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Figure 1: (a) Input views with inconsistent appearance, (b) input views harmonized by our model,
(c) novel view renderings of 3DGS fitted to inconsistent input views and ones corrected by our model,
(d) comparison with 3DGS-based appearance embedding methods on varying exposure dataset.

ABSTRACT

Modern camera pipelines apply extensive on-device processing, such as exposure
adjustment, white balance, and color correction, which, while beneficial individu-
ally, often introduce photometric inconsistencies across views. These appearance
variations violate multi-view consistency and degrade novel view synthesis. Joint
optimization of scene-specific representations and per-image appearance embed-
dings has been proposed to address this issue, but with increased computational
complexity and slower training. In this work, we propose a generalizable, feed-
forward approach that predicts spatially adaptive bilateral grids to correct photo-
metric variations in a multi-view consistent manner. Our model processes hundreds
of frames in a single step, enabling efficient large-scale harmonization, and seam-
lessly integrates into downstream 3D reconstruction models, providing cross-scene
generalization without requiring scene-specific retraining. To overcome the lack
of paired data, we employ a hybrid self-supervised rendering loss leveraging 3D
foundation models, improving generalization to real-world variations. Extensive
experiments show that our approach outperforms or matches the reconstruction
quality of existing scene-specific optimization methods with appearance modeling,
without significantly affecting the training time of baseline 3D models.

1 INTRODUCTION

Novel view synthesis (NVS) and 3D reconstruction are fundamental challenges in computer vision
and graphics. Recent advances, such as Neural Radiance Fields (NeRF) (Mildenhall et al., 2020)
and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), have significantly improved the fidelity and
realism of scene reconstruction and rendering. These methods typically rely on multi-view images
captured under the assumption of photometric consistency across views. However, this assumption
often breaks in real-world scenarios due to various sources of photometric inconsistency, including:
(i) in-camera Image Signal Processing (ISP) variations, e.g. exposure, white balance, color correction;
and (ii) scene illumination. Such inconsistencies degrade reconstruction quality, producing floaters,
color artifacts, or generally unstable results. To address these challenges, prior art has explored
per-view appearance embeddings (Martin-Brualla et al., 2021; Kulhanek et al., 2024; Wang et al.,
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2024a; Xiao et al., 2025; Cui et al., 2025), providing reconstruction with additional capacity to
capture per-view appearance variations via MLPs, tone curves, or affine transforms that are jointly
learned with the scene in a global multi-view optimization. While effective, these approaches tightly
couple appearance modeling with geometry reconstruction, incurring additional computation at each
optimization step, substantially increasing training cost. This undermines the efficiency of pipelines
designed for speed, e.g. 3DGS and recent extensions (Mallick et al., 2024; Chen et al., 2025) which
achieve rapid scene fitting. Moreover, the recovered appearance after removing the embeddings is not
explicitly controllable and often converges to the mean of all variations observed in the input views.

These limitations motivate decoupling appearance harmonization from scene optimization and
addressing it in a feed-forward manner, promising improvements in accuracy, controllability, and
efficiency. However, several challenges remain when treating this as an independent problem. Existing
2D image and video enhancement techniques (Afifi et al., 2021; Cui et al., 2024; Li et al., 2024;
Zhou et al., 2024; Cui et al., 2022; Shin et al., 2023; 2024a) often lack temporal or multi-view
consistency, address only limited types of appearance variation (e.g. exposure correction), and
struggle to robustly handle severe color shifts or saturation artifacts. Additionally, most approaches
require fully-supervised learning paradigms, yet collecting paired real-world data is infeasible: real-
world appearance variations are inherently unique in time and space, and one cannot easily capture
pixel-aligned images where several appearance variations can be isolated and used as labels.

In this work, we address the aforementioned challenges by introducing a feed-forward approach to
multi-view appearance harmonization tailored for 3D reconstruction from varying appearance images.
Given multi-view captures of a static scene and a reference frame with a desired appearance, our
model transforms all views to match the reference, ensuring photometric consistency. Our key idea is
to learn per-frame 3D bilateral grids of affine transforms in a generalizable, multi-view consistent
manner. We use bilateral grids as they are compact and expressive, capable of modeling a wide
range of ISP operations (Chen et al., 2007; Gharbi et al., 2017; Shin et al., 2024b) and beyond. A
multi-view aware transformer predicts low-resolution bilateral grids for each view, which, when
applied to the inputs, aligns their appearance with the reference at full resolution. To make the model
uncertainty-aware, we also predict bilateral confidence grids using a probabilistic loss. We introduce a
reference selection strategy that identifies the image most representative of overall scene appearance,
avoiding outliers that could degrade reconstruction quality. Selection is driven by a weighted ranking
score accounting for both intensity and semantic similarity, ensuring the final appearance is realistic
(i.e. not an average over all frames), while providing flexibility for either manual choice or automatic
selection. Lastly, we address the lack of training data for such a system by proposing (i) a synthetic
data-generation pipeline to handle large granularity image-level variations, and (ii) a self-supervised
training paradigm that uses recent large 3D reconstruction models as a pretext task to provide real-data
training signals.

Unlike prior art, our lightweight transformer model introduces only a fixed computational cost per
frame. This decoupled design allows seamless integration into pipelines such as 3DGS (Kerbl et al.,
2023), 2DGS (Huang et al., 2024a), DashGS (Chen et al., 2025), and even feed-forward models (Jiang
et al., 2025), enhancing view consistency while preserving scalability and speed. Through our hybrid
self-supervised and supervised (synthetic data) approach, our model achieves state-of-the-art accuracy
for real-world datasets, which in turn also improves the robustness and stability of 3DGS optimization
under challenging photometric conditions without negatively affecting training time. Comprehensive
evaluation demonstrates that our model matches and often exceeds the performance of existing
3DGS-based appearance embedding approaches while maintaining competitive training speed.

2 RELATED WORKS

Appearance Correction and Bilateral Grids. Image correction aims to adjust visual attributes such
as exposure, white balance, and tone to improve image quality or ensure consistency. Traditional
methods solve this using histogram equalization (Zuiderveld, 1994), retinex-based methods, or global
transformation optimization, but often lack spatial adaptability. Learning-based approaches (Afifi
et al., 2021; Afifi & Brown, 2020; Zhou et al., 2024) address these issues using CNNs, but struggle
with generalization or fine detail preservation. Bilateral filtering has been widely used due to its
edge-aware properties. Numerous approaches improve its efficiency, such as convolution pyra-
mids (Farbman et al., 2011) and fast bilateral filtering (Paris & Durand, 2006; Tomasi & Manduchi,
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1998; Chen et al., 2007). A common acceleration strategy applies the operator at low resolution and
upsamples the result, but this results in blurry outputs. Bilateral space optimization (Barron et al.,
2015; Barron & Poole, 2016) addresses this by solving an optimization problem within a bilateral grid.
Similarly, (Chen et al., 2007) approximate an image operator using a grid of local affine models in
bilateral space, where parameters are fit to a single input-output pair. (Gharbi et al., 2017) build upon
this by training a neural network to apply the operator to unseen inputs. While most bilateral grid
methods operate solely on single 2D images, our work extends this concept to the spatio-temporal
domain, enabling multi-view consistent enhancement through a transformer-based architecture.

Novel View Synthesis under Appearance Variations. Extensions to NeRF (Mildenhall et al.,
2020) and 3DGS (Kerbl et al., 2023) have attempted to solve novel view synthesis under real-world
conditions such as inconsistent lighting, occlusions, and scene variability. The pioneering work
NeRF-W (Martin-Brualla et al., 2021) incorporates per-image appearance and transient embeddings,
with aleatoric uncertainty for transient object removal. Follow-ups improved NeRF robustness (Chen
et al., 2021; Yang et al., 2023; Tancik et al., 2022), but suffer from slow optimization, rendering,
and limited scalability. In low-light, RAW-NeRF (Mildenhall et al., 2021) leverages raw sensor
data, but is constrained by long training times. For 3DGS, VastGaussian (Lin et al., 2024) applies
CNNs to 3DGS outputs, but struggles with large appearance shifts. GS-W (Zhang et al., 2024)
and WE-GS (Wang et al., 2024b) use CNN-derived reference features, while SWAG (Dahmani
et al., 2024) and Scaffold-GS (Lu et al., 2024) store appearance data in a hash-grid-based implicit
field (Müller et al., 2022). WildGaussians (Kulhanek et al., 2024) embeds appearance vectors within
Gaussians, while Splatfacto-W (Xu et al., 2024) similarly combines Gaussian and image embeddings
via an MLP to output spherical harmonics. Luminance-GS (Cui et al., 2025) predicts per-view color
transforms followed by view-adaptive curve adjustment. DAVIGS (Lin et al., 2025) learns per-pixel
affine transforms using an MLP combining per-view embeddings and 3D features. Most relevant to
ours is BilaRF (Wang et al., 2024a), a NeRF-based method learning per-view bilateral grids to model
camera ISP effects; recently extended to 3DGS (Xiao et al., 2025). However, all of these methods
significantly increase training time. In contrast, we process the input images using a generalizable
multi-view transformer, avoiding scene-specific optimization and preserving 3DGS efficiency.

3 METHODOLOGY

We propose a transformer model that takes as input a multi-view sequence of frames with varying
appearances (e.g., exposure, white balance, color shifts) and predicts 3D bilateral grids to align each
view with the reference frame. In this section, we first review bilateral grid processing (Sec. 3.1), then
introduce our transformer architecture (Sec. 3.2) and reference frame selection mechanism (Sec. 3.3).
We present our training strategy, leveraging self-supervision from a large feed-forward model, and
detail our dataset construction process (Sec. 3.4). Our full pipeline overview is shown in Fig. 2.

3.1 PRELIMINARIES

3D Bilateral Grids for Image Processing. A 3D bilateral grid (Chen et al., 2007) is a compact data
structure suitable for efficient modeling of spatially-varying edge-aware image transformations. It
lifts image data into a lower resolution three-dimensional space defined by two spatial coordinates
and a guidance dimension derived from the image intensity. By decoupling computational cost from
image resolution and preserving semantic edges, bilateral grids enable real-time, and structure-aware
processing, making them widely used for tone mapping, stylization, and artifact removal.

In the multi-view setting, we can model the appearance variations using per-view bilateral grids.
We denote the i-th bilateral grid corresponding to the i-th image Ii ∈ RH×W×3 as a tensor of local
affine transformations Bi ∈ RHs×Ws×D×12, where Hs, Ws, and D denote the spatial and guidance
dimensions, respectively, such that (Hs,Ws) << (H,W ). The last dimension of size 12 corresponds
to the flattened parameters of a 3 × 4 affine transformation: a 3 × 3 matrix A ∈ R3×3 and a bias
vector b ∈ R3. For input image I, each pixel d with color Id ∈ R3 is transformed to its corresponding
output pixel color I ′d ∈ R3 by applying the affine transformation: I ′d = AdId + bd, where Ad

and bd are the affine parameters specific to pixel d. The parameters θd = (Ad, bd) are obtained via
trilinear interpolation over the neighboring vertices of the bilateral grid:

θd =
∑
i,j,k

wijk(d)θijk, (1)
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Figure 2: Architecture Overview. Our model first patchifies the reference frame Iref and N input
multi-view source images {Ii}Ni=1 into tokens. These are passed through the transformer encoder
blocks comprising alternating frame-wise and global self-attention layers, repeated 3 times. The
decoder uses alternating frame-attention and cross-attention with the reference frame. A final
grid prediction head predicts the image and confidence bilateral grids (Bi and Ci), which are
subsequently sliced to produce the corrected frames {I′i}Ni=1 and confidence maps {C′

i}Ni=1. Based
on our reference frame selection which chooses the frame with best photometric quality, we use the
resulting harmonized images to train a wide range of 3D reconstruction models.

where θijk ∈ R12 are the affine parameters at vertex (i, j, k), and wijk(d) are interpolation weights
determined by the spatial and guidance coordinates of pixel d. This process is known as slicing. For
the guidance dimension, we use the pixel luminance following (Chen et al., 2007; Wang et al., 2024a).
The bilateral grid resolution is much smaller than the input image resolution, reducing computational
cost and preventing the bilateral grid from encoding the high-frequency content of the image.

3.2 MULTI-VIEW BILATERAL GRID TRANSFORMER

Our aim is to transform multi-view captures of a scene to be globally consistent, enabling robust 3D
reconstruction and novel view synthesis under appearance variations. To achieve harmonization, we
propose a multi-view aware transformer predicting per-patch bilateral grid parameters. This approach
leverages the conceptual similarity between transformer patch-based processing and the structure
of 3D bilateral grids where each vertex encodes a local affine color transformation. By predicting
compact grid parameters per patch, which are applied to the original high-resolution images efficiently
via lightweight slicing, our model learns spatially-varying image corrections that are consistent across
views due to cross-frame attention, while balancing performance and computational cost.

Model Processing and Outputs. The input to our model is a sequence of N multi-view frames of
a scene {Ii}Ni=1 exhibiting potential appearance inconsistencies in color, exposure, white balance,
etc. Here, a reference frame Iref , defining the target appearance, is selected via the protocol
described in Sec. 3.3, while the remaining frames INi 6=ref serve as source images to be harmonized
with Iref . First, each input image Ii ∈ RH×W×3 is partitioned into non-overlapping patches
Pi ∈ RHP×WP×J , where the number of patches J is H

HP
× W

WP
. Each patch Pi,j is then projected

into a feature vector by the patch encoder Φembed. These feature vectors, combined with positional
encoding to retain the spatial information of each patch, form the input token sequence to our model:
X = {Φembed(Pi,j) + PEi,j}N,J

i=1,j=1. The input tokens are then processed with the main network
fθ, yielding a set of 3D bilateral grids and confidence grids {Bi}Ni 6=ref ∈ RHs×Ws×D×12, and
{Ci}Ni 6=ref ∈ RHs×Ws×D×1:

fθ(X) = {Bi}Ni6=ref , {Ci}Ni 6=ref , (2)

where {Bi} are applied to source frames {Ii}Ni 6=ref to get harmonized frames {I′i} via slicing
(Sec. 3.1).

Alternating Self and Cross Attention Architecture. Fig. 2 shows our encoder-decoder transformer
architecture, which adopts the alternating attention strategy of VGGT (Wang et al., 2025) to reduce
memory cost while preserving the ability to model both intra- and cross-view interactions.
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In the encoder, each block alternates between local self-attention, applied independently within
each view to model spatial context and viewpoint-specific patterns, and global self-attention, which
exchanges information across views at corresponding patch positions.

In the decoder, we explicitly align source frames {Ii}Ni6=ref with the reference frame Iref to harmonize
the appearance. Encoder outputs {x′

i,j}Ni=1 are separated into x′
ref,j and {x′

i,j}Ni 6=ref , which are
reference and source features, respectively. We replace global-attention layers with cross-attention
between reference and sources tokens, enabling conditioning on the reference. Specifically, the key
K and value V are extracted from x′

ref,j , while the query Q is extracted from {x′
i,j}Ni6=ref for each

decoder cross-attention block. With this framework, the refined features {x′′
i,j}Ni6=ref inherit consistent

appearance guided by the reference feature x′
ref,j , yielding harmonized multi-view features.

Bilateral Grid and Confidence Prediction Head. The decoder’s output tokens for each source
frame are used to predict the set of bilateral grids {Bi}Ni 6=ref to correct their appearance, rather
than directly regressing corrected images. Each token {x′′

i,j}Ni 6=ref predicts the per-intensity affine
transformation parameters of the bilateral grids {Bi,j} ∈ RD×12, where D is the intensity guidance
dimension. Due to the conceptual similarity between the patch-based transformer model and bilateral
grid, we can simply predict each grid-vertex parameters from each token using a small MLP. Per-pixel
affine transforms obtained by slicing the resulting grids are applied to the source images obtaining
the harmonized images {I′i}Ni 6=ref .

In addition to bilateral grids, we make our model uncertainty-aware by predicting aleatoric uncer-
tainty (Kendall & Cipolla, 2016); modeling inherent noise in the data, e.g., photometric variations in
the ground truths or information loss in over-/under-exposed regions; thus stabilizing the training loss.
Since we cannot directly obtain the confidence maps from our prediction head, as this would require a
dense prediction head (Wang et al., 2025), we instead predict a low-resolution confidence grid along
with each bilateral grid {Ci} ∈ RHs×Ws×D×1. Thus, for each patch position j, the grid prediction
head outputs {Ci,j} ∈ RD×1. Applying the slicing operation as before using the source images, we
obtain full-resolution confidence maps {C′

i,j} ∈ RH×W×1 that reflect the confidence of each pixel.

3.3 REFERENCE FRAME SELECTION

We employ a reference-frame-based strategy for two practical reasons: it maintains a consistent
color space across frames, mitigating drift, and it allows explicit control over the final reconstruction
appearance by specifying the reference frame. However, naively using the first or a random frame as
the reference poses the risk of selecting an outlier, potentially causing drift or degrading quality, as
shown in previous studies (Ren et al., 2020; Lee et al., 2022; Shin et al., 2025). To address this, we
propose a method to select a reference frame that is both photometrically reliable and semantically
representative at inference, as visualized in Fig. 2 (left).

We assess the semantic representativeness of each frame by computing cosine similarities of DINOv2
embeddings (Oquab et al., 2023). This yields a per-frame similarity score SDINO, favoring those
that contain rich scene information. However, as DINOv2 is robust to illumination variations,
underexposed frames may also receive undesirably high similarity scores. Thus, we also assess the
photometric quality of frames with respect to under-/over-exposure using the luminance channel L in
CIE-LAB color space. We penalize frames with extreme over-/under-exposure ratios (e.g., below 5%
or above 95%) and combine this with the normalized entropy of the luminance distribution to form:

SLAB = λent

(
−
∑
l

p(l) log p(l)

)
+ λov

1

|L|
∑
i,j

[Lij ≥ 250] + λun
1

|L|
∑
i,j

[Lij ≤ 5], (3)

where, p(l) is the probability of intensity level l estimated from the normalized luminance histogram,
and λent, λov, and λun are 1, −0.5, and −0.5, respectively. We define the overall score for frame i
as Si = α · SLAB,i + (1− α) · SDINO,i and the frame with the highest Si is chosen as the reference,
where α is set to 0.5. This pipeline maintains interpretability of reference-based harmonization while
enabling automatic and robust selection.
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3.4 TRAINING STRATEGY

Training Objectives with Self-Supervised Guidance. We train our model with the following
probabilistic loss function (Kendall & Cipolla, 2016) to predict the corrected images:

Lconf =

N∑
i=1

C′
i � ‖Îi − I′i‖1 − β log(C′

i), (4)

where I′i is the source image corrected with the bilateral grid Bi. This probabilistic loss modulates
the L1 loss between the corrected image I′i and the ground-truth image Îi, allowing the model to
rely less on its predictions in challenging areas where image detail recovery is difficult. Along with
Lconf , we apply the total variation loss, LTV , encouraging smoothness of the bilateral grids:

LTV =
1

N

N∑
i=1

∑
h,w,d

(
‖∆hBi(h,w, d)‖22 + ‖∆wBi(h,w, d)‖22 + ‖∆dBi(h,w, d)‖22

)
, (5)

where ∆ denote forward difference operators.

I𝑟𝑒𝑓
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Camera Pose Prediction Gaussian Prediction

Figure 3: 3D foundation model-based
self-supervised loss pipeline.

As it is not straightforward to obtain real-world paired data
to train our model, we further introduce a self-supervised
loss. This enables training in cases without ground truth
images and helps enforce view-consistency across frames.
We leverage a large, pretrained feed-forward 3D recon-
struction model hθ (e.g., AnySplat (Jiang et al., 2025)).
Specifically, given a sequence of frames on each train-
ing iteration, we set the first frame as reference (ref = 0)
and predict camera poses {pi}Ni=0 and Gaussian primi-
tives {Gi}Ni=0 from all the frames, including the first input
frame Iref and the remaining corrected frames {I′i}Ni=1.
The predicted Gaussians for non-reference frames {I′i}Ni=1 are then reprojected to the viewpoint of
the reference frame using predicted camera pose pref , and we compute the perceptual loss utilizing
VGG features (Simonyan & Zisserman, 2014) between the original reference frame Iref and the
rendered image. This encourages the outputs of our bilateral transformer network fθ to remain in
a consistent color space, so that the downstream 3D reconstruction model hθ can build a coherent
scene representation and generate stable novel views. Based on this, the self-supervised consistency
loss Lss is defined as:

Lss = VGG(Iref − Rasterizer
(
pref , {Gi}Ni=1

)
), where {pi, {Gi}}Ni=0 = hθ

(
fθ({Ii}Ni=0)

)
,

(6)
with Rasterizer denoting the differentiable Gaussian rasterizer that projects the set of predicted
Gaussian primitives {Gi} into the viewpoint pref of the reference frame. Thus, our total loss is:

L = Lconf + λtvLTV + λssLss, (7)

where λtv and λss are set to 0.5 and 0.1, respectively. Note that we use the predicted Gaussian
opacity to mask out unreliable regions in both the reference image Iref and the rasterized image from
the predicted Gaussians {Gi}, allowing us to apply Lss only to well-reconstructed areas.

Training Datasets. Acquiring large-scale multi-view paired data with realistic appearance varia-
tions is extremely challenging. Our approach handles this limitation by (i) simulating diverse and
controllable variations in a synthetic setting, and (ii) introducing a self-supervised rendering loss
that allows us to effectively learn from unpaired real-world data (Eq. 6). For paired data, we use
multi-view consistent sequences from the DL3DV dataset (Ling et al., 2024), comprising 10K scenes,
each containing more than 300 frames. For each scene we synthesize realistic appearance variations
simulating camera ISP pipelines, thereby creating input-target pairs with controllable appearance
changes. For unpaired data, we use the WildRGB-D dataset (Xia et al., 2024), which captures objects
under 360 degree rotations. It consists of 8K recorded objects, where each scene also contains roughly
300 frames. As the viewpoint changes, the environmental lighting and camera’s auto-ISP settings
induce appearance variations, such as fluctuating exposure, white balance and illumination, providing
a realistic source of real-world inconsistencies. During training, the supervised loss Lconf is applied
only to paired data (DL3DV), while our self-supervised consistency loss Lss and total variation loss

6
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Ltv are jointly optimized over both datasets. This enables our model to generalize well across both
synthetic and real variations.

Parametric Camera ISP Simulation. We apply parametric camera ISP simulation on top of the
DL3DV dataset (Ling et al., 2024). Building on the unprocessing framework of (Brooks et al., 2019),
we reverse the camera pipeline to obtain linear RGB images and apply randomized variations in
white balance, exposure, digital gain, gamma perturbation, and color correction matrices (CCMs). To
realistically simulate illumination diversity, we model the exposure distribution as a bi-modal mixture
representing both daytime and nighttime conditions. Specifically, exposure values e are drawn from:

e ∼ πN (µday, σ
2
day) + (1− π)N (µnight, σ

2
night),

where (µday, σday) and (µnight, σnight) are the mean and variance of day and nighttime exposures
respectively, and π ∈ [0, 1] controls the prior probability of day and night; set to (1.0, 0.2), (0.2,
0.1), 0.5, respectively. This simulates both well-lit and low-light scenes, enhancing robustness to
ISP-induced inconsistencies under varying illumination conditions, as illustrated in Fig. 1(a).

Implementation Details. As Fig. 2 shows, our transformer encoder employs 3 layers of alternating
frame-wise and global-attention. The decoder comprises 3 layers of alternating frame-wise and cross-
attention. The model is relatively compact, with 137.84M parameters in total. We train by optimizing
Eq. 7 with AdamW (Loshchilov & Hutter, 2017) for 70K iterations. We use dynamic batch loading
to randomly sample between 4 and 24 frames from a selected multi-view scene (Sec. 3.4). Input
images are resized to 224× 224 resolution with patch size 8× 8, resulting in a total of 28× 28× 8
bilateral grid vertices per frame; one for each input image patch with a guidance dimension of D = 8.
Training takes roughly a day with current GPU hardware (60 TFLOPS fp32 and 80 GB of memory).

4 EXPERIMENTS

We evaluate our method under three types of appearance variations: (a) ISP variations, (b) exposure
changes, and (c) real-world capture conditions. This section describes the datasets used, baseline
comparison methods, evaluation metrics, followed by detailed experimental results and ablations.

Evaluation Datasets. For (a) ISP variations, we use a camera ISP variation dataset derived from the
DL3DV dataset (Ling et al., 2024). As described in Sec. 3.4, this includes white balance, exposure,
gamma, and CCM adjustments. We evaluate on a diverse set of 25 held-out scenes which vary in
content (indoor/outdoor), spatial characteristics (bounded/unbounded), and lighting conditions, as
shown in the Supplementary. For (b) exposure variations, we use the MipNeRF360-VE dataset
released by Luminance-GS (Cui et al., 2025), which is based on the unbounded MipNeRF 360
dataset (Barron et al., 2022) with varying exposure and gamma correction. For (c) real-captured
scenes, we evaluate on the real-world captured BilaRF dataset (Wang et al., 2024a), comprising
mainly of nighttime scenes captured with flash illumination, posing real-world appearance shifts.

Baselines. We compare against state-of-the-art methods that incorporate appearance modeling into
3DGS: WildGaussians (Kulhanek et al., 2024), GS-W (Zhang et al., 2024), Luminance-GS (Cui et al.,
2025), and 3DGS-4DBAG (Xiao et al., 2025) which jointly optimizes 3DGS and 4D bilateral grids.
We also compare to vanilla 3DGS (Kerbl et al., 2023) (fast version from Taming-GS (Mallick et al.,
2024)), 2DGS (Huang et al., 2024a), and DashGS (Chen et al., 2025).

Metrics. Quantitative evaluation is conducted using PSNR, SSIM, and LPIPS. When using appear-
ance embeddings, the reconstructed color space may differ from the ground truth, leading to unfairly
low scores despite accurate geometry. To address this, per-channel global affine color correction
(CC) is applied to the rendered images, following (Wang et al., 2024a; Xiao et al., 2025; Mildenhall
et al., 2021). Color-corrected metrics provide a more reliable measure of geometric quality under
color discrepancies. Processing time on a mid-range GPU is also reported, including bilateral grid
inference and reference frame selection for our method. We note that all reported inference times
include the total time for frame processing and 3DGS reconstruction, and are measured on the same
GPU architecture to ensure fairness and consistency across methods.

4.1 RESULTS

Table 1 reports quantitative results across all three datasets, with qualitative examples in Fig. 4. For
all scenes, we employ our reference frame selection strategy (Sec. 3.3); no ground-truth image was
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Table 1: Comparison of our model combined with baseline 3D reconstruction methods, the baselines
alone, and approaches using appearance embeddings. CC indicates per-channel affine color correction.
Reported times include scene fitting; for our model, they also include processing overhead.

Dataset
Method PSNR ↑ PSNR CC ↑ SSIM ↑ SSIM CC ↑ LPIPS ↓ LPIPS CC ↓ Time (s) ↓
DL3DV dataset w/ ISP variation
2DGS (Huang et al., 2024a) 22.78 26.81 0.8496 0.8608 0.2829 0.2169 13m 48s
3DGS (Kerbl et al., 2023) 21.43 26.25 0.8553 0.8749 0.2712 0.2069 3m 39s
DashGS (Chen et al., 2025) 23.35 28.17 0.8916 0.9029 0.2357 0.1782 3m 12s
WildGaussians (Kulhanek et al., 2024) 18.15 24.08 0.7663 0.8188 0.3050 0.2567 2h 10m 31s
GS-W (Zhang et al., 2024) 19.34 26.29 0.7910 0.8420 0.3092 0.2375 35m 54s
Luminance-GS (Cui et al., 2025) 20.00 26.14 0.7962 0.8466 0.2975 0.2290 14m 29s
2DGS + Ours 24.97 26.92 0.8564 0.8621 0.2312 0.2236 14m 3s
3DGS + Ours 25.26 27.28 0.8650 0.8753 0.2191 0.2118 3m 55s
DashGS + Ours 26.45 28.92 0.8953 0.9035 0.1794 0.1703 3m 27s

MipNeRF360-VE
2DGS (Huang et al., 2024a) 16.75 22.03 0.5588 0.6724 0.3646 0.3622 25m 38s
3DGS (Kerbl et al., 2023) 16.50 21.00 0.5896 0.6715 0.3432 0.3517 4m 7s
DashGS (Chen et al., 2025) 17.01 21.94 0.6043 0.7052 0.3212 0.3221 3m 3s
WildGaussians (Kulhanek et al., 2024) 18.90 25.35 0.6470 0.7278 0.3261 0.3193 2h 30m 3s
GS-W (Zhang et al., 2024) 15.66 25.81 0.5256 0.7580 0.3385 0.2912 48m 45s
Luminance-GS (Cui et al., 2025) 18.12 23.12 0.6641 0.7352 0.3043 0.2851 22m 16s
2DGS + Ours 18.99 26.37 0.7528 0.8125 0.2610 0.2446 25m 50s
3DGS + Ours 18.34 26.25 0.7554 0.8149 0.2592 0.2428 4m 19s
DashGS + Ours 18.19 26.21 0.7507 0.8131 0.2610 0.2435 3m 14s

BilaRF dataset
2DGS (Huang et al., 2024a) - 23.43 - 0.746 - 0.308 13m 26s
3DGS (Kerbl et al., 2023) - 24.23 - 0.8019 - 0.2594 3m 43s
DashGS (Chen et al., 2025) - 24.34 - 0.7880 - 0.2607 3m 46s
WildGaussians (Kulhanek et al., 2024) - 23.19 - 0.7424 - 0.3121 1h 58m 06s
GS-W (Zhang et al., 2024) - 24.94 - 0.8056 - 0.2764 40m 34s
Luminance-GS (Cui et al., 2025) - 23.41 - 0.7931 - 0.2750 18m 40s
2DGS-4DBAG (Xiao et al., 2025) - 24.80 - 0.773 - 0.273 -
3DGS-4DBAG (Xiao et al., 2025) - 24.90 - 0.774 - 0.256 -
2DGS + Ours - 25.27 - 0.8147 - 0.2499 13m 30s
3DGS + Ours - 25.60 - 0.8240 - 0.2368 3m 48s
DashGS + Ours - 26.25 - 0.8356 - 0.2158 3m 50s

Table 2: Comparison with 2D image correction methods on MipNeRF360-VE (Cui et al., 2025).
Motion smoothness and temporal flickering from VBench (Huang et al., 2024b) are reported as the
most relevant metrics for video quality under photometric correction.

Comparison with 2D Works PSNR CC ↑ SSIM CC ↑ LPIPS CC ↓ motion smoothness ↑ temporal flickering ↑ time ↓
CoTF (Li et al., 2024) 23.15 0.7573 0.2698 0.8591 0.8364 3.46

MSEC (Afifi et al., 2021) 23.98 0.7169 0.3359 0.8140 0.7848 7.79
MSLTNet (Zhou et al., 2024) 24.56 0.7697 0.2697 0.8248 0.7974 3.12

UEC (Cui et al., 2024) 25.98 0.8143 0.2416 0.8415 0.8124 7.64
Ours 26.25 0.8149 0.2428 0.8707 0.8428 8.59

used as reference for fair comparison. Despite the distinct characteristics of the three datasets, our
method combined with 2DGS, 3DGS, or DashGS significantly outperforms each baseline, with fewer
artifacts, and matches or surpasses per-scene appearance optimization methods. This demonstrates
the robustness and generalizability of our model, and highlights the multi-view consistency leading
to improved reconstructions. Moreover, methods with joint optimization of geometry and appearance
introduce significant latency; more than doubling the overall training time. Notably, our model
efficiently processes large-scale inputs, handling over 300 frames in a single forward pass. In practice,
inference takes only about 2-3 seconds for BilaRF (roughly 30-70 images per scene), and up to 15
seconds for DL3DV and MipNeRF360-VE, each containing more than 200 frames per scene.

Table 2 compares our method with 2D image exposure correction baselines prior to running 3DGS.
Since these methods primarily target exposure adjustment, we conduct the comparison on MipN-
eRF360-VE dataset, containing mostly exposure-related variations. While these methods perform
well on single frames, they lack multi-view consistency, resulting in degraded 3DGS performance.
Similar to our method, UEC (Cui et al., 2024) uses an input reference exposure frame, but still
operates independently per frame, leading to lower overall performance. For fair comparison, we use
the same reference frames for both our method and UEC, selected by our reference frame pipeline
(Sec. 3.3). Since MipNeRF360-VE scenes contain over 200 frames per scene and our model uses a
transformer architecture that processes all views jointly, CHROMA incurs a few additional seconds
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Figure 4: Qualitative results grouped by dataset: DL3DV, MipNeRF360-VE, and BilaRF. For each
scene, the top row shows the input images, and the bottom row shows the reconstructed outputs
produced by each method.

of overhead compared to CNN-based 2D methods that operate per frame. However, this overhead is
small relative to the overall 3DGS reconstruction time, which takes several minutes, so the additional
cost does not meaningfully affect the total pipeline runtime.

We conduct ablations to isolate the contribution of each model component. Table 3 re-
ports results on single vs multi-frame processing, reference frame selection, and the self-
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supervised loss. For experiments on multi-frame processing and reference frame selection,
we use MipNeRF360-VE dataset, which exhibits large exposure variations across frames.

Table 3: Ablation study. (Top) MipNeRF360-VE
dataset (Bottom) BilaRF dataset.

Ablation PSNR CC SSIM CC LPIPS CC
single-frame processing 26.19 0.8131 0.2435
random reference frame 25.11 0.7559 0.3089

DINO-based reference frame 25.95 0.7871 0.2758
Ours (full) 26.25 0.8149 0.2428

w/o self-supervised loss 25.21 0.8245 0.2375
L1-based self-supervised loss 25.28 0.8227 0.2377
Ours (w/ self-supervised loss) 25.60 0.8240 0.2368

Single-frame processing: We observe that pro-
cessing single-frame inputs independently yields
slightly lower performance than processing the
entire sequence in a single step, highlighting the
importance of our transformers ability to lever-
age cross-view information. Reference frame
selection: Simply choosing the first frame as the
reference, which may be badly exposed or contain

little semantic information (e.g. sky), significantly degrades performance. While DINO features help
capture semantic similarity, the results show that relying on them alone is insufficient to robustly
handle appearance variations, underscoring the importance of our dedicated reference frame selection
mechanism. Self-supervised loss: To assess the effect of the self-supervised consistency loss Lss, we
evaluate on the held-out BilaRF dataset, which contains unpaired scenes with real-world variations.
Incorporating Lss enables us to train on real-world unpaired data from the WildRGB-D dataset.
This helps bridge the domain gap from synthetic ISP variations (paired DL3DV data) to real-world
appearance variations and yields clear gains in real-data performance. In addition, our ablation
shows that the VGG-based perceptual loss serves as a more stable and informative regularizer than a
pixel-wise L1 loss. The VGG variant is more robust to low-level photometric noise and misalignment,
and it prevents the model from overfitting to minor detail inconsistencies in AnySplat’s renderings,
leading to noticeably stronger performance.

5 CONCLUSIONS

We have presented CHROMA, a feed-forward transformer framework for multi-view consistent
harmonization via bilateral grid prediction. By explicitly enforcing photometric consistency across
views, CHROMA integrates with existing 3D reconstruction pipelines without scene-specific op-
timization. Leveraging a large pretrained feed-forward model, we enable learning from unpaired
data with self-supervision, improving robustness to real-world variations. Our reference frame selec-
tion strategy identifies a representative frame that is both photometrically and semantically reliable.
Our experiments show that CHROMA consistently outperforms per-scene appearance embedding
baselines, achieving higher reconstruction quality while reducing training overhead.

Future Work. Our model generalizes well to real-world appearance variations, and we plan to extend
it to fully in-the-wild scenarios by modeling transient objects and integrating with larger feed-forward
reconstruction frameworks (Wang et al., 2025; Jiang et al., 2025; Keetha et al., 2025). Unlike recent
scene-specific in-the-wild methods (e.g., Kulhanek et al. (2024); Zhang et al. (2024); Wang et al.
(2024b); Bai et al. (2025)), embedding our harmonization module into these models could enable a
generalizable, feed-forward approach for 3D reconstruction from unconstrained photo collections.

Limitations. Unlike scene-specific approaches that optimize 3DGS and jointly learn per-view appear-
ance embeddings, such as Luminance-GS Cui et al. (2025) or GS-W Zhang et al. (2024), our method
requires training a dedicated network for image harmonization, prior to downstream reconstruction.
However, once trained, our method provides scene-agnostic, feed-forward harmonization and can
process hundreds of images in a single pass without any scene-specific optimization. Additionally, our
method focuses on correcting camera ISP-induced photometric inconsistencies and does not explicitly
handle effects such as specular highlights or reflections. Because bilateral grid transformations
are generally smooth, they cannot model high-frequency changes caused by reflectance or strong
specularities, which remains a limitation of our approach.

Guideline for Supplementary. We provide extended explanations and analyses in the Supplementary.
Sec. 3.4 describes how we construct our training dataset from DL3DV. Sec. A.2 presents the analysis
of our network design. Sec. A.3 discusses the advantages of predicting 3D bilateral grids over directly
predicting images, including an analysis of grid behavior on high-resolution inputs. Sec. A.4, along
with Fig. 15, 16, 17, and 19, provides additional qualitative visualizations and analyses of our method.
Sec. A.5 visualizes examples of the predicted confidence maps. Finally, Sec. A.6 includes further
quantitative and qualitative comparisons with 2D correction baselines.
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6 REPRODUCIBILITY STATEMENT

For reproducibility, we have provided detailed network structure and network parameters in Supple-
mentary Sec. A.2 and the main paper, respectively. Detailed dataset construction, hyperparameters,
and evaluation scenes on DL3DV dataset are also reported in Supplementary Sec. A.1 and main
paper Sec. 3.4. We plan to release our code and evaluation datasets upon paper acceptance (subject to
internal approval).
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