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2Data Science Group, University of Münster, Germany

3Institute for Humanities-Centered Artificial Intelligence, University of Hamburg, Germany
{malte.luttermann,mattis.hartwig}@dfki.de, {marcel.gehrke,ralf.moeller}@uni-hamburg.de,

{jan.speller,tanya.braun}@uni-muenster.de

Abstract
Probabilistic relational models such as parametric
factor graphs enable efficient (lifted) inference by
exploiting the indistinguishability of objects. In
lifted inference, a representative of indistinguish-
able objects is used for computations. To obtain a
relational (i.e., lifted) representation, the Advanced
Colour Passing (ACP) algorithm is the state of the
art. The ACP algorithm, however, requires under-
lying distributions, encoded as potential-based fac-
torisations, to exactly match to identify and exploit
indistinguishabilities. Hence, ACP is unsuitable
for practical applications where potentials learned
from data inevitably deviate even if associated ob-
jects are indistinguishable. To mitigate this prob-
lem, we introduce the ε-Advanced Colour Pass-
ing (ε-ACP) algorithm, which allows for a devia-
tion of potentials depending on a hyperparameter
ε. ε-ACP efficiently uncovers and exploits indistin-
guishabilities that are not exact. We prove that the
approximation error induced by ε-ACP is strictly
bounded and our experiments show that the approx-
imation error is close to zero in practice.

1 Introduction
Probabilistic relational models, denoted as parametric factor
graphs (PFGs), combine probabilistic modelling with rela-
tional logic (that is, first-order logic with known universes).
By introducing logical variables (logvars) to represent sets of
indistinguishable objects, PFGs allow lifted inference algo-
rithms to use a representative of indistinguishable objects for
efficient computations. In practice, however, when learning
the underlying probability distribution of a PFG from data,
indistinguishable objects are often not recognised. In partic-
ular, considering a potential-based factorisation of the prob-
ability distribution, learned potentials inevitably deviate even
for indistinguishable objects due to estimates from data. To
mitigate this issue and ensure the practical applicability of ob-
taining a compact representation for lifted inference, we solve
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the problem of constructing a lifted representation while tak-
ing into account small deviations of potentials for indistin-
guishable objects. In particular, we ensure that the obtained
lifted representation is approximately equivalent to a given
propositional (ground) representation by solving an optimisa-
tion problem to minimise the approximation error. Allowing
for small deviations between potentials is essential for prac-
tical applications, where potentials, for instance, are learned
from data and hence are subject to inaccuracies. For exam-
ple, consider the probabilities p1 = 0.501 and p2 = 0.499. In
case p1 and p2 are estimates from data, it is likely that p1 and
p2 should actually be considered equal.

Poole [2003] first introduces PFGs, which combine rela-
tional logic and probabilistic models, and lifted variable elim-
ination as a lifted inference algorithm to perform lifted prob-
abilistic inference in PFGs. In probabilistic inference, lift-
ing exploits indistinguishabilities in a probabilistic model, al-
lowing to carry out query answering more efficiently while
maintaining exact answers [Niepert and Van den Broeck,
2014]. Since its first introduction by Poole [2003], lifted
variable elimination has continuously been refined by many
researchers to reach its current form [De Salvo Braz et al.,
2005, 2006; Milch et al., 2008; Kisyński and Poole, 2009;
Taghipour et al., 2013; Braun and Möller, 2018]. More re-
cently, Luttermann et al. [2024b,c] extend PFGs to incorpo-
rate causal knowledge and thereby allow to perform lifted
causal inference. To perform lifted probabilistic (or causal)
inference, the lifted representation (e.g., a PFG) has to be
constructed first. The Advanced Colour Passing (ACP) algo-
rithm [Luttermann et al., 2024a,d,e,f], which generalises the
CompressFactorGraph algorithm [Kersting et al., 2009; Ah-
madi et al., 2013], is the current state of the art to construct
a PFG from a propositional model with equivalent semantics.
ACP employs a colour passing procedure to detect symmetric
subgraphs, similar to the Weisfeiler-Leman algorithm [Weis-
feiler and Leman, 1968], which is a well-known algorithm to
test for graph isomorphism. While ACP is able to construct
a PFG entailing equivalent semantics as a given propositional
model, ACP requires potentials to exactly match, which is a
significant limitation for practical applications.

In this paper, we contribute the ε-Advanced Colour Pass-
ing (ε-ACP) algorithm, which solves the problem of con-
structing an approximate lifted representation with a mini-
mal approximation error and thereby makes the construction



of a lifted model applicable in practice. The ε-ACP algo-
rithm allows for potentials to deviate by a factor of ε to still
be considered identical, where ε is a hyperparameter control-
ling the required agreement between potentials. Thus, the hy-
perparameter ε controls the trade-off between the exactness
and the compactness of the lifted representation obtained by
ε-ACP. We further prove that the approximation error in-
duced by ε-ACP is strictly bounded. In addition to the theo-
retical bounds, we empirically show that ε-ACP significantly
reduces run times for inference while at the same time keep-
ing the approximation error close to zero.

The remaining part of this paper is structured as follows.
We begin by introducing background information and nota-
tions in Sec. 2. Thereafter, we introduce the ε-ACP algo-
rithm to solve the problem of constructing an approximate
lifted representation with a minimal approximation error. We
then prove that the approximation error induced by ε-ACP is
strictly bounded and show that the given bound is optimal.
Finally, we empirically demonstrate that in practice, the ac-
tual approximation error induced by ε-ACP is well below the
theoretical bounds before we conclude the paper.

2 Background
We first define factor graphs (FGs) as propositional models
and afterwards introduce the idea of lifted representations
such as PFGs. An FG is a probabilistic graphical model
to compactly represent a probability distribution over a set
of random variables (randvars) by factorising the distribu-
tion [Frey et al., 1997; Kschischang et al., 2001].

Definition 1 (Factor Graph). An FG M = (V ,E) is an
undirected bipartite graph consisting of a node set V =
R ∪Φ, where R = {R1, . . . , Rn} is a set of variable nodes
(randvars) and Φ = {ϕ1, . . . , ϕm} is a set of factor nodes
(functions), as well as a set of edges E ⊆ R × Φ. There
is an edge between a variable node Ri and a factor node
ϕj in E if Ri appears in the argument list of ϕj . A factor
ϕj(Rj) defines a function ϕj : ×R∈Rj

range(R) 7→ R+ that
maps the ranges of its argumentsRj (a sequence of randvars
from R) to a positive real number, called potential. The term
range(R) denotes the possible values a randvar R can take.
We define the joint potential for an assignment r (where r is
a shorthand notation for R = r) as

ψ(r) =

m∏
j=1

ϕj(rj), (1)

where rj is a projection of r to the argument list of ϕj . The
full joint probability distribution encoded by M is then given
by the normalised joint potential

PM (r) =
1

Z

m∏
j=1

ϕj(rj) =
1

Z
ψ(r), (2)

where Z =
∑

r

∏m
j=1 ϕj(rj) is the normalisation constant.

Example 1. Consider the FG depicted in Fig. 1, which mod-
els the interplay between the revenue Rev of a company and
the salary of two employees, denoted as SalA and SalB. We

SalA

Rev

SalB

ϕ1

ϕ2

SalA Rev ϕ1(SalA,Rev)
high high φ1

high low φ2

low high φ3

low low φ4

SalB Rev ϕ2(SalB,Rev)
high high φ′

1
high low φ′

2
low high φ′

3
low low φ′

4

Figure 1: An FG modelling the interplay between the revenue of a
company (Rev) and the salaries of two employees (SalA, SalB).
The potential tables of the factors are shown on the right.

have R = {SalA, SalB,Rev}, Φ = {ϕ1, ϕ2}, and E =
{{SalA, ϕ1}, {Rev, ϕ1}, {Rev, ϕ2}, {SalB, ϕ2}}. For the
sake of this example, let range(SalA) = range(SalB) =
range(Rev) = {low,high}. The potential tables of ϕ1
and ϕ2 are shown on the right. In particular, it holds that
ϕ1(high,high) = φ1, ϕ1(high, low) = φ2, and so on, where
all φi, φ′

i ∈ R+ are arbitrary positive real numbers.
Probabilistic inference describes the task of computing

marginal distributions of randvars given observations for
other randvars. In other words, probabilistic inference refers
to query answering, where a query is defined as follows.
Definition 2 (Query). A query P (Q | E1 = e1, . . . , Ek =
ek) consists of a query term Q and a set of events {Ej =
ej}kj=1 (called evidence), whereQ and eachEj are randvars.
To query a specific probability instead of a probability distri-
bution, the query term is an event Q = q.
Example 2. Take a look at the FG shown in Fig. 1. The query
P (SalA | Rev = high) asks for the probability distribution
of A’s salary given that the company has a high revenue.

When considering relations between objects, there are of-
ten groups of indistinguishable objects that behave identically
(or at least similarly). Lifted representations such as PFGs
exploit identical behaviour to enable scalable probabilistic in-
ference with respect to domain sizes of logvars. To illustrate
the idea behind lifting, consider the following example.
Example 3. Consider the FG depicted in Fig. 1 and the query
P (Rev = high). Then, it holds that

P (Rev = high)

=
∑

a∈range(SalA)

∑
b∈range(salB)

P (a, b,high)

=
1

Z

∑
a∈range(SalA)

∑
b∈range(salB)

ϕ1(a,high)ϕ2(b,high)

=
1

Z

(
φ1φ

′
1 + φ3φ

′
1 + φ1φ

′
3 + φ3φ

′
3

)
.

If employeesA andB are indistinguishable, that is, if it holds
that φi = φ′

i for all i ∈ {1, . . . , 4}, we can simplify the
computation and obtain

P (Rev = high)



=
1

Z

∑
a∈range(SalA)

ϕ1(a,high)
∑

b∈range(salB)

ϕ2(b,high)

=
1

Z

( ∑
a∈range(SalA)

ϕ1(a,high)

)2

=
1

Z

(
φ1 + φ3

)2
.

Example 3 illustrates that in case A and B are indistin-
guishable, we can select one representative (e.g., A) and re-
duce the number of factors to consider for computations.
The idea of exploiting exponentiation can be generalised to
groups of k indistinguishable objects (e.g., employees) to sig-
nificantly reduce the computational effort when answering
queries. Indistinguishable objects frequently occur in rela-
tional models and are relevant in many real world domains.
For example, in an epidemic domain, each person influences
the probability of an epidemic equally, i.e., the probability
of an epidemic depends on the number of sick people and is
independent of which individual people are sick.

As we have seen, to exploit indistinguishabilities, we need
to find factors with identical potential tables. Currently, the
ACP algorithm is the state of the art to find factors with iden-
tical potential tables and group them together to obtain a lifted
representation such as a PFG.1 In Ex. 3, we assume φi = φ′

i
for all i ∈ {1, . . . , 4}, which is required by ACP. However,
in practice, we often face situations where estimates of poten-
tials lead to deviations such that φi = φ′

i · (1± ε) for a small
ε ∈ R+. The ACP algorithm does not group factors if they
are not strictly equal and thus is hardly applicable in practice
to identify factors that should be grouped. To address this
limitation, we next investigate how indistinguishabilities can
be approximated when constructing a lifted representation.

3 Approximation of Indistinguishabilities
To control the trade-off between the exactness and compact-
ness of the resulting lifted representation when grouping fac-
tors with approximately equivalent semantics, we now intro-
duce a hyperparameter ε ∈ R+. More specifically, we allow
for a maximum relative deviation of factor (1 ± ε), i.e., two
potentials φ and φ′ are considered approximately equivalent
if φ ∈ [φ′ ·(1−ε), φ′ ·(1+ε)] and φ′ ∈ [φ·(1−ε), φ·(1+ε)].2
The notion of ε-equivalence formally captures the idea of ap-
proximately equivalent factors.
Definition 3 (ε-Equivalent Factors). Let ε ∈ R+ be a pos-
itive real number. Two potentials φ1 ∈ R+ and φ2 ∈ R+

are ε-equivalent, denoted as φ1 =ε φ2, if φ1 ∈ [φ2 · (1 −
ε), φ2 · (1 + ε)] and φ2 ∈ [φ1 · (1 − ε), φ1 · (1 + ε)].
Further, two factors ϕ1(R1, . . . , Rn) and ϕ2(R

′
1, . . . , R

′
n)

are ε-equivalent, denoted as ϕ1 =ε ϕ2, if there exists a
permutation π of {1, . . . , n} such that for all assignments
(r1, . . . , rn) ∈ ×ni=1range(Ri), where ϕ1(r1, . . . , rn) = φ1

and ϕ2(rπ(1), . . . , rπ(n)) = φ2, it holds that φ1 =ε φ2.
1A formal description and a detailed explanation of the ACP al-

gorithm is provided in Appendix B.
2Since potentials are arbitrary positive real numbers (and thus

might differ in their order of magnitude), we allow for a relative
deviation instead of using an absolute deviation.

Note that the notion of ε-equivalence is symmetric and as
a necessary condition to be ε-equivalent, ϕ1 and ϕ2 must be
defined over the same function domain and hence must have
the same number of arguments. We further remark that indis-
tinguishable objects are not guaranteed to be located at the
same position in their respective factors, which is the rea-
son we consider permutations of the arguments. For exam-
ple, in Fig. 1, SalB could also be the second argument of
ϕ2: Then, the potential table of ϕ2 would read φ′

1, φ′
3, φ′

2,
φ′
4 from top to bottom (if we keep the order of the assign-

ments), i.e., even if φi = φ′
i for all i ∈ {1, . . . , 4}, we would

only be able to exploit this property if we permute the argu-
ments of ϕ2 (or of ϕ1) such that SalA and SalB are located
at the same positions in their respective argument lists. A
full example to showcase the role of permutations is given in
Appendix C. For simplicity, we assume that π is the identity
function throughout this paper (however, all results also apply
for arbitrary choices of π [Luttermann et al., 2024a]).
Example 4. Let φ = 0.49, φ′ = 0.5, and ε = 0.1. Then, it
holds that φ′ = 0.5 ∈ [φ·(1−ε) = 0.441, φ·(1+ε) = 0.539]
and φ = 0.49 ∈ [φ′ · (1− ε) = 0.45, φ′ · (1 + ε) = 0.55]. In
consequence, φ and φ′ are ε-equivalent.

To group ε-equivalent factors such that we can use a rep-
resentative and exploit exponentiation to reduce the number
of factors to consider during computations, we need to find
ε-equivalent factors and change their potentials in a way that
their potential tables become identical. We first address the
issue of detecting ε-equivalent factors and then show how po-
tentials are changed to minimise the approximation error.

3.1 Finding and Grouping ε-Equivalent Factors
A problem when searching for groups of ε-equivalent factors
is that ε-equivalence is not transitive. More specifically, it
might happen that there are factors ϕ1, ϕ2, and ϕ3 such that
ϕ1 =ε ϕ2 and ϕ2 =ε ϕ3 but ϕ1 ̸=ε ϕ3.
Example 5. Consider the factors ϕ1(R1

1, R
1
2), ϕ2(R

2
1, R

2
2),

and ϕ3(R
3
1, R

3
2) and their potential tables depicted in Ta-

ble 1a. For the sake of this example, let ε = 0.1. The
intervals allowing for a deviation of factor (1 ± ε) accord-
ing to Def. 3 are shown in Table 1b. Since all potentials
of ϕ1 lie within the corresponding intervals of ϕ2 (and vice
versa), it holds that ϕ1 =ε ϕ2. Analogously, it holds that
ϕ2 =ε ϕ3. However, due to 0.75 /∈ [0.756, 0.924] (as well as
0.84 /∈ [0.675, 0.825]), it holds that ϕ1 ̸=ε ϕ3.

Due to the non-transitivity of ε-equivalence, we cannot
simply group a factor ϕ with a group of ε-equivalent factors
G = {ϕ1, . . . , ϕk} if ϕ is ε-equivalent to any ϕi ∈ G. Doing
so would give rise to the issue of cascading errors, that is, in
the worst case, completely different factors could be grouped
together (e.g., assuming ε = 0.1, the potential 1.0 can be
grouped with the potential 0.9, which itself can be grouped
with the potential 0.81, and so on). To avoid cascading er-
rors, we thus ensure a factor ϕ is only added to a group of
ε-equivalent factors G if ϕ is ε-equivalent to all factors in G.

Next, we need to solve the problem of changing the po-
tentials for every group of pairwise ε-equivalent factors G =
{ϕ1, . . . , ϕk}. To exploit exponentiation and thus avoid look-
ing at every factor individually, the changes must ensure that



Ri1 Ri2 ϕ1(R
1
1, R

1
2) ϕ2(R

2
1, R

2
2) ϕ3(R

3
1, R

3
2)

high high 0.75 0.8 0.84
high low 0.33 0.3 0.31
low high 0.48 0.5 0.51
low low 0.22 0.2 0.22

(a)

ϕ1 · (1∓ ε) ϕ2 · (1∓ ε) ϕ3 · (1∓ ε)
[0.675, 0.825] [0.72, 0.88] [0.756, 0.924]
[0.297, 0.363] [0.27, 0.33] [0.279, 0.341]
[0.432, 0.528] [0.45, 0.55] [0.459, 0.561]
[0.198, 0.242] [0.18, 0.22] [0.198, 0.242]

(b)

Table 1: (a) The potential tables of exemplary factors ϕ1(R
1
1, R

1
2),

ϕ2(R
2
1, R

2
2), and ϕ3(R

3
1, R

3
2), where the randvars Ri

1 and Ri
2, i ∈

{1, 2, 3}, all have the same range {low, high}, and (b) the intervals
resulting from a deviation of factor ε = 0.1. We omit the arguments
of the factors and their assignments for brevity (the order of the as-
signments is identical to the order in (a)).

all factors map to the same potentials. At the same time, we
aim to minimise the approximation error, that is, we want
to apply the smallest possible change to the potentials. For-
mally, the goal is to find ϕ∗ such that

ϕ∗ = argmin
ϕj

∑
ϕi∈G

Err(ϕi, ϕj), (3)

where Err(ϕi, ϕj) is the sum of squared deviations between
the potentials of ϕi and ϕj :

Err(ϕi, ϕj) =
∑

r1,...,rn

(
ϕi(r1, . . . , rn)− ϕj(r1, . . . , rn)

)2
,

(4)

with r1, . . . , rn denoting the possible assignments of the ar-
guments of ϕi and ϕj .3 To obtain identical potentials within
a group G = {ϕ1, . . . , ϕk}, our goal is to update the factors
in G such that ϕ1 = ϕ∗, . . . , ϕk = ϕ∗.

Thus, we now solve the problem of finding ϕ∗. In fact, it
holds that for any set of numbers {φ1, . . . , φk}, the arithmetic
mean φ̄ = 1

k

∑k
i=1 φi minimises the sum of squared devia-

tions
∑k
i=1(φi − φ̄)2, i.e., replacing φ̄ by any other value

would increase the sum of squared deviations.

Theorem 1. Let φ1, . . . , φk ∈ R+. It holds that the arith-
metic mean φ̄ = 1

k

∑k
i=1 φi is the optimal choice for φ∗ =

argminφ̂
∑k
i=1(φi − φ̂)2.

Theorem 1 is a well-known property of the arithmetic mean
(a proof is given in Appendix A). As Eq. (3) aims to minimise
a sum over a sum of squared deviations Err(ϕi, ϕj), the sum

3Recall that we assume π from Def. 3 to be the identity function.
In case π is not the identity function, we end up with Err(ϕi, ϕj) =∑

r1,...,rn
(ϕi(r1, . . . , rn)− ϕj(rπ(1), . . . , rπ(n)))

2.

Algorithm 1 ε-Advanced Colour Passing
Input: An FG M = (R ∪Φ,E), a hyperparameter
ε ∈ R+, and a set of observed events (evidence) O =
{E1 = e1, . . . , Eℓ = eℓ}.
Output: A lifted representation M ′, encoded as a PFG,
which is approximately equivalent to M .
▷ Phase I: Find groups of pairwise ε-equivalent factors

1: G← {{ϕ1}}
2: for each factor ϕi ∈ Φ \ {ϕ1} do
3: C ← ∅
4: for each group Gj ∈ G do
5: if ∀ϕk ∈ Gj : ϕi =ε ϕk then
6: C ← C ∪ {Gj}
7: if C ̸= ∅ then
8: Gj ← argminCi∈C

∑
ϕj∈Ci

Err(ϕi, ϕj)

9: Gj ← Gj ∪ {ϕi}
10: else
11: G← G ∪ {{ϕi}}

▷ Phase II: Assign colours to factors and run ACP
12: for each group Gj ∈ G do
13: for each factor ϕi ∈ Gj do
14: ϕi.colour ← j

15: G′ ← Call ACP onM and O using the assigned colours
▷ Phase III: Update potentials

16: for each group Gj ∈ G′ do
17: ϕ∗(r)← 1

|Gj |
∑
ϕi∈Gj

ϕi(r) for all assignments r
18: for each factor ϕi ∈ Gj do
19: ϕi ← ϕ∗

20: M ′ ← construct PFG from groupings of ACP

in Eq. (3) becomes minimal if we minimise Err(ϕi, ϕj), i.e.,
the right hand side of Eq. (4), according to Thm. 1. Therefore,
for any group G = {ϕ1, . . . , ϕk} of pairwise ε-equivalent
factors, we set ϕ1 = ϕ∗, . . . , ϕk = ϕ∗ such that

ϕ∗(r) =
1

k

k∑
i=1

ϕi(r) (5)

for all possible assignments r = r1, . . . , rn to ensure that all
factors in G map to the same potentials while minimising the
cumulative squared deviation of the group G.

Next, we compile the insights on finding and grouping ε-
equivalent factors into the ε-ACP algorithm, which paves the
way to apply lifted model construction in practice.

3.2 The ε-Advanced Colour Passing Algorithm
The ε-ACP algorithm consists of three phases and is de-
scribed in Alg. 1. In the first phase, ε-ACP computes groups
of factors that are pairwise ε-equivalent. For every factor ϕi
in the input FG, ε-ACP checks whether it can be added to
an existing group or if a new group has to be created. As it
is possible for ϕi to be ε-equivalent to all factors of multiple
existing groups (e.g., in Table 1, ϕ2 could be grouped both
with {ϕ1} and {ϕ3}), ε-ACP computes all candidate groups
C (Lines 3 to 6) and then adds ϕi to the group that minimises
the sum of squared deviations between ϕi and all factors in



the group (Lines 8 and 9). If ϕi cannot be added to an exist-
ing group, ε-ACP creates a new group for ϕi (Line 11). Then,
in the second phase, ε-ACP assigns to every factor a colour
based on the group it belongs to, that is, all factors within
the same group receive the same colour (and factors in differ-
ent groups receive different colours). Factors within the same
group could potentially be grouped together in a lifted repre-
sentation if their arguments are indistinguishable. To ensure
the factors’ arguments are indistinguishable, ε-ACP runs the
ACP algorithm using the previously assigned colours (instead
of ACP’s original colour assignment). By running ACP with
the assigned colours, ε-ACP ensures that in addition to the po-
tential tables, the surrounding graph structure of the factors is
taken into account, thereby enforcing that the arguments of
factors within a group are indistinguishable (more details on
this are given in Appendix B). Finally, in phase three, ε-ACP
updates the potentials of every group of factors computed by
ACP according to Eq. (5) to ensure that all factors in a group
have identical potential tables (Lines 16 to 19). As poten-
tials within a group are now strictly equal, the corresponding
PFG is constructed from the groups as in the original ACP al-
gorithm.4 Commonly used lifted inference algorithms, such
as lifted variable elimination, operate on PFGs and thus can
directly be run on the output of ε-ACP.5

Example 6. Take a look at the FG given in Fig. 1 and as-
sume the potential tables of ϕ1 and ϕ2 are as given in Ta-
ble 1a (i.e., φ1 = 0.75, φ′

1 = 0.8, and so on). Further,
let ε = 0.1 and assume we do not have any evidence, i.e.,
O = ∅. As ϕ1 and ϕ2 are ε-equivalent, ε-ACP puts them into
the same group and after the first phase, ε-ACP ends up with
G = {{ϕ1, ϕ2}}. Then, ACP is called with ϕ1 and ϕ2 hav-
ing the same colour, and after passing the colours around, ϕ1
and ϕ2 remain in the same group because their surrounding
graph structure is symmetric (and thus, their arguments are
indistinguishable). After the third phase, the potential tables
are updated by computing a row-wise arithmetic mean, that
is, φ1 = φ′

1 = (0.75 + 0.8) / 2 = 0.775, φ2 = φ′
2 = 0.315,

φ3 = φ′
3 = 0.49, and φ4 = φ′

4 = 0.21.

The ε-ACP algorithm takes a fundamental step towards the
practical applicability of lifted inference algorithms by gener-
alising the ACP algorithm to account for inaccurate estimates
of potentials, which are abundant in practice. In particular, it
holds that ε-ACP is identical to ACP when setting ε to zero
because ε-equivalence reduces to strict equivalence if ε = 0.

Corollary 2. If ε = 0, ε-ACP returns the same PFG as ACP.

So far, we have shown how ε-equivalent factors can be
grouped and updated to enable lifted inference with a minimal
approximation error. As we show later, the approximation er-
ror is often even negligible in practice. To get an initial idea
about the extent of the approximation error, consider Ex. 6
and the query P (SalA | Rev = high). In the original FG,

4For a detailed description of the PFG construction in Line 20 of
Alg. 1, we refer the reader to Luttermann et al. [2024a].

5We remark that ε-equivalence can also be applied to exploit ap-
proximate symmetries within factors that map assignments of their
arguments to identical potentials independent of the order of the as-
signed values (for more details, see Appendix D).

we obtain P (SalA | Rev = high) ≈ ⟨0.6098, 0.3902⟩ and
after running ε-ACP, we have P (SalA | Rev = high) ≈
⟨0.6126, 0.3874⟩. An essential question now is how much
query results can change in general when using the approx-
imate lifted representation instead of the initial exact FG for
query answering. We answer this question next.

4 Bounding the Change in Query Results
We now bound the change in query results when modifying
a given FG by grouping and updating the potentials of ε-
equivalent factors according to Alg. 1. For the sake of our
analysis, let M denote the input for Alg. 1 and M ′ the output
of Alg. 1 such that M encodes the distribution PM and M ′

encodes the distribution PM ′ . In our analysis, we use the fol-
lowing distance measure between two distributions PM and
PM ′ introduced by Chan and Darwiche [2005]:

D(PM , PM ′) = lnmax
r

PM ′(r)

PM (r)
− lnmin

r

PM ′(r)

PM (r)
(6)

= lnmax
r

1
Z′ψ

′(r)
1
Zψ(r)

− lnmin
r

1
Z′ψ

′(r)
1
Zψ(r)

(7)

= lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
, (8)

where we define 0/0 := 1 and∞/∞ := 1. D satisfies impor-
tant properties of a distance measure (positiveness, symmetry,
and the triangle inequality) and a major advantage ofD is that
it allows us to bound the change in query results, which is not
possible with other common distance measures such as the
Kullback-Leibler divergence [Chan and Darwiche, 2005]. In
particular, if it holds that D(PM , PM ′) = d, the change in a
query result is bounded by

e−d ≤ OM ′(r | e)
OM (r | e)

≤ ed, (9)

where OM (r | e) = PM (r | e) / (1 − PM (r | e)) defines
the odds of r given e. We can also write Eq. (9) in terms of
probabilities instead of odds and obtain

pe−d

p(e−d − 1) + 1
≤ PM ′(r | e) ≤ ped

p(ed − 1) + 1
, (10)

where p = PM (r | e) is the initial probability of r given e in
modelM and PM ′(r | e) is the probability of r given e in the
modified model M ′ [Chan and Darwiche, 2005]. The bounds
given in Eqs. (9) and (10) are sharp. To obtain a bound on
the change in query results, we thus need to determine the
value of d = D(PM , PM ′) for a given choice of ε. In gen-
eral, the normalisation constant Z changes when modifying
the original model M . Rewriting Eq. (6) as Eq. (8), however,
allows us to avoid dealing with the change from Z to Z ′ (a
full derivation is given in Appendix A).

We next give a general bound on the distanceD(PM , PM ′)
that applies to arbitrary FGs M where updates of factors re-
sulting in an FG M ′ ensure that all factors in M ′ remain ε-
equivalent to their original values after the update.
Theorem 3. Let M = (R ∪Φ,E) be an FG and let M ′ be
an FG obtained by updating arbitrary potentials of factors
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Figure 2: Plots of the bound given in Eq. (10) with d = ln (1+ ε)m − ln (1− ε)m. Bounds are illustrated for (a) m = 10, (b) m = 100, and
(c) m = 1000 where ε = 0.01 (dashed line) and ε = 0.001 (solid line), respectively. The x-axes depict the initial probability p = PM (r | e)
and the y-axes reflect the bound on the change in the query result.

in M such that every updated potential remains ε-equivalent
to its original value. Then, it holds that D(PM , PM ′) ≤
ln (1+ε)m− ln (1−ε)m, where PM and PM ′ are the under-
lying full joint probability distributions encoded by M and
M ′, respectively, and m = |Φ|.

Proof Sketch. By definition, every potential in M ′ differs
from its original value inM by factor at most (1±ε). Adding
a deviation by factor (1± ε) to every potential in M ′ and en-
tering this into Eq. (8) yields the desired result.

Corollary 4. Given the bound from Thm. 3, Eq. (9) leads to(
1− ε
1 + ε

)m
≤ OM ′(r | e)

OM (r | e)
≤
(
1 + ε

1− ε

)m
. (11)

The next lemma shows that updating the potentials within
a group of pairwise ε-equivalent factors according to Eq. (5)
satisfies the premise of Thm. 3 and hence, the bound given in
Thm. 3 holds if M ′ is the output of Alg. 1 run on M .

Lemma 5. Let G = {ϕ1, . . . , ϕk} denote a group of pairwise
ε-equivalent factors and let ϕ∗(r) = 1

k

∑k
i=1 ϕi(r) for all

assignments r. Then, G∗ = {ϕ1, . . . , ϕk, ϕ∗} is a group of
pairwise ε-equivalent factors.

Proof Sketch. As for the arithmetic mean ϕ∗(r) it holds that
minϕj∈G ϕj(r) ≤ ϕ∗(r) ≤ maxϕj∈G ϕj(r) and all ϕi, ϕj ∈
G are pairwise ε-equivalent, it follows that ϕ∗(r) ∈ [ϕi(r) ·
(1− ε), ϕi(r) · (1 + ε)] and ϕi(r) ∈ [ϕ∗(r) · (1− ε), ϕ∗(r) ·
(1 + ε)] for any assignment r and ϕi ∈ G.

Lemma 5 implies that all updated potentials for every fac-
tor differ by factor at most (1 ± ε) from their original poten-
tial after running Alg. 1. To obtain a bound on the change
in query results depending on the choice of ε, we enter the
bound from Thm. 3 into Eq. (10). Figure 2 provides plots
of the bound for different values of ε and m = |Φ| to
give a better idea on how the bound behaves. Observe that
ε = 0.01 yields a strong bound for m = 10, however,
from m = 100 onward, the bound becomes weak (in par-
ticular, for m = 1000, the change in query results is essen-
tially unbounded when choosing ε = 0.01). When choosing
ε = 0.001, the bound remains strong for m = 100, how-
ever, for m = 1000, the bound weakens as well. Fortunately,

the bound from Thm. 3 is overly pessimistic for the output of
Alg. 1, as we show in the following.

Lemma 6. For two ε-equivalent factors ϕ1 and ϕ2, it holds
that ϕ1 ∈ [ϕ2· 1

1+ε , ϕ2·(1+ε)] and ϕ2 ∈ [ϕ1· 1
1+ε , ϕ1·(1+ε)].

Proof. Due to the symmetric definition of ε-equivalence, we
get ϕ2−i ≤ ϕi+1 · (1 + ε) for i ∈ {0, 1}, resulting in ϕ2−i ·
1

1+ε ≤ ϕi+1. Since 1 − ε ≤ 1
1+ε holds for any ε > 0, ϕ2−i

is contained in the strict subset [ϕi+1 · 1
1+ε , ϕi+1 · (1 + ε)] ⊊

[ϕi+1 · (1− ε), ϕi+1 · (1 + ε)].

Using Lemma 6 and the properties of the arithmetic mean,
we obtain the following stronger bound on D(PM , PM ′).

Theorem 7. Let M = (R ∪Φ,E) be an FG and let M ′ be
the output of Alg. 1 when run onM . With PM and PM ′ being
the underlying full joint probability distributions encoded by
M and M ′, respectively, and m = |Φ|, it holds that

D(PM , PM ′) ≤ ln

1 + m−1
m ε

1+ 1
m ε

1+ε

m

(12)

= ln

((
1 + m−1

m ε
)(
1 + ε

)
1 + 1

mε

)m
(13)

< ln
(
1 + ε

)2m
(14)

< ln

(
1 + ε

1− ε

)m
. (15)

Corollary 8. Given the bound from Thm. 7, Eq. (9) leads to 1+ 1
m ε

1+ε

1 + m−1
m ε

m

≤ OM ′(r | e)
OM (r | e)

≤

1 + m−1
m ε

1+ 1
m ε

1+ε

m

.

(16)

We give a proof of Thm. 7 in Appendix A. The plot of the
bound from Thm. 7 looks similar to the plot of Thm. 3 (see
Fig. 2) and is optimal (i.e., it is the best bound we can find).

Theorem 9. The bound given in Thm. 7 is optimal.

Proof Sketch. We construct an FG hitting the boundary from
Thm. 7. For the construction, see Table 3 in Appendix A.
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Figure 3: Average query times of lifted variable elimination on the output of ACP and ε-ACP for every choice of k (left), and a boxplot
showing the distribution of the quotient p′ / p, where p′ = PM′(r | e) and p = PM (r | e), for each choice of k (right).

Algorithm Avg. Run Time Avg. p′ / p

ACP 183 ms (± 21) 1.0 (± 0.0)
ε-ACP 105 ms (± 9) 1.0001 (± 0.01)

Table 2: Average query times and quotients of query results on parts
of the MIMIC-IV dataset [Johnson et al., 2023].

Fortunately, in practice, the change in query results is often
close to zero (and thus well below the theoretical bound), as
we will show in our experiments. The reason for this is that
the worst-case scenario is an extreme case and slightly devi-
ating from it significantly improves the bounds. For instance,
if there are more factors in a group than rows in their potential
tables, the worst-case scenario can no longer occur, resulting
in notably smaller values for the distance measure D. More
details are given in the proof of Thm. 7 in Appendix A.

5 Experiments
We test the practicality of the ε-ACP algorithm in a series of
experiments. ε-ACP is not only required to make ACP appli-
cable in practice but also allows for more compression (and
thus faster inference) if we are willing to trade the exactness
of query results for additional speedup. We thus report the run
time gain and the resulting approximation error to get a better
understanding of the trade-off between the exactness and the
compactness of the lifted representation obtained by ε-ACP.
For our experiments, we generate a variety of FGs with differ-
ent graph structures and graph sizes (i.e., numbers of randvars
and factors). More specifically, we generate FGs containing
between 2k+1 and 2k+ k · ⌊log2(k)⌋+1 Boolean randvars
as well as between 2k and k+k ·⌊log2(k)⌋+1 factors, where
k ∈ {2, 4, 8, 16, 32, 64, 128} is the domain size. The domain
size k controls the number of objects in the models and thus
the size of the FGs. We provide all data set generators along
with our source code in the supplementary material.

In every FG, we modify a proportion of x ∈ {0.1, 0.3, 0.5,
0.7, 0.9, 1.0} of the factors such that their potential tables dif-
fer by at most factor (1 ± ε) from their original potential ta-
bles, where ε ∈ {0.001, 0.01, 0.1}. For each setting, we pose
multiple queries to each FG. We report the average run time
of lifted variable elimination (the state-of-the-art lifted infer-
ence algorithm) on the output of ACP and ε-ACP, respec-

tively, over all settings for each choice of k in the left plot of
Fig. 3 and show the distribution of PM ′(r | e) / PM (r | e)
over all queries for each choice of k in the right plot of Fig. 3.

Taking a look at the left plot in Fig. 3, it becomes evident
that ε-ACP yields a speedup of up to factor 100 compared
to ACP. The question now is at what cost ε-ACP achieves
this speedup. The right plot in Fig. 3 demonstrates that the
price ε-ACP pays for the speedup is close to zero: Most of
the quotients are nearly equal to one (i.e., most query re-
sults hardly differ from their original value). As expected,
the larger the domain size (and hence the size of the FG),
the larger quotients become. However, even the outliers (de-
noted by the dots outside of the boxes) only deviate at the
third decimal place from the optimal value one. The experi-
mental results highlight the practical effectiveness of ε-ACP
as the approximation error is significantly smaller in practice
than suggested by the theoretical bounds. To give a better
overview on how the approximation error behaves for specific
choices of x and ε, we provide additional results for individ-
ual choices of x and ε in Appendix E.

In addition to the generated FGs, we learn an FG from the
MIMIC-IV dataset [Johnson et al., 2023] and apply ε-ACP
with ε = 0.1 to it. MIMIC-IV contains real-world medical
data and we consider a subset of 4000 patients and their treat-
ments from it. The learned FG contains 344 randvars and fac-
tors, respectively, and we query each randvar in it. We report
average run times and average quotients over all queries in Ta-
ble 2. While the speedup of ε-ACP is smaller than in Fig. 3,
the error quotients are also reduced by an order of magnitude,
showing that the approximation error is again close to zero.

6 Conclusion
Potentials learnt from data often slightly differ even for in-
distinguishable objects. Therefore, we solve the problem of
constructing a lifted representation from a given propositional
representation taking inaccurate estimates of potentials into
account, while previous approaches require exact matches.
We present the ε-ACP algorithm, which allows for a small de-
viation of potentials depending on a hyperparameter ε. By not
relying on strictly identical potentials, ε-ACP makes a funda-
mental step towards the practicality of obtaining a compact
representation for lifted inference. We further show that the
approximation error of ε-ACP is strictly bounded and demon-
strate that it is even close to zero in practice.
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A Missing Proofs
Theorem 1. Let φ1, . . . , φk ∈ R+. It holds that the arith-
metic mean φ̄ = 1

k

∑k
i=1 φi is the optimal choice for φ∗ =

argminφ̂
∑k
i=1(φi − φ̂)2.

Proof. Let φ̂ denote an arbitrary estimate for φ∗ and let φ̄ =
1
k

∑k
i=1 φi denote the arithmetic mean of φ1, . . . , φk. We

now show that choosing φ̂ = φ̄ minimises the expression∑k
i=1(φi − φ̂)2. Since φ̄ − φ̄ = 0, we can add it without

changing the result and then rewrite the expression:
k∑
i=1

(
φi − φ̂

)2
(17)

=

k∑
i=1

(
φi − φ̂+ (φ̄− φ̄)

)2
(18)

=

k∑
i=1

(
(φi − φ̄) + (φ̄− φ̂)

)2
(19)

=

k∑
i=1

((
φi − φ̄

)2
+ 2
(
φi − φ̄

)(
φ̄− φ̂

)
+
(
φ̄− φ̂

)2)
(20)

=

k∑
i=1

(
φi − φ̄

)2
+

k∑
i=1

2
(
φi − φ̄

)(
φ̄− φ̂

)
+

k∑
i=1

(
φ̄− φ̂

)2
(21)

=

k∑
i=1

(
φi − φ̄

)2
+ 2
(
φ̄− φ̂

) k∑
i=1

(
φi − φ̄

)
+ k
(
φ̄− φ̂

)2
.

(22)

Due to φ̄ = 1
k

∑k
i=1 φi being the arithmetic mean of φ1, . . . ,

φk, it holds that
∑k
i=1(φi − φ̄) = 0:

k∑
i=1

(
φi − φ̄

)
=

k∑
i=1

φi − k · φ̄ (23)

=

k∑
i=1

φi − k ·
1

k

k∑
i=1

φi (24)

= 0. (25)

By entering
∑k
i=1(φi − φ̄) = 0 into Eq. (22), we thus obtain

k∑
i=1

(
φi − φ̄

)2
+ 2
(
φ̄− φ̂

) k∑
i=1

(
φi − φ̄

)
+ k
(
φ̄− φ̂

)2
(26)

=

k∑
i=1

(
φi − φ̄

)2
+ k
(
φ̄− φ̂

)2
. (27)

Now, if we set φ̂ = φ̄, it holds that φ̄ − φ̂ = 0 and hence,
Eq. (27) simplifies to

k∑
i=1

(
φi − φ̄

)2
+ k
(
φ̄− φ̂

)2
(28)

=

k∑
i=1

(
φi − φ̄

)2
. (29)

Choosing φ̂ different from φ̄ thus increases the value of the
expression by k(φ̄− φ̂)2, which completes the proof.6

Corollary 2. If ε = 0, ε-ACP returns the same PFG as ACP.

Proof. Let ε = 0. Recall that two potentials φ ∈ R+ and
φ′ ∈ R+ are ε-equivalent if φ ∈ [φ′ · (1 − ε), φ′ · (1 + ε)]
and φ′ ∈ [φ · (1 − ε), φ · (1 + ε)]. Now, as ε = 0, φ and
φ′ are ε-equivalent if φ = φ′. In consequence, when run-
ning ε-ACP (Alg. 1) on an arbitrary input FG M , in the first
phase all groups of ε-equivalent factors contain only factors
whose potentials are strictly equivalent. Therefore, in phase
two of ε-ACP, only factors with equivalent potentials receive
the same colour and hence, the colour assignment is identical
to the colour assignment of ACP (Alg. 2). Then, ε-ACP calls
ACP and as the colour assignment of ε-ACP to factors is iden-
tical to the colour assignment of ACP, phase one of ε-ACP
has no impact on the output of ACP. It remains to be shown
that the update of potentials in phase three of ε-ACP does
not alter the output of ACP. As all factors in any group have
strictly equivalent potentials already and the arithmetic mean
of a set of equal numbers φ, . . . , φ is φ itself, the update in
phase three does not alter the output of ACP. Hence, ε-ACP
ends up with the same groups as ACP and therefore outputs
the same PFG as ACP, which completes the proof.

Full derivation of writing Eq. (6) as Eq. (8):
D(PM , PM ′) (30)

= lnmax
r

PM ′(r)

PM (r)
− lnmin

r

PM ′(r)

PM (r)
(31)

= lnmax
r

1
Z′ψ

′(r)
1
Zψ(r)

− lnmin
r

1
Z′ψ

′(r)
1
Zψ(r)

(32)

= ln

( 1
Z′

1
Z

max
r

ψ′(r)

ψ(r)

)
− ln

( 1
Z′

1
Z

min
r

ψ′(r)

ψ(r)

)
(33)

= ln
1
Z′

1
Z

+ lnmax
r

ψ′(r)

ψ(r)
− ln

1
Z′

1
Z

− lnmin
r

ψ′(r)

ψ(r)
(34)

= lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
(35)

Full derivation of writing Eq. (9) as Eq. (10). Remember
that OM (r | e) = PM (r | e) / (1 − PM (r | e)) defines the
odds of r given e. Entering the definition of the odds into
Eq. (9) then results in

e−d ≤ PM ′(r | e) / (1− PM ′(r | e))
PM (r | e) / (1− PM (r | e))

≤ ed, (36)

which can be rewritten as

e−d ≤ PM ′(r | e)
1− PM ′(r | e)

· 1− PM (r | e)
PM (r | e)

≤ ed. (37)

6Theorem 1 is a well-known property of the arithmetic mean and
there are different ways to prove this property. The proof given
here is taken from http://faculty.washington.edu/swithers/seestats/
SeeingStatisticsFiles/seeing/center/meanproof/meanProof.html.

http://faculty.washington.edu/swithers/seestats/SeeingStatisticsFiles/seeing/center/meanproof/meanProof.html
http://faculty.washington.edu/swithers/seestats/SeeingStatisticsFiles/seeing/center/meanproof/meanProof.html


With p = PM (r | e) and p′ = PM ′(r | e), we obtain

e−d ≤ p′(1− p)
p(1− p′)

≤ ed. (38)

Multiplying by p(1− p′) (which is always positive) yields

e−dp(1− p′) ≤ p′(1− p) ≤ edp(1− p′). (39)

Expanding the terms gives us

e−dp− e−dpp′ ≤ p′ − p′p ≤ edp− edpp′. (40)

By rearranging the terms, we end up with

e−dp ≤ p′ − p′p+ e−dpp′ (41)

= p′(1− p+ e−dp), and (42)

edp ≥ p′ − p′p+ edpp′ (43)

= p′(1− p+ edp). (44)

Dividing by 1 − p + e−dp and 1 − p + edp (both terms are
always positive), respectively, results in

e−dp

1− p+ e−dp
≤ p′, and (45)

edp

1− p+ edp
≥ p′. (46)

By rearranging the terms once more, we obtain

pe−d

p(e−d − 1) + 1
≤ p′ ≤ ped

p(ed − 1) + 1
. (47)

Theorem 3. Let M = (R ∪Φ,E) be an FG and let M ′ be
an FG obtained by updating arbitrary potentials of factors
in M such that every updated potential remains ε-equivalent
to its original value. Then, it holds that D(PM , PM ′) ≤
ln (1+ε)m− ln (1−ε)m, where PM and PM ′ are the under-
lying full joint probability distributions encoded by M and
M ′, respectively, and m = |Φ|.

Proof. Let Φ = {ϕ1, . . . , ϕm} denote the set of factors in
M . By definition, it holds that every updated potential φ′ in
M ′ differs by factor at most (1±ε) from its original potential
φ in M , independent of the distribution of the groups (that
is, it is irrelevant whether all m factors are in the same group
or whether groups are distributed otherwise). Therefore, as
ψ(r) =

∏m
j=1 ϕj(rj) for any assignment r, we obtain

ψ′(r) ≥
m∏
j=1

ϕj(rj) · (1− ε), and (48)

ψ′(r) ≤
m∏
j=1

ϕj(rj) · (1 + ε). (49)

In consequence, we get the following bounds:

min
r

ψ′(r)

ψ(r)
≥

m∏
j=1

(
ϕj(rj) · (1− ε)

)
m∏
j=1

ϕj(rj)
, and (50)

max
r

ψ′(r)

ψ(r)
≤

m∏
j=1

(
ϕj(rj) · (1 + ε)

)
m∏
j=1

ϕj(rj)
, (51)

where rj is a projection of any assignment r to the argument
list of ϕj . Entering these bounds into Eq. (8) then yields

D(PM , PM ′) (52)

= lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
(53)

≤ ln

m∏
j=1

(
ϕj(rj) · (1 + ε)

)
m∏
j=1

ϕj(rj)
− ln

m∏
j=1

(
ϕj(rj) · (1− ε)

)
m∏
j=1

ϕj(rj)

(54)

= ln

(1 + ε)m
m∏
j=1

ϕj(rj)

m∏
j=1

ϕj(rj)
− ln

(1− ε)m
m∏
j=1

ϕj(rj)

m∏
j=1

ϕj(rj)
(55)

= ln (1 + ε)m − ln (1− ε)m. (56)

Lemma 5. Let G = {ϕ1, . . . , ϕk} denote a group of pairwise
ε-equivalent factors and let ϕ∗(r) = 1

k

∑k
i=1 ϕi(r) for all

assignments r. Then, G∗ = {ϕ1, . . . , ϕk, ϕ∗} is a group of
pairwise ε-equivalent factors.

Proof. We show the claim in two directions by proving that
ϕ∗(r) ∈ [ϕi(r) · (1− ε), ϕi(r) · (1+ ε)] and ϕi(r) ∈ [ϕ∗(r) ·
(1− ε), ϕ∗(r) · (1 + ε)] for any assignment r and ϕi ∈ G.

For the first direction, let r be an arbitrary assignment
and let ϕi ∈ G. As all factors in G are pairwise ε-
equivalent, it holds that ϕi(r) · (1 − ε) ≤ minϕj∈G ϕj(r)
and maxϕj∈G ϕj(r) ≤ ϕi(r) · (1 + ε). Further, as ϕ∗(r)
is the arithmetic mean over all ϕj(r) ∈ G, it holds that
minϕj∈G ϕj(r) ≤ ϕ∗(r) ≤ maxϕj∈G ϕj(r) and thus
ϕ∗(r) ∈ [ϕi(r) · (1− ε), ϕi(r) · (1 + ε)].

For the second direction, it holds that for any assignment
r, every ϕi ∈ G is contained in the interval [ϕj(r) · (1 −
ε), ϕj(r) · (1 + ε)] for any j ∈ {1, . . . , k}, and thus also
in the smallest possible composite interval [maxϕj∈G ϕj(r) ·
(1 − ε),minϕj∈G ϕj(r) · (1 + ε)]. With the same argument
as before, namely that for the arithmetic mean ϕ∗(r) we have
minϕj∈G ϕj(r) ≤ ϕ∗(r) ≤ maxϕj∈G ϕj(r), the composite
interval [maxϕj∈G ϕj(r) · (1− ε),minϕj∈G ϕj(r) · (1 + ε)]
is a subset of the interval [ϕ∗(r) · (1− ε), ϕ∗(r) · (1+ ε)] and
hence, ϕi(r) ∈ [ϕ∗(r) · (1− ε), ϕ∗(r) · (1 + ε)].

Theorem 7. Let M = (R ∪Φ,E) be an FG and let M ′ be
the output of Alg. 1 when run onM . With PM and PM ′ being
the underlying full joint probability distributions encoded by



M and M ′, respectively, and m = |Φ|, it holds that

D(PM , PM ′) ≤ ln

1 + m−1
m ε

1+ 1
m ε

1+ε

m

(12)

= ln

((
1 + m−1

m ε
)(
1 + ε

)
1 + 1

mε

)m
(13)

< ln
(
1 + ε

)2m
(14)

< ln

(
1 + ε

1− ε

)m
. (15)

Proof. Let Φ = {ϕ1, . . . , ϕm} denote the set of factors inM ,
representing the distribution of M via PM (r) = 1

Zψ(r) =
1
Z

∏m
j=1 ϕj(rj) for an assignment r = (r1, . . . , rn) ∈

×ni=1range(Ri) to the randvars in R. On the level of po-
tentials, this means that for a specific assignment r, there ex-
ist ji, i ∈ {1, . . . ,m}, such that ψ(r) =

∏m
i=1 φji,i, where

φj,i represents the potential in the jth row in the potential
table of factor ϕi. For ϕ∗(r) = 1

m

∑m
i=1 ϕi(r), its poten-

tials φ∗
j =

1
m

∑m
i=1 φj,i are given by the row-wise arithmetic

mean over all factors and thus are independent of i.
According to Lemma 5, ϕ∗ is pairwise ε-equivalent to all

ϕi of a group of pairwise ε-equivalent factors. We first prove
the claim for the case where all factors {ϕ1, . . . , ϕm} belong
to the same group of pairwise ε-equivalence factors and after-
wards generalise the proof to arbitrary distributions of groups.

By ordering the potentials of every row j, we adopt, with-
out loss of generality, the notation
φj,1 ≤ . . . ≤ φj,kj ≤ φ∗

j ≤ φj,kj+1 ≤ . . . ≤ φj,m (57)

with kj ∈ {1, . . . ,m− 1}. Since φj,i ≥ φ∗
j holds already for

i = kj + 1, . . . ,m, we want to determine a minimal α2(j) ∈
R+

≥1 such that also φj,i · α2 ≥ φ∗
j holds for all i = 1, . . . ,m.

This means that φ∗
j ≤ mini=1,...,m φj,i ·α2(j) = φj,1 ·α2(j)

has to hold. The minimal possible constant to fulfil this equa-
tion is α2(j) :=

φ∗
j

φj,1
. In order to get the value of this con-

stant, we have to assume the worst case scenario for the dis-
tribution of the φj,i’s. Therefore, we are looking for a small
φj,1 and the largest φ∗

j , which is φ∗
j = 1

m

∑m
i=1 φj,i and

φj,1(1+ε) ≥ maxi=1,...,m φj,i = φj,m according to the defi-
nition of ε-equivalence. Under these conditions, the maximal
φ∗
j is possible by the choice of φj,i := φ∗

j for i = 2, . . . , kj
and φj,i := (1 + ε)φj,1 for i = kj + 1, . . . ,m. This results
in the following mean

φ∗
j =

1

m

φj,1 + kj∑
i=2

φj,i +

m∑
i=kj+1

φj,1(1 + ε)

 (58)

=
1

m

(
φj,1 + (kj − 1)φ∗

j + (1 + ε)(m− kj)φj,1
)
,

(59)

which is equivalent to

φ∗
j

(
1− kj − 1

m

)
=

1

m
φj,1

(
1 + (m− kj)(1 + ε)

)
(60)

⇔ φ∗
j =

1

m− kj + 1
φj,1

(
1 + (m− kj)(1 + ε)

)
(61)

=
m− kj + 1 + (m− kj)ε

m− kj + 1
φj,1 (62)

=

(
1 +

m− kj
m− kj + 1

ε

)
φj,1. (63)

This results in α2(j) =
(
1 +

m−kj
m−kj+1ε

)
> 1 for a kj ∈

{1, . . . ,m − 1}. Within this condition, kj = 1 leads to the
largest ε-amount for α2 =

(
1 + m−1

m ε
)

in the worst case and
therefore for any assignment independently of j.

The estimation of a second constant α1(j) as a lower con-
stant works similar. Since φj,i ≤ ϕ∗j for i = 1, . . . , kj
holds already, we determine a maximal α1(j) ∈ R+

≤1 such
that φj,i ≤ φ∗

j holds for all i = 1, . . . ,m. This means
that φ∗

j ≥ maxi=1,...,m φj,i · α1(j) = φj,m · α1(j). The

maximal possible constant is α1(j) :=
φ∗

j

φj,m
. For the worst

case scenario for the distribution of the φj,i’s, we get a large
φj,m and a low φ∗

j and according to Lemma 6 this means
φj,m · 1

1+ε ≤ mini=1,...,m φj,i. A minimal φ∗
j can be reached

by the choice of φj,i := φ∗
j for i = kj + 1, . . . ,m and

φj,i := φj,m
1

1+ε for i = 1, . . . , kj . This results in

φ∗
j =

1

m

 kj∑
i=1

φj,m
1

1 + ε
+

m−1∑
i=kj+1

φ∗
j + φj,m

 (64)

=
1

m

(
kj

1 + ε
φj,m + (m− kj − 1)φ∗

j + φj,m

)
, (65)

which is equivalent to

φ∗
j

(
1− m− kj − 1

m

)
=

1

m

(
kj

1 + ε
+ 1

)
φj,m (66)

⇔ φ∗
j =

1

m

1

1− m−kj−1
m

(
kj

1 + ε
+ 1

)
φj,m (67)

=
1

kj + 1

kj + 1 + ε

1 + ε
φj,m (68)

=

(
1 +

1

kj + 1
ε

)
1

1 + ε
φj,m. (69)

This results in 1 > α1(j) =
(
1 + 1

kj+1ε
)

1
1+ε ≥

1
1+ε for

kj ∈ {1, . . . ,m − 1}, which is minimal for kj = m − 1,
leading to α1 =

(
1 + 1

mε
)

1
1+ε in the worst case for any as-

signment and independently of j.
If we combine these calculations, we obtain

ψ′(r) ≥
m∏
j=1

ϕj(rj) · α1, and (70)

ψ′(r) ≤
m∏
j=1

ϕj(rj) · α2. (71)



In consequence, we get the following bounds:

min
r

ψ′(r)

ψ(r)
≥

m∏
j=1

ϕj(rj) · α1

m∏
j=1

ϕj(rj)
, and (72)

max
r

ψ′(r)

ψ(r)
≤

m∏
j=1

ϕj(rj) · α2

m∏
j=1

ϕj(rj)
, (73)

where rj is a projection of any assignment r to the argument
list of ϕj . Entering these bounds into Eq. (8) then yields

D(PM , PM ′) (74)

= lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
(75)

≤ ln

m∏
j=1

ϕj(rj) · α2

m∏
j=1

ϕj(rj)
− ln

m∏
j=1

ϕj(rj) · α1

m∏
j=1

ϕj(rj)
(76)

= ln

m∏
j=1

α2 − ln

m∏
j=1

α1 (77)

= ln

(
α2

α1

)m
(78)

= ln

1 + m−1
m ε

1+ 1
m ε

1+ε

m

(79)

= ln

(
1 +

m− 1

m
ε

)m(
1 + ε

1 + ε
m

)m
(80)

= ln

((
1 + m−1

m ε
)(
1 + ε

)
1 + 1

mε

)m
(81)

< ln
(
1 + ε

)2m
(82)

< ln

(
1 + ε

1− ε

)m
. (83)

Next, we consider the general case of having an arbi-
trary distribution of groups of pairwise ε-equivalent fac-
tors. More specifically, let the factors now be distributed
into k ≥ 2 groups of pairwise ε-equivalent factors, mean-
ing there is a set of summands {m1, . . . ,mk} ∈ Nk with∑k
i=1mi = m and ϕ1, . . . , ϕm1 being pairwise ε-equivalent,

ϕm1+1, . . . , ϕm1+m2 being pairwise ε-equivalent, and so on.
Since the previous case holds for a group of fully pairwise
ε-equivalent factors we can apply this case k times to get the
maximal boundary as follows.

D(PM , PM ′) (84)

= lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
(85)

≤ ln

m1∏
j=1

1 + m1−1
m1

ε

1+ 1
m1

ε

1+ε

· . . . ·
mk∏
j=1

1 + mk−1
mk

ε

1+ 1
mk

ε

1+ε

(86)

= ln

1 + m1−1
m1

ε

1+ 1
m1

ε

1+ε

m1

· . . . ·

1 + mk−1
mk

ε

1+ 1
mk

ε

1+ε

mk

(87)

Since 1 + mi−1
mi

ε < 1 + m−1
m ε holds for the numerator and

1+ 1
m ε

1+ε <
1+ 1

mi
ε

1+ε holds for the denominator for every i =
1, . . . , k due to mi < m, we can bound each sub-product
individually from above by1 + mi−1

mi
ε

1+ 1
mi
ε

1+ε

mi

<

1 + m−1
m ε

1+ 1
m ε

1+ε

mi

. (88)

Putting everything back together yields the desired result:

D(PM , PM ′) (89)

≤ ln

1 + m1−1
m1

ε

1+ 1
m1

ε

1+ε

m1

· . . . ·

1 + mk−1
mk

ε

1+ 1
mk

ε

1+ε

mk

(90)

< ln

k∏
i=1

1 + m−1
m ε

1+ 1
m ε

1+ε

mi

(91)

= ln

1 + m−1
m ε

1+ 1
m ε

1+ε


∑k

i=1mi

(92)

= ln

1 + m−1
m ε

1+ 1
m ε

1+ε

m

, (93)

which implies due to the strict inequality, in particular, that
the second case of multiple groups of pairwise ε-equivalent
factors cannot reach the upper bound.

Theorem 9. The bound given in Thm. 7 is optimal.

Proof. We show that the boundary of Thm. 7 can be reached
by constructing an FG M such that running Alg. 1 on M to
obtain M ′ results in D(PM , PM ′) hitting the boundary. Con-
sider the outcome of Alg. 1 for the FG M = (R ∪ Φ,E)
whose factors are depicted in Table 3. More specifically,
the set of randvars is given by R = {R1, . . . , Rm} with
range(R1) = . . . = range(Rm) = {r1, . . . , r2m}, and the
set of factors is defined as Φ = {ϕ1(Ri), . . . , ϕm(Rm)}
(i.e., every factor has exactly one randvar as argument and
the arguments of all factors are distinct). The set of edges is
given by E = {{R1, ϕ1}, . . . , {Rm, ϕm}} but is not relevant
for the proof. All factors in Φ are pairwise ε-equivalent and
hence end up in the same group after running Alg. 1.

Therefore, after updating the potentials, all factors in Φ are
replaced by the arithmetic mean ϕ∗ = (φ∗

1, . . . , φ
∗
2m) (shown

in the rightmost column of Table 3) such that

φ∗
r =

{
r
(
1 + 1

mε
)

for r = 1, . . . ,m

r
(
1 + m−1

m ε
)

for r = m+ 1, . . . , 2m.
(94)

We next compute minr
ψ′(r)
ψ(r) . By definition, it holds that

ψ′(r) =
∏m
i=1 ϕ

∗(r). To obtain the minimum quotient, the



Ri ϕ1(R1) ϕ2(R2) · · · ϕm−1(Rm−1) ϕm(Rm) ϕ∗

r1 1(1 + ε) 1 · · · · · · 1 1
(
1 + 1

mε
)

r2 2 2(1 + ε) 2 · · · 2 2
(
1 + 1

mε
)

...
... · · ·

. . .
...

...
...

...
. . .

...
...

rm m · · · · · · m m(1 + ε) m
(
1 + 1

mε
)

rm+1 (m+ 1) (m+ 1)(1 + ε) · · · · · · (m+ 1)(1 + ε) (m+ 1)
(
1 + m−1

m ε
)

rm+2 (m+ 2)(1 + ε) m+ 2 (m+ 2)(1 + ε) · · · (m+ 2)(1 + ε) (m+ 2)
(
1 + m−1

m ε
)

...
... · · ·

. . .
...

...
...

...
. . .

...
...

r2m 2m(1 + ε) · · · · · · 2m(1 + ε) 2m 2m
(
1 + m−1

m ε
)

Table 3: A construction of an exemplary FG M such that running Alg. 1 on M to obtain M ′ results in D(PM , PM′) becoming maximal and
reaching the boundary given in Thm. 7.

denominator thus must be maximal while at the same time
keeping the arithmetic mean small, which is the case for the
diagonal entries φi,i, i = 1, . . . ,m, where φj,i refers to the
potential in the jth row in the potential table of factor ϕi.
Choosing any other columns within the first m rows would
decrease the denominator (while leaving the nominator un-
changed) and thus cannot lead to the minimum quotient. Fur-
thermore, choosing any rows starting from row m + 1 also
increases the result of the quotient because

i(1 + 1
mε)

i(1 + ε)
≤
i(1 + m−1

m ε)

i(1 + ε)
, (95)

with a minimal right hand side for row m+1 to 2m. In other
words, the factor of the denominator for the minimum would
remain (1+ε), while the mean φ∗

i for the numerator increases
independently of i, resulting in an overall increased quotient
compared to choosing rows 1 to m. Consequently, it holds
that rmin = (r1, . . . , rm) fulfils the equation minr

ψ′(r)
ψ(r) =

ψ′(rmin)
ψ(rmin)

, resulting in

min
r

ψ′(r)

ψ(r)
=

m∏
i=1

φ∗
i

φi,i
(96)

=

m∏
i=1

i
(
1 + 1

mε
)

i (1 + ε)
(97)

=

(
1 + 1

mε

1 + ε

)m
. (98)

Analogously, we compute the maximum quotient maxr
ψ′(r)
ψ(r)

by choosing rmax = (rm+1, . . . , r2m) in the following way:

max
r

ψ′(r)

ψ(r)
=

2m∏
i=m+1

φ∗
i

φi,i
(99)

=

2m∏
i=m+1

i
(
1 + m−1

m ε
)

i
(100)

=
m∏
i=1

i
(
1 + m−1

m ε
)

i
(101)

=

(
1 +

m− 1

m
ε

)m
. (102)

Inserting the minimum and maximum quotients into the defi-
nition of the distance measure D(PM , PM ′), we obtain

D(PM , PM ′) = lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
(103)

= ln

1 + m−1
m ε

1+ 1
m ε

1+ε

m

(104)

= ln

(
(1 + m−1

m ε)(1 + ε)

1 + 1
mε

)m
, (105)

which is strictly smaller than ln (1 + ε)m − ln (1 − ε)m but
also strictly larger than ln (1 + ε)m and effectively hits the
bound given in Thm. 7.

In practice, however, our bounds improve significantly as
soon as we deviate from this extreme scenario. This is be-
cause even minor dependencies between the maximum and
minimum quotients suffice to obtain a tighter estimate. For
instance, if there are more factors in a group than rows in their
potential tables or if multiple groups of pairwise ε-equivalent
factors exist, we can immediately conclude that the worst-
case condition no longer holds, resulting in smaller overall
values ofD. This effect occurs since even minimal deviations
from the worst-case scenario result in dependencies between
the maximum and minimum for any assignment r.

B The Advanced Colour Passing Algorithm
The ACP algorithm introduced by Luttermann et al. [2024a]
builds on the Colour Passing algorithm (originally named
CompressFactorGraph) [Kersting et al., 2009; Ahmadi et al.,
2013] and solves the problem of constructing a lifted rep-
resentation, encoded as a PFG, from a given propositional



Algorithm 2 Advanced Colour Passing
Input: An FG M = (R ∪Φ,E) and a set of observed
events (evidence) O = {E1 = e1, . . . , Eℓ = eℓ}.
Output: A lifted representation M ′, encoded as a PFG,
which entails equivalent semantics as M .

1: Assign each Ri a colour according to range(Ri) and O
2: Assign each ϕi a colour according to order-independent

potentials and rearrange arguments accordingly
3: repeat
4: for each factor ϕ ∈ Φ do
5: signatureϕ ← [ ]
6: for each randvar R ∈ neighbours(M,ϕ) do
7: ▷ In order of appearance in ϕ
8: append(signatureϕ, R.colour)

9: append(signatureϕ, ϕ.colour)

10: Group together all ϕs with the same signature
11: Assign each such cluster a unique colour
12: Set ϕ.colour correspondingly for all ϕs
13: for each randvar R ∈ R do
14: signatureR ← [ ]
15: for each factor ϕ ∈ neighbours(M,R) do
16: if ϕ is commutative w.r.t. S and R ∈ S then
17: append(signatureR, (ϕ.colour, 0))
18: else
19: append(signatureR, (ϕ.colour, p(R,ϕ)))

20: Sort signatureR according to colour
21: append(signatureR, R.colour)

22: Group together all Rs with the same signature
23: Assign each such cluster a unique colour
24: Set R.colour correspondingly for all Rs
25: until grouping does not change
26: M ′ ← construct PFG from groupings

FG. The idea of ACP is to first find indistinguishabilities
in a propositional FG and then group together symmetric
subgraphs. In particular, ACP looks for indistinguishabili-
ties based on potentials of factors, on ranges and evidence of
randvars, as well as on the graph structure by passing around
colours. Algorithm 2 provides a formal description of the
ACP algorithm, which proceeds as follows.

ACP begins with the colour assignment to variable nodes,
meaning that all randvars that have the same range and ob-
served event are assigned the same colour. Thereafter, ACP
assigns a colour to every factor node such that factors rep-
resenting equivalent potentials are assigned the same colour.
After the initial colour assignments, ACP begins to pass the
colours around. ACP first passes the colours from every vari-
able node to its neighbouring factor nodes and afterwards,
every factor node ϕ sends both its colour and the position
p(R,ϕ) of R in ϕ’s argument list to all of its neighbouring
variable nodes R. Factors that have symmetries within them-
selves, formally denoted as being commutative with respect
to a subset S of their arguments, omit the position when send-
ing their colour to a neighbouring variable node R ∈ S. We
provide more details on commutative factors in Appendix D.

Example 7. Figure 4 illustrates the course of the ACP al-

gorithm on the FG from Fig. 1 with the modification that
φi = φ′

i for all i ∈ {1, . . . , 4}. Recall that SalA, SalB,
and Rev all have the range {low,high}. We further assume
that there are no observed events (evidence) and thus, SalA,
SalB, andRev receive the same colour (e.g., yellow). As the
potentials of ϕ1 and ϕ2 are identical, ϕ1 and ϕ2 are assigned
the same colour as well (e.g., blue). The colour passing then
starts from variable nodes to factor nodes, that is, SalA and
Rev send their colour (yellow) to ϕ1, and Rev and SalB
send their colour (yellow) to ϕ2. ϕ1 and ϕ2 are then re-
coloured according to the colours they received from their
neighbours to reduce the communication overhead. Since
ϕ1 and ϕ2 received identical colours (two times the colour
yellow), they are assigned the same colour during recolour-
ing. Afterwards, the colours are passed from factor nodes
to variable nodes and this time not only the colours but also
the position of the randvars in the argument list of the cor-
responding factor are shared (because none of the factors is
commutative with respect to a subset of its arguments having
size at least two—see Appendix D for more details). Con-
sequently, ϕ1 sends a tuple (blue, 1) to SalA and a tuple
(blue, 2) toRev, and ϕ2 sends a tuple (blue, 2) toRev and a
tuple (blue, 1) to SalB (positions are not shown in Fig. 4). As
SalA and SalB are both at position one in the argument list
of their respective neighbouring factor, they receive identical
messages and are recoloured with the same colour. Rev is as-
signed a different colour during recolouring than SalA and
SalB because Rev received different messages than SalA
and SalB. The groupings do not change in further iterations
and hence the algorithm terminates. The output is the PFG
shown on the right in Fig. 4, where both SalA and SalB as
well as ϕ1 and ϕ2 are grouped.

For more details on the colour passing procedure and the
construction of the PFG in the final step (Line 26), we re-
fer the reader to Luttermann et al. [2024a]. Note that when
ε-ACP (Alg. 1) calls ACP in Line 15, the colour assignment
of ACP to factors (Line 2 in Alg. 2) is replaced by the colour
assignment of ε-ACP prior to calling ACP. We also remark
that ε-ACP does not use the PFG output by ACP but instead
takes the groups computed by ACP, updates them in phase
three, and then applies the final step to construct the PFG.

C Permutations of Factors’ Arguments
In general, we cannot assume that the tables of equivalent fac-
tors (i.e., factors that encode equivalent underlying functions)
read identical values from top to bottom. More specifically,
it is not always the case that indistinguishable randvars are
located at the same position in their respective factors’ argu-
ment lists. The following example illustrates this point.

Example 8. Consider the FG M1 shown in Fig. 5. In fact,
M1 entails equivalent semantics as the FG M2 depicted in
Fig. 1. Observe that the function definition of ϕ1 is identical
in M1 and M2 (i.e., its potential table is exactly the same).
If we now take a look at ϕ2, we see that in M1, the order
of its arguments differs from the order of its arguments in
M2. In particular, Rev is now located at position one and
SalB at position two inM1 (opposed to SalB at position one
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Figure 4: A visualisation of the steps undertaken by the ACP algorithm (Alg. 2) on the input FG from Fig. 1 (left). All randvars have the
same range ({low, high}) and there are no observed events (evidence) available. Colours are first passed from variable nodes to factor nodes,
followed by a recolouring, and then passed back from factor nodes to variable nodes, again followed by a recolouring. The colour passing
procedure is then iterated until convergence (here, the colour assignments remain the same in the next iteration) and the resulting PFG is
depicted on the right. In the resulting PFG, Sal(E) is a so-called parameterised randvar that represents a group of randvars (SalA and SalB)
by using a logical variable E with domain dom(E) = {SalA, SalB}. Analogously, ϕ′

1 now represents both ϕ1 and ϕ2 simultaneously.
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Figure 5: Another FG modeling the interplay between the revenue
of a company (Rev) and the salaries of its employees (SalA and
SalB). In comparison to Fig. 1, the order of ϕ2’s arguments has now
changed. Nevertheless, the semantics (i.e., the underlying full joint
probability distribution) of the FG remains the same as in Fig. 1.

and Rev at position two in M2). The semantics of ϕ2, how-
ever, remains unchanged as all assignments are mapped to
the same potential: Rev = high, SalB = high is mapped to
φ′
1, Rev = high, SalB = low is mapped to φ′

3, Rev = low,
SalB = high is mapped to φ′

2, andRev = low, SalB = low
is mapped to φ′

4. In consequence, ϕ2 entails the same seman-
tics in M1 as in M2.

To construct a lifted representation such as a PFG, indistin-
guishable randvars like SalA and SalB are required to be lo-
cated at the same position in the argument list of their respec-
tive factors (otherwise, they cannot be grouped). Therefore,
to account for permutations of factors’ arguments when look-
ing for (ε-)equivalent factors, we first have to check whether
there exists a rearrangement of the arguments such that the
potential tables read identical (ε-equivalent, respectively) val-
ues from top to bottom. If such a rearrangement exists, argu-
ments are rearranged accordingly to ensure that indistinguish-

able randvars are actually located at the same position in their
respective factors’ argument lists. After the rearrangement, it
is guaranteed that the potential tables of (ε-)equivalent factors
can be compared row-wise and the ACP algorithm (Alg. 2)
assigns identical colours to them. More details on how such
rearrangements of arguments can be computed efficiently are
given in [Luttermann et al., 2024e].

D Approximate Symmetries Within Factors
Symmetries within factors arise when arguments of the same
factor are indistinguishable. A factor that contains symme-
tries within itself is referred to as a commutative factor in the
literature. The next definition formally introduces the notion
of a commutative factor.
Definition 4 (Commutative Factor, Luttermann et al., 2024a).
Let ϕ(R1, . . . , Rn) denote a factor. We say that ϕ is commu-
tative with respect to S ⊆ {R1, . . . , Rn} if for all events
r1, . . . , rn ∈ ×ni=1range(Ri) it holds that ϕ(r1, . . . , rn) =
ϕ(rπ(1), . . . , rπ(n)) for all permutations π of {1, . . . , n} with
π(i) = i for all Ri /∈ S. If ϕ is commutative with respect to
S, all arguments in S are called commutative arguments.

Example 9. Consider the FG shown in Fig. 6a, which mod-
els the interplay between a company’s revenue Rev and the
competences ComA and ComB of its employees. It holds
that range(ComA) = range(ComB) = range(Rev) =
{low,high}. Here, ϕ1 is commutative with respect to S =
{ComA,ComB} because ϕ1(Rev = high, ComA = high,
ComB = low) = ϕ1(Rev = high, ComA = low,
ComB = high) = φ2 and ϕ1(Rev = low, ComA = high,
ComB = low) = ϕ1(Rev = low, ComA = low, ComB =
high) = φ5. In other words, the order of ComA and ComB
in ϕ1 does not matter, i.e., it is only relevant how many em-
ployees have a high competence and how many have a low
competence but not which specific employees have a high or
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Figure 6: (a) An FG modelling the interplay between the revenue Rev of a company and the competences ComA and ComB of its
employees, and (b) a lifted representation, encoded as a PFG, of the FG shown in (a). For brevity, we omit the argument lists of ϕ1 and ϕ′

1

and write ϕ1 instead of ϕ1(Rev,ComA,ComB) and ϕ′
1 instead of ϕ′

1(Rev,#E [Com(E)]).

low competence. In consequence, ϕ1 can be represented more
compactly without losing any information. Figure 6b shows
a PFG encoding equivalent semantics as the FG from Fig. 6a
by using a so-called counting randvar #E [Com(E)] that
counts over the competences of all employees. More specif-
ically, instead of listing the competence of every employee
separately, the counting randvar now specifies counts for the
ranges values of ComA and ComB: [2, 0] represents the
case that there are two employees with a high competence and
none with a low competence, [1, 1] represents the case that
there is one employee with a high competence and one with
a low competence, and [0, 2] represents the case that there
are two employees with a low competence and none with a
high competence. Note that the potential table is now smaller
than in the initial FG from Fig. 6a but still encodes exactly
the same semantics.

The previous example gives a glimpse of how exact sym-
metries within a factor can be exploited to obtain a more com-
pact lifted representation. We remark that it is also possible to
allow for approximate symmetries within factors by replacing
the exact equality in Def. 4 with the notion of ε-equivalence.
To enable the exploitation of approximate symmetries within
factors in the ε-ACP algorithm, the call of ACP is adjusted
such that ACP computes commutative subsets of arguments
using ε-equivalence instead of exact equality. When insert-
ing a counting randvar in the final PFG, the potential table
is again constructed by using the arithmetic mean over the
original potentials. By doing so, every updated potential still
differs by factor at most (1±ε) from its original potential and
hence, the bounds on the change in query results from Sec. 4
continue to hold.

E Further Experimental Results
In addition to the results given in Sec. 5, we give separate
plots illustrating the distributions of quotients of query results
in the modified model and query results in the original model
for specific choices of x (proportions of factors whose poten-
tial tables differ by factor at most (1 ± ε) from their original
potential table) and ε. We also investigate the overhead in-
troduced by ε-ACP compared to ACP in terms of the number
of queries needed to amortise the additional offline effort of
computing groups of pairwise ε-equivalent factors.

Figures 7 to 12 depict the distributions of quotients of
query results in the modified model and query results in the
original model for various choices of x. In each of the figures,
the left plot shows distributions of quotients for each domain
size k ∈ {2, 4, 8, 16, 32, 64, 128} for ε = 0.001 while the
right plot shows distributions of quotients for each domain
size k for ε = 0.1. Figure 7 shows distributions of quo-
tients for a proportion of x = 0.1 of factors that are manipu-
lated such that their potential tables deviate by factor at most
(1 ± ε), Fig. 8 shows distributions of quotients for x = 0.3,
Fig. 9 for x = 0.5, Fig. 10 for x = 0.7, Fig. 11 for x = 0.9,
and Fig. 12 for x = 1.0. As expected, the quotients are gen-
erally larger for ε = 0.1 than for ε = 0.001 independent of
the choice of x. All quotients are again close to one—in par-
ticular, Figs. 7 to 12 exhibit similar patterns as the right plot
in Fig. 3 (again, even outliers remain very close to one). With
increasing value of x, the distributions of quotients become
less concentrated at value one (that is, the boxes span a wider
range when going from Fig. 7 to Fig. 12). In other words,
there are more queries for which the quotient is further away
from one (however, “further away” still refers to numbers ex-
tremely close to one). To summarise, even if a large pro-
portion of potential tables is modified by adding noise con-
trolled by a factor (1 ± ε), the approximation error remains
very small—even for the choice of ε = 0.1. Next, we take a
look at the overhead introduced by ε-ACP to compute groups
of pairwise ε-equivalent factors by comparing the offline run
times of ε-ACP and ACP.

Figures 13 to 15 report the average number α of queries
after which the additional offline effort of ε-ACP compared
to ACP amortises. More specifically, α is defined as α =
∆o / ∆g with ∆o = tε-ACP − tACP being the difference
between the offline run time of ε-ACP and ACP and ∆g =
tLVE−ACP − tLVE−ε-ACP being the difference of the run
time of lifted variable elimination on the output of ACP and
ε-ACP to answer a query. In other words, after α queries,
the additional time needed by ε-ACP to compute groups of
pairwise ε-equivalent factors is saved by the faster inference
times to answer queries on the output of ε-ACP.

The boxplots depicted in Figs. 13 to 15 show that the me-
dian value for α is always smaller than ten and most of the
time even smaller than one. Thus, after less than ten queries,
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Figure 7: Boxplots showing the distribution of the quotient p′ / p with p′ = PM′(r | e) and p = PM (r | e) for a proportion of x = 0.1 of
factors whose potential tables deviate by factor at most (1± ε) from the original potential tables, where ε = 0.001 (left) and ε = 0.1 (right).
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Figure 8: Boxplots showing the distribution of the quotient p′ / p with p′ = PM′(r | e) and p = PM (r | e) for a proportion of x = 0.3 of
factors whose potential tables deviate by factor at most (1± ε) from the original potential tables, where ε = 0.001 (left) and ε = 0.1 (right).
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Figure 9: Boxplots showing the distribution of the quotient p′ / p with p′ = PM′(r | e) and p = PM (r | e) for a proportion of x = 0.5 of
factors whose potential tables deviate by factor at most (1± ε) from the original potential tables, where ε = 0.001 (left) and ε = 0.1 (right).
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Figure 10: Boxplots showing the distribution of the quotient p′ / p with p′ = PM′(r | e) and p = PM (r | e) for a proportion of x = 0.7 of
factors whose potential tables deviate by factor at most (1± ε) from the original potential tables, where ε = 0.001 (left) and ε = 0.1 (right).
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Figure 11: Boxplots showing the distribution of the quotient p′ / p with p′ = PM′(r | e) and p = PM (r | e) for a proportion of x = 0.9 of
factors whose potential tables deviate by factor at most (1± ε) from the original potential tables, where ε = 0.001 (left) and ε = 0.1 (right).
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Figure 12: Boxplots showing the distribution of the quotient p′ / p with p′ = PM′(r | e) and p = PM (r | e) for a proportion of x = 1.0 of
factors whose potential tables deviate by factor at most (1± ε) from the original potential tables, where ε = 0.001 (left) and ε = 0.1 (right).
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Figure 13: Boxplots illustrating the distributions of the number α of queries after which the additional offline effort of ε-ACP amortises for
input FGs containing a proportion of x = 0.1 (left) and x = 0.3 (right) of factors that are modified by factor at most (1± ε).
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Figure 14: Boxplots illustrating the distributions of the number α of queries after which the additional offline effort of ε-ACP amortises for
input FGs containing a proportion of x = 0.5 (left) and x = 0.7 (right) of factors that are modified by factor at most (1± ε).
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Figure 15: Boxplots illustrating the distributions of the number α of queries after which the additional offline effort of ε-ACP amortises for
input FGs containing a proportion of x = 0.9 (left) and x = 1.0 (right) of factors that are modified by factor at most (1± ε).

the offline overhead of ε-ACP amortises in most scenarios.
There are some outliers where α > 1000, however, the over-
head introduced by ε-ACP is in the scale of milliseconds to
a few seconds in these cases (in fact, the overhead is always
smaller than ten seconds, that is, ε-ACP takes at most ten sec-
onds longer than ACP in every scenario). We can therefore
conclude that the offline overhead is not only small but also
amortises after just a few queries in general. Overall, there
is a tendency that the larger x, the smaller is α (apart from
a few outliers), which is expected as the advantage of ε-ACP
increases with larger values of x. However, when compar-
ing the different domain sizes k ∈ {2, 4, 8, 16, 32, 64, 128},
there is no clear pattern on how α behaves. In the left plot
of Fig. 14, for example, α has a tendency to become larger
for larger domain sizes. This pattern, however, cannot be ob-
served in general in the other plots.
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