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ABSTRACT

This paper dedicates to improving object detection performance on low-resolution
images. The intuitive way is to distill the high-resolution knowledge from mod-
els trained over high-resolution images, shorted as cross-resolution distillation.
Unfortunately, most of existing conventional distillation methods focus on the
knowledge distillation with same-resolution images in both teacher and student.
Directly applying these methods for the cross-resolution distillation results in
limited improvement. To address this issue, we introduce a simple yet effective
framework, i.e., LRDet. The key in LRDet is the bridge branch, acting as an
intermediate status between teacher and student. With the bridge branch, LRDet
can i) align the resolution and supervision targets between the high-resolution
teacher and the low-resolution student, and ii) then transfer the high-resolution
knowledge smoothly and effectively. Experiments demonstrate that LRDet con-
sistently improves various well-known detectors on low-resolution images, e.g.,
from 35.4 mAP to 37.8 mAP with RetinaNet-R50 on MS COCO using 600 x 1000
input. Meanwhile, it is easy to utilize large teachers in LRDet as the conventional
distillation methods do, which can further improve the low-resolution performance.
For example, RetinaNet-R50 with 600 x 1000 resolution can achieve 39.7 mAP
when distilling from RetinaNet-X101.

1 INTRODUCTION

High-resolution (HR) images are essential for position-sensitive tasks such as object detection [Tan
& Le|(2019). Current detectors trained over HR images achieve top performance on various bench-
marks |He et al.|(2016); [Lin et al.| (2017b); Tian et al.| (2019b); Ren et al.|(2015)); He et al.| (2017);
Wang et al.| (2020a); |Lin et al.| (2014). But HR images increase model computational costs, slow
down the model inference speed Redmon et al.| (2016); Redmon & Farhadi (2018 and may not
be available in specific scenarios Kim et al.|(2016). Differently, the easily collected low-resolution
images lead to smaller computational costs and faster speeds. While low-resolution images may lose
fine visual details due to the low image quality, which severely degrades the performance. In this
paper, we aim to improve object detection on low-resolution images.

An intuitive way to achieve the above goal is to use knowledge distillation methods to transfer
high-resolution knowledge from the teacher model trained over high-resolution images (HR teacher)
to the student model with low-resolution images (LR student). Existing conventional distillation
frameworks |Heo et al.|(2019); Yim et al.| (2017); Zagoruyko & Komodakis|(2016)); Yang et al.| (2022)
are proposed to transfer knowledge from teacher to student with the same resolutions. Directly
applying these distillation methods, including the state-of-the-art FGD [Yang et al.|(2022)), to the cross-
resolution setting results in limited gains (Table[I). It shows that conducting knowledge distillation
among different resolutions is a non-trivial task. Although the resolution gap between the feature
maps can be easily eliminated by feature interpolation (upsampling for students or downsampling for
teachers), the mismatch of the supervision targets between the HR teacher and the LR student still
exist. This mismatch makes it difficult to utilize high-resolution knowledge to help the training of the
LR student.

"Model computational cost is quadratic to the image resolution. High-resolution images bring significant
computational overhead and slow down model inference speed.
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Table 1: Cross-resolution distillation with LRDet vs.various conventional methods. We provide the
baseline model (RetinaNet-R50|Lin et al.| (2017b)) trained over 600 x 1000 resolution) in the second
row. All other experiments are conducted on MS COCO dataset|Lin et al.[(2014)) with RetinaNet-R50
trained over 800 x 1333 resolution as the HR teacher and 600 x 1000 resolution as the LR student.
Up and Bridge represent upsampling and bridge branch, respectively.

Method Align AP APs APy AP

- - 354 18.0 39.5 483
Fitnet|Romero et al[(2014) 36.0 19.1 40.2 486
CWD|Shu et al [(2021) U 36.1 19.0 40.3 48.4
DeFeat|Guo et al |(2021) P 36.2 19.3 40.5 48.7
FGD|Yang et al [(2022) 363 19.2 40.7 48.6
LRDet [ Bridge [ 37.1 20.1 40.8 50.1

Given the above analyses and quantitative experiments in Table [} we present LRDet as a novel
framework to facilitate feature distillation between the HR teacher and the LR student. The key insight
in LRDet is the proposed bridge branch. Specifically, the bridge branch consists of FPN and detection
head, takes high-resolution feature maps (upsampled from outputs of the LR student backbone) as
input, and is supervised by ground-truth boxes in high resolutions. The design of the bridge branch
matches its inputs and targets with the HR teacher. Meanwhile, since there is no resolution gap
between the bridge branch and the HR teacher, the high-resolution knowledge can be smoothly
transferred as in previous distillation frameworks. Moreover, by sharing parameters, the LR student
perceives high-resolution knowledge from the bridge branch, which makes the knowledge distillation
across resolutions can be conducted effectively. Compared with the conventional frameworks, LRDet
achieves knowledge distillation across resolutions in a simple and effective way. In addition, we
find that weight inheriting strategy is another key to improve the low-resolution detection, which
initializes the weights of the LR student with the HR teacher.

We conduct extensive experiments on MS COCQOLin et al.| (2014) to show the effectiveness of our
LRDet with different low resolutions (600 x 1000 and 400 x 667). Results show that LRDet is
compatible with various detectors (RetinaNet|Lin et al.|(2017b)), FCOS [Tian et al.|(2019b)), and Faster
R-CNN Ren et al.[(2015)) and achieves significant improvements. Sometimes the LR models trained
with LRDet even surpass their HR teachers (800 x 1333) while requiring much less computational
cost. Further, we validate the generalization of LRDet on two other tasks, i.e., instance segmentation
and human keypoint detection. LRDet consistently improves the performance of the low-resolution
models, which indicates that our framework has strong generalization to other position-sensitive
tasks.

2 RELATED WORKS

Object detection is a fundamental and challenging task in computer vision, which involves classifying
individual objects and localizing each using a bounding box |Girshick et al.|(2014)). The CNN-based
detection models are divided into two-stage [Ren et al.|(2015)); He et al.|(2017);/Cai & Vasconcelos
(2018)) and one-stage detectors |Lin et al.|(2017b); [Tian et al.|(2019b)); Yang et al.|(2019); Duan et al.
(2019);|Ge et al.|(2021). Faster-RCNN Ren et al.| (2015) is a typical two-stage detector that utilizes
RPN to achieve high-performance detection. RetinaNet|Lin et al.|(2017b) as a one-stage detector
is able to perform detection faster, and it combines FPN [Lin et al.| (2017a) and FCN |Long et al.
(2015) to make dense detection on feature maps directly. However, one-stage detection relies on a
large number of prior anchor boxes, which brings extra computation. Anchor-free detectors, e.g.,
FCOS [Tian et al.|(2019b), alleviate this problem. They predict the key points and location of objects
instead. The design of these detectors generally focuses on feature representation or model structure
rather than on the input resolution. In this paper, we focus on improving the detection performance
with low-resolution images.

Knowledge distillation is a method of knowledge transferring and model compression. It is first
proposed to distill the knowledge from a large teacher model to a compact student model for the
classification task|Yim et al. (2017). Over the years, many improved KD methods have been proposed
that perform distillation over intermediate features Romero et al. (2014); Tian et al.| (2019a)), relation
representation Park et al.| (2019); Tung & Mori (2019), attention |[Zagoruyko & Komodakis|(2016)),



Under review as a conference paper at ICLR 2023

Lpew, Lpewn
Lrp
FPN
Upsample :
5 —_—>
—mt? —
c4 — B
— A—
C3 _ _—
—r —
C2 —_—
LR
Images HR
Images
LR Student Bridge Branch HR Teacher
—> Traning and test on LR student —> Traning only on bridge branch - > Forward only on HR teacher

Figure 1: LRDet framework. LRDet aims to improve the performance of object detection on low-
resolution images, i.e., LR student in the figure. The key in LRDet is the bridge branch, which can
learn high-resolution knowledge from the HR teacher based on the feature distillation and transfer the
learned information to the LR student. The inputs of the bridge branch are produced by upsampling
LR features from the LR student backbone. Best viewed in color.

etc. Recently, some works have successfully applied KD to detection (Chen et al.|(2017); [Li et al.
(2017); [Wang et al.| (2019); Zhang & Ma (2020); (Guo et al.| (2021); Dai et al.| (2021); [Yang et al.
(2022). FGD |Yang et al.| (2022) is a powerful feature-based distillation method. It decouples the
foreground and background of the image and uses focal and global distillation to guide the student
model, achieving remarkable results. However, these efforts mainly focus on feature transfer at the
same resolution and do not consider the distillation across resolutions, which makes them work
ineffective with a resolution gap. We consider distillation with different resolutions and design a
bridge branch to help the knowledge transfer between the HR teacher and the LR student.

There are also previous works that introduce auxiliary branches to facilitate the knowledge distillation,
such as TAKD [Mirzadeh et al.[(2020) in image classification. TAKD aims to bridge the capacity
gap and introduces an independent assistant network. It conducts distillations individually between
teacher and assistant, assistant and student. Differently, our LRDet takes efforts to resolve the
mismatches between the HR teacher and LR student. Our bridge branch shares knowledge with the
LR student and there is no distillation between them.

Improving low-resolution detection is challenging. Multi-scale training is a common technique to
enhance the model robustness against resolution variation [He et al.| (2015b)); Singh & Davis| (2018);
Singh et al.|(2018)); Wang et al.| (2020b), so it can be an effective approach to enhance low-resolution
detection. Multi-scale aligned distillation (MSAD) |Q1 et al.| (2021) combines multi-scale training
and KD to improve the low-resolution students. It proposes a multi-scale fusion network that serves
as the bridge. In the MSAD framework, LR student adopt larger feature maps to solve the size gap,
i.e., it uses P2~P6 level features for LR detection on FCOS [Tian et al. (2019b) instead of standard
P3~P7 level. And the proposed fusion network narrows the semantic gap. However, their framework
has constraints on resolution and are computationally costly. In this paper, we retain the advantages
of low resolution inputs, i.e., low cost and fast speed, and propose a simple but effective method to
improve the low-resolution detection via feature distillation.

3 LRDET

The overview of LRDet framework is shown in Figure. [T} The main component in LRDet is the
bridge branch, acting to release the non-trivial problem when transferring knowledge from the HR
teacher to the LR student. Under the help of bridge branch, LRDet can effectively transfer the
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rich knowledge from the HR teacher to the LR student with the feature distillation optimization.
Moreover, the weight inheriting strategy is also effective in the LRDet.

3.1 BRIDGE BRANCH

As analyzed in the previous section, the supervision mismatch between the HR teacher and the LR
student brings knowledge gap that hinders the cross-resolution distillation. We thus design a bridge
branch for supervision alignment between the LR student teacher and the student, to smoothly and
effectively transfer knowledge between resolutions.

To resolve the supervision mismatch, we extend the LR student by adding a branch for detection
on high-resolution feature maps, in parallel with the student’s detection on low-resolution features.
Specifically, the bridge branch consists of the FPN and the detection head, sharing weights with
the same layers in the LR student. The input of the bridge branch is the HR features, produced by
upsampling the LR features from the LR student backbone. These HR features are then fed into the
bridge branch to obtain the FPN pyramidal HR features and the HR detection predictions, which are
supervised by respective loss functions (refer to next).

The designed bridge branch has two characteristics. One is that the features from the bridge branch
have the same resolution with those from the HR teacher, eliminating the resolution gap between
the HR teacher and the LR student. More importantly, the bridge branch performs high-resolution
detection with the same parameters of the LR student, which aligns the supervision between teacher
and student. Therefore, the supervision mismatch is resolved and the high-resolution knowledge can
be smoothly transferred.

Optimization. With the bridge branch, the high-resolution knowledge can be smoothly transferred
from the HR teacher to the LR student. For the optimization of the bridge branch, we formulate the
loss function Lpyigge as follows:

Lpridge = Lpetn + oLyp, (D

where Lpepp denotes the standard detection loss on the HR predictions from the bridge branch. Lrp
represents the feature distillation from the FPN pyramidal features in the HR teacher to those in the
bridge branch. Here, we simply use mean squared error (MSE) loss as the feature distillation loss. o
is the loss weight hyperparameter.

Discussion. Can feature distillation be replaced by other distillation algorithms? Sure. Our LRDet
can compatible with various distillation algorithms. In this paper, we mainly focus on the design of
the bridge branch and the simple feature distillation already can achieve high performance.

3.2 WEIGHT INHERITING

A good weight initialization is beneficial to the model optimization Glorot & Bengio| (2010); He et al.
(2015a)). It motivates us to carefully consider the initialization of the LR student. Inspired by the
inherit initialization strategy Yang et al.|(2022); Kang et al.|(2021)), we initialize the weights of the
LR student with those in the same layers from the HR teacher. In this way, the student model and
the bridge branch have strong feature representation at the beginning of the training. This weight
inheriting strategy has merits of: i) making the LR student easy to converge, and ii) making the bridge
branch and the student more receptive to the knowledge from the HR teacher.

3.3 OVERALL

The whole training process of LRDet framework is straightforward. First, the LR images are processed
by the LR student backbone to produce the LR feature maps. These feature maps are normally passed
to the later structure to obtain the LR predictions. Meanwhile, HR feature maps are upsampled from
these LR feature maps and then fed into the the bridge branch, allowing the network to transfer
high-resolution knowledge from HR teacher and generate the HR predictions. The overall training
supervision:

L = Lpett, + LBridge; 2

where Lper, is the traditional detection loss on the LR predictions, and Lpyiqdge is the loss function
for the optimization on the bridge detector (see Eq. equation I).
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During the inference phase, only the LR student is enabled to make the final detection predictions
with LR images input, while the HR teacher and the bridge branch are both discarded.

4 EXPERIMENTS

We evaluate our LRDet with a range of detectors (RetinaNet|Lin et al.| (2017b), FCOS [Tian et al.
(2019b), and Faster R-CNN Ren et al.|(2015))) on the MS COCO benchmark |Lin et al.|(2014)). We first
show that LRDet brings significant improvements over the baselines when training with LR images.
Then, we provide comprehensive ablation studies to show the effectiveness of each component of
LRDet. For fair comparison, we use the MMdetection codebase |Chen et al.|(2019) and follow all the
settings and hyper-parameters. Other settings are as follows.

Self-distillation Setting. In this section, most of our experiments are conducted in self-distillation
setting, i.e., the teacher and student models keep the same architecture (e.g., using RetinaNet-R50 to
distill RetinaNet-R50), and they differ only in the input resolution. The reason for this is to eliminate
interference, if a larger teacher is adopted (e.g., using RetinaNet-Res101 to distill RetinaNet-R50) as
in the general KD approaches, we cannot distinguish whether the distillation gain comes from the
high-resolution or the larger model capacity. However, we must point out that our LR student can be
improved more significantly if not limited to self-distillation setting.

Resolution Settings. In the single-scale setting, we adopt 400 x 667 or 600 x 1000 low-resolution
images. And we upsample these LR images to 800 x 1333 and use them as high-resolution images. In
the multi-scale setting, the resolution ranges are [320 x 667, 400 x 667] and [480 x 1000, 600 x 1000)
for two low resolutions while the high-resolution range is [640 x 1333,800 x 1333]. Note that
experiments in this paper only use on the above resolutions to verify the effectiveness of LRDet, but
resolutions are not limited.

Loss Weight «.. Loss Weight « is a hyper-parameter to balance the detection loss and the feature
distillation loss in the bridge branch. For simplification, we set o = 0.005 for all experiments on
various detectors. We believe that if tuning « carefully, we can achieve higher performance.

4.1 MAIN RESULTS

In this section, we conduct experiments on a variety of detectors and provide comparisons between the
models with or without applying LRDet when training with low-resolution images in the single-scale
and multi-scale settings. Note that in all experiments in this section, the teachers and students keep
the same networks, and their difference is only the resolution of the input image, which is different
from the conventional knowledge distillation. For training details, HR teachers are trained with a 2%
schedule in the single-scale setting and with a 3x schedule in the multi-scale settingE] For student
models, a 1x schedule is adopted. All experiments in this section are conducted with ResNet-50
as their backbones. Moreover, we provide extra results trained with a longer 3 x schedule in the
multi-scale setting, proving the effectiveness of LRDet over the multi-scale training technique.

Comparisons in Single-scale Setting. Table |2| shows that LRDet improves RetinaNet |Lin et al.
(2017b), FCOS [Tian et al.|(2019b), and Faster R-CNN Ren et al.| (2015) by 2.4 mAP, 1.6 mAP, and
2.1 mAP when training with a low resolution 600 x 1000, presenting even better results than the
HR teachers. When the resolution decreases to 400 x 667, LRDet also shows significant gains. The
above achievements are nontrivial as we adopt the same networks for teachers and students. In this
setting, the previous state-of-the-art distillation method FGD |Yang et al.|(2022)) only gives a 0.8 mAP
on FCOS. Our designed bridge branch helps the LR student to obtain the size-robust features, and it
further facilitate the knowledge transferring. Therefore, our LRDet can provides consistent gains
across small, medium, and large objects.

Comparisons in Multi-scale Setting. Multi-scale training is a solid technique to improve detection
performance and works well in low-resolution detection. We apply multi-scale training for Reti-

2All 1x, 2%, and 3x schedules are standard schedules in MMdetection Chen et al.| (2019), which represents
training the models for 12 epochs, 24 epochs, and 36 epochs.
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Table 2: Results on MS COCO in single-scale setting. For each detector, we first report the model
performance with straightforward training at 800px, 600px, and 400px resolution. Our LRDet utilizes
the above 800px models to transfer knowledge.

Detector Resolution AP APs50 AP75 APg APy APp,
800px 374 56.7 39.6 20.0 40.7 49.7

600px 354 54.1 379 18.0 39.5 48.3

. 400px 32.1 49.5 34.1 12.3 36.4 48.3
L‘?ﬁ‘;‘t‘fl\’i;&?b) 600px(ours) | 37.8 570 403 202 7138 511
. AN (+2.4) (+2.9) (+2.4) (+2.2) (+2.3) (+2.8)
400px(ours) 339 51.3 36.4 14.2 39.1 49.9

A (+1.8) (+1.8) (+2.3) (+1.9) (+2.7) (+1.6)

800px 38.7 574 41.8 229 42.5 50.1

600px 37.1 55.5 39.9 19.8 41.1 50.2

400px 33.7 51.2 359 15.2 37.3 49.8

Tiag(e:toasl_l(zzsool%) 600px(ours) 38.7 57.1 41.6 21.8 427 51.5
. AN (+1.6) (+1.6) (+1.7) (+2.0) (+1.6) (+1.3)
400px(ours) 34.8 52.2 37.0 16.2 38.6 50.4

AN (+1.1) (+1.0) (+1.1) (+1.0) (+1.3) (+0.6)

800px 384 59.0 42.0 21.5 42.1 50.3

600px 36.6 57.2 39.5 194 40.4 49.1

- 400px 34.1 53.4 36.8 15.0 37.5 49.6
Fﬁ;‘:;‘:gﬁgoﬁg? G00pxiours) | 387 592 422 | 215 426 523
. AN (+2.1) (+2.0) (+2.7) (+2.1) (+2.2) (+3.2)
400px(ours) 36.0 55.4 38.8 16.9 39.9 51.2

A (+1.9) (+2.0) (+2.0) (+1.9) (+2.4) (+1.6)

Table 3: Results on MS COCO in multi-scale setting. For each detector, we first report the perfor-
mance at different resolutions with multi-scale training. Our LRDet adopts the 800px-mstrain-3 x
models as the teachers. Conventionally, we also report the results with 3 training schedule.

Detector Resolution Schedule AP APs50 APr5 APg APps APp,
800px 3% 39.5 58.8 42.2 23.8 432 50.3

600px 1x 355 542 37.7 19.0 39.5 479

3% 38.3 57.3 40.8 21.0 42.6 51.0

400px 1x 31.8 49.1 33.6 12.7 36.6 47.4

3% 34.7 52.5 36.6 14.5 395 50.6

. 1x 38.6 58.0 41.0 21.7 42.8 51.5
LI?S‘;?‘;II\IT;(};IS%) 600px(ours) A (+3.1)  (43.8)  (+23) | (#27)  (#33)  (43.6)
. 3% 39.1 58.4 41.3 22.6 432 52.0
A (+0.8) (+1.1) (+0.5) (+1.6) (+0.6) (+1.0)

1x 35.0 53.1 36.8 16.6 40.8 49.7
400px(ours) A (+3.2) (+4.0) (+3.2) (+3.9) (+4.2) (+2.3)

3% 35.7 54.0 374 16.3 41.3 50.8
AN (+1.0) (+1.5) (+0.8) (+1.8) (+1.8) (+0.2)

800px 3% 40.3 61.0 44.0 24.0 44.1 514

600px 1x 36.8 57.5 39.8 20.6 40.5 49.2

3% 393 59.9 42.4 22.6 42.8 52.7

400px 1x 344 53.8 37.0 15.9 38.4 49.1

3% 36.5 55.9 39.0 17.5 40.5 52.2

1x 39.5 59.9 42.9 229 433 522
Fg:ﬁggﬁg}ﬁg? 600px(ours) A #27)  (#24)  (#3.D) | (+#23)  (+28) (+3.0)
y 3% 39.8 60.1 433 232 43.6 53.1

A (+0.5) (+0.2) (+0.9) (+0.6) (+0.8) (+0.4)

1x 36.9 56.5 39.7 18.3 40.9 51.9

400px(ours) AN (+2.5) (+2.7) (+2.7) (+2.4) (+2.5) (+2.8)

3% 37.6 56.9 40.7 18.8 419 52.7

A (+1.1) (+1.0) (+1.7) (+1.3) (+1.4) (+0.5)

naNet |Lin et al.| (2017b) and Faster R-CNN [Ren et al. (2015ﬂ then re-compare LRDet with the
low-resolution baselines in Table@ Results show that with a 1x schedule, LRDet can achieve greater
improvements in the multi-scale setting compared to the single-scale setting (+3.1 mAP vs.42.4
mAP for RetinaNet and +2.7 mAP vs.4-2.1 mAP for Faster R-CNN). Considering that detectors
need more training iterations to converge when training with stronger augmentations, we also provide
the results with a 3x schedule in Table 3] It is nontrivial to get improvement with 3x multi-scale
training schedule especially in our self-distillation setting, but LRDet still deliver non-negligible
gains. The above results prove the effectiveness and the robustness of LRDet across various detectors

*We do not provide multi-scale trained FCOS results in Table As in MMdetection, the standard multi-scale
setting for FCOS is not a 3x schedule. Instead, we give the multi-scale trained FCOS results in Table[6]and
compare our LRDet with MSAD.
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Table 4: Ablation study on LRDet with RetinaNet Lin et al.|(2017b) on MS COCO.

(a) Component ablation.

(b) Stronger teacher networks in single-scale setting.

Bridge | Inherit | AP APs APy APp LR student HR teacher AP  APs AP,; APp
- 354 180 395 483 RetinaNet-R50 = 354 180 395 483
v - 37.1 201 408 50.1 RetinaNet.R50 | RetinaNetR50 37.8 202 418 511
- v 370 199 408 50.0 RetinaNet-R101 | 389 21.1 430 533
v v | 378 202 418 511 (ours) RetinaNet-X101 | 397 212 437 55.1

(c) Stronger teacher networks with multi-scale 3x
training schedule.

for lightweight networks.

(d) Lightweight student networks. Our designs works

LR student HR teacher AP APg AP,; APp Detector Resolution AP APs APp; APp
RetinaNet-R50 600px 310 148 338 430
-600px - 383 210 426 510 RetinaNet 400px 273 99 209 424
RetinaNet-R50 | RetinaNet-R50 39.1 226 432 520 -R18 600px(ours) | 34.6 169 37.5 488
-600px (ours) RetinaNet-R101 405 227 445 554 400px(ours) 302 11.8 327 46.1
RetinaNet-R50 600px 20.1 141 316 413
-400px - 347 145 395 506 RetinaNet 400px 260 94 286 402
RetinaNet-R50 | RetinaNet-R50 357 163 413 51.8 -Mbv2 600px(ours) | 327 165 355 462
-400px (ours) | RetinaNet-R101 | 37.1 17.8 429 54.0 400px(ours) | 28.5 104 312 440
(e) Heterogeneous architectures.

LR student HR teacher AP APs APps APp

RetinaNet-R50 - 354 180 395 483

RetinaNet-R50 | FasterRCNN-R50 | 37.0 200 408 508

(ours) MaskRCNN-R50 | 374 206 414 508

with different settings. It should be noted that if not limited to self-distillation, our LRDet can get
more considerable gains with 3x multi-scale training schedule (See Table [c)).

4.2 ABLATION STUDY

We aim to find out how LRDet works in this section. We run a number of ablation studies with
RetinaNet|Lin et al.| (2017b) using the single-scale setting. Note that except for the experiments in
Table D] and Table [4d} all other ones are with ResNet-50[He et al.| (2016). Details are as follows.

Component ablation. LRDet transfers high-resolution knowledge from the high-resolution teacher
to the low-resolution student via the bridge branch and weight inheriting. We ablate these two
component and the results are shown in Table fa] Distillation with our designed bridge branch helps
the low-resolution student improve by 1.7 mAP, while the conventional framework can only improve
the student by a maximum of 0.9 mAP (See Table[I)). We also find that only using weight inheriting
can also bring a 1.6 mAP improvement. And combination can achieve further improvement.

Stronger teacher models. The main purpose of our LRDet is to improve low-resolution detection
with the help of a high-resolution teacher. In previous experiments, we constrain the variable factor to
resolution only and adopt the same networks for both the teacher and the student. But LRDet is not
limited to this self-distillation setting. Intuitively, stronger teachers typically lead to greater gains. In
Table Abland Table ic| we explore teacher models with stronger backbones, such as ResNet-101 [He
et al. (2016) and ResNeXt-101 Xie et al.[(2017), while maintaining ResNet-50 He et al.| (2016) for
the student model.

As shown in the Table @b} LRDet enables the low-resolution student on 600 x 1000 to get further
improvements in the single-scale setting by using stronger high-resolution teachers. Notably, when
using RetinaNet-X101, the low-resolution detector achieves 39.7 mAP. It exceeds the low-resolution
student baseline by 4.3 mAP, showing the great potential of our LRDet in improving low-resolution
detection. Table |4c|shows that adopting a stronger teacher can lead to considerable improvement
even in the multi-scale 3 X training setting. Specifically, the LR student models on 600 x 1000 and
400 x 667 achieve 40.5 and 37.1 mAP, respectively.

Lightweight student networks. In addition to adopting stronger teacher models, we investigate the
opposite direction: apply lightweight backbones for student models. We take ResNet-18 He et al.
(2016) and MobileNet-V2|Sandler et al.| (2018)) as backbones for low-resolution students. To show
better results, according to Table [db] we use a strong high-resolution model (with ResNeXt-101 [Xie
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Table 5: Discussion on the choice of the high-
resolution teacher with our LRDet. Results with
different high-resolution teachers are provided.

Table 6: Discussion on the format of the bridge
detector. We conduct experiments on FCOS [Tian
et al.| (2019b)) with ResNet-50 and make a fair

comparison at comparable FLOPs.

LR HR AP APs AP, APp
400px - 32.1 123 364 483 Method | Resolution| FLOPs | AP AP5 APy APL
400px 800px 339 142 391 499 MSAD 400px 14438G | 39.7 21.7 429 550
(ours) 600px 342 144 384 500 LRDet 400px 521G | 382 210 423 509

800px & 600px | 347 145 398 505 LRDet 600px 1143G | 413 242 453 5441

Table 7: Generalization of LRDet. We extend our LRDet to instance segmentation models and human
keypoint detection models

Task Detector Resolution APk Apmask ppmak | ppmask gpmisk ppmask
800px 354 56.4 37.9 19.1 38.6 48.4
600px 33.6 54.1 35.8 13.9 36.2 51.0
400px 31.1 50.7 32.8 10.0 332 50.4
Mas‘;‘;gNN 600px(ours) | 355 65 377 6.1 335 537

. A (+1.9) (+2.4) (+1.9) (+2.2) (+2.3) (+2.7)
400px(ours) 325 52.2 34.5 114 35.2 52.5

Instance AN (+1.4) (+1.5) +1.7) (+1.4) (+2.0) (+2.1)
Segmentation 800px 33.1 535 35.0 12.2 36.1 50.8
600px 319 514 335 10.5 34.7 50.3
400px 28.8 47.3 30.2 6.5 30.5 50.8
S(_)II{%VI 600px(ours) 335 53.9 35.6 11.6 37.0 525

AN (+1.6) (+2.5) (+2.1) (+1.1) (+2.3) (+2.2)
400px(ours) 30.1 49.2 31.6 74 32.7 52.0

A (+1.3) (+1.9) (+1.4) (+0.9) (+2.2) (+1.2)

Task Detector Resolution AP AP50 AP75 AR AR5 AR75
384288 75.1 90.6 822 80.5 943 86.7
Keypoint 256x192 73.1 90.0 80.9 78.8 94.1 85.7
Detection Swin-base 256 x 192(ours) 74.1 90.7 81.9 79.6 94.5 86.7

A (+1.0) (+0.7) (+1.0) (+0.8) (+0.4) (+1.0)

et al.|(2017) as the backbone) as the teacher. The results are shown in Table 4d, The effectiveness of
our LRDet holds with lightweight models. Specifically, at 600 resolution, both RetinaNet-R18 and
RetinaNet-mbv2 achieves a +3.6 mAP improvement.

Heterogeneous architectures. In previous experiments, our LRDet concentrate on homogeneous
teacher-student detectors. However, the student detector for deployment is often significantly different
from the teacher. Thus, we investigate the cross-resolution distillation among heterogeneous teacher-
student pairs for a wide application. We use the two-stage detector (e.g., Faster-RCNN) to distill the
single-stage detector (RetinaNet), and the experimental results are shown in the Table[de] Note that
the inherit strategy is not available when distilling between heterogeneous detectors. Our method
deliver non-trivial gains with the heterogeneous teachers, which shows the potential for practical
applications of LRDet.

4.3 MORE DISCUSSIONS

In this section, we provide two further discussions on our LRDet. One is how to choose the high-
resolution teacher for the low-resolution student. Another discusses the way to construct a bridge for
low-resolution detection. Experiments and results are presented below.

Discussion on choosing high-resolution teachers. In our previous attempts, we adopt the 800 x 1333
high-resolution teacher for all low-resolution models. While in real applications, there may be
different resolutions that can serve as high resolutions. This section discusses how to choose a
high-resolution teacher for a low-resolution student. We conduct experiments by adopting 400 x 667
as the low-resolution and considering 600 x 1000 and 800 x 1333 as the high-resolution. Table[3]
provide the low-resolution detection results with RetinaNet-R50 using different high-resolution
teachers. Results show that the 600 x 1000 teacher brings more gains than the 800 x 1333 teacher.
We conjecture that the resolution gap between the teacher and the student affects the knowledge
transfer. Thus, choosing a high-resolution teacher with a relatively small resolution gap may bring
more improvements with LRDet. Moreover, in order to further improve the student model, we use
600 x 1000 and 800 x 1333 teachers to distill student simultaneously, which yields a better result.
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7 Image and GT boxes 7 I-iR model LI{ model LRDet (ours)
Figure 2: Visualization of FPN feature maps. LRDet helps the LR student to recover the attention on
the medium and small objects.

Discussion on constructing the bridge. We try to discuss how to construct a bridge for low-
resolution detection. As presented in our related works, MSAD also try to improve
the results of low-resolution students by knowledge distillation. They apply a high-resolution teacher
whose resolution is 2x larger than the low-resolution. Thus, they propose to fuse teacher features
and student features in a cross-level manner, which serve as a bridge to distill the low-resolution
student. However, their bridge has two limitations. One is that it requires a 2x differences to perform
cross-level feature fusion. The other is that their LR student models use P2~P6 features, which
is two times larger than the standard P3~P7. It is worth mentioning that using P2~P6 features
naturally leads to a ~1.5 mAP improvement, but it significantly increases computational cost. LRDet
addresses their limitations. Our framework has no constraint on resolution and can be used for any
two resolutions. Meanwhile, we use standard P3~P7 features for detection without any additional
calculation during inference. We conduct experiments with FCOS to prove that LRDet can works
better than MSA Table|§| shows the comparison between LRDet and MSAD. The inference FLOPs
of MSAD is much higher than ours when using the same low-resolution. To be fair, we compare
the accuracy under the comparable FLOPs. The results show that LRDet outperforms MSAD while
requiring less computation cost.

4.4 GENERALIZATION

To validate the generalization of our framework, we further conduct experiments on the instance
segmentation task and human keypoint detection task on the MS COCO benchmark [Lin et al.| (2014).
For instance segmentation task, we experiment on Mask-RCNN He et al | and SOLO-v1 |Wang
et al[(2020a) in the self-distillation settting. For human keypoint detection task, Swin-transformer Liu;
et al] (2021) is adopted. Table [7] shows that our method improves the LR students consistently,
indicating that LRDet has great potential to generalize to various position-sensitive tasks.

4.5 VISUALIZATION

By visualizing the feature maps, we verify that LRDet trains stronger low-resolution detector. As
shown in Figure[2] the LR model pays less attention on objects than the HR model, especially on
medium and small ones. And our LRDet successfully helps the LR student to recover the attention
on these medium and small objects, which further helps the student to be more accurate.

5 CONCLUSION

In this paper, we focus on improving low-resolution detection with high-resolution teachers. We
point out that the resolution gap and supervision mismatch between HR teachers and LR students
hinder the conventional distillation framework. Then we propose LRDet as an simple yet effective
framework to perform distillation across resolutions. The key insight of LRDet is the introduced
bridge branch, which can resolve the above problems caused by different resolutions. With the bridge
branch, the superior knowledge from the HR teacher can be smoothly transferred to the LR student.
We apply LRDet to various detectors on MS COCO benchmark using different image resolutions.
Extensive experimental results demonstrate the effectiveness of our LRDet. Moreover, we conduct
extensive ablation studies and discussions on LRDet to provide a better understanding.

4All experiments in TableEI use the high-resolution model provided by MSAD as the HR teacher and adopt
1x training schedule.
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A PSEUDO CODE

Algorithm 1 LRDet: PyTorch-like Pseudocode

# f_s, f_t: Backbone of student and teacher
# fpn_s, fpn_t: FPN of student and teacher
# h_s: Head(s) of student

# alpha: Hyperparameter to balance loss

# load low-resolution img and gt

for img, gt in loader:
# get high-resolution img and gt
hr_img, hr_gt = upsample(img, gt)

# lr student process

s_feat = f_s(img)

s_fpn_feat = fpn_s(s_feat)
s_detection = h_s (fpn_s_feat)

# bridge branch process
b_feat = upsample (s_feat)
b_fpn_feat = fpn_s(b_feat)
b_detection = h_s(fpn_b_feat)

# hr teacher process
t_feat = f_t (hr_img)
t_fpn_feat = fpn_t (t_feat)

# standard detection loss

s_loss = det_loss(s_detection, gt)
b_loss = det_loss (b_detection, hr_gt)

# feature distillation loss

d_loss = distill (b_fpn_feat, t_fpn_feat)

# update student

loss = s_loss + b_loss + alpha * d_loss
loss.backward()

update (f_s, fpn_s, h_s)

LRDet can be implemented with several simple changes to the conventional distillation framework.
The pseudo-code is provided in Algorithm|[I] The high-resolution images and ground truth boxes are
obtained by upsampling the low-resolution ones. We adopt standard detection loss to supervise the
student model and the bridge branch. Meanwhile, we use the simple MSE as the distillation loss. It
should be noted that our framework is compatible with many feature distillation algorithms, which

are discussed next (see Table|[3).

B MORE ABLATION STUDIES

Table 8: Robustness evaluation of LRDet on various types of distillation losses with RetinaNet-

Res50|Lin et al.|(2017b) on MS COCO |Lin et al.|(2014).

Loss | AP APs APy APL

MSE 37.8 202 418 51.1

L1 377 201 416 513
CWD(Shu et al{(2021) | 37.7 203 414 516
FGD|Yang et al.[(2022) | 37.8 20.1 41.8 51.0

Our LRDet is a simple framework to improve the low-resolution detection, which does not require

the sophisticated design of the model structure and careful parameter tuning.

13
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Table 9: Study on the sensitivity of a.. Our LRDet is robust to the loss weight « in Eq. (1) in the main
paper.

Reduction o AP APs AP, APp
mean 1.0 377 200 412 519
0.0005 | 37.8 20.1 412 517

sum 0.001 378 204 414 516
0.005 | 37.8 202 41.8 51.1

Robustness evaluation of LRDet on loss types. In Table. 8| we evaluate the robustness of our
method on various distillation losses. We conduct experiments on the single-scale setting, i.e.,
RetinaNet-Res50-800px |Lin et al.|(2017b) as HR teacher and RetinaNet-Res50-600px as LR student.
We use four-type distillation losses, including MSE, L1, CWD |Shu et al.| (2021), FGD |Yang et al.
(2022). As shown in Table ] different losses all lead to significant improvements. Compared to the
well-designed distillation losses such as FGD and CWD, the simple MSE or L1 loss can already
achieve comparable performance, indicating that our framework is robust to the type of distillation
loss.

Study on the sensitivity of o. We further evaluate the robustness of LRDet on the loss weight « in
Eq. (1) in the main paper. In Table[9] we adjust the loss reduction format and the loss weight of the
MSE loss. Other settings follow Table[§] As shown in Table[9] a simple mean reduction leads to a
decent improvement, while using sum reduction achieves better results. Meanwhile, different loss
weights all lead to considerable improvements, showing the robustness of LRDet on the loss weighﬂ

C MORE VISUALIZATIONS

In the main paper, we have visualized the FPN feature maps, here we report more visualizations of
the detection results to show the effect of our LRDet. As shown in Figure [3] LRDet improves object
detection on low-resolution images, especially the detection of small and medium-sized objects in
crowded and overlapping scenes.

SWe note that the sum reduction brings slightly higher gains for small target detection. We thus adopt the
sum reduction by default.
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Ground Truth HR Model LR Model LRDet

Missing \ | Error Correct

Figure 3: Visualization of detection results. Missing: false negative bounding boxes. Error: false
positive bounding boxes. (Best viewed in color and magnification.)
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