
Under review as a conference paper at ICLR 2024

CT++: COMPLEMENTARY CO-TRAINING FOR SEMI-
SUPERVISED SEMANTIC SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

With limited annotations, semi-supervised semantic segmentation aims to enhance
the segmentation ability through abundant unlabeled images. Among recent trends,
co-training is gaining increasing popularity, where two parallel models produce
pseudo labels for each other. The success of co-training heavily relies on the
discrepancy of peer models. To achieve this, prior works mostly leverage different
initializations in decoders. Unfortunately, the two models still quickly converge to
an extremely coupling state, making co-training downgrade to poorer self-training.
To address this dilemma, we present our CT++, decoupling dual Co-Training
models from two novel perspectives. First, we propose to construct complementary
feature-level views. We design two co-training models to utilize disjoint and com-
plementary sets of features for decoding. Apart from complementary features, we
further seek complementary input views for the two models to learn respectively.
Our two complementary principles enlarge the model discrepancy significantly, en-
abling co-training models to transfer distinct knowledge to each other and broaden
their capability. This contributes to remarkably boosted co-training effectiveness.
Extensive studies on Pascal, Cityscapes, COCO, and ADE20K exhibit the strong
superiority of our method, e.g., 80.2% mIoU with only 92 labels on Pascal.

1 INTRODUCTION

Semantic segmentation is a fundamental research topic in computer vision. It is indispensable for
some critical applications, such as autonomous driving (Cordts et al., 2016) and medical image
analysis (Ronneberger et al., 2015). Nevertheless, the bloom of previous semantic segmentation
algorithms (Long et al., 2015; Zhao et al., 2017) relies heavily on the large number of labeled images,
which are laborious and expensive to collect in real-world scenarios. Recently, in order to alleviate
the labeling cost, semi-supervised semantic segmentation is attracting increasing attention. It only
utilizes a handful of labeled images, along with abundant unlabeled images, to train a promising
semantic segmentation model.
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Figure 1: (c) We measure the disagreement ratio of
pseudo labels between co-training models, which serve
as an indicator for model discrepancy. Our CT++ con-
sistently enlarges the discrepancy, which is essential to
final co-training effectiveness (Nigam & Ghani, 2000).

The core practice in semi-supervised se-
mantic segmentation is to assign pseudo
semantic masks to unlabeled images. It
then combines manually and pseudo la-
beled images for joint training. Most ex-
isting works achieve this via self-training
(Figure 1a), where a single model produces
pseudo labels by itself and then learns in
a bootstrapping manner. However, noisy
pseudo labels are easy to accumulate in this
process. Motivated by this, starting from
CPS (Chen et al., 2021), a stream of the
latest works (Fan et al., 2022; 2023; Zhang
et al., 2021; Zheng et al., 2022) resort to the
co-training framework (Qiao et al., 2018).
In co-training (Figure 1b), dual models of
the same structure but of different decoder initializations, produce pseudo labels for each other to
learn. Compared with self-training, co-training can better resist the noisy pseudo labels from their
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peers due to model parameter discrepancy. However, we observe that as training proceeds, the
co-training models still quickly converge to an extremely close state (Figure 1c “Plain CT”), making
co-training downgrade to a poorer self-training method.

In this work, we highlight that the discrepancy between co-training models plays a key role in their
final performance. To this end, we propose two simple yet highly effective approaches to enhancing
the model discrepancy. Before introducing our methods, let us first look back at how traditional
co-training methods (Nigam & Ghani, 2000) ensure the discrepancy. In most cases, there are two
independent views of the same data. Therefore, each model is trained with its private view and
thus can provide its peer with some unique knowledge. However, in current semantic segmentation
benchmarks, there is only a single view available for an image. Thus, a question arises: how can we
obtain two meaningful and meantime not strongly correlated views from a single image?

We observe that, although a single image cannot be decomposed into dual views for training, its
high-level features can. It is acknowledged that the high-level features extracted by an ImageNet pre-
trained encoder are of specific meanings (Zhou et al., 2016), e.g., different feature channels correspond
to varying semantic concepts. Therefore, we propose to randomly decompose the feature maps along
the channel dimension into two disjoint and complementary sets. The two non-overlapping feature
sets can be considered as two different yet meaningful views of an image. For example, one set of
features may be sensitive to textures, while another set is responsible for the structure information.
Two co-training models then forward these two complementary features into their respective decoders.
The backward process will also affect the prior encoders, making both encoders and decoders (i.e.,
the whole models) sufficiently decoupled, eventually improving the co-training effectiveness.

The aforementioned complementary strategy enlarges the discrepancy at the feature level. To further
strengthen the discrepancy, we also manage to construct input-level complementary views. We are
inspired by the prevalent CutMix strategy (Yun et al., 2019) in our field, which has been proven very
beneficial (Chen et al., 2021; Yang et al., 2023; Zhao et al., 2023b). The basic CutMix randomly
selects a rectangle region for pasting, and co-training models in recent works (Chen et al., 2021) share
exactly the same processed image for training, suppressing the co-training effectiveness. Differently,
we re-design a complementary CutMix version that is tailored for co-training. We switch the “copy”
and “paste” roles between a pair of CutMix images to obtain two complementary input views. From
these two views, our two models learn complementary knowledge and acquire different preferences.
In this way, their co-training effectiveness can be significantly amplified.

To sum up, our contributions lie in three folds:

• We point out that existing co-training methods suffer from the severe prediction-coupling
issue, i.e., two co-training models quickly converge to similar states and produce extremely
close predictions. Co-training methods gradually downgrade to poorer self-training.

• To address the above dilemma, we propose to decouple co-training models from two new
perspectives. First, we construct disjoint and complementary feature views from a single
image for the two models to decode, respectively. Moreover, the basic CutMix is modified
for complementary input views, which are tailored for co-training.

• Integrating our two approaches, the holistic Complementary Co-Training framework CT++
enlarges the model discrepancy evidently and exhibits remarkable superiority over previous
works on Pascal, Cityscapes, rarely explored COCO and ADE20K datasets. Comprehensive
ablation studies also demonstrate the necessity of our complementary designs.

2 RELATED WORK

Semi-Supervised Learning (SSL). The essence of SSL is to leverage unlabeled data to facilitate
the algorithm with limited labeled data. Various promising methods (Lee et al., 2013; Laine & Aila,
2017; Tarvainen & Valpola, 2017; Miyato et al., 2018; Xie et al., 2020a;b; Zoph et al., 2020; Pham
et al., 2021) have been proposed in the last decade of deep learning era. Among these works, a
milestone work FixMatch (Sohn et al., 2020) simplifies its pioneers (Berthelot et al., 2019; 2020),
integrating two mainstream of methods, i.e., pseudo labeling and consistency regularization, into a
hybrid framework. Nevertheless, FixMatch only uses a single model to produce pseudo labels for
itself to learn. Thus, knowledge is limited, and noisy predictions quickly accumulate.
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In comparison, our CT++ is based on the co-training framework, where each model has its own
preference and unique knowledge. This makes their exchanged pseudo labels informative and also
enables them to be robust to potential noise from their peers.

Semi-Supervised Semantic Segmentation. Recent works mostly follow the trend in SSL, exploring
better consistency regularization (Xie et al., 2020a). Along this trend, the augmentations CutMix
(French et al., 2020) and ClassMix (Olsson et al., 2021) are demonstrated to be very important. Then
ST++ (Yang et al., 2022) further proves basic color augmentations are also critical to successful
consistency regularization in the multi-stage framework. Recently, UniMatch (Yang et al., 2023) has
achieved substantial results by maintaining three learnable branches of image-level and feature-level
augmentations. In comparison, our complementary CutMix does not aim at optimal augmentations,
but to enlarge the model discrepancy. There are some other works (Alonso et al., 2021; Yuan et al.,
2021; Kwon & Kwak, 2022) boosting the performance from different perspectives, such as calibrating
imbalanced class distributions (He et al., 2021; Zhou et al., 2021; Hu et al., 2021; Guan et al., 2022),
contrasting positive and negative pairs (Zhong et al., 2021; Lai et al., 2021; Zhou et al., 2021; Wang
et al., 2022; Liu et al., 2022a), and better augmentation options (Zhao et al., 2023a;b).

The above works are all based on the self-training pipeline. Our work is orthogonal to them because we
especially focus on the co-training methodology, and address how to enlarge the model discrepancy by
our complementary designs. To prove this, we will present further improvements in our experiments
by integrating UniMatch (Yang et al., 2023).

Co-Training. Ever since CPS (Chen et al., 2021) started the co-training trend in this field, consider-
able methods have been proposed to further boost it. For instance, UCC (Fan et al., 2022) utilizes two
independent heads and re-weights pseudo labels by uncertainty. Other than prediction-level mutual
supervision, TCC (Zheng et al., 2022) further proposes to enforce consistency at the feature level
between two co-training models. These prior works design various auxiliary or modified losses for
improvement. Our CT++ is clearly distinguished from them in that, we tackle a more essential issue
in co-training, i.e., how to enlarge the model discrepancy. With evidently enhanced diversity, we only
need to use an extremely effortless and basic loss to achieve the best performance.

3 CT++: COMPLEMENTARY CO-TRAINING

In this section, we primarily introduce a basic co-training framework (Section 3.1). Based on it, we
describe our two complementary designs in detail (Section 3.2 and 3.3), to enlarge the discrepancy
between co-training models. An overview of our CT++ is shown in Figure 2.

3.1 CO-TRAINING FRAMEWORK

Co-training uses two independent models to produce pseudo labels for each other to learn. In CPS
(Chen et al., 2021), these two models differ in their randomly initialized decoders, while their encoders
share the same pre-trained initialization. Generally, given an unlabeled image u, we first produce
two versions of it with weak and strong data augmentations: uw = Aw(u) and us = As(Aw(u)).
The Aw is basic spatial transformations, including horizontal flipping, resizing, and cropping. The
As in CPS is only composed of CutMix (Yun et al., 2019). We diversify As with strong color
transformations (Yang et al., 2023), including color jittering, blurring, and grayscaling. We will
demonstrate these color transformations are rather beneficial to co-training (Figure 4). Both uw and
us are fed into two co-training models f1 and f2 to obtain a total of four predictions:

pw1 = f1(u
w); pw2 = f2(u

w).

ps1 = f1(u
s); ps2 = f2(u

s).
(1)

Obviously, pw is of much higher quality than ps, while us is more informative to train than uw.
A generic practice thus is to supervise ps with pw (for simplicity: pw → ps). In co-training, we
can mutually enforce pw1 → ps2 and pw2 → ps1. Such a cross-teaching mechanism is better than
self-teaching, because even if there exists noise in pw2 , the other model f1 can still be more resistant
to it (Chen et al., 2021). Formally, the co-training loss Lco can be formulated as:

Lco =
1

Bu

∑
1(max(pw1 ) ≥ τ)H(pw1 , p

s
2) +

1

Bu

∑
1(max(pw2 ) ≥ τ)H(pw2 , p

s
1), (2)
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Figure 2: Illustration of CT++. A segmentation model f consists of an encoder g and a decoder
h. We equip each model (f ) with an EMA teacher (fT ). We present two input-level and feature-
level complementary designs for larger model discrepancy. Our Complementary Dropout (C-Drop)
randomly splits high-level features (extracted by g) into two complementary sets for each decoder (h)
to learn. Our Complementary CutMix (C-Mix) further provides two complementary input views.

where Bu is the unlabeled batch size and max(pw1 ) measures the model confidence according to
maximum softmax output. The τ is the confidence threshold to select pixel-level reliable pseudo
labels. The H minimizes the cross entropy between two probability distributions. In this work, we
simply use the one-hot label of pw as the pseudo label.

In addition to Lco, there is also a supervised cross-entropy loss Lsup for labeled images. Therefore,
the overall loss is:

L = Lsup + λuLco, (3)
where λu serves as a trade-off term between the two losses, which is set as 1.0 by default.

In practice, we maintain an EMA teacher fT (Tarvainen & Valpola, 2017) with momentum 0.996 for
each model to yield more stable pseudo labels. Thus, we replace aforementioned pw with p̂w, where
p̂w = fT (uw), as shown in the right side of Figure 2.

3.2 COMPLEMENTARY CHANNEL-WISE DROPOUT

The two models from the above co-training framework are still strongly coupled with each other.
Such an advanced and promising co-training method gradually downgrades to a plain and weaker
self-training pipeline. Inspired by conventional co-training methods, we manage to obtain two
meaningful and also not strongly correlated views from a single image for two models to learn,
respectively. We observe that, the high-level features extracted by the encoder can be decomposed
into two complementary sets of features along the channel dimension. To enlarge the discrepancy,
each co-training model uses its private collection of features for subsequent decoding.

Technically, to achieve this, we propose a Complementary Channel-Wise Dropout to acquire two
disjoint and complementary sets of features. Generally, suppose a semantic segmentation f is
composed of an encoder g (e.g., ResNet (He et al., 2016)) and a decoder h (e.g., ASPP (Chen et al.,
2018)). We first use g to extract feature maps F ∈ RC×H×W from a strongly augmented image us:

F1 = g1(u
s); F2 = g2(u

s). (4)

Then, in each training iteration, we randomly generate a dropping mask MF for channel-wise features.
MF is a binary mask sampled from the binomial distribution, with half of its channels (C/2) all set
as 1, and others as 0.

With MF , we can perform complementary channel-wise Dropout on features F1 and F2 by:

F̂1 = F1 ⊙MF × 2;

F̂2 = F2 ⊙ (1−MF )× 2,
(5)

where the last scaling factor 2 is to ensure the output expectation is of the same scale as normal
features, which is known as “inverted Dropout”.

Note that F1 and F2 are extracted by a pre-trained encoder. Thus, they share the same characteristics
per channel. Therefore, the complementary Dropout masks MF and (1 −MF ) will enable us to
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obtain two disjoint sets of features with disjoint meanings. Lastly, the complementary features F̂1

and F̂2 are sent into corresponding decoders for final predictions:

ps1 = h1(F̂1); ps2 = h2(F̂2). (6)

Although the complementary Dropout is inserted at the intersection of the encoder and decoder, the
gradient will be back-propagated to respective encoders, making the whole model different from its
peer, as shown in Figure 2. We will also discuss various dropping positions in Table 8.

3.3 COMPLEMENTARY SPATIAL-WISE CUTMIX

In addition to feature-level and channel-wise complementary views, we further design a Complemen-
tary CutMix to capture spatial-wise complementary views of input images. Original CPS generates a
strongly augmented image ûs

i from a pair of images us
i and us

j with a random CutMix mask M I :

ûs
i = us

i ⊙M I + us
j ⊙ (1−M I). (7)

In CPS, the obtained ûs
i is shared by two co-training models as training images. However, with

precisely the same training images, the two models will be highly coupled with each other. To this
end, apart from ûs

i , we propose to produce a complementary CutMix view ûs
j for it:

ûs
j = us

i ⊙ (1−M I) + us
j ⊙M I . (8)

With these two complementary views (visualized in the left side of Figure 2), we can feed them into
different models for training respectively. Correspondingly, the pseudo labels on weak views are also
interpolated, guided by the CutMix masks:

p̂w1 = fT
1 (uw

i )⊙ (1−M I) + fT
1 (uw

j )⊙M I ;

p̂w2 = fT
2 (uw

i )⊙M I + fT
2 (uw

j )⊙ (1−M I).
(9)

Overall, the final unsupervised co-training loss can be formulated as:

Lco =
1

Bu

∑
1(max(p̂w1 ) ≥ τ)H

(
p̂w1 , f2(û

s
j)
)
+

1

Bu

∑
1(max(p̂w2 ) ≥ τ)H

(
p̂w2 , f1(û

s
i )
)
, (10)

where complementary feature Dropout is also injected on the feedforward of f1(ûs
i ) and f2(û

s
j).

Our holistic CT++ is depicted in Figure 2. We report the test results with the first student model f1.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Following previous works, we use DeepLabv3+ based on ResNet (Chen et al., 2018) as our segmen-
tation model on Pascal (Everingham et al., 2015) and Cityscapes (Cordts et al., 2016). For faster
training speed and lower GPU memory consumption, the ResNet uses an output stride of 16. On
rarely explored COCO (Lin et al., 2014), we follow (Zou et al., 2021) to use DeepLabv3+ with
Xception-65 (Chollet, 2017). In addition, ADE20K (Zhou et al., 2017) has never been studied in
this field, so we choose to adopt the simple yet more advanced SegFormer (Xie et al., 2021) with a
MiT-B4 encoder. The decoders in DeepLabv3+ and SegFormer both require multi-scale feature maps
as inputs. Therefore, we randomly sample two complementary dropping masks at each scale between
two co-training models. For more training and evaluation details, please refer to our appendix.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Pascal VOC 2012 contains 21 foreground and background classes. It originally contained 1,464
training images with high-quality annotations. It was later expanded by SBD (Hariharan et al., 2011)
with extra 9,118 coarsely annotated samples. There are three existing protocols to select labeled
images: (a) sampling from the original high-quality training set (Table 1), (b) randomly sampling
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Table 1: Results on Pascal. Labeled images come from the high-quality training set. The fraction
(e.g., 1/16) and number (e.g., 92) in the head denote the proportion and number of labeled images.
†: integrating UniMatch (Yang et al., 2023), please refer to Appendix A.3 for details. Meantime, to
promote modern architectures, we also try SegFormer (Xie et al., 2021) with its MiT encoders.

Method Venue Encoder 1/16 1/8 1/4 1/2 Full
(92) (183) (366) (732) (1464)

Labeled Only / R101 45.1 55.3 64.8 69.7 73.5
PseudoSeg (Zou et al., 2021) ICLR’21 R101 57.6 65.5 69.1 72.4 73.2
ReCo (Liu et al., 2022a) ICLR’22 R101 64.8 72.0 73.1 74.7 –
ST++ (Yang et al., 2022) CVPR’22 R101 65.2 71.0 74.6 77.3 79.1
PCR (Xu et al., 2022) NIPS’22 R101 70.1 74.7 77.2 78.5 80.7
GTA (Jin et al., 2022) NIPS’22 R101 70.0 73.2 75.6 78.4 80.5
UniMatch (Yang et al., 2023) CVPR’23 R101 75.2 77.2 78.8 79.9 81.2
iMAS (Zhao et al., 2023a) CVPR’23 R101 68.8 74.4 78.5 79.5 81.2
AugSeg (Zhao et al., 2023b) CVPR’23 R101 71.1 75.5 78.8 80.3 81.4
CT++ Ours R101 75.4 76.9 78.5 80.0 81.6
CT++† Ours R101 75.8 78.0 79.1 80.7 82.0

CT++ Ours MiT-B3 75.5 77.9 80.4 81.8 82.0
CT++† Ours MiT-B3 77.5 79.4 82.6 83.9 84.3
CT++ Ours MiT-B4 76.2 78.8 80.6 82.2 84.1
CT++† Ours MiT-B4 80.2 80.5 83.2 84.0 84.7

Table 2: Results on Pascal. Under ST++ split, labeled images are randomly sampled from the blended
training set, while under U2PL split, labeled images are primarily selected from the high-quality
labeled set, please refer to this U2PL issue for details. †: integrating UniMatch (Yang et al., 2023).

Method Venue
ResNet-50 ResNet-101

1/16 1/8 1/4 1/16 1/8 1/4
(662) (1323) (2646) (662) (1323) (2646)

Labeled Only | ST++ splits / 62.4 68.2 72.3 67.5 71.1 74.2
ST++ (Yang et al., 2022) CVPR’22 72.6 74.4 75.4 74.5 76.3 76.6
PS-MT (Liu et al., 2022b) CVPR’22 72.8 75.7 76.4 75.5 78.2 78.7
UniMatch (Yang et al., 2023) CVPR’23 75.8 76.9 76.8 78.1 78.4 79.2
AugSeg (Zhao et al., 2023b) CVPR’23 74.7 76.0 77.2 77.0 77.3 78.8
CT++ Ours 73.8 75.9 76.6 76.7 78.4 79.0
CT++† Ours 76.0 77.0 77.5 78.2 78.6 79.4

Labeled Only | U2PL splits / 67.7 71.9 74.5 70.6 75.0 76.5
U2PL (Wang et al., 2022) CVPR’22 74.7 77.4 77.5 77.2 79.0 79.3
UniMatch (Yang et al., 2023) CVPR’23 78.1 79.0 79.1 80.9 81.9 80.4
AugSeg (Zhao et al., 2023b) CVPR’23 77.3 78.3 78.2 79.3 81.5 80.5
CT++ Ours 76.4 78.4 78.6 79.5 81.1 80.3
CT++† Ours 78.2 79.6 79.5 81.1 81.9 80.9

from the blended 10,582 training images (Table 2 upper half), and (c) prioritizing sampling from the
high-quality set, and if not enough, using the extra lower-quality training images (Table 2 lower half).
As shown, with only 92 labeled images in Table 1, our CT++ outperforms iMAS (Zhao et al., 2023a)
by 6.6% (68.8% → 75.4% mIoU). Moreover, CT++ achieves the best results across all settings when
integrating UniMatch (Yang et al., 2023), e.g., 78.0% vs. 77.2% (UniMatch) with 183 labels.

Cityscapes is a street scene dataset, consisting of 19 classes. There are 2,975 labeled training images
in total. Without bells and whistles, our CT++ establishes new state-of-the-art results under many
settings in Table 3. For example, with 1/4 (744) labeled images, our method boosts UniMatch by
1.1% (77.5% → 78.6%) with ResNet-50. We also report much stronger results combining UniMatch.
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Table 3: Results on Cityscapes. †: integrating UniMatch (Yang et al., 2023), please refer to appendix.

Method
ResNet-50 ResNet-101

1/16 1/8 1/4 1/2 1/16 1/8 1/4 1/2
(186) (372) (744) (1488) (186) (372) (744) (1488)

Labeled Only 63.3 70.2 73.1 76.6 66.3 72.8 75.0 78.0
CCT (Ouali et al., 2020) 66.4 72.5 75.7 76.8 69.6 74.5 76.4 78.3
PS-MT (Liu et al., 2022b) – 75.8 76.9 77.6 – 76.9 77.6 79.1
U2PL (Wang et al., 2022) 69.0 73.0 76.3 78.6 70.3 74.4 76.5 79.1
UniMatch (Yang et al., 2023) 75.0 76.8 77.5 78.6 76.6 77.9 79.2 79.5
CT++ 74.7 76.8 78.6 79.2 76.2 78.2 79.2 79.8
CT++† 76.3 77.2 78.7 79.3 77.4 78.9 79.8 80.2

Table 4: Results on COCO. All methods below use an Xception-65 encoder. †: integrating UniMatch.

Method Venue 1/512 1/256 1/128 1/64 1/32
(232) (463) (925) (1849) (3697)

Labeled Only / 22.9 28.0 33.6 37.8 42.2
PseudoSeg (Zou et al., 2021) ICLR’21 29.8 37.1 39.1 41.8 43.6
PC2Seg (Zhong et al., 2021) ICCV’21 29.9 37.5 40.1 43.7 46.1
UniMatch (Yang et al., 2023) CVPR’23 31.9 38.9 44.4 48.2 49.8
CISC-R (Wu et al., 2023) TPAMI’23 32.1 40.2 42.3 – –
CT++ Ours 33.2 38.1 42.3 46.3 48.2
CT++† Ours 34.9 41.1 45.2 48.7 50.1

COCO is a challenging benchmark for semantic segmentation, including a total of 118,287 training
images. It is rarely explored in our label-efficient scenario. We follow (Zou et al., 2021) to use 80
thing classes and one background class. As shown in Table 4, across all partition protocols, our
improved version CT++† performs consistently much better than all existing methods.

ADE20K has never been studied in this field. However, in view of the trend in fully-supervised
scenarios and the saturated performance on Pascal and Cityscapes, we hope to make a small step
toward this challenging long-tail benchmark. It is composed of 20,210 training images with a complex
taxonomy of 150 classes. As demonstrated in Table 5, we first report the results with labeled images
only. If using a fixed number of epochs, the total training iterations are indeed significantly reduced in
low-data regimes. So, we also try to oversample limited training images to the same scale as the full
training set. But this does not bring improvements. Then, after incorporating our CT++ to leverage
unlabeled images, the labeled-only baseline is greatly improved across all partitions. We hope this
challenging but realistic benchmark can receive more attention in future works.

4.3 ABLATION STUDIES

Unless otherwise specified, our ablation studies are mainly conducted on Pascal under the 183 and
732 data partitions with ResNet-101.

Effectiveness of each component. In Table 6, we first show the results of our co-training baseline
(first row). It is much stronger than CPS (Chen et al., 2021), due to our introduced substantial
color transformations (will be detailed below in Figure 4). Based on it, we further examine the
effectiveness of our two main contributions, i.e., complementary channel-wise Dropout (C-Drop) and
complementary CutMix (C-Mix). Our two approaches both boost this strong baseline non-trivially.
Moreover, by integrating both components, our CT++ achieves the best performance.

Comparison between our complementary Dropout and random Dropout. Although our comple-
mentary Dropout evidently enlarges the discrepancy and thus boosts the performance, we need to
make sure the improvement does not come from the Dropout perturbation itself. To validate this, we
perform the totally random Dropout (Srivastava et al., 2014) in each model. As shown in Figure 3a,
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Table 5: Results on ADE20K. To promote future works with more advanced architectures, here we
use SegFormer (Xie et al., 2021) with MiT-B4 as our semantic segmentation model.

Method 1/32 (631) 1/16 (1263) 1/8 (2526) 1/4 (5052) 1/2 (10105)

Labeled Only 29.2 33.7 36.1 39.7 44.2
+ Oversample 28.7 32.5 35.9 39.6 43.9
CT++ 31.4 (2.2↑) 35.9 (2.2↑) 39.9 (3.8↑) 42.0 (2.3↑) 45.2 (1.0↑)

Table 6: Ablation studies on our complementary
channel-wise Dropout (C-Drop) and complemen-
tary spatial-wise CutMix (C-Mix).

CT++ Splits

C-Drop C-Mix 183 732

75.7 79.0
✓ 76.6 (0.9↑) 79.7 (0.7↑)

✓ 76.3 (0.6↑) 79.6 (0.6↑)
✓ ✓ 76.9 (1.2↑) 80.0 (1.0↑)

Table 7: Advanced architectures on Cityscapes
(MiT encoders (Xie et al., 2021) for Pascal are
included in Table 1). We believe ViT-based mod-
els can be better if fine-tuned more carefully.

Encoder 1/16 1/8 1/4 1/2
(186) (372) (744) (1488)

RN-101 76.2 78.2 79.2 79.8
MiT-B3 77.7 78.6 79.6 80.5
MiT-B4 77.5 79.1 79.7 80.5

our complementary Dropout is obviously superior to the random counterpart, also indicating that
enlarging discrepancy between co-training models counts.

Comparison between our complementary CutMix and different data sequences. Apart from
our designed complementary CutMix, there is another intuitive way to feed different input views
for two models. We can use two independent dataloaders for two models to sample training data,
with randomly and differently shuffled data sequences. In Figure 3b, we compare these two options,
observing our complementary CutMix views achieve better performance than simply shuffled views
by different data sequences.

Effectiveness of strong color transformations. CPS (Chen et al., 2021) only uses CutMix as its
strong augmentation. However, a recent trend in semi-supervised learning is to incorporate richer
color transformations into the strong data augmentation pool. Therefore, based on CT++, we validate
the effectiveness of our added color transformations, i.e., color jittering, gaussian blurring, and
grayscaling. The results in Figure 4 prove the indispensable role of vigorous color transformations.

Position(s) of complementary Dropout. In previous experiments, we simply performed complemen-
tary Dropout at the intersection of our encoder and decoder. We do not heavily fine-tune the optimal
position to make our CT++ more general. To be more convincing, we here conduct comprehensive
ablation studies on various inserted positions, as demonstrated in Table 8. It can be concluded that
the most appropriate position for SegFormer is at the 3rd intermediate stage of MiT, while the ideal
position for DeepLabv3+ and RN-101 is at the encoder-decoder intersection or the 3rd stage.

183 732
Number of labeled images

75

77

79

M
ea

nI
oU

Random Dropout
Complementary Dropout

(a) Complementary Dropout

183 732
Number of labeled images

75

77

79

M
ea

nI
oU

Different Sequences
Complementary CutMix

(b) Complementary CutMix

Figure 3: (a) Comparison between random Dropout and our complementary Dropout. (b) Comparison
between different data sequences and our complementary CutMix.
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Figure 4: Effectiveness of color transformations
(ColorAug). Note that, CutMix is already added.

0.00 0.50 0.80 0.95 0.98
Confidence threshold

72

74

76

78

80

M
ea

nI
oU

732 labeled images
183 labeled images

Figure 5: Ablation studies on different values of
the confidence threshold τ .

Table 8: Ablation studies on various inserted position(s) of our Complementary Dropout. Nl denotes
the number of labeled images. We divide the encoder into four stages. Position i means dropping at
the output of the i-th stage. By default, we drop at the encoder-decoder intersection (Position 4).

Position(s) 4 3 2 1 3 & 4 2 & 4 1 & 4

SegFormer MiT-B3 (Nl = 183) 77.9 79.1 76.7 76.6 79.1 77.9 75.9
SegFormer MiT-B3 (Nl = 732) 81.8 82.5 82.5 81.5 81.6 81.2 80.6

DeepLabv3+ RN-101 (Nl = 183) 76.9 76.7 75.9 76.0 77.7 76.2 76.4
DeepLabv3+ RN-101 (Nl = 732) 80.0 80.1 79.7 79.1 79.4 79.1 79.6

More advanced network architectures. Almost all prior works in semi-supervised semantic
segmentation use CNN-based models. This is not in line with the ViT trend (Dosovitskiy et al., 2020)
in our community. Hence, we make some primary attempts at ViT-based models with the popular
SegFormer (Xie et al., 2021). In the last four rows of Table 1 for Pascal, we tried SegFormer with
MiT-B3 and MiT-B4. It requires comparable parameters (B3: 47.3M, B4: 64.0M) to DeepLab3v+
with ResNet-101 (59.4M) , but achieves much better results. Moreover, in Table 7 of Cityscapes, the
observation is similar. The SegFormer serials are more powerful than CNN-based models.

Confidence threshold τ . The τ controls a trade-off between the quality and quantity of pseudo-
labeled pixels. Larger τ ensures higher-quality pseudo labels, but meantime also results in fewer
confident pixels. We ablate different values of τ in Figure 5. It can be observed that the widely
adopted value 0.95 (Sohn et al., 2020) is already an ideal threshold for our method.

Table 9: Ablation studies on λu (1.0 by default).
Nl denotes the number of labeled images.

λu 0.0 0.5 1.0 2.0 4.0

Nl = 183 55.3 77.1 76.9 77.3 76.0
Nl = 732 69.7 79.9 80.0 79.3 78.3

Unsupervised loss weight λu. By default, we
set λu = 1 in all experiments, which means the
supervised and unsupervised losses are of equal
importance. For the universality and robustness
of our CT++, we do not follow some meth-
ods (Liu et al., 2022b) to frequently change the
λu based on specific data partitions or datasets.
However, for a more comprehensive ablation
study, we attempt different values of λu in Table 9. It is clear that the default value 1.0 is already
promising and stable enough, and fine-tuning λu may also bring some additional performance gain.

5 CONCLUSION

In this work, we focus on the co-training framework for semi-supervised semantic segmentation. We
present two methods to enlarge the model discrepancy for better performance. Our Complementary
Channel-Wise Dropout enables two models to utilize disjoint sets of feature maps for respective
learning. In addition, our Complementary Spatial-Wise CutMix feeds two models with complemen-
tary input views for enlarged diversity. Our holistic co-training method, CT++, surpasses previous
methods remarkably. Even more, to pursue more realistic scenarios, we also evaluate our approach on
the rarely explored COCO and ADE20K datasets, and make some initial attempts at more advanced
semantic segmentation architectures in this specific field.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

On Pascal, each training batch is composed of 16 labeled and 16 unlabeled images, while on the
other three datasets, the labeled and unlabeled batch size are both 8. The initial learning rate is set
as 0.001, 0.005, 0.004, and 0.00003 for Pascal, Cityscapes, COCO, and ADE20K, respectively. For
CNN-based models, we use the SGD optimizer, while for ViT-based models, we use the AdamW
optimizer (Loshchilov & Hutter, 2019). The model is trained on these four datasets for 80, 240, 30,
and 130 epochs, respectively. The training images are all randomly resized between 0.5 and 2.0, and
then cropped to 513, 801, 513, and 512 on the four datasets respectively1. On Pascal and Cityscapes,
according to different partition protocols, we fairly use the same data splits as ST++ (Yang et al.,
2022) or U2PL (Wang et al., 2022), while we follow PseudoSeg (Zou et al., 2021) splits on COCO.
And on ADE20K, due to no prior works, we randomly sample labeled images by ourselves.

By default, we set the unsupervised loss weight λu as 1 across all settings. And the confidence
threshold τ is set as 0.95 for Pascal, COCO, and ADE20K. But on Cityscapes, we observe τ = 0 is
much better, which is the same as CPS (Chen et al., 2021) and UniMatch (Yang et al., 2023). Besides,
on Cityscapes, we follow previous works (Chen et al., 2021; Wang et al., 2022; Yang et al., 2023)
to apply online hard example mining (OHEM) (Shrivastava et al., 2016) to labeled images and use
the sliding window evaluation. On the other three datasets, all images are evaluated in their original
resolutions under the mean intersection-over-union metric.

A.2 COMPUTATIONAL ANALYSIS

Compared with CPS (Chen et al., 2021), our CT++ introduces two EMA teachers. However, they
indeed do not bring extra computational burden (measured by FLOPs) compared with CPS. CPS
uses students to produce pseudo labels, whereas we use teachers, which does not change the FLOPs
and training time. The total parameters are doubled due to extra teachers. However, the trainable
parameters are the same as CPS because our teachers are in inference mode. More importantly, we
highlight that we only maintain multiple models during training, while during inference, we always
use a fixed student model to report the test performance, sharing exactly the same inference cost
as previous methods. Below, we summarize some potentially concerned factors on computational
requirements. The setting is ResNet-101 on Pascal, with a training resolution of 321.

Table 10: Comparison between CPS (Chen et al., 2021) and our CT++ on computational requirements.
During inference, our CT++ enjoys the same speed and number of model parameters as previous
methods, because we always use the first student model for inference.

Method # Params (Total / Trainable / Test) FLOPs Training Time GPU Memory

CPS (Chen et al., 2021) 118.9M / 118.9M / 59.5M 40.3G 1.1s / iter 117.6GB
Our CT++ 237.8M / 118.9M / 59.5M 40.3G 1.1s / iter 121.6GB

A.3 INCORPORATING UNIMATCH INTO CT++

In Table 1, 2, 3, and 4, we also report results of a more advanced version CT++†, which integrates
the UniMatch (Yang et al., 2023). Here, we describe the implementation details. Following the
UniMatch methodology, for each co-training model, we first forward two learnable streams, each
of which contains both image-level strong perturbations and our proposed complementary Dropout.
The two streams differ in that the image-level strong perturbations are randomly sampled and our
complementary Dropout also randomly erases some feature channels. Note that, slightly different
from UniMatch, we also include feature perturbations in these image perturbation streams. because
we have proved in Table 6 (first two rows) that our complementary Dropout is beneficial for image
perturbation streams. In addition, similar to UniMatch, we also train our model with a third branch that
contains only a random Dropout. In UniMatch, the ideal loss weight for the image-based stream and

1In Table 1, we use a smaller training size of 321 for ResNet encoders to speed up training, which is in
accordance with ST++ (Yang et al., 2022) and UniMatch (Yang et al., 2023).
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feature-based stream is 1:1. However, we find it is more promising to set the ratio as 7:3 if based on
our CT++. We conjecture that our image-based streams also include the feature-level complementary
Dropout, thus they should be attached more importance to enlarge the model discrepancy.

To better illustrate the effectiveness of our CT++ even under the strong UniMatch framework, we
try to implement a basic co-training framework (also includes strong color augmentations and the
EMA teachers) that incorporates UniMatch. As shown below, we find the plain co-training even
deteriorates the original UniMatch performance under some settings. In comparison, our CT++ can
always further boost the performance of UniMatch across all settings.

Table 11: Comparison between our CT++ and plain co-training pipeline when incorporating UniMatch.
Experiments are conducted on Pascal high-quality labeled set.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)

UniMatch (Yang et al., 2023) 75.2 77.2 78.8 79.9 81.2
UniMatch + Plain co-training 72.8 77.3 78.2 80.2 81.3
UniMatch + CT++ 75.8 78.0 79.1 80.7 82.0
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A.4 QUALITATIVE RESULTS ON PASCAL VOC 2012

We provide some qualitative results on Pascal with 732 labeled images. As shown below, our CT++
performs significantly better than ST++ (Yang et al., 2022) and our labeled-only baseline in terms of
semantic discrimination and boundary details.

Ground Truth Labeled Only ST++ CT++ (Ours)

Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow
Table Dog Horse Plant Sheep Sofa Train Monitor Invalid

Background Boat
PersonMotorbike

Figure 6: Qualitative results on Pascal. We compare our CT++ with ST++ (Yang et al., 2022) and the
labeled-only baseline.
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A.5 QUALITATIVE RESULTS ON CITYSCAPES

We provide the qualitative results on Cityscapes with 1/4 (744) labeled images. Our CT++ is
consistently much better than ST++ and the labeled-only baseline in visualization.

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Invalid

Ground Truth Labeled Only ST++ CT++ (Ours)

Figure 7: Qualitative results on Cityscapes. We compare our CT++ with ST++ (Yang et al., 2022)
and the labeled-only baseline.
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