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Abstract
Private selection mechanisms (e.g., Report Noisy
Max, Sparse Vector) are fundamental primitives
of differentially private (DP) data analysis with
wide applications to private query release, voting,
and hyperparameter tuning. Recent work (Liu
& Talwar, 2019; Papernot & Steinke, 2022) has
made significant progress in both generalizing pri-
vate selection mechanisms and tightening their
privacy analysis using modern numerical privacy
accounting tools, e.g., Renyi DP. But Renyi DP
is known to be lossy when (ϵ, δ)-DP is ultimately
needed, and there is a trend to close the gap by
directly handling privacy profiles, i.e., δ as a func-
tion of ϵ or its equivalent dual form known as
f -DPs. In this paper, we work out an easy-to-use
recipe that bounds the privacy profiles of Report-
NoisyMax and PrivateTuning using the privacy
profiles of the base algorithms they corral. Numer-
ically, our approach improves over the RDP-based
accounting in all regimes of interest and leads to
substantial benefits in end-to-end private learn-
ing experiments. Our general result also allows
analysing the case of binomially-distributed num-
ber of rounds, which leads to more concentrated
distributions compared to the previously consid-
ered Poisson distribution.

1. Introduction
Differential privacy (DP) bounds the privacy loss incurred
when an algorithm is run on a dataset. While the analysis
of this bound is often quite nuanced, the rough tally is that
whenever the algorithm accesses the data, it incurs a privacy
cost.

By this rule of thumb, data privacy for modern machine
learning (ML) applications is in trouble. Most modern ML
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algorithms are notoriously finicky and require extensive hy-
perparameter tuning in order to achieve good performance.
In the context of data privacy, this means that the evaluation
of every additional hyperparameter candidate could have a
privacy cost.

Imagine that you have an (ϵ, δ)-DP training algorithm and
wish to evaluate it across k candidates. Naı̈vely it’s possible
to analyze the privacy of this procedure via composition,
a property of differential privacy which in its most basic
form implies that the privacy parameters ϵ and δ “add up”
(Dwork et al., 2006). This naı̈ve analysis would allow an
ML practitioner to privately release all k trained models at
a cost of (kϵ, kδ)-DP — i.e., the privacy cost scales linearly
in the number of model evaluations. But for hyperparameter
tuning, practitioners are typically most interested in the
“best” model (with the highest quality score) and hence
might want to output only one out of the k trained models.
Thus, a tighter analysis may often be available for this class
of private selection mechanisms which choose from a set
of candidates the item which approximately maximizes a
given quality score.

The aim of our work is to improve the privacy analysis
of private hyperparameter tuning algorithms for machine
learning algorithms. This line of inquiry originates with
Chaudhuri & Vinterbo (2013), who highlighted the need for
differentially private parameter tuning in order to achieve
end-to-end privacy in machine learning applications. Chaud-
huri & Vinterbo (2013) proposed a procedure for training
and validation which provides differential privacy under the
somewhat stringent condition that the learning algorithm
must uphold a notion of Lipschitz-like stability on the score
function.

The subsequent work of Liu & Talwar (2019) ushered in
the age of black-box frameworks for differentially private
hyperparameter tuning. Liu & Talwar (2019) relaxed the
stability assumption on the score function to the weaker
requirement that each individual candidate be differentially
private. They proposed black-box tuning methods that use
a random stopping strategy; in particular, the number of
candidates evaluated by the learning algorithm follows a
geometric distribution. Liu & Talwar (2019) showed that if
each candidate (or “base mechanism”, as we will call it in
our work) satisfies ϵ-DP, then their end-to-end algorithm for
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private selection satifies 3ϵ-DP. They also gave approximate
(ϵ, δ)-DP results.

The Liu & Talwar (2019) bounds apply only to (ϵ, δ)-DP.
Mohapatra et al. (2022) gave adaptive tuning methods and
showed that for a reasonable number of privately chosen
candidates, naı̈ve accounting via Rényi differential privacy
(RDP) often yields tighter DP bounds than private selection
using the methods by Liu & Talwar (2019). One might then
ask, what could more sophisticated RDP accounting do?

We base our approach on the quite notable results of Paper-
not & Steinke (2022), which built on Liu & Talwar (2019)’s
work and provided RDP bounds for black-box tuning algo-
rithms which scale logarithmically in relation to the number
of model evaluations. Papernot & Steinke (2022) also gen-
eralized the random stopping strategy to encompass distri-
butions other than the geometric distribution: the number of
repetitions can now be distributed according to a truncated
negative binomial distribution, or to a Poisson distribution.
In either case the RDP bound for the end-to-end algorithm
is constructed from the RDP and DP bounds on the base
mechanisms.

What is missing from the private selection and private hy-
perparameter tuning line of work, are bounds that would
directly use the privacy profiles of the base mechanisms as
building blocks and would also be capable of taking advan-
tage of numerical accounting methods (e.g., the recent work
of Koskela et al., 2021; Zhu et al., 2022; Gopi et al., 2021).
In this work we address this shortfall. Our proposed bounds
utilize only point-wise information about the (ϵ, δ)-profile
of the base mechanism, similarly to bounds given by Liu &
Talwar (2019).

As one application of our results we consider Differentially
Private Stochastic Gradient Descent (DP-SGD) (Abadi et al.,
2016), a popular technique for training machine learning
models with DP. DP-SGD introduces extra hyperparameters
such as the noise level σ and clipping constant C; factors
like the subsampling ratio q and the training duration also
affect both the privacy and accuracy of the methods. As
demonstrated by Papernot & Steinke (2022), tweaking DP-
SGD’s hyperparameters often relies on using sensitive data
which require privacy protection. The risk of data leakage
from hyperparameters is arguably smaller than from model
parameters, but developing methods with low privacy costs
has proven challenging. The leading algorithms proposed
by Papernot & Steinke (2022) still incur a significant privacy
cost overhead. Our aim is to further lower this overhead.

As another application of our analysis we consider General-
ized Propose-Test-Release (Redberg et al., 2023), which
broadens the reach of the Propose-Test-Release (PTR)
framework by allowing it to handle queries with unbounded
sensitivity, making it applicable to problems such as lin-

ear regression. The method proposed by Redberg et al.
(2023) gives point-wise (ϵ, δ)-privacy guarantees for gener-
alized PTR. Thus, in order to account for the privacy cost of
tuning the hyperparameters of the underlying queries, we
can directly use our analysis for which point-wise (ϵ, δ)-
guarantees are sufficient. We show that our bounds are
considerably tighter than those of Liu & Talwar (2019), the
only previous applicable results. We also empirically illus-
trate that compared to well-established non-adaptive meth-
ods, our bounds considerably improve the privacy-utility
trade-off for linear regression problems.

2. Preliminaries
We first give the basic definitions. An input dataset contain-
ing n data points is denoted as X = {x1, . . . , xn}. Denote
the set of all possible datasets by X . We say X and X ′

are neighbors if we get one by adding or removing one
data element to or from the other, or by replacing one data
element in the other (denoted X ∼ X ′). Consider a ran-
domized mechanismM : X → O, where O denotes the
output space. The (ϵ, δ)-definition of DP can be given as
follows (Dwork, 2006).
Definition 2.1. Let ϵ > 0 and δ ∈ [0, 1]. We say that a
mechanismM is (ϵ, δ)-DP, if for all neighboring datasets
X and X ′ and for every measurable set E ⊂ O we have:

Pr(M(X) ∈ E) ≤ e ϵPr(M(X ′) ∈ E) + δ.

We state many of our results for general f -divergences.
For a convex function f : [0,∞) → R, we define the f -
divergence between distributions P and Q taking values in
Y as

Hf (P ||Q) =

∫
Y
f

(
P (y)

Q(y)

)
Q(y) dy.

Notice that we do not require the normalization f(1) = 0
often used in the so-called Czsisár divergences (Liese &
Vajda, 2006) as it is not necessary and can be obtained
simply by scaling. Especially, our aim is to find tight bounds
for the hockey stick divergence, i.e., when f(z) = [z− e ϵ]+
for some ϵ ∈ R. This is due to the fact that tight (ϵ, δ)-
bounds can be obtained using the hockey-stick-divergence:
Lemma 2.2 (Balle et al. 2018, Theorem 1). A
mechanism M satisfies (ϵ, δ)-DP if and only if,
maxX∼X′ Hf (M(X)||M(X ′)) ≤ δ for f(z) = [z−e ϵ]+.

We denote the hockey stick divergence determined by ϵ ∈ R
by He ϵ throughout the paper, and will refer to

δM(ϵ) := max
X∼X′

Heϵ(M(X)||M(X ′))

as the privacy profile of mechanismM.

We will also use the Rényi differential privacy
(RDP) (Mironov, 2017) which is defined as follows.
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Rényi divergence of order α > 1 between two distributions
P and Q is defined as

Dα(P ||Q) =
1

α− 1
log

∫ (
P (t)

Q(t)

)α

Q(t) dt (2.1)

and we say that a mechanismM is (α, ϵ)-RDP, if for all
neighboring datasets X and X ′, the output distributions of
M(X) andM(X ′) have Rényi divergence of order α > 1
at most ϵ, i.e., if

max
X∼X′

Dα

(
M(X)||M(X ′)

)
≤ ϵ.

To convert from RDP to (ϵ, δ)-DP, we use the formula given
in Appendix (D.1).

Notice that the Rényi divergence of order α > 1 is a scaled
logarithm of an f -divergence determined by f(z) = zα.
Existing RDP analyses for Report Noisy Max and private
selection use the fact f(u, v) = (uv )

αv is a jointly convex
function for u and v. We formulate many of our results
for general f -divergences, for which the following tech-
nical result will then be central (see e.g., Ch. 3, Boyd &
Vandenberghe, 2004).

Lemma 2.3. If f : R+ → R+ is a convex function, then
the function f

(
x
y

)
y is jointly convex for x ≥ 0 and y > 0.

For the analysis of private selection algorithms, the number
of times K that the base algorithm is evaluated is a random
variable. To analyze different alternatives for choosing K,
we will need the concept of probability generating functions.

Definition 2.4. Let K be a random variable taking values
in N ∪ {0}. The probability generating function (PGF) of
K, φ : [0, 1]→ [0, 1] is defined as

φ(z) =

∞∑
k=0

P(K = k) · zk.

Our main result Thm. 4.1 is stated for a general PGF φ and
we use it obtain method-specific bounds. Throughout the
paper, we will denote m = E[K].

3. Report Noisy Max for Additive Noise
Mechanisms

As a first application of the hockey-stick divergence-based
analysis, we consider the Report Noisy Max (RNM) of 1-
dimensional additive noise mechanisms. This will serve as
a segue into the more involved analysis of private selection,
where we also obtain bigger gains compared to the previous
results. Our analysis here is based on the RDP analysis
by Zhu & Wang (2022). We mention that recent applications
of RNM include private in-context learning of LLMs (Wu
et al., 2024; Tang et al., 2024).

Let X = {x1, x2, . . . , xN}, where xi ∈ X for all i ∈ [N ],
be a data set and consider the mechanism

M(X) = argmax{M1(X), . . . ,Mm(X)}, (3.1)

where for every i ∈ [m],

Mi(X) = f(X) + Zi,

for some function fi : X → R such that

max
X∼X′

|fi(X)− fi(X
′)| ≤ 1

and where the noises Zi, i ∈ [m], are i.i.d. We have the
following existing RDP bound.
Theorem 3.1 (Zhu & Wang 2022, Theorem 8). Let α > 1.
The mechanismM(X) is (α, ϵ′)-RDP for

ϵ′ = ϵ+
logm

α− 1
, (3.2)

where ϵ denotes the RDP guarantee of order α for an addi-
tive noise mechanism with noise Z and sensitivity 2.
Theorem 3.2. Let X ∼ X ′ and ϵ ∈ R. We have:

He ϵ

(
M(X)||M(X ′)

)
≤ m · δ(ϵ), (3.3)

where δ(ϵ) is the privacy profile of the additive noise mech-
anism with sensitivity 2. If we assume monotonicity, i.e., if
fi(X) ≥ fi(X

′) or fi(X) ≤ fi(X
′) for all i ∈ [m], then

the sensitivity of 2 can be replaced with a sensitivity of 1.
Theorem 3.3. For an adaptive composition of k mecha-
nisms of the form (3.1), we get the privacy profile upper
bound mk · δ(ϵ), where δ(ϵ) is the privacy profile of an
m-wise composition of an additive noise mechanism with
noise Z and sensitivity 2.

The RDP analysis of the private selection algorithm pro-
vided by Papernot & Steinke (2022) shows that the RDP
guarantees essentially grow as logm, where m is the ex-
pected number of candidates for the private selection algo-
rithm. When Z is normally distributed, we directly see from
our analysis that for a fixed δ the ϵ-values of the private se-
lection algorithm grow as 1

σ log
1
2 m

δ . This result is obtained
for the RNM using a simple tail bound of the Gaussian.
Corollary 3.4. Consider the mechanism M defined in
Eq. 3.1 and suppose Z is normally distributed with vari-
ance σ2. Let δ > 0. ThenM is (ϵ, δ)-DP for

ϵ =
2

σ2
+

2

σ

√
2 log

m

δ

As Figure 1 shows, with the bound given in Thm. 3.2 we ob-
serve differences one usually observes between the accurate
hockey stick and Rényi divergence bounds (for comparisons,
see, e.g. Canonne et al., 2020). When considering the private
selection problem where the number of candidates is ran-
domized, we obtain larger differences. Also, the ϵ-growth
order O( 1σ log

1
2 m

δ ) is retained. All of this is discussed in
the next two sections.
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Figure 1. Comparison of the (ϵ, δ)-bounds for the RNM mech-
anism (3.1) when the base mechanisms Mi, i ∈ [m], are 1-d
Gaussian mechanisms with sensitivity 1 and noise scale σ = 4.0,
and when δ = 10−6. Also plotted is the bound of Corollary 3.4.

4. General Bound for Private Selection
We use the notation and setting of Papernot & Steinke
(2022). This means that the tuning algorithm A outputs
both the argument of the maximizer (the best hyperparam-
eters or the index) and the output of the base mechanism
(e.g., the model trained with the best hyperparameters).

Let Y denote the finite and ordered output space (the quality
score), Q(y) the density function of the quality score of the
base mechanism taking values in Y , K the random variable
for the number of times the base mechanism is run and A(y)
the density function of the tuning algorithm that outputs
the best one of the K alternatives. Let A and A′ denote
the output distributions of the tuning algorithm evaluated
on neighboring datasets X and X ′, respectively. Then, the
f -divergence between A and A′ can be bounded using the
following result. We use the proof technique from Lemma
7 of Papernot & Steinke (2022) and similarly invoke the
argument that our proof for finite Y can be extended to the
general case.

Theorem 4.1. Let X ∼ X ′ and let A and A′ be the density
functions of the hyperparameter tuning algorithm as defined
above, evaluated on X and X ′, respectively. Let Q and
Q′ be the density functions of the quality score of the base
mechanism, evaluated on X and X ′, respectively. Let K be
random variable for the times the base mechanism is run
and φ(z) the PGF of K. Let f : [0,∞)→ R be a convex
function. Then,

Hf (A||A′) ≤
∑
y∈Y

f

(
Q(y)φ′(qy)

Q′(y)φ′(q′y)

)
·Q′(y)φ′(q′y),

where for each y ∈ Y , qy and q′y are obtained by applying

the same y-dependent post-processing function to Q and Q′,
respectively.

Looking at the bound given by Thm. 4.1, we can decompose
the right-hand side in case f corresponds to the Rényi diver-
gence and obtain (Lemma 7, Papernot & Steinke, 2022) as
a corollary.

Remark 4.2. Let f(z) = zλ for some λ ≥ 1. Then, by
Thm. 4.1,

e (λ−1)Dλ(A||A′) = Hf (A||A′)

≤
∑
y∈Y

(
Q(y)

Q′(y)

)λ

Q′(y) ·
(
φ′(qy)

φ′(q′y)

)λ

φ′(q′y)

≤

∑
y∈Y

(
Q(y)

Q′(y)

)λ

Q′(y)

( φ′(q)

φ′(q′)

)λ

φ′(q′),

(4.1)

for some q and q′ that are obtained by applying the same
post-processing function to Q and Q′, respectively. Taking
the logarithm and dividing by λ− 1, we obtain (Lemma 7,
Papernot & Steinke, 2022).

In case of RDP analysis, the bounds for the randomized
private selection algorithms (see Theorems 5.1 and 5.6)
allow optimizing the bound (4.1) with respect to the privacy
profile of Q. For example: as q is a result of post-processing
of Q, we have that for all ϵ ≥ 0

q ≤ e ϵq′ + δ(ϵ),

where δ(ϵ) gives the privacy profile of Q, and we can carry
out an optimization of the bound (4.1) individually for each
RDP order λ w.r.t. ϵ. In case the function f in Thm. 4.1
corresponds to the hockey stick divergence, the best we can
have is a uniform bound for the ratio φ′(qy)

φ′(q′y)
which uses the

bound qy ≤ e ϵq′y + δ(ϵ) with the same value of ϵ for each
y ∈ Y . As a result there is one degree of freedom less to
optimize in the upper bounds we obtain using the hockey
stick divergence. Nevertheless, the analysis with the hockey
stick divergence becomes much simpler and the resulting
(ϵ, δ)-DP bounds for private selection become tighter.

5. Distribution Specific Bounds for Private
Selection

We next consider privacy profile bounds for two specific
choices of the distribution K, the truncated negative bino-
mial distribution and the binomial distribution. As we show,
in both cases the bounds allow evaluating a considerably
larger number of private candidates than the state-of-the-art
bounds. The bounds for the binomial distribution generalize
the bounds for the Poisson distribution, improve the state-of-
the-art bounds for the Poisson distribution, and also allow
concentrating K further.
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5.1. Truncated Negative Binomial Distribution

Suppose the number of trials K is distributed according
to the truncated negative binomial distribution Dη,γ which
is determined by γ ∈ (0, 1) and η ∈ (−1,∞) and by the
probabilities (k ∈ N) for η ̸= 0 by

P(K = k) =
(1− γ)k

γ−η − 1

k−1∏
i=0

(
i+ η

i+ 1

)
.

and for η = 0 by

P(K = k) =
(1− γ)k

k · log 1/γ
.

It holds that when η ̸= 0,

EK =
η(1− γ)

γ(1− γη)

and when η = 0,

EK =
1/γ − 1

log 1/γ
.

The derivative of the corresponding probability generating
function is given by

φ′(z) =
(
1− (1− γ)z

)−η−1 · γη+1 · EK. (5.1)

As a baseline, we consider the following RDP bound.

Theorem 5.1 (Papernot & Steinke 2022). Let Q satisfy(
α, ϵ
)
-RDP and

(
α̂, ϵ̂
)
-RDP for some α ∈ (1,∞) and

α̂ ∈ [1,∞). Draw K from a truncated negative bino-
mial distribution distribution Dη,γ , where γ ∈ (0, 1) and
η ∈ (−1,∞). Run Q(X) for K times. Then A(X) returns
the best value of those K runs (also Q’s output). Then A
satisfies

(
α, ϵ′(α)

)
-RDP, where

ϵ′(α) = ϵ(α) + (η + 1)

(
1− 1

α̂

)
ϵ̂

+
(1 + η) · log(1/γ)

α̂
+

logm

α− 1
.

Using the PGF (5.1) and our general result Thm.4.1, we ob-
tain the following bound using the hockey-stick divergence.

Theorem 5.2. Let K ∼ Dη,γ and let δ(ϵ1), ϵ1 ∈ R, define
the privacy profile of the base mechanism Q. Then, for A
and A′, the output distributions of the selection algorithm
evaluated on neighboring datasets X and X ′, respectively,
and for all ϵ1 ≥ 0,

He ϵ(A||A′) ≤ m · δ(ϵ̂)

where

ϵ̂ = ϵ− (η + 1) log

(
e ϵ1 +

1− γ

γ
· δ(ϵ1)

)
.

We directly obtain the following pure ϵ-DP result from
Thm. 5.2. Notice that it includes Theorem 1.3 (3ϵ-bound)
by Liu & Talwar (2019) as a special case.

Corollary 5.3. Let K ∼ Dη,γ . If the base mechanism Q
is ϵ-DP, then the selection algorithm A is (η + 2)ϵ-DP. For
η = 1 we get Theorem 1.3 of (Liu & Talwar, 2019).

The following (ϵ, δ)-DP result is also a straightforward
corollary of Thm. 5.2.

Corollary 5.4. Let K ∼ Dη,γ . If the base mechanism Q is
(ϵ, δ)-DP, then then the selection algorithm A is

(
(η+2)ϵ+

γ−1δ,mδ
)
-DP.

Notice that for the geometric distribution (η = 1), Cor. 5.4
implies that if Q is (ϵ, δ)-DP, then A is

(
3ϵ+mδ,mδ

)
-DP.

We can show that for a fixed δ the ϵ-value of the private
selection algorithm is O(log

1
2 m

δ ), in case the base mecha-
nism is Gaussian differentially private (Dong et al., 2022),
i.e., if its privacy profile is dominated by the hockey-stick
divergence between two Gaussians.

Corollary 5.5 (ϵ-values when Q is GDP). Let K ∼ Dη,γ

with η ≥ 1 and suppose the base mechanism is dominated
by the Gaussian mechanism with noise parameter σ > 0
and L2-sensitivity 1. Then, for a fixed δ > 0, the private
selection algorithm A is (ϵ, δ)-DP for

ϵ = (η + 1)

(
1

2σ2
+

1

σ

√
2 log

m

δ

)
+ 2δ.

Figure 2 illustrates the various bounds for the truncated
negative binomial distribution with η = 1 when the base
mechanism is the Gaussian mechanism with σ = 4 and
L2-sensitivity 1, when m = 30, 300 and 3000. Figure 3
shows the increase of the ϵ-values for a fixed value of δ and
the bound of Lemma 5.5 for comparison.

5.2. Binomial Distribution

The choice of distribution for the number of repetitions K
has practical implications on the utility of private selection
(Papernot & Steinke, 2022). One issue is that when the
distribution of K is less concentrated, the value of K is
likely to be small — meaning fewer candidates evaluated
— even when its expectation is large. This is especially
problematic for smaller numbers of candidates where the
expectation of K is not even large to begin with! As a prac-
tical alternative to the less-concentrated truncated negative
binomial distribution, Papernot & Steinke (2022) consider
the Poisson distribution for K.

In our work, by considering K ∼ Bin(n, p) to be binomi-
ally distributed, we can still further concentrate the distri-
bution of K by allowing a small additional privacy cost.
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Figure 2. Comparison of various (ϵ, δ)-bounds when K ∼ Dη,γ

with η = 1 (the geometric distribution, E[K] = γ−1) and m =
30, 300, 3000. The base mechanism is the Gaussian mechanism
with L2-sensitivity 1 and noise parameter σ = 4.
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Figure 3. Growth of ϵ-values for δ = 10−6 for the RDP and hockey
stick divergence based bounds as a function of m, when K ∼ Dη,γ

with η = 1 and the base mechanism is the Gaussian mechanism
with L2-sensitivity 1 and noise parameter σ = 4. The privacy
profile bound given by Thm. 5.2 retains the O(log

1
2 m

δ
) growth of

ϵ-values from the DP RNM (See Fig. 1).

The hockey stick-based approach simplifies the analysis
such that when compared to the RDP bounds for Poisson-
distributed K, we essentially get much more concentrated
K for the same privacy cost using the binomial distribution.

Our bound for K ∼ Bin(n, p) is a strict generalization of
the Poisson distribution case, as we get the result for the
Poisson distribution as a limit when p→ 0. The RDP bound
to compare is the one given by Papernot & Steinke (2022).

Theorem 5.6 (Papernot & Steinke 2022). Let Q satisfy(
α, ϵ
)
-RDP and (ϵ̂, δ̂)-DP for some α ∈ (1,∞) and

ϵ, ϵ̂, δ̂ ≥ 0. Draw K from a Poisson distribution with mean
m. Run Q(X) for K times. Then A(X) returns the best
value of those K runs (also Q’s output). If K = 0, A(X)
returns some arbitrary output. If e ϵ̂ ≤ 1 + 1

α−1 , then A

satisfies
(
α, ϵ′(α)

)
-RDP, where

ϵ′(α) = ϵ+m · δ̂ + logm

α− 1
.

For a hockey stick divergence bound, we consider the bi-
nomially distributed K which is a strict generalization of
the Poisson case and includes its privacy profile bound as
a special case. We can derive the following result from
Thm. 4.1 when using the PGF of the binomial distribution.

Theorem 5.7. Let K ∼ Bin(n, p) for some n ∈ N and
0 < p < 1, and let δ(ϵ1), ϵ1 ∈ R, define the privacy profile
of the base mechanism Q. Suppose

ϵ1 ≥ log
(
1 + p

1−p · δ(ϵ1)
)
.

Then, for A and A′, the output distributions of the selection
algorithm evaluated on neighboring datasets X and X ′,
respectively, for all ϵ > 0 and for all ϵ1 ≥ 0,

He ϵ(A||A′) ≤ m · δ(ϵ̂), (5.2)

where

ϵ̂ = ϵ− (n− 1) log
(
1 + p · (e ϵ1 − 1) + p · δ(ϵ1)

)
.

We get the hockey stick divergence bound for the case K ∼
Poisson(m) as a corollary of Thm. 5.7.

Corollary 5.8. Let K ∼ Poisson(m) for some m ∈ N,
and let δ(ϵ1), ϵ1 ∈ R, define the privacy profile of the base
mechanism Q. Then, for A and A′, the output distributions
of the selection algorithm evaluated on neighboring datasets
X and X ′, respectively, and for all ϵ > 0 and for all ϵ1 ≥ 0,

He ϵ(A||A′) ≤ m · δ(ϵ̂), (5.3)

where

ϵ̂ = ϵ−m · (e ϵ1 − 1)−m · δ(ϵ1).

The proof of Cor. 5.8 essentially follows from the fact that
Bin(n,m/n) approaches Poisson(m) in total variation dis-
tance as n grows and that the bound (5.2) approaches the
bound (5.3) as n grows. Figure 4 illustrates that when com-
pared to the RDP bound of Thm. 5.6 for the Poisson dis-
tributed K, we can obtain much smaller probabilities for
small values of K for the same privacy cost when using
K ∼ Bin(n,m/n) and Thm. 5.7.
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Figure 4. Top: Comparison of the bound of Thm. 5.7 for K ∼
Bin(n,m/n) for different values of n, when m = 10, and the
RDP bound of Thm. 5.6. The base mechanism is the Gaussian
mechanism with sensitivity 1 and σ = 4.0. Bottom: Comparison
of the CDFs for different values of n. When comparing to the RDP
bound, we see that at δ ≈ 10−6 we get more concentrated K for
free by using the binomial distribution and Thm. 5.7.

6. Applications
6.1. Hyperparameter tuning for Propose-Test-Release

Propose-Test-Release (PTR) (Dwork & Lei, 2009) is one of
the most versatile recipes for data-adaptive DP mechanism
design. In its vanilla form, it involves three steps: (1) pro-
pose (or guess) a bound of the local sensitivity; (2) privately
test whether the bound is valid; (3) If it passes the test, cali-
brate noise proportional to the proposed bound; otherwise,
refuse to answer. Recently, Redberg et al. (2023) gener-
alized this approach by considering data-adaptive privacy
losses instead. The biggest challenge to apply the method
is to know which bound to propose. The data-dependent
privacy loss will depend on both the dataset and the hyper-
parameters of the query (as an example, think of the noise
scale in additive noise mechanisms). To tune these hyperpa-

rameters we consider the private selection algorithm with
geometrically distributed K. The tricky issue with PTR is
that PTR does not satisfy Rényi DP, and thus disqualifies the
approach from Papernot & Steinke (2022). Meanwhile, our
methods deal with (ε, δ)-DP and δ-approximate Gaussian
DP very naturally. Using our Thm. 5.2 we can select the
best threshold to propose in a large number of candidates
without resorting to composition. We have the following
result for Generalized PTR with an (ϵ̂, δ̂)-DP test. We refer
to Redberg et al. (2023) for more details.

Theorem 6.1 (Redberg et al. 2023). Consider a proposal ϕ
and a data-dependent function ϵϕ(X) w.r.t. δ > 0. Suppose
that we have an (ϵ̂, δ̂)-DP test T : X → {0, 1} such that
when ϵϕ(X) > ϵ, T (X) = 1 with probability δ′ and 0
with probability 1 − δ′. Then the Generalized PTR algo-
rithm (Redberg et al., 2023, Alg. 2) is (ϵ+ ϵ̂, δ+ δ̂+ δ′)-DP.

Our approach is to wrap the private selection algorithm
around generalized PTR and tune the parameter ϕ. We use
the point-wise guarantees given by Thm. 6.1 for Gen. PTR
and our Thm. 5.1 for the tuning algorithm. To illustrate
the effectiveness of this approach, we consider a linear re-
gression problem on two UCI benchmark data sets (Bache
& Lichman, 2013), see Fig. 5. We apply the Generalized
PTR to the one-posterior sample (OPS) algorithm described
in (Redberg et al., 2023) which includes privately releas-
ing the L2-norm of the non-private solution and also the
smallest eigenvalue of the feature covariance matrix. The pa-
rameter to tune in the method is the regularization strength
λ (see Alg. 7, Redberg et al., 2023) and we carry out a
random search on a pre-defined logarithmically equidistant
grid meaning that we pick a random value from the grid
at each of the K rounds. Notice that we could draw the
candidates from any fixed probability distribution; the only
requirement is that each candidate mechanism has the same
privacy profile. As baselines we have the same approach
using the privacy bounds of Liu & Talwar (Thm. 3.5, 2019),
the output perturbation method (Chaudhuri et al., 2011) and
the non-adaptive method OPS-Balanced by Wang (2018).

6.2. Private Hyperparameter Tuning of DP-SGD

Our results enable using numerical accountants for com-
puting the privacy profile δ(ϵ) for the subsampled Gaus-
sian mechanism (see, e.g., Koskela et al., 2021; Gopi et al.,
2021; Zhu et al., 2022). We consider the simplest case,
i.e., the Poisson subsampling and the add/remove neighbor-
hood relation of datasets. We apply the numerical method
proposed by Koskela et al. (2021) to the dominating pairs
given in (Thm. 11, Zhu et al., 2022) to obtain accurate pri-
vacy profiles for the base mechanism. We remark that Zhu
et al. (2022) give privacy profiles for various subsampling
schemes under both add/remove and substitute neighbor-
hood relations of datasets. With these results, one can numer-
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Figure 5. Linear regression problem on two UCI benchmark
datasets. Tuning OPS-PTR (i.e., generalized PTR applied to the
one-posterior sample algorithm) via the private selection algorithm
outperforms baseline methods when the privacy cost of the tuning
procedure is calculated using our Thm. 5.2.

ically construct the dominating pair of distributions using
methods of Doroshenko et al. (2022) and also obtain upper
bounds for compositions.

We find that our bounds are tighter than the RDP bounds
across a variety of parameter combinations. Figure 6 shows
comparisons with parameters taken from an example of (Pa-
pernot & Steinke, 2022). RDP parameters are evaluated
using the Opacus library (Yousefpour et al., 2021). Often,
using larger batch sizes and noise ratios leads to increased
privacy-utility tradeoff (De et al., 2022; Ponomareva et al.,
2023). Figure 7 shows comparisons in a setting of such a
high-accuracy experiment (De et al., 2022).

Adjusting Hyperparameters. One important question is,
how to adjust the hyperparameters in case we are optimizing
parameters that affect the privacy guarantees themselves.
For example, one may consider tuning the noise parameter
σ in DP-SGD in which case one may also consider adjusting
the length of the training.
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RDP bound (Poisson), Thm. 5.6
HS bound (Poisson), Cor. 5.8
RDP bound (Geom.), Thm. 5.1
HS bound (Geom.), Thm. 5.2

Figure 6. Comparison of the hockey stick divergence bounds of
Thm. 5.2 and Cor. 5.8 and the RDP bounds of Thm. 5.1 and 5.6
for the private selection for a Poisson subsampled Gaussian mech-
anism with subsampling ratio q = 256/60000, noise parameter
σ = 1.1 and number of steps T = ⌈60/q⌉.
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HS bound, Thm. 5.2

Figure 7. Comparison of the bounds, when the base mechanism is
a Poisson subsampled Gaussian mechanism with the parameters
q = 16384/50000, σ = 21.1 and T = 250 (see Table 18 in De
et al., 2022). We see that the bound of Thm. 5.2 allows evaluating
approximately 3 times as many models as the RDP bound.

The bound of Thm. 5.2 essentially requires only point-wise
information about the privacy profile of the base mechanism
Q. However, the bound can be optimized w.r.t. the privacy
profile of Q which may affect it considerably. For finding
ideal point-wise DP thresholds, we consider the following
procedure. Suppose the base mechanisms all satisfy (ϵQ, δ)
for some ϵQ > 0 and δ > 0. As the privacy profiles start
to resemble those of the Gaussian mechanism for large
numbers of compositions (Dong et al., 2022), we carry out
the optimization of the upper bound of Thm. 5.2 w.r.t. to
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the privacy profile of a Gaussian mechanism (GM) that is
adjusted to be (ϵQ, δ)-DP. More specifically, we first adjust
the noise scale σ of the GM such that it is (ϵQ, δ)-DP, to
obtain a privacy profile δQ(ϵ). Then, in case we are using
K ∼ Dη,γ , we carry out the minimization

ϵ1 = argmin
ϵ

log
(
e ϵ + 1−γ

γ δQ(ϵ)
)
.

and set δ1 = δQ(ϵ1). This results in the first threshold
(ϵ1, δ1). Using the same privacy profile we find an ϵ̂-value
where this GM is (ϵ̂, δ/m)-DP. The following corollary
result of Thm. 5.2 then gives the ϵ-value for which the
private selection algorithm is (ϵ, δ)-DP.

Corollary 6.2. Suppose the base mechanism Q is (ϵ1, δ1)-
DP and (ϵ̂, δ/m)-DP for some ϵ1 ≥ 0 and ϵ̂ ≥ 0. Then, the
private selection algorithm with K ∼ Dη,γ is (ϵ, δ)-DP for

ϵ = ϵ̂+ (η + 1) log
(
e ϵ1 + 1−γ

γ δ1

)
.

Figure 8 shows the upper bound obtained using this proce-
dure, when we are tuning the σ-parameter for the Poisson
subsampled Gaussian mechanism. We fix q = 0.01 and
set as a threshold ϵQ = 1.5 and δ = 10−6. We consider
three σ-candidates: 2.0, 3.0 and 4.0 and for each of them
the number of iterations T is determined to be the maxi-
mum such that the privacy profile of the candidate is below
(ϵ1, δ1)- and (ϵ̂, δ/m)-thresholds. As a result we can run
the candidate models for ≈ 4000, 10000 and 18000 itera-
tions, respectively. We compare the (ϵ, δ)-DP bound given
by Cor. 6.2 and the bounds we would obtain by optimizing
Thm. 5.2 individually for each candidate mechanism and
see that there is a very small gap.

7. Conclusions and Future Work
We have filled a gap in the private selection literature by
providing (ϵ, δ)-privacy analysis for various selection algo-
rithms that is able to accurately use the privacy profiles of
the candidate mechanisms. Our bounds can be used as a
drop-in replacement of the existing RDP bounds. When
compared to existing RDP bounds, in DP-SGD tuning, for
example, the new bounds allow evaluating approximately
3 times as many candidate models. The bounds also im-
prove existing point-wise (ϵ, δ)-bounds which translates to
improved utility in data-adaptive analyses using the general-
ized PTR framework. We have also shown how to use the
bounds to adjust parameters of the candidate models when
tuning hyperparameters that affect the privacy guarantees of
the candidate mechanisms.

Related to the results of Section 3, it is an open problem how
to find tight bounds for a given noise-adding mechanism in
case of unbounded queries. It is fairly straightforward to
find accurate numerical bounds for a fixed pair of datasets
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Figure 8. Tuning the σ-parameter for the Poisson subsampled
Gaussian mechanism with the geometrically distributed K. We fix
q = 0.01 and consider three σ-candidates: 2.0, 3.0 and 4.0. Shown
are the (ϵ, δ)-bound given by Cor. 6.2 and the bounds obtained by
optimizing Thm. 5.2 individually for each candidate mechanism.

and a given noise-adding mechanism, but it is unclear what
would generally be the worst-case pairs of query values in
case of unbounded queries (for results in case of bounded
queries, see Lebensold et al., 2024). Regarding the re-
sults of Section 4 and 5, our impression is that when the
number of candidates is randomized, our bounds cannot be
much tightened. However, one could consider different ran-
domized selection algorithms such as those by Cohen et al.
(2023) where the number of candidates is Beta-binomially
distributed. It is an interesting question whether our general
result of Thm. 4.1 could be then used to derive tighter pri-
vacy bounds. Note that all our results are non-data adaptive
in the sense that they do not benefit, for example, from the
case that one of the candidates is clearly better than the rest.
As an alternative, one could consider data-adaptive mecha-
nisms such as Bayesian optimization methods (Wang et al.,
2023) or data-adaptive top-k selection mechanisms (Zhu &
Wang, 2022).
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A. Proofs for Section 3
A.1. Proof of Theorem 3.2 (Privacy Profile of Additive Noise RNM)

Theorem A.1. Let X ∼ X ′ and ϵ ∈ R. We have

He ϵ

(
M(X)||M(X ′)

)
≤ m · δ(ϵ),

where δ(ϵ) is the privacy profile of the additive noise mechanism with sensitivity 2.

Proof. For each i ∈ [m], denoting the density function of Zi by p(ri), we have that

Hf

(
M(X)||M(X ′)

)
=

m∑
i=1

f

(
P(M(X) = i)

P(M(X ′) = i)

)
P(M(X ′) = i)

=

m∑
i=1

f

(∫∞
−∞ p(ri − 2) ·P(fi(X) + ri − 2 > maxj∈[m],j ̸=i{fj(X) + rj}) dri∫∞
−∞ p(ri) ·P(fi(X ′) + ri > maxj∈[m],j ̸=i{fj(X ′) + rj}) dri

)

·
∫ ∞
−∞

p(ri) ·P(fi(X
′) + ri > max

j∈[m],j ̸=i
{fj(X ′) + rj}) dri,

(A.1)

where p(ri)’s are the density functions of Zi’s, respectively, and where the randomness in P(fi(X) + ri >
maxj∈[m],j ̸=i{fj(X) + rj}) is w.r.t. rj’s.

From the Lipschitz property it follows that for all i ∈ [m],

P(fi(X) + ri − 2 > maxj∈[m],j ̸=i{fj(X) + rj})
P(fi(X ′) + ri > maxj∈[m],j ̸=i{fj(X ′) + rj})

≤ 1. (A.2)

For an f divergence determined by a convex f of the RNM of additive noise mechanisms evaluated at X and X ′, we have
that

Hf

(
M(X)||M(X ′)

)
=

m∑
i=1

f

(
P(M(X) = i)

P(M(X ′) = i)

)
P(M(X ′) = i)

=

m∑
i=1

f

(∫∞
−∞ p(ri − 2) ·P(fi(X) + ri − 2 > maxj∈[m],j ̸=i{fj(X) + rj}) dri∫∞
−∞ p(ri) ·P(fi(X ′) + ri > maxj∈[m],j ̸=i{fj(X ′) + rj}) dri

)

·
∫ ∞
−∞

p(ri) ·P(fi(X
′) + ri > max

j∈[m],j ̸=i
{fj(X ′) + rj}) dri

≤
m∑
i=1

∫ ∞
−∞

f

(
p(ri − 2) ·P(fi(X) + ri − 2 > maxj∈[m],j ̸=i{fj(X) + rj})

p(ri) ·P(fi(X ′) + ri > maxj∈[m],j ̸=i{fj(X ′) + rj})

)
· p(ri) ·P(fi(X

′) + ri > max
j∈[m],j ̸=i

{fj(X ′) + rj}) dri

≤
m∑
i=1

∫ ∞
−∞

f

(
p(ri − 2)

p(ri)

)
· p(ri) ·P(fi(X

′) + ri > max
j∈[m],j ̸=i

{fj(X ′) + rj}) dri

≤
m∑
i=1

∫ ∞
−∞

f

(
p(ri − 2)

p(ri)

)
· p(ri) dri

=

m∑
i=1

Hf

(
p(ri)||p(ri − 2)

)
= m · δ(ϵ),

(A.3)

in case f corresponds to the hockey-stick-divergence and where δ(ϵ) is the privacy profile of the additive noise mechanism
with sensitivity 2. In the first inequality we have used Lemma 2.3 and Jensen’s inequality term-wise and in the second
inequality we have used the Lipschitz property and the fact that f(z) is a non-decreasing function of z. In case of
monotonicity, i.e., if fi(X) ≥ fi(X

′) for all i ∈ [m], the condition (A.2) holds with ri − 2 replaced by ri − 1 and we have
the result with ri − 2 replaced by ri − 1.
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A.2. Proof of Theorem 3.3

Lemma A.2. In case of an adaptive composition of k mechanisms of the form (3.1), we get the privacy profile upper bound
mk · δ(ϵ), where δ(ϵ) is the privacy profile of a m-wise composition of the additive noise mechanism with noise Z and
sensitivity 2.

Proof. We use the proof technique used in (Thm. 27 Zhu et al., 2022) and consider an adaptive composition of two
mechanisms. The general case follows from the proof. Let X ∼ X ′. Denote the density functions of M1(X) and
M2

(
M1(X), X

)
by f1(t) and f2(t, s), respectively, and the density functions of M1(X ′) and M2

(
M1(X ′), X ′

)
by

f ′1(t) and f ′2(t, s), respectively. Denote the density function of Z by p(t). Using the bound given by Thm. 3.2, we have:

He ϵ

(
(M(X),M(X)

)
||(M(X),M(X)

))
=

∫
R

∫
R
max{f1(t)f2(t, s)− e ϵf ′1(t)f

′
2(t, s), 0} dsdt

=

∫
R
f1(t)

(∫
R
max{f2(t, s)− e

ϵ−log
f1(t)
f ′
1(t) f ′2(t, s), 0} ds

)
dt

≤ m ·
∫
R
f1(t)

(∫
R
max{p(s− 2)− e

ϵ−log
f1(t)
f ′
1(t) p(s), 0} ds

)
dt

= m ·
∫
R
p(s− 2)

(∫
R
max{f1(t)− e

ϵ−log
p(s−2)
p(s) f ′1(t), 0} dt

)
ds

≤ m2 ·
∫
R
p(s− 2)

(∫
R
max{p(t− 2)− e

ϵ−log
p(s−2)
p(s) p(t), 0} dt

)
ds

= m2 ·
∫
R

∫
R
max{p(s− 2)p(t− 2)− e ϵp(s)p(t), 0} dtds

which shows the claim for k = 2. The general case follows by induction.

A.3. Proof of Corollary 3.4

Lemma A.3. Consider the mechanismM defined in Eq. 3.1 and suppose Z is normally distributed with variance σ2. Let
δ > 0. ThenM is (ϵ, δ)-DP for

ϵ =
2

σ2
+

2

σ

√
2 log

m

δ

Proof. Let δ > 0. By (Lemma 3, Balle & Wang, 2018) we know that the Gaussian mechanism with L2-sensitivity ∆ and
noise scale σ is (ϵ, δ)-DP if

P(ω ≥ ϵ) ≤ δ,

where

ω ∼ N
(
∆2

2σ2
,
∆2

σ2

)
.

Using a simple Chernoff bound for the Gaussian, we see that for any ϵ ≥ ∆2

2σ2 ,

P(ω ≥ ϵ) ≤ e−
ϵ̃2σ2

2 ,

where ϵ̃ = ϵ− ∆2

2σ2 . Setting

ϵ = ∆2

2σ2 + ∆
σ

√
2 log m

δ ,

we see that
P(ω ≥ ϵ) ≤ 1

m
.

The claim follows setting ∆ = 2 and using Thm. 3.2.

13
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B. Proof of Theorem 4.1 (General Bound for the Privacy Selection)
Similarly to (Lemma 7, Papernot & Steinke, 2022) we denote Q(≤ y) =

∑
y′≤y Q(y′) and Q(< y) =

∑
y′<y Q(y′) and

formulate our main result for the case P(K = 0) = 0. The case P(K = 0) > 0 could be included in the upper bound as a
small additional term of the form f(0) · P(K = 0). E.g., in case of the hockey stick divergence, it does not account for the
divergence in case ϵ > 0 so we neglect it.

Also, φ denotes the probability generating function of K, i.e.,

φ(z) =

∞∑
k=1

P(K = k) · zk.

As shown in (Lemma 7, Papernot & Steinke, 2022),

A(y) =

∞∑
k=1

P[K = k] ·
(
Q(≤ y)k −Q(< y)k

)
= φ

(
Q(≤ y)

)
− φ

(
Q(< y)

)
=

∫ Q(≤y)

Q(<y)

φ′(z) dz

= Q(y) · E
X←[Q(<y),Q(≤y)]

[φ′(X)],

(B.1)

where X ← [Q(< y), Q(≤ y)] denotes uniformly distributed r.v. on the interval [Q(< y), Q(≤ y)].

Theorem B.1. Let X ∼ X ′ and let A and A′ be the density functions of the hyperparameter tuning algorithm, evaluated on
X and X ′, respectively. Let Q and Q′ be the density functions of the quality score of the base mechanism, evaluated on
X and X ′, respectively. Let K be random variable for the times the base mechanism is run and φ(z) the PGF of K. Let
f : [0,∞)→ R be a convex function. Then,

Hf (A||A′) ≤
∑
y∈Y

f

(
Q(y)φ′(qy)

Q′(y)φ′(q′y)

)
·Q′(y)φ′(q′y),

where for each y ∈ Y , qy and q′y are obtained by applying the same y-dependent post-processing function to Q and Q′,
respectively.

Proof. For the mechanism A defined in (B.1), we can bound the HS divergence as follows:

Hf (A||A′) =
∑
y∈Y

f

(
A(y)

A′(y)

)
·A(y)

=
∑
y∈Y

f

(
Q(y)EX←[Q(<y),Q(≤y)][φ

′(X)]

Q′(y)EX′←[Q′(<y),Q′(≤y)][φ′(X ′)]

)
·Q′(y) E

X′←[Q′(<y),Q′(≤y)]
[φ′(X ′)]

≤
∑
y∈Y

E
X←[Q(<y),Q(≤y)], X′←[Q′(<y),Q′(≤y)]

f

(
Q(y)φ′(X)

Q′(y)φ′(X ′)

)
·Q′(y)φ′(X ′)

≤
∑
y∈Y

max
y′

E
X←[Q(<y′),Q(≤y′)], X′←[Q′(<y′),Q′(≤y′)]

f

(
Q(y)φ′(X)

Q′(y)φ′(X ′)

)
·Q′(y)φ′(X ′),

(B.2)

where in the first inequality we use Lemma 2.3 and Jensen’s inequality. Notice that in the second inequality the maximum is
taken only over the arguments in the expectation over X and X ′.

Jensen’s inequality applies in case X and X ′ are arbitrarily coupled and we use the same coupling between X and X ′ as
in (Lemma 7, Papernot & Steinke, 2022), i.e., we couple X and X ′ such that

X −Q(< y)

Q(y)
=

X ′ −Q′(< y)

Q′(y)
. (B.3)
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We see that for X ← [Q(< y′), Q(≤ y′)] and X ′ ← [Q′(< y′), Q′(≤ y′)], the expressions (B.3) are between 0 and 1. Thus,
continuing from (B.2), we find that

Hf (A||A′) ≤
∑
y∈Y

max
y′

E
X←[Q(<y′),Q(≤y′)], X′←[Q′(<y′),Q′(≤y′)]

f

(
Q(y)φ′(X)

Q′(y)φ′(X ′)

)
·Q′(y)φ′(X ′)

≤
∑
y∈Y

max
y′

max
(X,X′)

f

(
Q(y)φ′(X)

Q′(y)φ′(X ′)

)
·Q′(y)φ′(X ′)

=
∑
y∈Y

max
y′

f

(
Q(y)φ′(Q(< y′) + ty ·Q(y′))

Q′(y)φ′(Q′(< y′) + ty ·Q′(y′))

)
·Q′(y)φ′(Q′(< y′) + ty ·Q′(y′))

for some {ty}y∈Y , where ty ∈ [0, 1] for all y ∈ Y . Furthermore, taking the maximum over ty’s, we get

Hf (A||A′) ≤
∑
y∈Y

max
y′,ty

f

(
Q(y)φ′(Q(< y′) + ty ·Q(y′))

Q′(y)φ′(Q′(< y′) + ty ·Q′(y′))

)
·Q′(y)φ′(Q′(< y′) + ty ·Q′(y′))

≤
∑
y∈Y

f

(
Q(y)φ′(qy)

Q′(y)φ′(q′y)

)
·Q′(y)φ′(q′y),

where for each y ∈ Y , qy and q′y are obtained by applying the same y-dependent post-processing function to Q and Q′,
respectively. This can be seen using a similar reasoning as in (Lemma 7, Papernot & Steinke, 2022). It follows from the fact
that for all y ∈ Y , there clearly exist y∗, t∗ such that

(y∗, t∗) = argmax
y′,ty

f

(
Q(y)φ′(Q(< y′) + ty ·Q(y′))

Q′(y)φ′(Q′(< y′) + ty ·Q′(y′))

)
·Q′(y)φ′(Q′(< y′) + ty ·Q′(y′)).

The kernel of the post-processing function is then given by

g(z) =


1, if z < y∗,

t∗, if z = y∗,

0, else,

i.e., qy =
∑

z∈Y g(z)Q(z) and q′y =
∑

z∈Y g(z)Q
′(z).

B.1. The Case of Continuous Output Score Function

In case the ordered output space Y of the base mechanism is continuous, the proof simplifies considerably.
Theorem B.2. For continuous output space Y ,

Hf (A||A′) =
∫
Y
f

(
Q(y) · φ′

(
Q(≤ y)

)
Q′(y) · φ′

(
Q′(≤ y)

)) ·Q′(y) · φ′(Q′(≤ y)
)
dy, (B.4)

where where Q(y) and Q(≤ y) denote the density function the CDF of the base mechanism Q, respectively.

Proof. The CDF of the private selection algorithm at y ∈ Y is given by

A(≤ y) =

∞∑
k=1

P[K = k] ·Q(≤ y)k,

Therefore, differentiating, we see that the density function of A is given by

A(y) =

∞∑
k=1

k ·P[K = k] ·Q(y) ·Q(≤ y)k−1

= Q(y)

∞∑
k=1

k ·P[K = k] ·Q(≤ y)k−1

= Q(y) · φ′
(
Q(≤ y)

)
.

(B.5)

We have a similar representation for the density A′(y), and the claim follows.
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C. Proofs for Section 5
C.1. Proof of Theorem 5.2

Theorem C.1. Let K ∼ Dη,γ and let δ(ϵ1), ϵ1 ∈ R, define the privacy profile of the base mechanism Q. Then, for A and
A′, the output distributions of the selection algorithm evaluated on neighboring datasets X and X ′, respectively, and for all
ϵ1 ≥ 0,

He ϵ(A||A′) ≤ m · δ(ϵ̂)
where

ϵ̂ = ϵ− (η + 1) log

(
e ϵ1 +

1− γ

γ
· δ(ϵ1)

)
.

Proof. Let q and q′ be results of applying some post-processing function to Q and Q′, respectively. Then,

1− q′ ≤ e ϵ1(1− q) + δ(ϵ1) (C.1)

for all ϵ1 ∈ R. Thus, we see that for all ϵ1 ≥ 0,

φ′(q)

φ′(q′)
=

(
(γ − 1)q′ + 1

(γ − 1)q + 1

)η+1

=

(
(1− γ)(1− q′) + γ

(1− γ)(1− q) + γ

)η+1

≤
(
(1− γ)(1− q)e ϵ1 + δ(ϵ1)(1− γ) + γ

(1− γ)(1− q) + γ

)η+1

≤
(
(1− γ)(1− q) eϵ1 + δ(ϵ1)(1− γ) + γ e ϵ1

(1− γ)(1− q) + γ

)η+1

=

(
e ϵ1 +

δ(ϵ1)(1− γ)

(1− γ)(1− q) + γ

)η+1

≤
(
e ϵ1 +

1− γ

γ
δ(ϵ1)

)η+1

,

(C.2)

where we have used the inequality (C.1) in the first inequality and the inequality γ ≤ e ϵ1γ in the second inequality. Using
Thm. 4.1 for the hockey-stick divergence f(z) = [z − e ϵ]+, we have that for all ϵ1 ≥ 0,

Hf (A||A′) ≤
∑
y∈Y

[
Q(y)φ′(qy)

Q′(y)φ′(q′y)
− e ϵ

]
+

·Q′(y) · φ′(q′y)

=
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−log φ′(qy)

φ′(q′y)

]
+

·Q(y) · E[K] · γη+1(
1− qy(1− γ)

)η+1

≤
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−log φ′(qy)

φ′(q′y)

]
+

·Q(y) · E[K]

≤
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−(η+1) log(e ϵ1+ 1−γ

γ δ(ϵ1))
]
+

·Q(y) · E[K]

= E[K] ·He ϵ̃

(
Q||Q′

)
,

(C.3)

where ϵ̃ = ϵ − (η + 1) log
(
e ϵ1 + 1−γ

γ δ(ϵ1)
)

. In the third inequality we have used the inequality (C.2) the fact that

[1− e ϵ−s]+ is a non-decreasing function of s for all ϵ ∈ R.

C.2. Proof of Corollaries 5.3 and 5.4

Corollary C.2. Let K ∼ Dη,γ . If the base mechanism Q is ϵ-DP, then the selection algorithm A is (η + 2)ϵ-DP. For η = 1
we get Theorem 1.3 of (Liu & Talwar, 2019).
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Proof. Let ϵ1 be such that δ(ϵ1) = 0, where
(
ϵ1, δ(ϵ1)

)
gives a privacy profile for the base mechanism Q. Then,

ϵ̂ = ϵ− (η + 1) log

(
e ϵ1 +

1− γ

γ
δ(ϵ1)

)
= ϵ− (η + 1)ϵ1,

and by Theorem 5.2, He ϵ(A||A′) = 0 if ϵ = (η + 2)ϵ1.

Corollary C.3. Let K ∼ Dη,γ . If the base mechanism Q is (ϵ, δ)-DP, then then the selection algorithm A is
(
(η + 2)ϵ+

γ−1δ,mδ
)
-DP.

Proof. Let
(
ϵ1, δ(ϵ1)

)
be a privacy profile for the base mechanism Q and ϵ1 ≥ 0. Then,

ϵ̂ = ϵ− (η + 1) log

(
e ϵ1 +

1− γ

γ
δ(ϵ1)

)
≥ ϵ− (η + 1) log

(
e ϵ1
(
1 + γ−1δ(ϵ1)

))
≥ ϵ− (η + 1)

(
ϵ1 + γ−1δ(ϵ1)

)
and by Thm. 5.2, He ϵ(A||A′) = mδ if ϵ = (η + 2)ϵ1 + γ−1δ.

C.3. Proof of Corollary 5.5

Corollary C.4 (ϵ-values when Q is GDP). Let K ∼ Dη,γ with η ≥ 1 and suppose the base mechanism is dominated by
the Gaussian mechanism with noise parameter σ > 0 and L2-sensitivity 1. Then, for a fixed δ > 0, the private selection
algorithm A is (ϵ, δ)-DP for

ϵ = (η + 1)

(
1

2σ2
+

1

σ

√
2 log

m

δ

)
+ 2δ.

Proof. By (Lemma 3, Balle & Wang, 2018), we know that for the Gaussian mechanism with sensitivity 1 and noise scale
σ the privacy loss random variable ω is distributed as ω ∼ N

(
1

2σ2 ,
1
σ2

)
. Thus, using a simple Chernoff bound for the

Gaussian, for its privacy profile δ(ϵ1) we have

δ(ϵ1) ≤ P(ω ≥ ϵ1) ≤ e−
ϵ̃2σ2

2 ,

where ϵ̃ = ϵ1 − 1
2σ2 . Choosing

ϵ1 =
1

2σ2
+

1

σ

√
2 log

m

δ
, (C.4)

we have that
δ(ϵ1) ≤

δ

m
. (C.5)

Furthermore, for any η ≥ 1, for ϵ1 of Eq. C.4, we have the following bound for the additional term in the bound of Thm. 5.2:

(η + 1) log
(
e ϵ1 + 1−γ

γ δ(ϵ1)
)
≤ (η + 1) log

(
e ϵ1 + e ϵ1 1−γ

γ δ(ϵ1)
)

= (η + 1)ϵ1 + (η + 1) log
(
1 + 1−γ

γ δ(ϵ1)
)

≤ (η + 1)ϵ1 + (η + 1) log
(
1 + 1−γ

γ
δ
m

)
= (η + 1)ϵ1 + (η + 1) log

(
1 + 1−γ

γ
γ(1−γη)
η(1−γ) δ

)
= (η + 1)ϵ1 + (η + 1) log

(
1 + 1−γη

η δ
)

≤ (η + 1)ϵ1 + (η + 1) log
(
1 + 1

η δ
)

≤ (η + 1)ϵ1 +
η + 1

η
δ

≤ (η + 1)ϵ1 + 2δ.

(C.6)
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Setting ϵ = (η + 2)ϵ1 + 2δ, Thm. 5.2 and the inequalities (C.6) and (C.5) show that

He ϵ(A||A′) ≤m · δ
(
ϵ− (η + 1) log

(
1 + 1−γ

γ δ(ϵ1)
))

≤m · δ(ϵ1)

≤m · δ
m

= δ

and the claim follows.

C.4. Proof of Theorem 5.7 (Private Selection, Binomial Distribution)

First, the following auxiliary lemma is needed.

Lemma C.5. Let a, b, c, d > 0. Then, for x ≥ 0, the function

f(x) =
ax+ b

cx+ d

is non-decreasing if and only if a
b ≥

c
d .

Proof. The claim follows from the expression

f ′(x) =
ad− cb

(cx+ d)2
.

Recall that for K ∼ Bin(n, p), the probability generating function is given by

φ(z) = (1− p+ pz)n. (C.7)

Theorem C.6. Let K ∼ Bin(n, p) for some n ∈ N and 0 < p < 1, and let δ(ϵ1), ϵ1 ∈ R, define the privacy profile of the
base mechanism Q. Suppose

ϵ1 ≥ log
(
1 + p

1−pδ(ϵ1)
)
.

Then, for A and A′, the output distributions of the selection algorithm evaluated on neighboring datasets X and X ′,
respectively, for all ϵ > 0 and for all ϵ1 ≥ 0,

He ϵ(A||A′) ≤ m · δ(ϵ̂), (C.8)

where
ϵ̂ = ϵ− (n− 1) log

(
1 + p(e ϵ1 − 1) + pδ(ϵ1)

)
.

Proof. Using the PGF of the binomial distribution given in Eq. (C.7) by the auxiliary Lemma C.5, for each y ∈ Y ,

φ′(qy)

φ′(q′y)
=

(
1− p+ pqy
1− p+ pq′y

)n−1

≤
(
1− p+ pe ϵ1q′y + pδ(ϵ1)

1− p+ pq′y

)n−1

=

(
1 +

p(e ϵ1 − 1)q′y + pδ(ϵ1)

1− p+ pq′y

)n−1

≤
(
1 + p(e ϵ1 − 1) + pδ(ϵ1)

)n−1
,

(C.9)

in case
p(e ϵ1 − 1)

pδ(ϵ1)
≥ p

1− p
,
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i.e., if

ϵ1 ≥ log

(
1 +

p

1− p
δ(ϵ1)

))
.

Moreover, we see that

φ′(q) ≤ n · p = m (C.10)

for all 0 ≤ q ≤ 1. The claim follows from the inequalities (C.9) and (C.10) and from Theorem 4.1.

C.5. Proof of Corollary 5.8

Corollary C.7. Let K ∼ Poisson(m) for some m ∈ N, and let δ(ϵ1), ϵ1 ∈ R, define the privacy profile of the base
mechanism Q. Then, for A and A′, the output distributions of the selection algorithm evaluated on neighboring datasets X
and X ′, respectively, and for all ϵ > 0, and for all ϵ1 ≥ 0,

He ϵ(A||A′) ≤ m · δ(ϵ̂),

where

ϵ̂ = ϵ−m · (e ϵ1 − 1)−m · δ(ϵ1).

Proof. Let K ∼ Poisson(m) and Kn ∼ Bin(n,m/n) and let A,A′ denote the density functions of the private selection
algorithm corresponding to K and let An, A

′
n those corresponding to Kn, evaluated on neighboring datasets X,X ′,

respectively. Looking at the form of A given in Eq. (B.1), we have that

He ϵ

(
A||A′

)
=
∑
y∈Y

max{A(y)− e ϵA′(y), 0}

=

∞∑
k=1

max{P[K = k] ·
(
Q(≤ y)k −Q(< y)k

)
− e ϵP[K = k] ·

(
Q′(≤ y)k −Q′(< y)k

)
, 0}

≤
∞∑
k=1

max{P[Kn = k] ·
(
Q(≤ y)k −Q(< y)k

)
− e ϵP[Kn = k] ·

(
Q′(≤ y)k −Q′(< y)k

)
, 0}

+ (1 + eϵ)

∞∑
k=0

|P[K = k]−P[Kn = k]|

= He ϵ

(
An||A′n

)
+ (1 + eϵ)

∞∑
k=0

|P[K = k]−P[Kn = k]| ,

where the inequality follows from the fact that max{a + b, 0} ≤ |a| + max{b, 0} for all a, b ∈ R. Since by Le Cam’s
inequality, Bin(n,m/n)→ Poisson(m) in total variation distance as n→∞, we have that

He ϵ

(
A||A′

)
= lim

n→∞
He ϵ

(
An||A′n

)
.

Fixing n · p = m in the bound (5.2) of Thm. 5.7 (bound for the case K ∼ Bin(n, n/m)), we see that the bound approaches
the bound (5.3) of Cor. 5.8 (bound for the case K ∼ Poisson(m)) as p→ 0, since then

(n− 1) log
(
1 + p(e ϵ1 − 1) + pδ(ϵ1)

)
→ m · (e ϵ1 − 1) +m · δ(ϵ1).

This follows from the fact that log(1+x)
x → 1 as x→ 0.

Remark C.8. We can also get Cor. 5.8 directly using the PGF of the Poisson distribution. For K ∼ Poisson(m), the PGF
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is φ(z) = em(z−1), i.e. φ′(z) = m · em(z−1). Using Thm. 4.1 for the hockey-stick divergence f(z) = [a− e ϵ]+, we get

Hf (A||A′) ≤
∑
y∈Y

f

(
Q(y)φ′(qy)

Q′(y)φ′(q′y)

)
·Q′(y) · φ′(q′y)

=
∑
y∈Y

[
Q(y)φ′(qy)

Q′(y)φ′(q′y)
− e ϵ

]
+

·Q′(y) · φ′(q′y)

=
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−log φ′(qy)

φ′(q′y)

]
+

·Q(y) · φ′(qy)

=
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−m·(qy−q′y)

]
+

·Q(y) ·m · em·(qy−1).

(C.11)

As the probabilities qy and q′y are obtained by applying the same post-processing to Q and Q′, for all ϵ1 ≥ 0, q′y ≤
e ϵ1qy + δ(ϵ1). Using also the fact that [1 − e ϵ−s]+ is a non-decreasing function of s for all ϵ ∈ R, we get from the
inequality (C.11) that for all ϵ1 ≥ 0,

Hf (A||A′) ≤
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−m·(qy−q′y)

]
+

·Q(y) ·m · em·(qy−1)

≤
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−m·q′y(1−e

ϵ1 )−m·δ(ϵ1)
]
+

·Q(y) ·m · em·(qy−1).

≤
∑
y∈Y

[
1− e

ϵ−log Q(y)

Q′(y)
−m·(1−e ϵ1 )−m·δ(ϵ1)

]
+

·Q(y) ·m

(C.12)

which gives the claim of Cor. 5.8.

D. Converting RDP Bounds to (ϵ, δ)-Bounds
To convert from Rényi DP to approximate DP we use following formula.

Lemma D.1 (Canonne et al. 2020). Suppose the mechanismM is
(
α, ϵ′

)
-RDP. ThenM is also (ϵ, δ(ϵ))-DP for arbitrary

ϵ ≥ 0 with

δ(ϵ) =
exp

(
(α− 1)(ϵ′ − ϵ)

)
α

(
1− 1

α

)α−1

. (D.1)
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