has been renewed retroactive to January 1, 2021 [...]

Updated Activation:
[...] The medal’s eligibility has been renewed retroactively from January 1, 2021, and will

continue through December 31, 2024 [...]

K ABLATION STUDY OF SAE FEATURE EXTRACTION METHODS IN
RAGLENS

In this section, we investigate whether our SAE-based design, which combines max pooling over
tokens with mutual-information-based feature selection, offers advantages over alternative ways of
using SAE features (Ferrando et al., 2025; Tillman & Mossing, 2025; Xin et al., 2025; Suresh et al.,
2025). Concretely, we compare four variants on the RAGTruth subtasks:

1. Last Token + Selection + GAM: SAE features taken only from the last generated token,
followed by MI-based feature selection and a GAM classifier.
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Prompt template for summarizing SAE feature explanations

I am trying to explain the semantic meaning of a hallucination-related feature in retrieval-
augmented generation settings. Please first examine if the highly activated tokens in
each example are related to specific cases of hallucinations. Then, try to summarize the
semantic meaning of the feature based on these observations. Finally, give me a concise
description of the feature meaning in one sentence, specifying what kind of hallucination
(if applicable) it is detecting.

### Example

#### Here is the input:
{{input}}

#### Here is the output:
{{output}}

#### Here are the feature activation associated with each output token:
{{[(token1, value1), (token2, value2), ...]}}

### Example
...
...

Figure 7: Prompt template for summarizing SAE feature explanations.

Prompt template for hallucination mitigation with instance-level feedback

User:
{{input}}

Assistant:
{{original_output}}

User:
There are hallucinations in your output. Please revise it.

Figure 8: Prompt template for hallucination mitigation with instance-level feedback.

Prompt template for hallucination mitigation with token-level feedback

User:
{{input}}

Assistant:
{{original_output}}

User:
There are hallucinations in your output, especially on the following spans:
{{[span1, span2, ...]}}

Please revise it.

Figure 9: Prompt template for hallucination mitigation with token-level feedback.
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Prompt template for LLM-as-a-Judge on mitigation results

Decide if the following summary/answer is consistent with the corresponding article.
Note that consistency means all information in the output is supported by the article.

Article: {{context}}

Summary/Answer: {{revised_output}}

Explain your reasoning step by step then answer (yes or no) the question:

Figure 10: Prompt template for LLM-as-a-Judge on mitigation results.

2. Max Pooled + No Selection + LR: max-pooled SAE features across tokens, using all
dimensions as input to a logistic regression (LR) classifier (no feature selection).

3. Max Pooled + Selection + LR: max-pooled SAE features with MI-based feature selection,
using LR as the classifier.

4. Max Pooled + Selection + GAM (RAGLens): our full RAGLens variant, which applies
MI-based feature selection to max-pooled SAE features and then fits a GAM.

Table 13 reports accuracy and AUC for these settings. Using max pooling with feature selection and
a GAM (Max Pooled + Selection + GAM) consistently outperforms both: (i) the last-token baseline
(Last Token + Selection + GAM), which discards earlier activations that may precede hallucinated
content, and (ii) the Max Pooled + No Selection + LR baseline, which uses all SAE dimensions
without selection and is thus less efficient.

Additionally, Max Pooled + Selection + LR performs comparably to using all features without se-
lection, indicating that MI-based selection preserves the most informative SAE dimensions for de-
tecting unfaithful model outputs. Overall, these results demonstrate that our approach captures most
hallucination-relevant signals in a compact, efficient feature set and achieves superior detection per-
formance compared to alternative SAE usage strategies.
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Table 11: Counterfactual analysis of SAE feature 37877 from Llama3.1-8B on a RAGTruth-QA
example. The table illustrates how feature activation changes in response to context removal and
consistency edits, highlighting its sensitivity to ungrounded numeric spans in retrieval-augmented
question answering. Key information in the original and updated contexts is highlighted in yellow.
For the output, tokens are highlighted in red, with the intensity of the red background indicating the
relative activation value on each token.

Model Input

Briefly answer the following question:
how to tell the temperature of water with a candy thermometer

Bear in mind that your response should be strictly based on the following three passages:
passage 1: [...] If the candy forms a soft, flexible ball it is at a temperature of 235-240 degrees
Fahrenheit or at the soft ball stage.
passage 2: [...] If it forms into a firm ball, it is in the firm ball stage. This stage is at a temperature
of about 245 to 250 degrees Fahrenheit [...]
passage 3: [...]

In case the passages do not contain the necessary information to answer the question, please
reply with: ”Unable to answer based on given passages.”

Model Output (annotated with feature activation)

Based on the provided passages, here is how to tell the temperature of water using a candy
thermometer:
Passage 1 states that when the candy is in the thread stage, the temperature is around 230-
235°Fahrenheit.
Passage 2 indicates that the soft ball stage occurs at a temperature of 245-250°Fahrenheit for
candies such as fudge and fondant.
Therefore, to determine the temperature of water using a candy thermometer, you can follow
these steps:
1. Cool some of the candy in the thread stage by dropping it into cold water.
2. Observe if the candy forms a soft , flexible ball. If it does, the temperature is between
245-250°Fahrenheit, indicating that the water is at the soft ball stage.
If the water is not at the soft ball stage, continue cooling it until it reaches that temperature
range, and then proceed to use the candy thermometer to measure its temperature.

Context Perturbation 1 (context removed)

Original Context:
[...] Bear in mind that [...]

Updated Context:
None

Updated Activation:
[...] indicates that the soft ball stage occurs at a temperature of around 245-250°Fahrenheit [...]

Context Perturbation 2 (context consistent)

Original Context:
[...] This stage is at a temperature of about 245 to 250 degrees Fahrenheit [...]

Updated Context:
[...] The soft ball stage is at a temperature of about 245 to 250 degrees Fahrenheit [...]

Updated Activation:
[...] indicates that the soft ball stage occurs at a temperature of around 245-250°Fahrenheit [...]
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Table 12: Counterfactual analysis of SAE feature 37877 from Llama3.1-8B on a RAGTruth-Data2txt
example. The table demonstrates how feature activation responds to context perturbations, high-
lighting its specificity for identifying ungrounded numeric spans in data-to-text generation. Key
information in the original and updated contexts is highlighted in yellow. For the output, tokens are
highlighted in red, with the intensity of the red background indicating the relative activation value
on each token.

Model Input

Write an objective overview about the following local business based only on the provided struc-
tured data in the JSON format. You should include details and cover the information mentioned
in the customers’ review. The overview should be 100 - 200 words. Don’t make up information.
Structured data:
{‘name’: “Mony’s Mexican Food”, ‘address’: ‘217 E Anacapa St’, ‘city’: ‘Santa Barbara’,
‘state’: ‘CA’, ‘categories’: ‘Restaurants, Mexican’, ‘hours’: {‘Monday’: ‘10:30-15:30’, ‘Tues-
day’: ‘10:30-15:30’, ‘Wednesday’: ‘10:30-15:30’, ‘Thursday’: ‘10:30-15:30’, ‘Friday’: ‘10:30-
15:30’, ‘Saturday’: ‘10:30-15:30’}, [...]}

Model Output (annotated with feature activation)

Sure! Here’s an objective overview of Mony’s Mexican Food based on the provided structured
data:

[...] The restaurant has a cozy and casual atmosphere, with no WiFi or outdoor seating available.
However, customers can enjoy takeout or dine in during its hours of operation, which are from
10:30 AM to 3:30 PM from Monday to Friday, and 10:30 AM to 4:00 PM on Saturday. Despite
the limited hours and lack of WiFi, Mony’s Mexican Food remains a popular choice among
locals and visitors alike, with many return customers and high praise from reviewers.

Context Perturbation 1 (context inconsistent)

Original Context:
[...] ‘Saturday’: ‘10:30-15:30’[...]

Updated Context:
[...] ‘Saturday’: ‘9:30-15:30’ [...]

Updated Activation:
[...] and 10:30 AM to 4:00 PM on Saturday [...]

Context Perturbation 2 (context consistent)

Original Context:
[...] ‘Saturday’: ‘10:30-15:30’ [...]

Updated Context:
[...] ‘Saturday’: ‘10:30-16:00’ [...]

Updated Activation:
[...] and 10:30 AM to 4:00 PM on Saturday [...]
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Table 13: Ablation study of SAE feature extraction and classifier choices on RAGTruth subtasks
using Llama2-7B. We compare last-token versus max-pooled SAE features, with and without mutual
information-based feature selection. Due to the high computational cost of fitting GAMs on all
features, we use logistic regression (LR) as the classifier when no feature selection is applied.

Source Selection Classifier
RAGTruth-Summary RAGTruth-QA RAGTruth-Data2txt

Acc AUC Acc AUC Acc AUC

Last Token Yes GAM 0.6293 0.7507 0.6908 0.8101 0.7454 0.8296
Max Pooled No LR 0.6734 0.7305 0.7356 0.8344 0.7499 0.8397
Max Pooled Yes LR 0.6718 0.7663 0.7572 0.8472 0.7085 0.8014
Max Pooled Yes GAM 0.6973 0.8191 0.7717 0.8835 0.7668 0.8454
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