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Abstract

We present a new step-size strategy based on the
secant method for Frank-Wolfe algorithms. This
strategy, which requires mild assumptions about
the function under consideration, can be applied
to any Frank-Wolfe algorithm. It is as effective as
full line search and, in particular, allows for adapt-
ing to the local smoothness of the function, such
as in Pedregosa et al. (2020), but comes with a
significantly reduced computational cost, leading
to higher effective rates of convergence. We pro-
vide theoretical guarantees and demonstrate the
effectiveness of the strategy through numerical
experiments.

1. Introduction
We are interested in solving constrained optimization prob-
lems of the form

min
x∈X

f(x) (1.1)

with a first-order method, relying only on gradient and func-
tion evaluations, where f is a smooth function and X is
a compact convex set onto which projection is potentially
expensive. In this case, variants of the Frank-Wolfe (FW)
algorithm (Frank & Wolfe, 1956; Levitin & Polyak, 1966)
are a popular choice. One operation required for most FW
variants is a choice of a step size to update the iterate xt

along a descent direction. We present a new line search
strategy based on the secant method for these algorithms.
To this end, we will solve for roots of the optimality system
of the line search problem. Together with the first-order
requirement of the main algorithm, this means that only
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subproblem’s function evaluations are available to us, which
corresponds to computing partial derivatives of f , making
the secant method (instead of the Newton-Raphson method)
the natural choice.

Related Work

There is an abundance of work on line search strategies for
optimization, as step-size rules can significantly impact the
performance of optimization algorithms, both computation-
ally and in terms of convergence rates. Standard examples
of step-size strategies in unconstrained optimization include
backtracking and golden ratio search (see e.g., (Nocedal
& Wright, 1999)). A notable recent example is the Silver
Step-size Schedule (Altschuler & Parrilo, 2023; 2024a;b),
which achieves partial acceleration for smooth convex opti-
mization via standard gradient descent. Here, we will only
provide a brief overview of the prior works most closely
related to ours.

The requirements for a step-size strategy are typically that it
should be (1) effective (making progress), (2) efficient (low
computational cost), and (3) adaptive (adapting to the local
smoothness of the function). As a bonus, the strategy should
be simple and robust so that it is easy to implement. While
achieving two out of the three requirements is relatively
easy, achieving all three is challenging. Recently, Malit-
sky & Mishchenko (2020; 2023) made significant progress
in this direction by providing an adaptive step-size strat-
egy that does not perform line search, satisfying all three
requirements. This sparked a lot of interest, with alter-
native approaches (see e.g., Zhou et al. (2024) based on
the Barzilai-Borwein two-point step-size (Barzilai & Bor-
wein, 1988)) being analyzed. These approaches estimate
the inverse of the local Lipschitz smoothness constant via
two points x,y as ∥x−y∥

∥∇f(x)−∇f(y)∥ and then use this (with
modifications) as the step-size γt for an update of the form
xt+1 ← xt − γt∇f(xt). A close inspection reveals that
this is effectively a modified (higher-dimensional) secant
step. The resulting step-size strategy performs well com-
putationally with great adaptivity to the function geometry.
Unfortunately, the approach comes with two caveats for the
setting we are interested in. First, it cannot be carried over
to the Frank-Wolfe setting as the analysis relies on the con-
vergence of the iterates to the optimal point. This, however,
is not necessarily given for Frank-Wolfe algorithms (Bolte
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et al., 2024), due to their affine-invariance. We point out
that this is also not just an artifact but the proposed step-
size strategy deliberately gives up the monotonic descent
requirement to achieve larger steps, which is incompati-
ble with Frank-Wolfe convergence analysis. Second, the
methods use dampened secant steps which lead to the loss
of superlinear convergence of the secant method as can be
seen from Equation (2.6) in Section 2.2, where the equal-
ity does not hold anymore as the lower-order terms do not
cancel. This is not an issue in the settings considered by the
aforementioned works as they perform single secant steps
only. However, we want to capitalize on the potentially
super-linear convergence.

Step-size strategies for Frank-Wolfe can essentially be
grouped into three types (see e.g., (Braun et al., 2022) for
an extensive overview): (1) open-loop strategies of the form
γt = ℓ

ℓ+t with ℓ ≥ 2 being an integer. These strategies
recently received new attention as they can achieve higher
convergence rates than e.g., line search strategies in some
settings (see e.g., (Bach, 2021; Wirth et al., 2023; 2024)) (ii)
so-called short-steps, which are effectively the solution aris-
ing from the smoothness inequality but require knowledge
of the gradient Lipschitz constant (iii) line search strategies,
where basically any strategy can be used, however, the cur-
rent gold standard is the adaptive backtracking line search of
Pedregosa et al. (2020), which also approximates the local
smoothness constant and its numerically more stable variant
from Pokutta (2024). Another recent successful approach
has been the monotonic open-loop strategy of (Carderera
et al., 2021; 2024), which was originally developed for (gen-
eralized) self-concordant functions but often performs very
well in general. We highlight that even though we gathered
these methods under “line search”, they are strictly speaking
not line search methods since they terminate with conditions
other than (near-)optimality on the segment given by the de-
scent direction. The adaptive step sizes from Pedregosa et al.
(2020); Pokutta (2024) test that a local Lipschitz smooth-
ness estimate produces a valid lower bound on the primal
progress while the monotonic step size from Carderera et al.
(2021; 2024) tests primal improvement on top of an open-
loop step-size schedule.

Other notable recent approaches in the context of uncon-
strained optimization include speeding up the backtracking
search with an adaptive retraction (Cavalcanti et al., 2024),
which can be applied broadly and might be adaptable to the
Frank-Wolfe setting. Moreover, the local convergence of
quasi-Newton methods of the Broyden class have been heav-
ily studied in recent work (see e.g., (Jin & Mokhtari, 2023;
Rodomanov & Nesterov, 2022; 2021)) to provide finer and
finite-time convergence guarantees. While highly interest-
ing in their own right, these approaches are only tangentially
related to our work here as we directly use the secant method
and many of the challenges of quasi-Newton methods do not

apply here. Stabilization of locally convergent algorithms
has been a topic that already received significant attention
decades ago, see e.g., (Polak, 1975; 1976) and the secant
method has been also used for the solution of simultaneous
nonlinear equations (Wolfe, 1959).

Contribution

Our contribution can be summarized as follows:

New step-size strategy. With line searches, the key trade-
off is between the cost of the search, which reduces the
effective rate of convergence, and improved step sizes. We
provide a new step-size strategy, coined Secant Line Search
(SLS), which solves the line search problem via the secant
method. This leads to an extremely fast strategy and, while it
technically does not meet all previously-listed requirements
for a step size due to its search-type nature, the iteration
count is usually so low (around 6 − 7 iterations) that it
practically does satisfy all requirements. Moreover, the
strategy is adaptive in the sense that it exploits favorable
local smoothness and it can be applied to any Frank-Wolfe
algorithm, due to the constrained nature of the problems
Frank-Wolfe is applied to. In fact, for quadratics, SLS
converges in one iteration and exploits the local smoothness
of the function in the direction of the descent.

Theoretical guarantees. Using the secant method to solve
the line search problem comes with multiple issues for most
optimization algorithms since the secant method, while of-
ten very fast, is not necessarily convergent. However, due
to the special structure of FW algorithms that do not fol-
low the gradient but use alternative directions of the form
xt − vt, cf. Algorithm 1, the solution to the line search
problem is confined to a bounded interval [0, γmax]. Ex-
ploiting this property, we can guarantee convergence under
mild assumptions in Lemma 2.1 and Theorem 3.1.

Numerical experiments. We provide extensive numeri-
cal experiments demonstrating the superior computational
performance of SLS over other step sizes. We also discuss
implementation enhancements that further reduce compu-
tational costs, making SLS a practical option for a broad
class of problems, being either the best performing option
or close to the best one. The results show that SLS not
only accelerates the convergence of FW compared to other
step-size strategies but is also highly competitive in time
thanks to a low number of secant iterations within the line
search. This low line search cost and improved convergence
make SLS an excellent new step size choice for FW algo-
rithms for a broad range of problems. Our strategy might be
more broadly applicable to other algorithm classes beyond
FW but may require stronger assumptions or safeguards to
guarantee convergence.
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Preliminaries and Notation

We use bold-faced letters x to denote vectors and non-bold-
faced letters x to denote scalars. Throughout the paper,
we will use t for the iteration count of the outer algorithm,
typically iterations of the FW method and n for the iteration
count of the line search method. We let ∥·∥ denote the
Euclidean norm and ⟨·, ·⟩ the standard inner product.

2. The Secant Method
The Secant Method (see e.g., Papakonstantinou & Tapia
(2013)) is a well-known method for finding the root of a
function φ : R→ R. It is based on the recursion:

xn+1 ← xn − φ(xn) ·
xn − xn−1

φ(xn)− φ(xn−1)
, (2.1)

with initial values x0, x1 chosen appropriately. We can think
of the secant method as an approximate version of Newton’s
method, which uses the update

xn+1 ← xn − φ(xn) ·
1

φ′(xn)
(2.2)

using the approximation:

φ′(xn) ≈
φ(xn)− φ(xn−1)

xn − xn−1
. (2.3)

The secant method predates Newton’s method by over 3000
years (Papakonstantinou & Tapia, 2013).

One should think about φ(γ) = f(xt − γ∇f(xt)) in our
application. Before considering the line search problem,
we establish global convergence when the absolute value of
the derivative of the function φ is increasing as we move
away from the root, e.g., if φ′′φ > 0. We also recall the
convergence rate of the secant method near the root. The
latter is folklore and many different proofs exist, we provide
a sketch of the argument only. For global convergence, the
proof is probably known (and straightforward) but we are
not aware of any direct reference and thus we provide it
here. It ensures convergence under suitable initialization
and mild assumptions for our setting. Throughout this sec-
tion we assume that φ is a smooth function and sufficiently
differentiable.

2.1. Global Convergence

In general, the secant method is not globally convergent.
However, we can show that under suitable assumptions,
the secant method converges monotonically to a root in
cases relevant for our line search problem. To simplify the
exposition, we introduce the notation ∆(x, y)

.
= φ(x)−φ(y)

x−y

and S(x, y)
.
= x− φ(x)

∆(x,y) , so that the secant method can be
written as:

xn+1 ← S(xn, xn−1) = xn −
φ(xn)

∆(xn, xn−1)
. (2.4)

Clearly ∆(x, y) = ∆(y, x). Further, observe that S(x, y) =
x− φ(x)

∆(x,y) = y− φ(y)
∆(x,y) = S(y, x). We will now establish

a first convergence result of the secant method.

Lemma 2.1. Let a be a root of φ : R→ R and let U be a
one-sided neighborhood of a. Further assume that |φ′(x)|
is strictly increasing in |x− a| with x ∈ U , i.e., as we move
away from a; in particular a is the only root on U and φ is
monotone on U . Then, we have:

0 <
S(x, y)− a

x− a
< 1,

for all a ̸= x, y ∈ U , i.e., the distance to a is strictly
decreasing.

Proof. Note that φ(a) = 0 and let x, y ∈ U be arbitrary
with x, y, a all distinct. We differentiate the following two
cases.

Case 1: |x− a| < |y − a|, i.e., x is closer to a. Observe
that we have:

S(x, y)− a

x− a
=

x− φ(x)
∆(x,y) − a

x− a

= 1− φ(x)− φ(a)

∆(x, y)(x− a)
= 1− ∆(x, a)

∆(x, y)
.

By monotonicity ∆(x,a)
∆(x,y) > 0. Moreover, since |φ′(x)| is

stricly increasing as we move away from a in U , we have
∆(x, a) < ∆(x, y), so that 0 < S(x,y)−a

x−a < 1 follows; this
also implies that we do not leave U and stay on the same
side of a as S(x,y)−a

x−a > 0

Case 2: |x− a| > |y − a|, i.e., y is closer to a. Similar as
before after factoring out y−a

x−a and using S(x, y) = S(y, x)
we similarly obtain:

S(x, y)− a

x− a
=

y − a

x− a
·
y − φ(y)

∆(x,y) − a

y − a

=
y − a

x− a

(
1− ∆(y, a)

∆(x, y)

)
.

Now observe that 0 < y−a
x−a < 1 and ∆(y, a) < ∆(x, y) as

above, so that 0 < S(x,y)−a
x−a < 1 follows.

Now, the property 0 < S(x,y)−a
x−a < 1 proven in the two

cases above imply that xn+1 − xn converges to 0. More-
over, xn − xn+1 = φ(xn)

∆(xn,xn−1)
and |∆(xn, xn−1)| <

max{|φ′(x0)| , |φ′(x1)|}, which implies that φ(xn) con-
verges to 0 and thus xn converges to a.

The lemma above basically states that if, in a neighborhood
U of the root, the function is monotone, has strict curva-
ture, and the initial points x0, x1 are both on the same side
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of the root, then the secant method converges monotoni-
cally to the root. This is for example the case if φ′′φ > 0
holds. We will later see that in case of our line search
problem, apart from the strict curvature condition, all other
conditions are satisfied naturally. Note, that the requirement
that |φ′(x)| is strictly increasing can be relaxed to require
∆(a, x) < ∆(x, y) whenever x lies between a and y and
∆(a, x),∆(x, y) having the same sign, not requiring that f
to be smooth.

Remark 2.2 (Rate and Order of Convergence). Note that
Lemma 2.1 makes no statement about the order of conver-
gence. This is for good reason as arbitrarily slow conver-
gence (still linear though with small rates) is compatible
with the Lemma 2.1 both globally and locally. In fact, the
convergence order and rate is a function of the multiplic-
ity of the root. As a simple example consider φ(x) = xm

with m > 2, which satisfies our assumptions. The con-
vergence rate of the secant method is linear with rate λ
with 0 < λ < 1, so that λm + λm−1 = 1; see e.g., (Díez,
2003). Note, though that if the secant method converges it
converges at least with order 1, i.e., linearly.

2.2. Local Convergence

Let φ(a) = 0. For the sake of exposition we consider the
case of a simple root and assume that φ is twice differ-
entiable with φ′(a) ̸= 0 and φ′′(a) ̸= 0. We define the
iterates as xn = a + ϵn to perform an error analysis with
the recursion:

ϵn+1 = ϵn−φ(a+ϵn) ·
ϵn − ϵn−1

φ(a+ ϵn)− φ(a+ ϵn−1)
. (2.5)

Using a Taylor expansion:

φ(a+ ϵ) ≈ φ′(a)ϵ+
φ′′(a)

2
ϵ2 = ϵφ′(a)(1 +Mϵ), (2.6)

where M
.
= φ′′(a)

2φ′(a) , we can derive the recursion:

ϵn+1 ≈
φ′′(a)

2φ′(a)
ϵn−1ϵn. (2.7)

By analyzing the series of log(ϵn) (Díez, 2003), we can
derive an error estimate of:

|xn+1 − a| ≈
∣∣∣∣ φ′′(a)

2φ′(a)

∣∣∣∣
√

5−1
2

|xn − a|
1+

√
5

2 , (2.8)

i.e., we have a convergence of order 1+
√
5

2 ≈ 1.618. For
a full proof, see e.g., Grinshpan (2024) and for the con-
vergence for roots of higher order we refer the reader to
Díez (2003). In fact, for roots of order m ≥ 2, the conver-
gence rate drops from superlinear to linear with rate λ with
0 < λ < 1, so that λm + λm−1 = 1; see e.g., Díez (2003).

Remark 2.3 (Secant Method vs Newton’s Method in Black-
-Box Optimization). The secant method has an advantage
over Newton’s method in black-box optimization, where
only function evaluations are available, as it avoids gradient
computations and requires just one function evaluation per
iteration. However, even when both function and gradient
evaluations are available in an oracle model at roughly the
same cost, we can perform roughly two secant iterations
for every Newton iteration, potentially making the secant
method faster in practice, despite its lower order of con-
vergence (order ≈ 1.618) compared to Newton’s quadratic
convergence (order 2) with effective orders of convergence
of 1.6182 ≈ 2.62 vs. 2.

In white-box settings, where gradients can be computed
efficiently, such as through reverse automatic differentiation
(AD), the function evaluation becomes essentially free as
a byproduct of the gradient evaluation, making Newton’s
method potentially more favorable due to its faster conver-
gence rate. We would like to stress that essentially all our
arguments also apply to a variant that would use Newton’s
method for the line search problem; in Lemma 2.1 we would
simply invoke the mean value theorem and replace ∆(x, y)
with φ′(x) and then the proof would work analogously.

For our setting however, we assume that we ultimately want
to optimize a function f with a first-order oracle and we will
run the secant method for the line search problem over the
directional derivative of f , so that second-order information
is not available. For the sake of completeness however, we
did run some synthetic tests, see Section B, comparing the
Newton’s method and the secant method on problems as
they appear in our setting, with both AD and user-provided
derivatives for the second-order access, and found that in
practice the secant method is superior in the first case and
almost always faster in the second case. One reason for
this is that both in the case of automatic differentation and
manual gradients, each line search subproblem requires a
Hessian-vector computation, while not exploiting that infor-
mation beyond the step size. This “partially second-order”
method was already observed in Carderera et al. (2021) not
to perform well against a fully first-order method due to the
high cost per iteration and little additional gain.

Finally, a note on Brent’s method (Brent, 1971), also called
Brent-Dekker method, is in order; see also Flannery et al.
(1992); Brent (2013) for more details. While this root-
finding method is often considered the gold standard for
derivative-free root finding with an order of convergence
of ≈ 1.839, it is significantly more involved and expensive
than the secant method and in our tests for our problems, was
outperformed by the secant method. This can be attributed
to the secant method’s lower computational cost per iteration
and the fact that we do (almost) never require the additional
safeguards of Brent’s method because of the already present
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step size bounds for FW together with Lemma 2.1. We
benchmarked in Julia via Roots.jl as well as in Python
via SciPy.

3. The Secant Method for Line Search in
Frank-Wolfe Algorithms

To disambiguate, we denote the iterates of the secant method
applied to the line search problem by γn and the iterates
of the Frank-Wolfe algorithm by xt. We are interested in
solving Problem (1.1) with f being a smooth and convex
function. In Algorithm 1 we recall the vanilla Frank-Wolfe
algorithm and refer the interested reader to Braun et al.
(2022) for more advanced variants.

Algorithm 1 Frank-Wolfe algorithm (Frank & Wolfe, 1956;
Levitin & Polyak, 1966)

1: Input: Initial point x0 ∈ X , number of iterations T
2: Output: Final iterate xT

3: for t = 0 to T − 1 do
4: vt ← argmin

v∈X
⟨∇f(xt),v⟩

5: xt+1 ← (1− γt)xt + γtvt

6: end for

Most Frank-Wolfe variants update the iterate as:

xt+1 ← xt − γdt, (3.1)

with dt being a direction and γ ∈ [0, γmax] determined by
the specific FW variant under consideration. For instance,
dt = xt − vt and γmax = 1 for a standard FW step as we
can see in Algorithm 1. A key point common to all vari-
ants is that iterates are maintained as convex combinations
of extreme points of the feasible set X , so that typically
γmax ≤ 1.

When the step size γ is determined by line search, the goal
is to choose γ so that progress is maximized, i.e., we solve
the line search problem:

γ ← argmin
γ∈[0,γmax]

f(xt − γdt). (3.2)

This is equivalent to finding the root of the optimality con-
dition:

∂

∂γ
f(xt − γdt) = 0, (3.3)

and since we consider convex and smooth functions f such
a solution exists. Moreover, we can deliberately ignore the
constraint γ ∈ [0, γmax] because if the optimal γ is outside
of this interval, we can simply clip it to the boundary, which
will be the optimal solution to the constrained problem.

Applying the secant method to the line search problem (3.3),

we have φ(γ) = ⟨f(xt − γdt),dt⟩ and use the recursion:

γn+1 ← γn − ⟨∇f(xt − γndt),dt⟩·
γn − γn−1

⟨∇f(xt − γndt),dt⟩ − ⟨∇f(xt − γn−1dt),dt⟩
. (3.4)

It is important to note that SLS does not approximate the in-
verse of the local Lipschitz constant of f in contrast to (Mal-
itsky & Mishchenko, 2020; 2023). Rather, it approximates
the relevant quantity in the Frank-Wolfe context, which is
related (and identical for quadratics) to 1

L
⟨∇f(xt),dt⟩

∥dt∥2 .

An implementation of Secant Line Search (SLS) is given
in Algorithm 2. The algorithm is purposefully written in
a verbose fashion to highlight that, apart from the initial
two points, only one gradient evaluation is required per
iteration. In Section A, we specify how the convergence
rates of Frank-Wolfe behave depending on different choices
of the error parameter ϵ within the line search subproblems.

Algorithm 2 Secant Line Search (SLS)

1: Input: Function f , initial point xt, direction dt, initial
step sizes γ0, γ1, tolerance ϵ

2: Output: Step size γ∗

3: Initialize γ−1 ← γ0, γ0 ← γ1
4: Compute φ−1 ← ⟨∇f(xt − γ−1dt),dt⟩
5: Compute φ0 ← ⟨∇f(xt − γ0dt),dt⟩
6: repeat
7: Update γ1 ← γ0 − φ0 · γ0−γ−1

φ0−φ−1

8: γ1 ← max{0,min{γ1, γmax}} {clip}
9: Update γ−1 ← γ0, γ0 ← γ1

10: Update φ−1 ← φ0

11: Compute φ0 ← ⟨∇f(xt − γ0dt),dt⟩
12: until |φ0| < ϵ
13: return γ∗ ← γ0

As already indicated earlier we have that γa ∈ [0, 1]
as the iterates are convex combinations of the extreme
points of the feasible set X with the current iterate. In
fact, due to not following the gradient but rather updating
xt+1 ← (1 − γt)xt + γtvt after the first iteration, the op-
timal solution γa of (3.3) is almost always in the interval
(0, 1). To see that γa > 0, observe that the Frank-Wolfe gap
⟨∇f(xt),xt − vt⟩ > 0 by convexity of f and definition
of vt as long as xt is not optimal and hence xt − vt is a
descent direction. The upper bound typically depends on
the function class under consideration. For the upper bound
in the case of L-smooth functions, see, e.g., (Braun et al.,
2022, Remark 2.5) and for (generalized) self-concordant
functions, see (Carderera et al., 2021; 2024). We highlight
that γa < 1 is not necessary for our arguments to work but
it is useful as it basically ensures that the root is to be found
in the interval (0, 1). When this is not the case and clipping
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occurs, we still make significant progress (at least as much
as the optimal short step) and typically such a step halves
the primal gap.

With this, we can now establish the convergence of the
Secant Line Search (SLS) when used in a Frank-Wolfe
algorithm.

Theorem 3.1 (Convergence of SLS). Let f be a strictly
convex and smooth function and let X be a compact convex
set. Then running the Frank-Wolfe algorithm (Algorithm 1)
with SLS initialized with γ0 = 0 and γ1 = γ0+ρ, where ρ is
a small positive perturbation, converges at its optimal rate
(which depends on f and X ) and each SLS call converges.

Proof. If SLS converges, then it returns the optimal solution
to the line search problem (3.3) and hence the iterates of the
Frank-Wolfe algorithm are chosen as if run with exact line
search (up to the line search tolerance ϵ), so that the first
part of the theorem is trivially true.

It remains to verify the assumptions of Lemma 2.1. As
f is strictly convex, so is f(xt − γdt) for any xt ∈ X
and dt = xt − vt as obtained via Algorithm 1. Hence
the derivative ∂

∂γ f(xt − γdt) of f(xt − γdt) is strictly
increasing in γ. Moreover, the initial points γ0 = 0 and
γ1 = γ0 + ρ are on the same side of the root, so that the
assumptions of Lemma 2.1 are satisfied.

While the above theorem only guarantees (linear) conver-
gence of SLS in the line search problems, the following
remarks give indications for cases in which we can expect
superlinear convergence of SLS.

Remark 3.2 (Superlinear convergence for self-concordant
functions). Let f be self-concordant on X . Then for any
xt ∈ X and dt = xt − vt we have that∣∣∣∣ ∂3

∂γ3
f(xt − γdt)(τ)

∣∣∣∣ ≤ 2
∂2

∂γ2
f(xt − γdt)(τ)

3
2 (3.5)

for all τ ∈ [0, 1]. Thus if ∂3

∂γ3 f(xt − γdt)(τ) ̸= 0 for all
τ ∈ [0, 1], then γa is a simple root of Equation (3.3), so that
we can expect superlinear convergence.

Moreover, the constant M appearing in Equation (2.6) is
obtained as:

M =

∂3

∂γ3 f(xt − γdt)(γa)

2 ∂2

∂γ2 f(xt − γdt)(γa)
. (3.6)

In particular in the case of superlinear convergence, SLS
achieves very high precision, which is often helpful for
ill-conditioned problems, with very few iterations.

Remark 3.3 (Other FW variants). While we considered
the vanilla Frank-Wolfe algorithm, the same analysis can

be applied to basically any other variants of the Frank-
Wolfe algorithm, e.g., the Away-Step Frank-Wolfe algo-
rithm (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015), the Pair-
wise Conditional Gradients (Lacoste-Julien & Jaggi, 2015),
the Blended (Pairwise) Conditional Gradients algorithms
(Braun et al., 2019; Tsuji et al., 2022), and Decomposition-
invariant Conditional Gradients (Garber & Meshi, 2016;
Bashiri & Zhang, 2017). Some of these methods – typi-
cally those that explicitly maintain a so-called active set,
i.e., a subset of extreme points from which a convex com-
bination forms the current iterate – have “drop steps”, i.e.,
iterations that do not guarantee progress but instead spar-
sify the active set, via e.g., away or pairwise steps when
clipping occurs. Nonetheless, the same analysis can be ap-
plied to these methods as well by carrying out over the. We
present computational experiments for these algorithms as
well below and in the appendix.

Remark 3.4 (Secant Line Search for Quadratics). If f is
a convex quadratic, then the line search problem (3.3) is
an affine-linear equation. If the iterate xt is not optimal
yet, then xt − vt is a descent direction, so that the slope of
the affine-linear function is negative and the secant method
converges in a single iteration.

As such SLS is almost as cheap as the short-step step size,
which would evaluate

γ = max

{
0,min

{
⟨∇f(xt),xt − vt⟩

L ∥xt − vt∥2
, 1

}}
,

while not requiring knowledge of L and exploiting local
smoothness, with progress at least as good as the short step.

For the sake of completeness, note that if we would run
Newton’s method here, provided we would have access to
second-order information, then we would need at least one
additional second-order evaluation; which is precisely also
what we observed in Section B, where we compared the
secant and Newton’s method.

4. Computational Experiments
We evaluate the performance of SLS on several prob-
lem classes. All experiments are carried out in Julia
with the blended pairwise FW variant implemented in
FrankWolfe.jl (Besançon et al., 2022; 2025) with default
parameters and a one-hour time limit. Additional experi-
ments on standard FW are presented in the appendix. An
instance is considered solved if the FW gap reaches 10−7.
The implementation of the experiments was done with the
Julia package FrankWolfe.jl and is available as part of the
package.

Remark 4.1 (Implementation Details and Improvements).
In the following, we discuss some algorthmic considerations
ensuring good performance in a wide range of problems.
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Implementation Safeguards. In the theorem above, we as-
sumed that the function f is strictly convex. This assump-
tion is not necessarily satisfied although the function may
be strictly convex on the line we search on. To make SLS
robust and safe, whenever the secant method fails, one may
run any fallback strategy, e.g., backtracking line search.

Warm-starting. We can warm-start SLS by using the optimal
γ∗ from the last call and initializing the secant method with
γ0 = γ∗ and γ1 = γ0 + ρ. This further reduces the number
of inner iterations in our experiments.

We briefly list the problem classes used for our experiments.
Detailed descriptions can be found in the appendix. “OA”
and “OD” correspond to optimal design of experiment prob-
lems with A- and D-criterion respectively. “Port” are portfo-
lio instances with a log-revenue objective. “QuadProb” and
“Ill” are quadratic instances over the simplex with a low and
high condition number respectively. “Birkhoff”, “Spec” and
“Nuclear” are quadratic instances over the Birkhoff polytope,
the spectraplex, and a nuclear norm ball respectively.

We benchmark the performance of SLS against the adap-
tive step-size strategies of Pedregosa et al. (2020); Pokutta
(2024), the golden-ratio and backtracking line search strate-
gies, the monotonic step size of Carderera et al. (2021;
2024), and the agnostic step size, using the implementations
from the FrankWolfe.jl package. All strategies are
run with the target accuracy of 10−7, compatible with the
gap stopping criterion we set. In the main part, we com-
pare SLS against the adaptive step size (default strategy in
FrankWolfe.jl), the agnostic step size, and the back-
tracking line search. All other experiments with much more
detailed reporting are available in Section C.

Fig. 2 illustrates the evolution of the step size from the
adaptive and secant strategies on four instances on which
the secant method converged to the desired FW gap. The
convergence of SLS is notably faster on the nuclear norm
and portfolio instances, while maintaining higher step sizes
during the first iterations. On the D-OED and quadratic
problems, we also notice that the step size computed by
secant oscillates less than the adaptive line search.

Fig. 1 shows the number of iterations needed by SLS to
converge on all problem classes, the total number of in-
stances per problem class can be found in Table 1. For most
quadratic problems (Birkhoff, Ill, QuadProb, Spec), SLS re-
quires at most one iteration in accordance with Remark 3.4.
Quadratics on the nuclear norm ball are the exception, with
some instances taking more than one secant iteration per
line search on average. This can be traced back to numerical
issues, since on most instances the primal gap is quickly be-
low 10−10 but the dual gap remains large due to extremely
large nuclear norm ball radii. Importantly, the average itera-
tion count remains low, around 1.5, for all solved instances

even in non-quadratic cases. High average iteration counts
correspond to instances causing numerical instabilities.

0 0.5 1 1.5 2 2.5 3
0

20

40

Average Secant Iterations

#
in
st
a
n
c
e
s

Birkhoff
Ill-Conditioned
Quadratic

Nuclear

A-Optimal D-Optimal
Simple
Quadratic

Spectrahedron Portfolio

Figure 1. Average secant iteration count by problem class. The
graph is truncated at 3 iterations on the right, only affecting the
A-Optimal instances, which are known to be numerically unstable
(Hendrych et al., 2024) with very flat descent directions. Note that
the average number can be lower than 1 due to warm-starting.

Aggregated results for all instance classes are compiled in
Table 1 and broken down in more detail in the appendix.
Note that the agnostic step size does not ensure convergence
on non-smooth functions such as OA and OD. The SLS
strategy outperforms the two other methods in number of
FW iterations, gap and time on most instance classes. It is
particularly interesting that SLS outperforms an essentially
free to compute step size such as the agnostic on instance
classes on which fast convergence rates can be guaranteed,
such as a squared distance objective on a polytope. While
SLS is not systematically the fastest strategy for all instance
types, it is often very close to the best option, making it an
effective and robust choice for a wide spectrum of problems.

Detailed trajectories of the most important step-size strate-
gies are illustrated in Fig. 3 for four instances of different
types. They show the superior performance of SLS com-
pared to backtracking line search, to the first-order adaptive
strategy of Pokutta (2024), and open-loop step sizes. We
compare here against the open-loop strategy because of its
popularity for Frank-Wolfe, even though it is not known
to converge on non-smooth self-concordant functions such
as the OD and portfolio objectives. We highlight that the
performance against the number of iterations carries over
to the convergence against wall-clock time, showing that
SLS is performant to minimize the function on the segment,
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Figure 2. Comparison of the step sizes per iteration for the Secant and Adaptive line search.

but also efficient in terms of computations despite requiring
gradient calls, unlike, e.g., backtracking which evaluates the
function only. On the numerically-challenging nuclear norm
ball example in particular, backtracking quickly stagnates
despite theoretically being an equivalent line search.
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Table 1. Summary of the performance on all considered problems. The number of instances per problem classes are written in the
brackets. The geometric mean of the solving time is taken over all instances. The geometric mean of the dual gap is only taken over
instances that could not be solved up to the tolerance. The average number of iterations is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Prob. Time (s) Dual
gap

# FW
iterations Time (s) Dual

gap
# FW

iterations Time (s) Dual
gap

# FW
iterations Time (s) Dual

gap
# FW

iterations

Birk. [30] 427.6 <1e-7 10624 614.6 2.47e-7 17506 2959.9 8.76e-7 731017 248.5 <1e-7 7283
Ill [50] 15.3 <1e-7 20 15.9 <1e-7 26 1227.7 4.35e-6 120361 13.9 <1e-7 34

Nuclear [30] 204.6 0.133 1071 600.6 0.139 2547 3600.0 753000.0 – 3600.0 11400.0 –

OA [50] 475.7 0.0333 2194 3600.0 0.0935 – 3600.0 0.13 – 3600.0 5.02e-5 –

OD [50] 199.2 8.08e-5 828 252.0 2.90e-7 1496 3542.2 3.83e-4 >9M 158.8 <1e-7 748
Port [13] 0.5 <1e-7 28 4.6 1.44e-7 66 2083.7 2.09e-06 1263 166.8 3.63e-7 40

QuadProb [30] 340.7 0.000217 15046 355.7 0.000237 20814 3043.1 0.000163 >30M 426.4 0.000624 32585

Spec [50] 34.5 1.77e-7 124 41.1 3.8e-7 139 192.3 2.13e-6 4252 168.7 1.35e-6 1347
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Figure 3. Progress of the primal value and FW gap for two problems with a quadratic objective (nuclear norm and standard quadratic) and
for two problems with a self-concordant objective (D-Opt and portfolio). In (a), the iterations and time are truncated at 10000 and 10 s,
repectively, since Backtracking and Agnostic stall on this instance.

9



Secant Line Search for Frank-Wolfe

Impact Statement
This work introduces a novel step-size strategy for Frank-
Wolfe algorithms, leveraging the secant method. By refor-
mulating the line search problem as a root-finding task, our
approach significantly reduces computational costs while
maintaining effectiveness and adaptivity to local smooth-
ness properties. This innovation not only enhances the
performance of Frank-Wolfe algorithms but also provides
a framework that could be extended to other optimization
methods, potentially transforming fields that rely on con-
strained optimization, such as operations research, machine
learning, and engineering design. The broader implications
of this work lie in its ability to bridge theoretical and practi-
cal optimization challenges. By offering a computationally
efficient and theoretically sound step-size strategy, we en-
able researchers and practitioners to tackle larger and more
complex problems than previously feasible. This could
lead to advancements in areas such as resource allocation,
network design, and large-scale machine learning, where
constrained optimization is ubiquitous. Ethically, this work
aligns with the goal of advancing open scientific inquiry and
computational efficiency, and we do not foresee any ethical
issues; the same holds true for immediate social impact.
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A. Precision of FW’s Line Search
In this section, we analyze the convergence of the FW algorithm when there is an inexact computation of the line search,
depending on the choice of the accuracy parameters.

Assume f : Rn → R is convex, and differentiable in an open set containing the convex and compact feasible set X , and let
D

def
= diam(X ). Also, assume f is L-smooth in X , that is,

f(y) ≤ f(x) + ⟨∇f(y),x− y⟩+ L

2
∥x− y∥2 , for all x,y ∈ X .

Algorithm 3 Frank-Wolfe with inexact line search
Input: Function f , initial point x0.

1: for t = 0 to T do
2: vt ← argmin

v∈Rn
⟨∇f(xt),v⟩

3: xt+1 ← δt-minimizer of g : [0, 1]→ R, γ 7→ f((1− γ)xt + γvt)

4: end for

We define positive weights aℓ > 0 for all ℓ ≥ 0, to be determined later, and At
def
=

∑t
i=0 ai. Thus, A−1 = 0. We also define

the following lower bound on f(x∗), where x∗ here is defined as a minimizer in argminx∈X f(x):

Atf(x
∗)

1
≥

t∑
ℓ=0

aℓf(xℓ) +

t∑
ℓ=0

aℓ ⟨∇f(xℓ),x
∗ − xℓ⟩

2
≥

t∑
ℓ=0

aℓf(xℓ) +

t∑
ℓ=0

aℓ ⟨∇f(xℓ),vℓ − xℓ⟩

def
= AtLt,

where we applied convexity in 1 , and for 2 , we applied the definition of vℓ in the algorithm, which is why we define this
point. Define the primal-dual gap

Gt
def
= f(xt+1)− Lt ≥ f(xt+1)− f(x∗), (A.1)

and note that upper bound f(xt+1) is one step ahead, which helps the analysis. We obtain the following, for t ≥ 0, and
x̃t+1

def
= At−1

At
xt +

at

At
vt:

AtGt −At−1Gt−1 = Atf(xt+1)−At−1f(xt)

−

atf(xt) +

�
�
�
�
��t−1∑

ℓ=0

aℓf(xℓ) + at ⟨∇f(xt),vt − xt⟩+
������������t−1∑
ℓ=0

aℓ(⟨∇f(xℓ),vℓ − xℓ⟩)


+


�
�
�
�
��t−1∑

ℓ=0

aℓf(xℓ) +
������������t−1∑
ℓ=0

aℓ(⟨∇f(xℓ),vℓ − xℓ⟩)


1
≤ ⟨∇f(xt), At(x̃t+1 − xt)− at(vt − xt)⟩+

LAt

2
∥x̃t+1 − xt∥2 +Atδt

2
=

La2t
2At
∥vt − xt∥2 +Atδt

3
≤ LD2a2t

2At
+Atδt

def
= Et.

(A.2)

In 1 we grouped terms to get At(f(xt+1)− f(xt)) used that the assumption on xt+1 makes this term be bounded by the
value that the smoothness inequality yields for any point, and in particular for x̃t+1, up to a δt error coming from the line
search. In 2 we used twice the definition of x̃t+1 which implies At(xt+1 − xt) = at(vt − xt). In 3 , we bounded the
distance of points by the diameter D.

12



Secant Line Search for Frank-Wolfe

Now with the choice at = 2t+ 2 and At =
∑t

i=0 ai = (t+ 1)(t+ 2) we have, by telescoping and dividing by At:

f(xt+1)− f(x∗) ≤ Gt ≤
1

At

t∑
i=0

Ei =
1

At

t∑
i=0

LD2a2i
2Ai

+Aiδi =
1

(t+ 1)(t+ 2)

t∑
i=0

2LD2(i+ 1)

i+ 2
+

1

At

t∑
i=0

Aiδi

<
2LD2

t+ 2
+

1

At

t∑
i=0

Aiδi.

(A.3)

If we choose constant δt = δ, the sum of the terms with δ on the right hand side becomes O(tδ). So if we are aiming to get
an ϵ-minimizer after T steps, we can choose T so that the first summand on the right hand side is ϵ/2 and we can choose
δ = Θ(ϵ/T ) so that the second summand is ϵ/2 after T steps.

Another option would be to choose δi =
ϵai

2Ai
, which yields 1

At

∑t
i=0 Aiδi =

ϵ
2At

∑t
i=0 ai =

ϵ
2 after any number of steps.

B. Experimental Results for Secant Method vs Newton’s Method
A natural question to ask is whether we can replace the secant method with the Newton’s method in SLS for higher
performance, provided that we have access to second-order information. It turns out that apart from requiring additional
second-order ormation that may not be available, even if available and computed via automatic differentiation or provided
directly, the secant method is faster than the Newton’s method in practice in our application context.

To this end we ran the following computational experiments. We run SLS with secant method and Newton’s method in
isolation outside of the Frank-Wolfe algorithm to avoid (1) any overheads that may arise and (2) side effects due to different
trajectories that the algorithms may take and that propagate, so that different line search problems would be solved.

For this experiment, we performed two different types of experiments. We first ran both methods on a subset of the instances
from Badr et al. (2022), as they cover a broad range of cases, also outside our direct application context. We ran each variant
1000 times for each instance and report total timings. Both methods were run with the same initial step size γ0 = 0 and
γ1 = γ0 + ρ with ρ = 10−5 and to the target accuracy of 10−8. For these tests, we computed the gradient function via
automatic differentiation. We report the average time in seconds for each method to find a solution with a relative accuracy
of 10−5.

We then ran the two methods on 1000 randomly generated line-search instances for two relevant cases that typically occur in
the context of the Frank-Wolfe algorithm. For the case where f is a quadratic function, we used the same instance generation
as done in Section 4 for the quadratics and randomly sampled x and d from the unit sphere. For the case where f is a
non-quadratic function, we derive the line search problems from the portfolio optimization instances. In the quadratic case,
the gradient has been provided directly and in the case of the non-quadratic functions, we used finite differences to compute
the gradient; to more closely mimic the line search problems that we encounter.

We report the timings in Table 2 and provide some visualizations of the considered problems in Fig. 4.

C. Additional Experiments
In this appendix, we provide additional information and context on the instance classes, and report more fine-grained results
on experiments by problem class.

Optimal Design of Experiment (OED). Optimal Design of Experiment is a problem maximizing an information criterion
on the probability simplex and which was tackled by a FW method in Hendrych et al. (2024). The objective functions of
both the ‘A’ and ‘D’ criteria are generalized self-concordant, not globally smooth, and result in two groups of instances
which we denote by “OA” and “OD” respectively.

Portfolio Optimization. We consider a portfolio optimization model with log-revenue similar to Dvurechensky et al.
(2023); Carderera et al. (2021; 2024). The instances are taken from Carderera et al. (2024) and denoted by “Port”. The
objective function is also (generalized) self-concordant and satisfies the conditions of Remark 3.2.
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Figure 4. Various runs of SLS with the secant and Newton’s method. (Top Row) Instances where f is not a quadratic function. (Bottom
Row) Instances where f is a quadratic function.
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Table 2. Comparison of execution times between Secant and Newton’s methods for various test functions. Where f is explicitly provided,
the gradient function is computed via automatic differentiation. For the line search problems, the gradient is provided directly and not
computed via automatic differentiation, as those are instances extracted from the line search routine. Timings are averaged over 1000 runs.

Function Secant Time (s) Newton’s Time (s) Newton/Secant

f(x) = x2 − 2 3.42e-06 4.32e-05 12.62
f(x) = x2 − 5 3.14e-06 5.47e-05 17.42
f(x) = x2 − 10 2.82e-06 4.13e-05 14.65
f(x) = x2 − x− 2 3.70e-06 4.63e-05 12.52
f(x) = x2 + 2x− 7 3.47e-06 4.11e-05 11.85
f(x) = x3 − 2 4.81e-06 4.64e-05 9.65
f(x) = xex − 7 1.01e-05 5.89e-05 5.83
f(x) = x− cos(x) 6.39e-06 4.39e-05 6.88

Line Search (quadratic) 1.92e-05 7.97e-05 4.15
Line Search (arbitrary) 3.75e-05 1.24e-04 3.31

Quadratics on the simplex. Ill-conditioned problems are constructed as convex quadratic minimization on the simplex
with a high condition number on the Hessian and denoted “Ill”. Well-conditioned quadratic problems denoted “QuadProb”
are built using the squared Euclidean distance to a random point over the simplex.

Optimization on the spectraplex and nuclear norm ball. In order to study the behavior of SLS on non-polyhedral
constraint sets, we apply it to matrix completion problems in the symmetric and nonsymmetric cases, i.e., optimizing over
the spectraplex and nuclear norm ball and respectively denoted with “Spec” and “Nuclear”.

Birkhoff polytope. The problem class “Birkhoff” corresponds to minimizing a least-square objective on the Birkhoff
polytope, the convex hull of all permutation matrices of a given size.

We compare more step-size strategies, including the backtracking and golden-ratio line-search strategies, the adaptive
step size with zero-th order and first-order information from Pedregosa et al. (2020) and Pokutta (2024) respectively, the
monotonic step size designed for generalized self-concordant functions in Carderera et al. (2021; 2024), and the open-loop
agnostic step size of the form 2

t+2 .

Figures 5 to 12 present trajectories of the primal value and FW gaps for instances of all problem classes using the different
step-size strategies. We notice on the ill-conditioned and simple quadratic problems in Fig. 6 and Fig. 11 respectively that
then golden-ratio line search starts with a trajectory similar to the backtracking and secant step sizes but start to stagnate
due to numerical inaccuracies earlier before reaching the desired FW gap tolerance. This is due to its stopping criterion
incurring a higher additive error on the step size.

We primarily used the Blended Pairwise Conditional Gradients (BPCG) algorithm from Tsuji et al. (2022)—the default
active-set algorithm in FrankWolfe.jl—for all experiments. Similar to the Away-step Frank-Wolfe (see e.g., Lacoste-
Julien & Jaggi (2015)), it requires a step size computed with an exact or approximate line search, in particular to ensure
accelerated convergence rates in favorable cases (e.g., uniformly convex functions or uniformly convex feasible regions).
Note that in particular for BPCG the backtracking line search sometimes favorably interacts with the drop step mechanics of
the BPCG algorithm, leading unexpected performance improvements.

For completeness, we also present experiments for SLS applied to the standard FW algorithm as implemented in
FrankWolfe.jl in Fig. 14 and Fig. 15.
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Figure 5. Progress of the primal value and FW gap for an instance of the Birkhoff problem. The Golden Ratio line search from the
FrankWolfe.jl package stalls out due to numerical issues.

Table 3. Instances of the Birkhoff problem ordered by difficulty. The geometric mean of the solving time is taken over all instances. The
geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The average number of iterations
is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

2500 5 10.4 <1e-7 6274 603.3 14.6 <1e-7 9768 669.0 1111.7 <1e-7 731017 657.6 6.0 <1e-7 3919 653.2
10000 5 133.6 <1e-7 12063 90.3 209.7 <1e-7 19437 92.7 3600.0 2.01e-07 – 97.0 70.5 <1e-7 7547 107.0
22500 5 523.2 <1e-7 13835 26.4 818.6 <1e-7 22589 27.6 3600.0 4.53e-07 – 30.1 284.5 <1e-7 9123 32.1
40000 5 1137.4 <1e-7 11965 10.5 1838.5 <1e-7 19443 10.6 3600.0 8.71e-07 – 12.1 658.1 <1e-7 8392 12.8
62500 5 2022.4 <1e-7 10272 5.1 3043.7 <1e-7 16293 5.4 3600.0 1.28e-06 – 6.6 1130.5 <1e-7 6994 6.2
90000 5 3344.8 <1e-7 9333 2.8 3600.0 2.47e-07 – 3.1 3600.0 1.58e-06 – 4.5 2253.3 <1e-7 7722 3.4
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Figure 6. Progress of the primal value and FW gap for an instance of the Ill-Conditioned Quadratic problem. For the golden ratio line
search the same remark applies as in the Birkhoff problem (see Fig. 5).

Table 4. Instances of the Ill-Conditioned Quadratic problem ordered by difficulty. The geometric mean of the solving time is taken over
all instances. The geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The average
number of iterations is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

500 5 0.0 <1e-7 25 Inf 0.0 <1e-7 30 Inf 40.7 <1e-7 336307 8263.1 0.1 <1e-7 39 390.0
1000 5 9.1 <1e-7 16 1.8 9.7 <1e-7 22 2.3 1385.4 3.14e-06 118 9.2 7.6 <1e-7 31 4.1
1500 5 12.5 <1e-7 21 1.7 13.1 <1e-7 29 2.2 3600.0 1.99e-06 – 6.3 17.7 <1e-7 38 2.1
2000 5 13.7 <1e-7 17 1.2 13.0 <1e-7 21 1.6 860.4 4.20e-06 309 8.4 17.2 <1e-7 29 1.7
2500 5 23.6 <1e-7 20 0.8 25.4 <1e-7 27 1.1 1944.4 5.29e-06 370 3.5 22.1 <1e-7 37 1.7
3000 5 31.3 <1e-7 22 0.7 32.1 <1e-7 28 0.9 2133.8 4.85e-06 501 2.5 23.3 <1e-7 36 1.5
3500 5 17.7 <1e-7 13 0.7 23.0 <1e-7 20 0.9 1413.0 5.74e-06 56 3.5 15.6 <1e-7 24 1.5
4000 5 36.4 <1e-7 22 0.6 32.9 <1e-7 26 0.8 3600.0 4.91e-06 – 1.7 27.4 <1e-7 38 1.4
4500 5 28.1 <1e-7 21 0.7 32.0 <1e-7 28 0.9 744.3 4.52e-06 145 4.8 24.4 <1e-7 38 1.6
5000 5 38.6 <1e-7 22 0.6 35.2 <1e-7 27 0.8 2774.2 4.94e-06 1565 1.8 25.5 <1e-7 34 1.3
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Figure 7. Progress of the primal value and FW gap for an instance of the Nuclear problem. The secant line search is not only significantly
faster than the other methods but also reaches a much higher final accuracy.

Table 5. Instances of the Nuclear problem ordered by difficulty. The geometric mean of the solving time is taken over all instances. The
geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The average number of iterations
is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

2500 5 0.2 <1e-7 511 2555.0 0.5 <1e-7 1611 3222.0 3600.0 1.34e+04 – 5381.0 3600.0 1.60e+04 – 3316.4
10000 5 1.1 <1e-7 873 793.6 260.1 1.37e-01 3161 4060.2 3600.0 2.68e+04 – 2860.3 3600.0 2.34e+04 – 1250.8
22500 5 803.8 <1e-7 1662 2.1 2665.2 1.41e-01 4274 2.2 3600.0 3.70e+06 – 11.9 3600.0 1.12e+04 – 4.2
40000 5 2997.0 1.28e-01 1912 1.3 3600.0 1.38e-01 – 1.6 3600.0 4.27e+06 – 12.3 3600.0 6.60e+03 – 2.5
62500 5 3600.0 1.32e-01 – 1.1 3600.0 1.39e-01 – 1.4 3600.0 5.63e+06 – 10.9 3600.0 8.94e+03 – 1.7
90000 5 3600.0 1.38e-01 – 1.0 3600.0 1.40e-01 – 1.4 3600.0 5.71e+06 – 12.5 3600.0 8.98e+03 – 1.5
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Figure 8. Progress of the primal value and FW gap for an instance of the A-Optimal Experiment Design problem. For the agnostic step
size the same remark applies as in the D-Optimal Experiment Design problem (see Fig. 9).

Table 6. Instances of the A-Optimal Experiment Design problem ordered by difficulty. The geometric mean of the solving time is taken
over all instances. The geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The
average number of iterations is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

100 5 0.6 <1e-7 887 1478.3 3600.0 6.00e-07 – 512.2 3600.0 1.85e-05 – 2613.6 3600.0 1.90e-06 – 970.6
200 5 3.2 <1e-7 1413 441.6 3600.0 6.93e-07 – 315.1 3600.0 6.78e-05 – 1141.4 3600.0 1.59e-06 – 267.2
300 5 420.5 <1e-7 1971 4.7 3600.0 7.15e-07 – 43.9 3600.0 7.32e-03 – 16.2 3600.0 1.64e-06 – 1.9
400 5 775.3 <1e-7 2315 3.0 3600.0 8.87e-07 – 3.7 3600.0 2.16e-02 – 9.7 3600.0 1.82e-06 – 1.2
500 5 1284.7 <1e-7 2901 2.3 3600.0 4.47e-05 – 2.0 3600.0 7.51e-02 – 5.4 3600.0 1.56e-06 – 1.1
600 5 2209.3 2.53e-04 3012 1.1 3600.0 1.04e-06 – 2.7 3600.0 3.59e-02 – 7.7 3600.0 1.30e-06 – 1.0
700 5 2059.5 <1e-7 2976 1.4 3600.0 3.34e-03 – 1.5 3600.0 1.76e-01 – 3.2 3600.0 1.28e-06 – 0.9
800 5 3565.6 2.45e-06 3240 0.7 3600.0 2.15e-01 – 0.6 3600.0 2.55e-01 – 3.0 3600.0 1.71e-06 – 0.8
900 5 3600.0 8.13e-03 – 0.5 3600.0 4.53e-01 – 0.6 3600.0 3.50e-01 – 1.8 3600.0 1.41e-05 – 0.6
1000 5 3600.0 9.41e-02 – 0.3 3600.0 3.81e-01 – 0.4 3600.0 4.63e-01 – 1.3 3600.0 4.75e-04 – 0.5
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Figure 9. Progress of the primal value and FW gap for an instance of the D-Optimal Experiment Design problem. The significant uptick
in the primal value for the agnostic is expected as (a) the agnostic step size does not guarantee primal progress in contrast to the other step
sizes used here and (b) the agnostic step size strictly speaking cannot be applied to the D-Optimal Experiment Design problem (Hendrych
et al., 2024) as it does not work for generalized self-concordant functions (Carderera et al., 2021; 2024). We only included it here for
completeness and since it is the textbook step-size rule for the vanilla Frank-Wolfe algorithm.

Table 7. Instances of the D-Optimal Experiment Design problem ordered by difficulty. The geometric mean of the solving time is taken
over all instances. The geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The
average number of iterations is taken over all solved instances. Brackets indicate that all instances were basically solved up to the
tolerance up to some numerical error.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

100 5 0.2 <1e-7 306 1530.0 0.3 <1e-7 653 2176.7 3061.6 [<1e-7] >9M 2523.4 0.1 <1e-7 219 2190.0
200 5 1.1 <1e-7 459 417.3 1.4 <1e-7 915 653.6 3600.0 2.34e-07 – 948.8 0.8 <1e-7 376 470.0
300 5 128.0 <1e-7 534 4.2 64.9 [<1e-7] 1088 13.4 3600.0 1.80e-05 – 15.4 105.3 <1e-7 451 4.3
400 5 439.7 [<1e-7] 780 1.4 327.2 <1e-7 1423 4.3 3600.0 4.68e-05 – 9.0 241.3 <1e-7 648 2.7
500 5 376.1 <1e-7 812 2.2 775.4 <1e-7 1570 2.0 3600.0 7.57e-05 – 6.8 384.8 <1e-7 727 1.9
600 5 371.0 <1e-7 876 2.4 1354.2 [<1e-7] 1585 0.9 3600.0 8.03e-05 – 6.9 415.2 <1e-7 815 2.0
700 5 728.5 <1e-7 1029 1.4 1523.1 [<1e-7] 1866 0.7 3600.0 4.74e-04 – 3.1 589.7 <1e-7 912 1.5
800 5 1066.7 <1e-7 1096 1.0 1268.0 <1e-7 1986 1.6 3600.0 6.06e-04 – 2.5 884.8 <1e-7 998 1.1
900 5 1881.2 [<1e-7] 1228 0.5 2282.9 <1e-7 2177 1.0 3600.0 9.85e-04 – 1.3 1294.8 <1e-7 1131 0.9
1000 5 3413.0 8.08e-05 1334 0.3 3389.9 2.90e-07 2212 0.7 3600.0 1.09e-03 – 1.0 1978.3 <1e-7 1199 0.6
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Figure 10. Progress of the primal value and FW gap for an instance of the Portfolio problem.

Table 8. Instances of the Portfolio problem ordered by difficulty. The geometric mean of the solving time is taken over all instances. The
geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The average number of iterations
is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

800 4 0.5 <1e-7 26 52.0 0.6 <1e-7 64 106.7 608.4 7.19e-07 1263 2872.9 0.2 <1e-7 37 185.0
1200 4 0.5 <1e-7 23 46.0 11.1 1.63e-07 58 8339.3 3600.0 1.41e-06 – 445.7 3600.0 3.98e-07 – 88.9
1500 5 0.6 <1e-7 34 56.7 7.6 1.25e-07 74 14273.2 3600.0 3.45e-06 – 333.9 758.8 3.28e-07 53 193.9
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Figure 11. Progress of the primal value and FW gap for an instance of the Simple Quadratic problem.

Table 9. Instances of the Standard Quadratic problem ordered by difficulty. The geometric mean of the solving time is taken over all
instances. The geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The average
number of iterations is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

2500 5 0.5 <1e-7 6491 12982.0 0.5 <1e-7 9083 18166.0 1313.2 <1e-7 >30M 23600.7 1.2 <1e-7 13885 11570.8
10000 5 5.5 <1e-7 23601 4291.1 6.9 <1e-7 32545 4716.7 3600.0 3.45e-07 – 5558.5 15.6 <1e-7 51285 3287.5
22500 5 3600.0 1.92e-04 – 2.4 3600.0 2.18e-04 – 3.3 3600.0 2.24e-04 – 10.0 3600.0 5.56e-04 – 3.6
40000 5 3600.0 2.10e-04 – 2.5 3600.0 2.43e-04 – 3.2 3600.0 2.32e-04 – 9.7 3600.0 5.77e-04 – 3.8
62500 5 3600.0 2.30e-04 – 2.4 3600.0 2.55e-04 – 3.2 3600.0 2.04e-04 – 9.1 3600.0 6.39e-04 – 3.6
90000 5 3600.0 2.36e-04 – 2.3 3600.0 2.34e-04 – 3.5 3600.0 1.56e-04 – 8.6 3600.0 7.26e-04 – 3.4
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Figure 12. Progress of the primal value and FW gap for an instance of the Spectrahedron problem.

Table 10. Instances of the Spectrahedron problem ordered by difficulty. The geometric mean of the solving time is taken over all instances.
The geometric mean of the dual gap is only taken over instances that could not be solved up to the tolerance. The average number of
iterations is taken over all solved instances.

Secant Adaptive Agnostic Backtracking

Dim # Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

Time (s) Dual
gap

#
FW

iterations

Iter
per
sec

10000 5 0.4 <1e-7 454 1135.0 0.4 <1e-7 435 1087.5 2.5 <1e-7 17323 6929.2 2.2 <1e-7 4528 2058.2
40000 5 26.3 <1e-7 400 15.2 28.2 <1e-7 385 13.7 76.6 <1e-7 4094 53.4 80.3 <1e-7 1463 18.2
90000 5 15.7 <1e-7 158 10.1 21.4 <1e-7 300 14.0 67.4 <1e-7 4442 65.9 43.1 <1e-7 727 16.9
160000 5 11.2 <1e-7 42 3.8 10.7 <1e-7 46 4.3 145.2 3.48e-07 1788 28.1 100.6 <1e-7 1097 10.9
250000 5 7.7 <1e-7 6 0.8 9.3 <1e-7 9 1.0 25.3 <1e-7 103 4.1 41.5 <1e-7 612 14.7
360000 5 17.4 <1e-7 22 1.3 18.8 <1e-7 25 1.3 523.9 1.73e-07 2462 9.1 366.6 <1e-7 1472 4.0
490000 5 312.8 1.77e-07 10 0.5 357.5 4.86e-07 13 0.5 616.9 2.05e-06 5 0.4 577.1 1.10e-06 3 0.4
640000 5 78.7 <1e-7 9 0.1 100.2 <1e-7 11 0.1 594.1 5.71e-07 35 0.3 678.5 1.43e-06 112 0.3
810000 5 525.3 <1e-7 54 0.1 587.4 <1e-7 66 0.1 3600.0 3.83e-06 – 0.1 3600.0 1.65e-06 – 0.1
1000000 5 195.7 <1e-7 43 0.2 373.1 1.66e-07 22 0.2 1464.3 2.31e-06 47 0.2 775.2 1.04e-06 6 0.2
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Figure 13. Computed step sizes over iteration for the Secant line search and Adaptive line search on various problem classes.
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Figure 14. Progress of the primal value and FW gap for an instance of the Nuclear problem using Vanilla Frank-Wolfe.

100 101 102 103 104

0.99

0.99

0.99

0.99

P
ri
m
a
l

Secant

Adaptive

Agnostic

Monotonic

Golden Ratio

Adaptive Zero

Backtracking

100 101 102 103

0.99

0.99

0.99

0.99

100 101 102 103 104

10−8

10−5

10−2

101

Iterations

F
W

g
a
p

100 101 102 103

10−8

10−5

10−2

101

Time (s)

Figure 15. Progress of the primal value and FW gap for an instance of the Spectrahedron problem using Vanilla Frank-Wolfe.

25


	Introduction
	The Secant Method
	Global Convergence
	Local Convergence

	The Secant Method for Line Search in Frank-Wolfe Algorithms
	Computational Experiments
	Precision of FW's Line Search
	Experimental Results for Secant Method vs Newton's Method
	Additional Experiments

