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Abstract

Interpretability strives to discover the concepts
learned and represented by models, frequently
with unsupervised learning methods such as dic-
tionary learning. While such methods allow for
flexibility and applicability to a wide variety of
domains, recent implementations such as sparse
autoencoders (SAEs) discard valuable modality-
specific information and priors that we have on the
structure of different data modalities. In this work,
we argue that the temporal dimension of language
is a rich feature source that can be leveraged by
dictionary learning methods in a self-supervised
manner, allowing for better learning and disen-
tanglement of semantic and syntactical features
represented by language models. We propose a
data-generating process for such features, which
informs a novel approach to train Temporal SAEs
that can extract semantic concepts from natural
language. We experimentally verify that account-
ing for the temporal structure of language im-
proves SAEs’ ability to capture semantic features
in text data with minimal loss in performance.

1. Introduction
The field of machine learning interpretability seeks to un-
derstand what information models represent and encode –
often with goals such as being able to rigorously audit mod-
els, control and steer them, or learn something new about
the data itself or the functions and algorithms the model
has learned. In cases where one has a specific concept of
interest that they are trying to understand or control, they
can leverage supervised interpretability methods such as
probing (Köhn, 2016; Alain & Bengio, 2016; Belinkov,
2022) or steering (Subramani et al., 2022); however, many
other cases exist where we may want to discover concepts
in an unsupervised manner, to better understand and learn
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about the variety of features that models rely on. Dictionary
learning (Dumitrescu & Irofti, 2018; Bricken et al., 2023),
and more specifically, sparse autoencoders (Ng et al., 2011;
Makhzani & Frey, 2013), have emerged as the primary
method to perform such unsupervised concept discovery,
with prior works finding they discover, human-interpretable
and sometimes even unknown features that can be used to
steer models. In fact, SAEs have been applied across a
variety of modalities: language, vision, x-rays (Abdulaal
et al., 2024), protein sequencing (Garcia & Ansuini, 2025),
time-series data (Wu et al., 2019), and more, with almost
no changes or adaptations to the architecture for these dif-
ferent data types. However, this standard, out-of-the-box
application across modalities assumes no underlying struc-
ture of the data. While this lack of supervision allows for
high flexibility, it forgoes any priors and inductive biases
we have about the data and the concepts we hope that SAEs
will recover.

In this work, we focus on natural language and demonstrate
how we can leverage intuitions and priors related to its tem-
poral behavior to improve SAEs. To do so, we first construct
a potential data-generating process (DGP) for language data
that accounts for its sequential nature. In particular, we
propose that high-level, abstract features should be smooth
over time, and that low-level, syntactic features should be
independent from the high-level features. We further expect
that model representations encode a mixture of features re-
lating to the semantics of the text, the prior context, and
the syntactic requirements for the next-token generation
task. We then propose a novel dictionary learning procedure
that accounts for these assumptions and validate its efficacy
through explorations of the ability of SAEs to recover the
semantic, sequential, and syntactic features of the data.

Our contributions are the following:

1. We describe a simple data-generating process to model
sequential structure in language.

2. We propose a novel loss function to ensure temporal
consistency in SAE features.

3. We demonstrate empirically that Temporal SAEs ex-
hibit better semantic structure while maintaining com-
petitive performance to state-of-the-art SAEs.
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2. Related Work
Sparse Autoencoders. In recent years, SAEs have
emerged as a popular mechanistic interpretability technique
for self-supervised concept discovery. They aim to explain
models by decomposing intermediate model activations into
sparse, human-interpretable feature spaces. While they were
initially promising for addressing the problem of polyse-
manticity, where a single neuron in a model can represent
multiple features (Elhage et al., 2022), in practice they have
been shown to create new problems, such as feature splitting
and absorption (Chanin et al., 2024), where features are split
across multiple features or absorbed into less interpretable
sub-features. To address these subsequent issues, meth-
ods such as Matryoshka SAEs (Bussmann et al., 2025) and
transcoders (Paulo et al., 2025) have been proposed, which
learn hierarchical and causal features. Recent work has also
proposed learning dictionary features that are constrained
to the data manifold (Fel et al., 2025) and reflect intuition
about the geometry of model latent spaces (Hindupur et al.,
2025), allowing for the recovery of heterogeneous concepts.
However, all of these works assume a fully unsupervised ob-
jective for learning SAEs, treating each token in the training
data as i.i.d., without acknowledging the temporal aspect of
language and other sequential modalities.

Cognitive and Computational Models of Language. Lit-
erature in cognitive science has long studied the difference
between syntactical and semantic content in language, with
empirical evidence of different developmental trends for the
two during human language acquisition (Brown, 1973) as
well as differences in patterns of brain activity for both
(Neville et al., 1992). Statistical methods subsequently
demonstrated the ability to discover semantic content from
language via topic modeling such as with Latent Dirichlet
Allocation (Blei et al., 2003) and syntactic content with
distributional methods (Redington et al., 1998) and Hidden
Markov Models (Manning & Schutze, 1999). (Griffiths
et al., 2004) combine computational models of semantics
and syntax into HMM-LDA to model both simultaneously.
Importantly, they argue that semantics in language exhibit
long-range behavior, with different words or sentences in the
same document having similar semantic content, whereas
syntax is mostly dependent on short-range interactions. This
perspective informs our model of the data-generating pro-
cess of model latents and our training approach for inducing
temporal consistency in SAEs.

3. Data-Generating Process
We formalize our data-generating process as such. Consider
a speaker who is producing language, or a sequence of to-
kens τ1, ..., τT . When the speaker produces each token τt,
they take into account many factors — their intent in speak-

ing, the prior context of the token (i.e. what has already been
said), syntactic requirements, and other implicit features cor-
responding to speaker idiosyncrasies (such as their accent,
their method of language production, or linguistic style).
These factors can be modeled as latent variables that control
the language generation process, and they can be generally
categorized into two types: variables that encode high-level
or global information, ht, and variables that encode low-
level or local information lt. High-level variables can be
thought of as features that are invariant to the specific token,
such as those capturing semantics and intent. Conversely,
low-level information pertains to the specific timestep or
token being produced, such as a word’s grammatical gender.

We model the speaker’s language production process as a
randomized function mapping the context and these latent
variables to the next token

τt = ϕ(τ t−1,ht, lt),

where τ t−1 represents the previously-uttered tokens
τ1, ..., τt−1. Given a language model M , we pass tokens
τT into M which produces latent vectors {xL

t }Tt=1 ∈ Rd at
layer L. For simplicity, we analyze a single layer and drop
the L superscript.

Our goal is to recover M ’s encoding of the data-generating
latent variables by decomposing its representations into in-
terpretable features corresponding to ht, lt. We ground our
DGP in computational cognitive science and linguistics lit-
erature, where statistical models of language found success
with similar assumptions (Griffiths et al., 2004). We spec-
ify the assumptions of our DGP, specifically regarding the
nature of ht, lt, below.

1. ht is time invariant, meaning two tokens xt,xt′ sam-
pled from the same sequence should have similar la-
tents ht ≈ ht′ . Essentially, for a given sequence of
text, the semantics should be relatively constant over
time.

2. In a language model, ht and lt are represented addi-
tively: we can decompose xt as xh

t + xl
t where xh

t

captures the high level features used to generate xt and
similarly for xl

t.

4. Temporal Sparse Autoencoders
We propose a modification to existing SAE architectures
that leverages the sequential nature of language data as
follows. Sparse autoencoders are comprised of an encoder,
decoder, and nonlinear activation function. We decompose
the encoders and decoders into two parts each: one that
represents the high-level features ht present in the input
data xt and one that represents the low-level features lt.
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We partition the SAE feature space into high level and low
level features. Without loss of generality we assume the
first h indices are our high level features and the last m− h
indices are our low level features, where m is the number of
features in the SAE. The SAE architecture can be defined
as the following, taking in input xt ∈ Rd:

f(xt) = σ(Wencxt + benc),

x̂(f) = Wdecf(xt) + bdec.

Here, Wenc ∈ Rm×d is the encoder matrix, and Wdec ∈
Rd×m is the decoder comprised of high-level features
Wdec

0:h ∈ Rd×h and low-level features Wdec
h:m ∈ Rd×(m−h)

such that their concatenation equals Wdec. benc ∈ Rd

and bdec ∈ Rd are the encoder and decoder bias respec-
tively. We define the following loss function, where the
high-level features f0:h(xt) should reconstruct the input and
the low-level features fh:m(xt) should reconstruct the resid-
ual, similar to the Matryoshka SAE objective in (Bussmann
et al., 2025).

L(xt) = LH + LL + αLcontr,

LH = ∥xt −Wdec
0:h f0:h(xt) + bdec∥22,

LL = ∥xt −Wdecf(xt) + bdec∥22.

We then add a training objective that encourages Wenc
0:h to

learn features that respect our assumptions about ht. We
do this by adding a contrastive term to the loss function
that encourages Wenc

0:hxt to be similar to Wenc
0:hxt−1, as we

expect high-level features to be similar for two tokens from
the same sequence, especially for two adjacent tokens. Let
zt be the high-level features f0:h(xt), and let s(x,y) be the
cosine similarity between vectors x and y in the same latent
space. Our contrastive loss at temperature λ is defined as

Lcontr = − 1

N

N∑
i=1

log
es(z(i)t ,z(i)t−1)/λ∑N
j=1 e

s(z(i)t ,z(j)t−1)/λ

− 1

N

N∑
j=1

log
es(z(j)t−1,z

(j)
t )/λ∑N

i=1 e
s(z(i)t−1,z

(j)
t )/λ

,

where N is our batch size and z
(i)
t is the ith latent vector in

the batch. In practice, we load activations in pairs xt,xt−1

and shuffle the pairs to get diversity in each batch. We addi-
tionally explore sampling the second token uniformly over
past tokens x1, ...,xt−1 to encourage long range semantic
consistency (Appendix A.1.1). Intuitively, we expect that
for high-level, abstract, and semantic features, tokens from
the same sequence should have more similar activations
than those sampled from two sequences randomly. Thus,
we constrain the high-level dictionary to represent these as
close in SAE feature space. For low-level, token-specific
features, we do not have the same expectation, but by nature

Table 1. Performance metrics for BatchTopK, Matryoshka, and
Temporal SAEs for Pythia-160m and Gemma2-2b.

SAE Model FVU % Dead LL2
Cos. Sim.

Py
th

ia Temporal 0.09 34% 10.4 0.89
Matryoshka 0.07 44% 9.2 0.91
BatchTopK 0.07 62% 9.3 0.91

G
em

m
a Temporal 0.41 1% 131 0.86

Matryoshka 0.38 1% 119 0.88
BatchTopK 0.38 1% 122 0.88

of fitting the residual left over by the high-level component
of the network, our loss naturally encourages the remaining
latents to capture higher-variance features over a sequence.

5. Experiments
We conduct experiments on Pythia 160M (Biderman et al.,
2023) and Gemma2-2b (Team et al., 2024) to understand
whether Temporal SAEs learn clear high- and low-level
features, and whether these features capture the types of
concepts we expect. We compare against baselines of Batch-
TopK SAEs (Bussmann et al., 2024) and Matryoshka SAEs
(Bussmann et al., 2025).

5.1. Implementation Details

We train and evaluate SAEs on the residual streams of
Gemma2-2b (layer 18, 16k features) and Pythia-160m (layer
8, 32k features) on the RedPajama-Data-1T-Sample
dataset (Weber et al., 2024). When training Temporal and
Matryoshka SAEs, we split the dictionaries into two chunks,
with the first being 20% of features for Pythia and 10% for
Gemma. We only apply our temporal loss to the first chunk.
All models were trained with the BatchTopK activation func-
tion (Bussmann et al., 2024) and auxiliary loss from (Gao
et al., 2024), which encourages dead latents to reconstruct
the error left from existing reconstructions. SAEs for Pythia
were trained with a k−sparsity of 20 and Gemma SAEs
were trained with k = 40. We compare our Temporal SAEs
to baselines of Matryoshka and regular BatchTopK SAEs.

5.2. SAE Evaluation Metrics

We evaluate all SAEs on a 128k token sample from the
Pile (Gao et al., 2020) on the following standard metrics
to ensure that temporal consistency does not significantly
degrade reconstruction quality.

Fraction of variance unexplained (FVU) measures the
proportion of the variance of the model latent, x, that the
SAE reconstruction, x̂, fails to account for as 1− (Var(x−
x̂)/Var(x)), where Var is the empirical variance. L2 loss
measures the mean-squared error of the reconstruction, or
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Figure 1. TSNE plots of the SAE feature activation for Temporal (top row) and Matryoshka (bottom row) SAEs. We label points by their
semantic category (left), the context or sequence the token comes from (middle), and the part of speech of the token (right). We find
that Temporal SAEs learn a balance of both semantic and syntactic information, whereas Matryoshka SAEs prioritize only syntactic
information at the cost of all semantics.

∥x− x̂∥22. Cosine similarity computes the similarity of the
reconstruction and SAE input as ⟨x, x̂⟩/(∥x∥2∥x̂∥2). Fi-
nally, the percentage of dead latents counts the percentage
of SAE latent features that did not activate for any token in
the evaluation dataset. We find that Temporal SAEs result in
a minimal loss in reconstruction metrics compared to both
regular BatchTopK and Matryoshka SAEs across both mod-
els, and in some cases improve upon baselines by removing
the number of dead features (Table 1). However, this slight
loss in reconstruction comes at a significant improvement in
the representation of semantic and contextual information.

5.3. Temporal Consistency Evaluation

We next explore the benefits of our temporal loss and find
that Temporal SAEs better capture and differentiate seman-
tic features of the data. We use high-level semantic labels
from two datasets: finefineweb and wikipedia. Ex-
amples of these labels for finefineweb are {“literature”,
“food”, “drama and film”, “mathematics”, “medical”} and
examples from wikipedia are {“Geography”, “History”,
“Knowledge”, “People”, “Religion”}. We use a part-of-
speech tagger to construct syntactic labels for tokens, and
also group tokens by sequence or article to understand how
Temporal SAEs treat tokens from the same context.

We first conduct a qualitative evaluation by applying TSNE
(Van der Maaten & Hinton, 2008) to visualize the concepts
represented by Temporal SAEs and a Matryoshka SAE base-
line. Language models are known to be good at tracking and
recovering data over long contexts and produce semantically
relevant and syntactically correct outputs, so we expect that
SAEs should be able to recover all of these types of features.
In Figure 1 for finefineweb, we see that Matryoshka
SAEs only represent features corresponding to syntactic
concepts, as we can only see clear clusters forming in the
plot labeled with part-of-speech tags. In contrast, the plots

Semantics Syntax Context

Py
th

ia
Base Model 0.703 0.865 0.835
Temporal SAE 0.647 0.796 0.799
Matryoshka SAE 0.576 0.848 0.430
BatchTopK SAE 0.587 0.847 0.654

G
em

m
a Base Model 0.720 0.875 0.974

Temporal SAE 0.682 0.857 0.964
Matryoshka SAE 0.633 0.877 0.895
BatchTopK SAE 0.648 0.876 0.918

Table 2. Performance on semantic, syntactic, and context identifica-
tion tasks for FineFineWeb. Temporal SAEs outperform baselines
for capturing semantic and contextual information.

Semantics Syntax Context

Py
th

ia

Base Model 0.718 0.832 0.869
Temporal SAE 0.633 0.770 0.731
Matryoshka SAE 0.568 0.824 0.582
BatchTopK SAE 0.559 0.815 0.605

G
em

m
a Base Model 0.939 0.873 0.927

Temporal SAE 0.896 0.865 0.882
Matryoshka SAE 0.882 0.877 0.817
BatchTopK SAE 0.896 0.875 0.846

Table 3. Performance on semantic, syntactic, and context identi-
fication tasks for Wikipedia data. Temporal SAEs outperform
baselines for capturing semantic and contextual information.

colored by semantic category and context show no clear
patterns. Temporal SAEs, on the other hand, learn a mix of
all three types of features, with clusters forming in all three
plots. Intuitively, clusters are most clear when labeled by
context, as this is exactly what our proposed contrastive ob-
jective optimizes for. Results are qualitativaly very similar
for wikipedia, as seen in Appendix Figure 2.
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We validate these results by training probes on the SAE
decompositions to predict these labels, and compare with a
baseline of probing the base language model latents directly.
This baseline represents how much information is natively
represented in the language model; our goal is to preserve
this information while transforming to a more interpretable
space. Table 2 demonstrates that Temporal SAEs greatly
outperform baseline methods on finefineweb in terms
of capturing semantics and context with gains of 10% and
25% respectively for Pythia and 5% and 7% respectively for
Gemma. On wikipedia (Table 3), we observe a similar
trend. Additionally, Temporal SAEs preserve syntactical
information to a similar level as the base language model.
We emphasize that these SAE methods are all trained in an
unsupervised manner on the same dataset, and Temporal
SAEs only vary in the inclusion of a temporal consistency
loss term to capture our intuition about the structure of
language.

6. Conclusion
In this work, we advocate for the incorporation of priors
on the data modality into the development of unsupervised
methods for interpretability. We focus on the domain of nat-
ural language, leveraging the insight that semantic content
remains consistent across words and sentences. We then
propose a novel loss function for training SAEs such that a
subset of features behave smoothly over time, better extract-
ing semantic features from data. Through experiments, we
demonstrate that the features learned by Temporal SAEs are
more semantically structured, with minimal loss to recon-
struction performance.
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A. Appendix
A.1. Additional Results.

A.1.1. TRAINING ON RANDOM PREVIOUS TOKEN.

In addition to training with a constrastive loss on the previous token xt−1, we also explore training on tokens sampled
uniformly at random from all past tokens x1, ...,xt−1. In Table 4 we show results on Pythia when training on a random past
or the t− 1th token. Random sampling helps recover lost performance in terms of syntax representation. We hypothesize
this is because syntax is extremely predictable between two adjacent tokens xt−1 and xt, and random sampling breaks this
predictability and requires the SAE to actually represent syntactic features.

Semantics Syntax Context
Base Model 0.703 0.865 0.835
Temporal SAE (t-1) 0.647 0.796 0.799
Temporal SAE (random) 0.687 0.839 0.830
Matryoshka SAE 0.576 0.848 0.430
BatchTopK SAE 0.587 0.847 0.654

Table 4. Table 2 from main paper with additional results for Temporal SAE trained on randomly-sampled past token.

A.1.2. TSNE PLOTS FOR WIKIPEDIA.

In Figure 2, we report TSNE plots on the wikipedia dataset. Similar to finefineweb, we observe that Temporal
SAEs contain more semantic structure than baselines.
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Figure 2. TSNE plots of the SAE feature activation for all SAE architectures and the LLM Latent Baseline (bottom). We label points by
their semantic category (left), the context or sequence the token comes from (middle), and the part of speech of the token (right). We find
that Temporal SAEs learn a balance of both semantic and syntactic information, whereas other SAEs prioritize only syntactic information
at the cost of all semantics.
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Figure 3. Probe performance on Semantics, Syntax, and Context after projecting via PCA to varying subspace dimensionalities. Note that
Pythia’s latent space has a maximum projected of 29 = 512 as its original dimensionality is 768.

A.1.3. PROBING WITH VARYING FEATURE SUBSPACE SIZES.

We explore how semantic, syntactic, and contexual information are distributed in the representations of Pythia and its SAEs.
An interpretable monosemantic representation should use a few (and ideally one) neuron to represent a feature, and we
test this by projecting the SAE representations into a lower-dimensional subspace and measure the drop in performance of
probing. Additionally, we apply the same projection analysis to the latent representation of the base model, and under the
hypothesis that the language model neurons are highly polysemantic and represent features in superposition, the performance
drop of the base model should be relatively larger than that of an SAE.

We project into the optimal lower-dimensional subspace that contributes most to the variance of our data distribution using
PCA. Specifically, for each dataset, we compute a PCA of the data matrix and then retain only the top k components for
varying amounts of k. We then train probes with ℓ2 regularization on the base dataset and the filtered dataset for each level of
k and report test accuracy (on an 80%-20% train-test split) in Figure 3. We observe that the probe accuracy on the semantic
task increases more rapidly for the base model than for any of the SAEs, validating the superposition hypothesis: signal
for the semantic task is distributed across more features, so the baseline model needs a relatively higher set of principal
components to recover its full-latent performance. We observe a similar trend for the context task. Finally, for the syntax
task, we observe that Temporal SAE performance is close-behind the base model and baseline SAEs, although it also has a
sharp increase in accuracy (indicating a more distributed syntax representation) than baselines.
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