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Abstract

We propose an effective embedding model, named QuatRE, to learn quaternion
embeddings for entities and relations in knowledge graphs. QuatRE aims to
enhance correlations between head and tail entities given a relation within the
Quaternion space with Hamilton product. QuatRE achieves this goal by further
associating each relation with two relation-aware quaternion vectors which are
used to rotate the head and tail entities’ quaternion embeddings, respectively.
To obtain the triple score, QuatRE rotates the rotated embedding of the head
entity using the normalized quaternion embedding of the relation, followed by a
quaternion-inner product with the rotated embedding of the tail entity. Experimental
results demonstrate that our QuatRE produces state-of-the-art performances on
well-known benchmark datasets for knowledge graph completion.

1 Introduction

Knowledge graphs (KGs) are constructed to represent relationships between entities in the form of
triples (head, relation, tail) denoted as (h, r, t). A typical problem in KGs is the lack of many valid
triples [35]; therefore, research approaches have been proposed to predict whether a new triple missed
in KGs is likely valid [3, 2, 26]. These approaches often utilize embedding models to compute a
score for each triple, such that valid triples have higher scores than invalid ones. For example, the
score of the valid triple (Melbourne, city_Of, Australia) is higher than the score of the invalid one
(Melbourne, city_Of, Germany).

Most of the aforementioned existing models focus on embedding entities and relations within the
real-valued vector space [2, 34, 13, 37, 4, 17, 18]. Recently the use of hyper-complex vector space
has considered on the Quaternion space H consisting of a real and three separate imaginary axes. It
provides highly expressive computations through the Hamilton product compared to the real-valued
and complex vector spaces. QuatE [38] is proposed to embed entities and relations within the
Quaternion space via a Hamilton product-based rotation between the head and relation embeddings
followed by a quaternion-inner product with the tail embedding. QuatE is considered as one of recent
state-of-the-art models as it outperforms up-to-date strong baselines for knowledge graph completion
[38]. QuatE, however, has a limitation in capturing the correlations between the head and tail entities.
Addressing the problem, we propose an effective embedding model, named QuatRE, to learn the
quaternion embeddings for entities and relations. QuatRE further associates each relation with
two relation-aware quaternion vectors to rotate the head and tail embeddings through the Hamilton
product, respectively. As a result, QuatRE strengthens the correlations between the head and tail
entities. To summarize, our main contributions are as follows:

• We present an effective embedding model QuatRE to embed entities and relations within the
Quaternion space with the Hamilton product. QuatRE further utilizes two relation-aware quaternion
vectors for each relation to increase the correlations between the head and tail entities.

• Experimental results show that our QuatRE obtains state-of-the-art performances on well-known
benchmark datasets for the knowledge graph completion task; thus, it can act as a new strong baseline
for future works.
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2 The approach

2.1 Quaternion background

We provide key notations and operations related to quaternion space required for our model. Addi-
tional details can further be found in the appendix.

A quaternion q ∈ H is a hyper-complex number consisting of a real and three separate imaginary
components [9] defined as: q = qr + qii+ qjj+ qkk, where qr, qi, qj, qk ∈ R, and i, j, k are imaginary
units that ijk = i2 = j2 = k2 = −1, leads to noncommutative multiplication rules as ij = k, ji =
−k, jk = i, kj = −i, ki = j, and ik = −j. Correspondingly, a n-dimensional quaternion vector
q ∈ Hn is defined as: q = qr + qii+ qjj+ qkk, where qr, qi, qj, qk ∈ Rn.

Norm. The normalized quaternion vector q/ of q ∈ Hn is computed as: q/ = qr+qii+qjj+qkk√
q2
r +q2

i +q2
j +q2

k

Hamilton product. The Hamilton product of two vectors q and p ∈ Hn is computed as:

q ⊗ p = (qr ◦ pr − qi ◦ pi − qj ◦ pj − qk ◦ pk) + (qi ◦ pr + qr ◦ pi − qk ◦ pj + qj ◦ pk)i
+ (qj ◦ pr + qk ◦ pi + qr ◦ pj − qi ◦ pk)j+ (qk ◦ pr − qj ◦ pi + qi ◦ pj + qr ◦ pk)k(1)

where ◦ denotes the element-wise product. We note that the Hamilton product is not commutative,
i.e., q ⊗ p 6= p⊗ q.

Quaternion-inner product. The quaternion-inner product • of two quaternion vectors q and
p ∈ Hn returns a scalar, which is computed as: q • p = qT

r pr + q
T
i pi + q

T
j pj + q

T
kpk.

QuatE: QuatE [38] computes the score of the triple (h, r, t) as: (vh ⊗ v/r) • vt. It is noted that
directly using the quaternion embeddings vh, vr, vt to obtain the triple score might lead to the
problem of struggling to strengthen the relation-aware correlations between the head and tail entities.
Thus, arguably this could lower the performance of QuatE. Our key contribution is to overcome this
limitation by integrating relation-aware quaternions to increase the correlations between the entities.

2.2 The proposed QuatRE

A knowledge graph (KG) G is a collection of valid factual triples in the form of (head, relation, tail)
denoted as (h, r, t) such that h, t ∈ E and r ∈ R where E is a set of entities andR is a set of relations.
KG embedding models aim to embed entities and relations to a low-dimensional vector space to
define a score function f . This function is to give an implausibility score for each triple (h, r, t), such
that the valid triples obtain higher scores than the invalid triples.

Given a triple (h, r, t), QuatRE also represents the embeddings of entities and relations within
the Quaternion space as vh, vr, and vt ∈ Hn. QuatRE further associates each relation r with
two quaternion vectors vr,1 and vr,2 ∈ Hn. QuatRE then uses the Hamilton product to rotate the
quaternion embeddings vh and vt by the normalized vectors v/r,1 and v/r,2 respectively as:

vh,r,1 = vh ⊗ v/r,1 (2)

vt,r,2 = vt ⊗ v/r,2 (3)

After that, QuatRE rotates vh,r,1 by the normalized quaternion embedding v/r before computing the
quaternion-inner product with vt,r,2. The quaternion components of input vectors are shared during
computing the Hamilton product, as shown in Equation 14. Therefore, QuatRE uses two rotations in
Equations 2 and 3 for vh and vt to increase the correlations between the head h and tail t entities
given the relation r, as illustrated in Figure 3.

Formally, we define the QuatRE score function f for the triple (h, r, t) as:

f(h, r, t) = (vh,r,1 ⊗ v/r) • vt,r,2 =
((
vh ⊗ v/r,1

)
⊗ v/r

)
•
(
vt ⊗ v/r,2

)
2



Learning process. We employ the Adagrad optimizer [5] to train our proposed QuatRE by mini-
mizing the following loss function [31] with the regularization on model parameters θ as:

L =
∑

(h,r,t)∈{G∪G′}

log
(
1 + exp

(
−l(h,r,t) · f(h, r, t)

))
+ λ‖θ‖22 (4)

in which, l(h,r,t) =
{

1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G′

where we use l2-norm with the regularization rate λ; and G and G′ are collections of valid and invalid
triples, respectively. G′ is generated by corrupting valid triples in G.

Discussion. If we fix the real components of both vr,1 and vr,2 to 1, and fix the imaginary com-
ponents of both vr,1 and vr,2 to 0, our QuatRE is simplified to QuatE. Hence the QuatRE’s derived
formula might look simple as an extension of QuatE. However, to come with the extension, our
original intuition is not straightforward, and this intuition has a deeper insight. We also note that given
the same embedding dimension, QuatE and our QuatRE have comparable numbers of parameters.

3 Experimental results

Setup. We present the statistics of the datasets, the evaluation protocol, the training protocol, and
the optimal hyper-parameters on the validation set for each dataset in appendix.

Table 1: Experimental results on the WN18RR and FB15k-237 test sets. Hits@k (H@k) is reported
in %. The best scores are in bold, while the second best scores are in underline. The results of TransE
are taken from [17]. The results of DistMult and ComplEx are taken from [4]. The results of ConvKB
are taken using the Pytorch implementation released by [17]. We note that GC-OTE and RotatEAdv
apply a self-adversarial negative sampling, which is different from the common sampling strategy
used in the previous baselines, QuatE and our QuatRE. QuatEN3Rec uses the N3 regularization and
reciprocal learning [12], which requires a large embedding dimension. GC-OTE, ReInceptionE, and
R-GCN+ integrate information about relation paths. Thus, for a fair comparison, we do not compare
our QuatRE with these models.

Method WN18RR FB15k-237
MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

TransE [2] 3384 0.226 50.1 – – 357 0.294 46.5 – –
DistMult [37] 5110 0.430 49.0 44.0 39.0 254 0.241 41.9 26.3 15.5
ComplEx [31] 5261 0.440 51.0 46.0 41.0 339 0.247 42.8 27.5 15.8
ConvE [4] 5277 0.460 48.0 43.0 39.0 246 0.316 49.1 35.0 23.9
ConvKB [17] 2741 0.220 50.8 – – 196 0.302 48.3 – –
NKGE [33] 4170 0.450 52.6 46.5 42.1 237 0.330 51.0 36.5 24.1
RotatE [27] 3277 0.470 56.5 48.8 42.2 185 0.297 48.0 32.8 20.5
InteractE [32] 5202 0.463 52.8 – 43.0 172 0.354 53.5 – 26.3
QuatE [38] 2314 0.488 58.2 50.8 43.8 87 0.348 55.0 38.2 24.8
QuatRE 1986 0.493 59.2 51.9 43.9 88 0.367 56.3 40.4 26.9
GC-OTE [28] – 0.491 58.3 51.1 44.2 – 0.361 55.0 39.6 26.7
ReInceptionE [36] 1894 0.483 58.2 – – 173 0.349 52.8 – –
RotatEAdv [27] 3340 0.476 57.1 49.2 42.8 177 0.338 53.3 37.5 24.1
QuatEN3Rec [38] – 0.482 57.2 49.9 43.6 – 0.366 55.6 40.1 27.1
R-GCN+ [25] – – – – – – 0.249 41.7 26.4 15.1

Main results. We report the experimental results on the benchmark datasets in Table 1. In general,
QuatRE outperforms up-to-date baselines for all metrics except the second-best MR on FB15k-237.
Especially when comparing with QuatE, on WN18RR, QuatRE gains significant improvements of
2314− 1986 = 328 in MR (which is about 14% relative improvement), and 1.0% and 1.1% absolute
improvements in Hits@10 and Hits@3 respectively. Besides, on FB15k-237, QuatRE achieves
improvements of 0.367− 0.348 = 0.019 (which is 5.5% relative improvement) and obtains absolute
gains of 1.3%, 2.2%, and 2.1% in Hits@10, Hits@3, and Hits@1 respectively.
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Figure 1: Visualization of the learned entity embeddings on WN18RR.

Correlation analysis. To qualitatively demonstrate the correlations between the entities, we use
t-SNE [14] to visualize the learned quaternion embeddings of the entities on WN18RR for QuatE
and QuatRE. We select all entities associated with two relations consisting of “instance_hypernym”
and “synset_domain_topic_of”. We then vectorize each quaternion embedding using a vector
concatenation across the four components; hence, we obtain a real-valued vector representation for
applying t-SNE. The visualization in Figure 1 shows that the entity distribution in our QuatRE is
denser than that in QuatE; hence this implies that QuatRE strengthens the correlations between the
entities.
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Figure 2: MRR and Hits@10 on the FB15k-237 test set for QuatE and our QuatRE with respect to
each relation category.

Table 2: MRR score on the WN18RR test
set with respect to each relation.

Relation QuatE QuatRE
hypernym 0.173 0.190
derivationally_related_form 0.953 0.943
instance_hypernym 0.364 0.380
also_see 0.629 0.633
member_meronym 0.232 0.237
synset_domain_topic_of 0.468 0.495
has_part 0.233 0.226
member_of_domain_usage 0.441 0.470
member_of_domain_region 0.193 0.364
verb_group 0.924 0.867
similar_to 1.000 1.000

Relation analysis. Following [2], for each relation r,
we calculate the averaged number ηh of head entities
per tail entity and the averaged number ηt of tail entities
per head entity. If ηh <1.5 and ηt <1.5, r is catego-
rized one-to-one (1-1). If ηh <1.5 and ηt ≥1.5, r is cat-
egorized one-to-many (1-M). If ηh ≥1.5 and ηt <1.5,
r is categorized many-to-one (M-1). If ηh ≥1.5 and
ηt ≥1.5, r is categorized many-to-many (M-M). Figure
2 shows the MRR and H@10 scores for predicting the
head entities and then the tail entities with respect to
each relation category on FB15k-237, wherein our Qua-
tRE outperforms QuatE on these relation categories.
Furthermore, we report the MRR scores for each re-
lation on WN18RR in Table 2, which shows the ef-
fectiveness of QuatRE in modeling different types of
relations.

4 Conclusion

In this paper, we propose QuatRE – an advantageous knowledge graph embedding model – to learn
the embeddings of entities and relations within the Quaternion space with the Hamilton product.
QuatRE further utilizes two relation-aware quaternion vectors for each relation to strengthen the
correlations between the head and tail entities. Experimental results show that QuatRE outperforms
up-to-date embedding models and produces state-of-the-art performances on well-known benchmark
datasets for the knowledge graph completion task.
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Table 3: The score functions in previous models. The table is adapted from [20].

Model The score function f(h, r, t)

TransE −‖vh + vr - vt‖p where vh, vr, and vt ∈ Rn; ‖v‖p denotes the p-norm of vector v
ConvE vTt g (Wvec (g (concat (v̂h, v̂r) ∗Ω))) where ∗ denotes a convolution operator

Ω denotes a set of filters; concat denotes a concatenation operator
g denotes a non-linear function; v̂ denotes a 2D reshaping of v

ConvKB wTconcat (g ([vh,vr,vt] ∗Ω))

DistMult 〈vh,vr,vt〉 =
∑n
i vhi

vrivti where 〈〉 denotes a multiple-linear dot product

ComplEx Re (〈vh,vr,v∗t 〉) where Re(c) denotes the real part of the complex c
vh, vr, and vt ∈ Cn; v∗ denotes the conjugate of the complex vector v

RotatE −‖vh ◦ vr - vt‖p where vh, vr, and vt ∈ Cn; and ◦ denotes the element-wise product
QuatE (vh ⊗ v/r) • vt where vh, vr, and vt ∈ Hn; • denotes a quaternion-inner product

⊗ denotes the Hamilton product; the superscript / denotes the normalized embedding

Our QuatRE
((
vh ⊗ v/r,1

)
⊗ v/r

)
•
(
vt ⊗ v/r,2

)
where vh, vr, vt, vr,1, and vr,2 ∈ Hn

A Related work

Existing embedding models [2, 34] have been proposed to learn the vector representations of entities
and relations for the knowledge graph completion task, where the goal is to score valid triples higher
than invalid triples. As an example, Table 3 illustrates the score functions f(h, r, t) in previous
state-of-the-art models as well as our proposed model.

Early translation-based approaches exploit a translational characteristic so that the embedding of
tail entity t should be close to the embedding of head entity h plus the embedding of relation t.
For example, TransE [2] defines a score function: f(h, r, t) = −‖vh + vr - vt‖p, where vh, vr,
and vt ∈ Rn are vector embeddings of h, r and t respectively; and ‖v‖p denotes the p-norm of
vector v. As a result, TransE is suitable for 1-to-1 relationships, but not well-adapted for Many-
to-1, 1-to-Many, and Many-to-Many relationships. To this end, some translation-based methods
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Figure 3: An illustration of QuatE versus our proposed QuatRE.

have been proposed to deal with this issue such as TransH [34], TransR [13], TransD [10], and
STransE [21]. Notably, DistMult [37] employs a multiple-linear dot product to score the triples as:
f(h, r, t) =

∑n
i vhi

vrivti .

One of the recent trends is to apply deep neural networks to measure the triples [4, 25, 32, 16, 19].
For example, ConvE [4] uses a convolution layer on a 2D input matrix of reshaping the embeddings of
both the head entity and relation to produce feature maps that are then vectorized and computed with
the embedding of the tail entity to return the score. While most of the existing models have worked
in the real-valued vector space, several works have moved beyond the real-valued vector space to
the complex vector space such as ComplEx [31] and RotatE [27]. ComplEx extends DistMult to use
the multiple-linear dot product on the complex vector embeddings of entities and relations. Besides,
RotatE considers a rotation-based translation within the complex vector space.

Recently the use of hyper-complex vector space has considered on the Quaternion space consisting
of a real and three separate imaginary axes. It provides highly expressive computations through
the Hamilton product compared to the real-valued and complex vector spaces. [39] and [7] embed
the greyscale and each of RGB channels of the image to the real and three separate imaginary axes
of the Quaternion space and achieve better accuracies compared real-valued convolutional neural
networks with same structures for image classification tasks. The Quaternion space has also been
successfully applied to speech recognition [23, 22], and natural language processing [29]. Regarding
knowledge graph embeddings, [38] has recently proposed QuatE, which aims to learn entity and
relation embeddings within the Quaternion space with the Hamilton product. QuatE, however, has a
limitation in capturing the correlations between the head and tail entities. Our key contribution is to
overcome this limitation by integrating relation-aware quaternion vectors to increase the correlations
between the entities as illustrated in Figure 3.

B Quaternion background

For completeness, we briefly provide a background in quaternion, which has also similarly described
in recent works [39, 22, 38, 29]. A quaternion q ∈ H is a hyper-complex number consisting of a real
and three separate imaginary components [9] defined as:

q = qr + qii+ qjj+ qkk (5)

where qr, qi, qj, qk ∈ R, and i, j, k are imaginary units that ijk = i2 = j2 = k2 = −1, leads to
noncommutative multiplication rules as ij = k, ji = −k, jk = i, kj = −i, ki = j, and ik = −j.
Correspondingly, a n-dimensional quaternion vector q ∈ Hn is defined as:

q = qr + qii+ qjj+ qkk (6)

where qr, qi, qj, qk ∈ Rn. The operations for the Quaternion algebra are defined as follows:
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Conjugate. The conjugate q∗ of a quaternion q is defined as:

q∗ = qr − qii− qjj− qkk (7)

Addition. The addition of two quaternions q and p is defined as:

q + p = (qr + pr) + (qi + pi)i+ (qj + pj)j+ (qk + pk)k (8)

Scalar multiplication. The multiplication of a scalar λ and a quaternion q is defined as:

λq = λqr + λqii+ λqjj+ λqkk (9)

Norm. The norm ‖q‖ of a quaternion q is defined as:

‖q‖ =
√
q2r + q2i + q2j + q2k (10)

The normalized or unit quaternion q/ is defined as:

q/ =
q

‖q‖
(11)

And the normalized quaternion vector q/ of q ∈ Hn is computed as:

q/ =
qr + qii+ qjj+ qkk√
q2r + q

2
i + q

2
j + q

2
k

(12)

Hamilton product. The Hamilton product⊗ (i.e., the quaternion multiplication) of two quaternions
q and p is defined as:

q ⊗ p = (qrpr − qipi − qjpj − qkpk)
+ (qipr + qrpi − qkpj + qjpk)i

+ (qjpr + qkpi + qrpj − qipk)j
+ (qkpr − qjpi + qipj + qrpk)k (13)

The Hamilton product of two quaternion vectors q and p ∈ Hn is computed as:

q ⊗ p = (qr ◦ pr − qi ◦ pi − qj ◦ pj − qk ◦ pk)
+ (qi ◦ pr + qr ◦ pi − qk ◦ pj + qj ◦ pk)i
+ (qj ◦ pr + qk ◦ pi + qr ◦ pj − qi ◦ pk)j
+ (qk ◦ pr − qj ◦ pi + qi ◦ pj + qr ◦ pk)k

(14)

where ◦ denotes the element-wise product. We note that the Hamilton product is not commutative,
i.e., q ⊗ p 6= p⊗ q.

Quaternion-inner product. The quaternion-inner product • of two quaternion vectors q and
p ∈ Hn returns a scalar, which is computed as:

q • p = qT
r pr + q

T
i pi + q

T
j pj + q

T
kpk (15)

C Experimental setup

In the knowledge graph completion task [2], the goal is to predict a missing entity given a relation
with another entity, for example, inferring a head entity h given (r, t) or inferring a tail entity t given
(h, r). The results are calculated by ranking the scores produced by the score function f on triples in
the test set.
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C.1 Datasets

We evaluate our proposed QuatRE on four benchmark datasets: WN18, FB15k [2], WN18RR [4],
and FB15k-237 [30]. WN18 and FB15k are derived from the lexical KG WordNet [15] and the
real-world KG Freebase [1] respectively. As mentioned in [30], WN18 and FB15k contains many
reversible relations, which makes the prediction task become trivial and irrealistic. As shown in [4],
recent state-of-the-art results on WN18 are still obtained by using a simple reversal. Therefore, their
subsets WN18RR and FB15k-237 are derived to eliminate the reversible relation problem to create
more realistic and challenging prediction tasks.

C.2 Evaluation protocol

Following [2], for each valid test triple (h, r, t), we replace either h or t by each of other entities
to create a set of corrupted triples. We use the “Filtered” setting protocol [2], i.e., not including
any corrupted triples that appear in the KG. We rank the valid test triple and corrupted triples in
descending order of their scores. We employ evaluation metrics: mean rank (MR), mean reciprocal
rank (MRR), and Hits@k (the proportion of the valid triples ranking in top k predictions). The final
scores on the test set are reported for the model which obtains the highest Hits@10 on the validation
set. Lower MR, higher MRR, and higher Hits@k indicate better performance.

C.3 Training protocol

Parameter initialization. For the fairness, similar to previous works, we apply the standard Glo-
rot initialization [8] for parameter initialization in our QuatRE instead of utilizing a specialized
initialization scheme used in QuatE [38].

Negative sampling. We use the Bernoulli negative sampling [34, 13] when sampling invalid triples
in G′. More formally, for each relation r, ηh denotes the averaged number of head entities per tail
entity whilst ηt denotes the averaged number of tail entities per head entity. Given a valid triple
(h, r, t) of relation r, we then generate a new head entity h′ with probability ηt

ηh+ηt
to form an invalid

triple (h′, r, t) and a new tail entity t′ with probability ηh
ηh+ηt

to form an invalid triple (h, r, t′).
The Bernoulli negative sampling is very commonly used in the translation-based models and later
embedding models, and also implemented in both QuatE and our QuatRE for a fair comparison.

Hyper-parameters. We implement our QuatRE based on Pytorch [24] and test on a single GPU.
We set 100 batches for all four datasets. We then vary the learning rate α in {0.02, 0.05, 0.1}, the
number s of negative triples sampled per training triple in {1, 5, 10}, the embedding dimension n
in {128, 256, 384}, and the regularization rate λ in {0.05, 0.1, 0.2, 0.5}. We train our QuatRE up to
8,000 epochs on WN18 and WN18RR, and 2,000 epochs on FB15k and FB15k-237. We monitor the
Hits@10 score after each 400 epochs on on WN18 and WN18RR, and each 200 epochs on FB15k and
FB15k-237. We select the hyper-parameters using grid search and early stopping on the validation set
with Hits@10. We present the statistics of the datasets in Table 4 and the optimal hyper-parameters
on the validation set for each dataset in Table 5.

Table 4: Statistics of the experimental datasets.
Dataset | E | | R | #Triples in train/valid/test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 5: The optimal hyper-parameters on the validation sets.
Dataset α n λ s
WN18RR 0.1 256 0.5 5
FB15k-237 0.1 384 0.5 10
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Table 6: Experimental results on the WN18 and FB15k test sets. Hits@k (H@k) is reported in
%. The best scores are in bold, while the second best scores are in underline. RotatEAdv uses a
self-adversarial negative sampling. QuatEN3Rec applies N3 regularization and reciprocal learning.
R-GCN+ exploits information about relation paths.

Method WN18 FB15k
MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

TransE [2] – 0.495 94.3 88.8 11.3 – 0.463 74.9 57.8 29.7
DistMult [37] 655 0.797 94.6 – – 42 0.798 89.3 – –
ComplEx [31] – 0.941 94.7 94.5 93.6 – 0.692 84.0 75.9 59.9
ConvE [4] 374 0.943 95.6 94.6 93.5 51 0.657 83.1 72.3 55.8
SimplE [11] – 0.942 94.7 94.4 93.9 – 0.727 83.8 77.3 66.0
NKGE [33] 336 0.947 95.7 94.9 94.2 56 0.730 87.1 79.0 65.0
TorusE [6] – 0.947 95.4 95.0 94.3 – 0.733 83.2 77.1 67.4
RotatE [27] 184 0.947 96.1 95.3 93.8 32 0.699 87.2 78.8 58.5
QuatE [38] 162 0.950 95.9 95.4 94.5 17 0.782 90.0 83.5 71.1
QuatRE 116 0.939 96.3 95.3 92.3 23 0.808 89.6 85.1 75.1
RotatEAdv [27] 309 0.949 95.9 95.2 94.4 40 0.797 88.4 83.0 74.6
QuatEN3Rec [38] – 0.950 96.2 95.4 94.4 – 0.833 90.0 85.9 80.0
R-GCN+ [25] – 0.819 96.4 92.9 69.7 – 0.696 84.2 76.0 60.1
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