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ABSTRACT

Modern sequencing technology has produced a vast quantity of proteomic data,
which has been key to the development of various deep learning models within
the field. However, there are still challenges to overcome with regards to mod-
elling the properties of a protein, especially when labelled resources are scarce.
Developing interpretable deep learning models is an essential criterion, as pro-
teomics research requires methods to understand the functional properties of pro-
teins. The ability to derive quality information from both the model and the data
will play a vital role in the advancement of proteomics research. In this paper,
we seek to leverage a BERT model that has been pre-trained on a vast quantity
of proteomic data, to model a collection of regression tasks using only a minimal
amount of data. We adopt a triplet network structure to fine-tune the BERT model
for each dataset and evaluate its performance on a set of downstream task pre-
dictions: plasma membrane localisation, thermostability, peak absorption wave-
length, and enantioselectivity. Our results significantly improve upon the origi-
nal BERT baseline as well as the previous state-of-the-art models for each task,
demonstrating the benefits of using a triplet network for refining such a large pre-
trained model on a limited dataset. As a form of white-box deep learning, we also
visualise how the model attends to specific parts of the protein and how the model
detects critical modifications that change its overall function.

1 INTRODUCTION

The landscape of bioinformatics research has been transformed with modern sequencing technology,
as more data is being collected and refined in laboratories across the world. These vast resources
have allowed machine learning and more recently, deep learning to surge in popularity within this
field. Deep learning models such as deep neural networks (DNN) are now standard within the area
as they can handle large datasets, require minimal feature engineering and are capable of handling
complex relationships within the data. This has allowed DNNs to become state-of-the-art architec-
tures for modelling tasks within genomics (Alipanahi et al., 2015; Angermueller et al., 2016; Lan-
chantin et al., 2017), transcriptomics (Leung et al., 2014; Lee & Yoon, 2015; Zhang et al., 2016), and
proteomics (Hou et al., 2017; Klausen et al., 2019; Yang et al., 2018a). Deep learning has proven
that it can model a variety of complex processes within biology, as these models provide predictions
without any explicit knowledge of the specific physical and biological mechanisms. However, a sub-
stantial amount of labelled data is usually required during the development stages. These resources
are often not available for certain protein design and engineering tasks, which is inconvenient when
modelling critical properties within a protein (Yang et al., 2018b; 2019; Wu et al., 2019). Computa-
tional bioinformatics and protein modelling require new approaches to develop robust deep learning
models that can combat the lack of labelled data. A majority of the deep learning techniques ap-
plied in bioinformatics research originate from applications within image classification (Krizhevsky
et al., 2012; He et al., 2016; Ren et al., 2015) and language modelling (Peters et al., 2018; Vaswani
et al., 2017; Devlin et al., 2018). State-of-the-art approaches in the fields of natural language pro-
cessing (NLP) (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2018), and computer vision
(CV) (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017), now commonly employ a technique
known as pre-training. These methods have revealed that DNNs can still retain their performance as
these methods produce robust models with a limited number of training examples. However, such
methods have yet to be rigorously tested within the context of protein modelling.
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The method of pre-training requires a deep learning model to be trained on a separate task before
being fine-tuned to a different dataset (Howard & Ruder, 2018). The utility of pre-training was
first demonstrated within the field of the computer vision (Deng et al., 2009; Yosinski et al., 2014),
as large convolutional neural networks were initially trained on vast image datasets, before being
fine-tuned to specific tasks (Krizhevsky et al., 2012; Szegedy et al., 2017; Simonyan & Zisserman,
2014). In NLP, state-of-the-art language models use vast corpora of text to perform unsupervised
or self-supervised pre-training (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2018). Re-
cent approaches within protein sequences analysing have employed similar methods during training
(Yang et al., 2018b; Rao et al., 2019; Min et al., 2019). However, pre-training is still costly and
time-consuming to perform as it requires a considerable amount of computational resources, and so
has had a slow adoption rate within computational biology.

Computer vision was again at the forefront of modern machine learning with the application of
metric-learning for modelling limited datasets. Whereby the original inputs to a DNN are trans-
formed into a feature space that can be used to compare and match examples based on a distance
metric (i.e. Euclidean distance, cosine-distance) (Weinberger & Saul, 2009; Hu et al., 2015; Lu
et al., 2015). Examples of such deep metric-learning include the use of siamese networks (Koch
et al., 2015), triplet-networks (Dong & Shen, 2018), and matching networks (Vinyals et al., 2016).
In this work, we aim to determine if both pre-training and metric learning can be implemented si-
multaneously to develop a deep learning model that is suitable for modern protein sequence analysis.

In this paper, we will consider a pre-trained BERT model (Rao et al., 2019), which is based on a
large corpus of unlabeled protein sequences with the goal of re-purposing this model by fine-tuning
it using a triplet network for a set of downstream tasks. During training, triplets (i.e. anchor, posi-
tive and negative) of the protein sequences will be used along with weight-sharing within the BERT
model to cluster the data based on a triplet loss (Hoffer & Ailon, 2015). The BERT model will be
used to produce a vector representation for the anchor, positive and negative protein respectfully.
During training, a protein is considered to be a positive example to the anchoring protein if its la-
belled value (i.e. measured property) is closer in absolute value to the anchor’s label when compared
to the negative instance. Throughout the tuning process, new triplets are formed as the BERT model
undergoes semi-supervised training, and begins clustering individual cases within the dataset. As
outlined in Figure 1 (e.g. thermostability T50 values), our approach must fine-tune the BERT model
to incorporate information about the measured property. Once the model is optimised to the task, the
encodings will provide information that reflects expected measured property. Our approach builds
on the work of Rao et al. (2019) by tailoring their pre-trained BERT model through the use of metric
learning for protein analysis. In doing so, the model should produce an improved feature set for
each task without overfitting to the limited labelled examples observed during training.

2 RELATED WORK

Determining the critical properties of a protein is one of the most challenging aspects of any down-
stream task. Traditionally, many of these properties are discovered by examining the physical struc-
ture of the protein. However, this is often a very time-consuming and expensive process. Another
option is to encode each amino acid with a basic set of physical properties (e.g. its charge or hy-
drophobicity). Inevitably many physical properties can be missed or poorly represented by such
feature engineering, which then leads to overfitting and inadequately modelling of the downstream
task. Many have considered encoding the primary structure of the protein (i.e. the sequence of amino
acids) (Jaganathan et al., 2019; Sun et al., 2017; Wei et al., 2018), where a vector of real numbers
represents each amino acid, and are optimised in a deep learning model. Since deep learning is often
used to avoid feature engineering, these model can capture sophisticated features by analysing the
original sequence of amino acids. Both supervised and unsupervised deep learning has been applied
in proteomic research (Alipanahi et al., 2015; Hochreiter et al., 2007; Almagro Armenteros et al.,
2017). As vast resources of proteomic data become available (e.g. the UniProt database (Consor-
tium, 2014)), it provides a third option to perform semi-supervised deep learning. This could be a
vital step forward for proteomic research as it is a far less expensive and time-consuming alternative.
Rao et al. (2019) displayed the potential semi-supervised deep learning for protein sequence anal-
ysis as they introduced the Tasks Assessing Protein Embeddings (TAPE). They benchmarked the
current state-of-the-art models to a set of five biologically relevant semi-supervised learning tasks
spread across different domains of protein biology. This included a Transformer model (Vaswani
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Figure 1: Triplet loss, designed to fine-tune the original pre-trained embeddings produced by the
BERT model to a downstream task. During training, a triplet of proteins our organised by calculating
the Euclidean distance between each example. Once completed, proteins with similar property
values (i.e. the values in the circles) should cluster closer together, producing a more meaningful
embedding space.

et al., 2017), a ResNet model (Yu et al., 2017), and a long short-term memory (LSTM) model
(Hochreiter & Schmidhuber, 1997) of their own design. In addition to these three models, they also
benchmarked two previously proposed architectures; another a bidirectional LSTM model (Bepler
& Berger, 2019), and a unidirectional mLSTM (Krause et al., 2016; Alley et al., 2019). Rao et al.
(2019) experiments concluded with the transformer model outperforming every other model tested
concerning its accuracy, perplexity and exponentiated cross-entropy. These results were not surpris-
ing as transformer-style architectures have quickly become the new standard for many NLP tasks
(Vaswani et al., 2017; Devlin et al., 2018; Dai et al., 2019).

Given that Rao et al. (2019) has shown that both a transformer is the best candidate for modelling a
protein sequence, we aim to build upon their work by testing this pre-trained model on four down-
stream tasks introduced by Yang et al. (2018b). In this way, we aim to investigate whether such
pre-trained embeddings can help predict relevant properties for a set of downstream tasks. We aim
to improve this pre-trained model with the use of a triplet style network to fine-tune the model to
incorporate additional relevant information about the protein for each specific downstream task. A
drawback to Rao et al. (2019) work was that they only tested their transformer network using a
character-based encoding. However, state-of-the-art transformer language models now commonly
use a subword encoding algorithm before embeddings a sentence (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2018). Subword algorithms such as byte-pair encoding algorithm (BPE) (Gage,
1994) or unigram encoding algorithm (Kudo, 2018) can provide more extensive vocabulary during
training. These encoding algorithms also have the added benefit of reducing the length of the input
sequence. This could also reduce the time and cost required to model protein sequences without
using excessive amounts of padding.

In extension to this work, Vig et al. (2020) explored how this BERT model (Rao et al., 2019) was
capable of discerning structural and functional properties about the protein. Vig et al. (2020) proved
that the model was able to model long-range dependencies within the sequence of amino acids, it was
also able to deduce information about the protein based on the folding structure, target binding sites,
and additional complex biophysical properties. They concluded that the specific heads within the
model attended to individual amino acids, as the attention similarity matrix was positively correlated
to the expected substitution scores (i.e. BLOSUM62) for each amino acid. Vig et al. (2020) noted
that the deeper layers of the BERT model focused relatively more attention on binding sites and
contacts (i.e. high-level concepts). In contrast, information about the secondary structure (i.e. low-
to mid-level concepts) within the protein was targeted evenly across each of the layers.

Another example of semi-supervised was by Yang et al. (2018b) as they applied both pre-training
and an n-gram encoding strategy to analyse a set of proteins. Their approach consisted of using a

3



Under review as a conference paper at ICLR 2021

tri-gram encoding to each protein sequence analysing the set of tri-grams with a Doc2Vec model (Le
& Mikolov, 2014). The method encodes the protein an in trivial fashion, which makes it susceptible
to poorly represented (i.e. infrequent) tri-grams that can later affect pre-training. Lennox et al.
(2020b) improved on this work by testing the use of subword algorithms on protein sequences.
Both approaches are unfavourable as they implement Doc2Vec models, which return a single vector
representation for the entire protein. This makes it difficult to interpret each vector representation
when querying specific modifications in the protein.

Metric learning is still uncommon within computational biology deep learning even though it has
become standard practice in computer vision (Koch et al., 2015; Dong & Shen, 2018; Vinyals et al.,
2016). There have been many improvements to deep metric learning from its introduction with the
siamese style networks (Bromley et al., 1994; Chopra et al., 2005; Hadsell et al., 2006). One of
the most notable instances was by Hoffer & Ailon (2015) with the triplet network. In this work,
we aim to use such a triplet style training procedure to improve the encodings produced by the
BERT model (Rao et al., 2019). As we extract embedded representations for four protein property
prediction tasks (Yang et al., 2018b) using the pre-trained BERT model (Rao et al., 2019), and then
fine-tune our BERT model to each task. The tasked covered in this investigation contain proteins
from various families and library designs that were not included in Rao et al. (2019) work. We
show that the predictive power of models trained using these embeddings exceeds those trained on
the previous state-of-the-art methods. This approach can be an accurate and efficient alternative
as it does not require alignment or any additional structural data about the protein. A series of
visualisation techniques will be used to present the critical relationships with the data, and how the
BERT model attends to specific amino acids in the protein.

3 MATERIALS AND METHODS

Previous applications of pre-training (Yang et al., 2018b; Lennox et al., 2020b) and deep metric
learning (Lennox et al., 2020a) have shown a clear benefit to applying either technique to analyse
protein data. One key drawback to these approaches is the limited window sizes to which they
encode segments of the protein. This can be detrimental to the model’s performance as it is unable
to capture long-range dependencies within the protein and therefore encodes less information about
the proteins final structure. Our approach improves upon these examples by using a BERT style
model that is capable of encoding the complete protein in a bidirectional fashion. Past work has
justified the importance of either pre-training the model or using metric learning. There is still room
for improvement by bringing both approaches together by utilising a state-of-the-art pre-trained
network than has been fine-tuned using a triplet style network. Since the BERT has not been set up
to handle a subword encoding (e.g. BPE or Unigram), we aim instead to set a stable baseline for
the application of both pre-training and deep metric learning that will only use a character-based
encoding. However, Lennox et al. (2020b) has shown the potential subword encoding algorithms
have in improving and simplifying the pre-training process with a Doc2Vec model. Such a strategy
could be beneficial first to encode the proteins before being analysed by the BERT model.

3.1 MODELLING

The Triplet-BERT network employed in this investigation is outlined in Figure 2. For each task, the
proteins are encoded a BERT model (Rao et al., 2019), which has been re-trained on a set of protein
sequences used in TAPE investigation. These proteins were collected from the recently curated Pfam
database (El-Gebali et al., 2018), which holds approximately thirty-one million protein domains, and
forms the corpus used to train large sequence models as featured in TAPE (Rao et al., 2019). The
architects of the Pfam database have organised the proteins into clusters that share evolutionary-
related groups, also known as families. In summary, the BERT model consists of 12-layers with
a hidden size of 512 units and eight attention heads, leading to a ∼ 38M - parameter model, and
was trained using masked-token prediction (Devlin et al., 2018). Every layer of the BERT model
is frozen except for the last layer, which will allow the model to be easily tuned to each task. The
features produced by the final layer of the model are then pooled to form the vector representation
for each protein. Initially the model will encode a triplet of proteins, (xa, xp, xn), whereby xa, xp,
and xn denote the anchor, positive and negative proteins respectively. The BERT model will then
outputs the following:
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Figure 2: Overview of the Triplet-BERT Approach.

a = f(xa)

p = f(xp)

n = f(xn)

(1)

D(a, p) = ‖a− p‖
D(a, n) = ‖a− n‖ (2)

L(a, p, n) =
1

2
{max (0,m+D(a, p)−D(a, n)}. (3)

In this example, we are applying inter-domain learning as the weights of the BERT model are shared.
The model is represented by the encoding function f , which is applied to each branch of the triplet
network. Once the BERT model has encoded the triplet, it is then passed through one final dense and
L2-normalisation layer respectfully (Schroff et al., 2015). The triplet of encodings can then be used
to train the BERT to rank the triplet based on the anchoring protein via the triplet-loss (Equation. 3),
as visualised in Figure 2. Once the BERT model has been fine-tuned, we will use its final generated
encodings to build a simple regression model to predict the given properties of each task. As in past
examples, Gaussian process (GP) regression models (Matérn kernels with ν = 5/2) (Rasmussen,
2003) will be used to model the properties as to remain unbiased in this investigation.

3.2 DATA

To thoroughly evaluate the performance of using our approach, we included four downstream tasks
in this investigation that cover a range of potential properties in which deep learning could be ap-
plied. As we are mainly interested in the modelling capabilities of our approach and not the data
itself, we will only briefly review each resource. The peak absorption wavelength dataset comprises
of the Gloeobacter violaceus rhodopsin (GR) parent protein and an additional 80 protein sequences
(1–5 mutations) (Engqvist et al., 2015). The enantioselectivity dataset contains the epoxide hydro-
lase (EH) parent protein and a further 151 protein sequences (1–8 mutations) (Zaugg et al., 2017).
The plasma membrane localisation dataset includes three-parent proteins and an additional 248 pro-
tein sequences (1–108 mutations) (Bedbrook et al., 2017). Finally, the thermostability (T50) dataset
contains three-parent proteins and an additional 261 protein sequences (1–109 mutations) (Romero
et al., 2013). Please see citations for a more in-depth explanation into the nature of each property
and the methods used to collect the data.

4 RESULTS AND DISCUSSION

In this study, we began by evaluating the original BERT model as an example of a pre-training
strategy. This model was used as a baseline to our investigation on a set of downstream tasks. We
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Table 1: Results for the four protein downstream tasks.

Model Encoding Vocabulary Size Absorption Enantioselectivity Localisation T50
BERT (Triplet) (Ours) Character 20 14.06 3.85 0.50 2.36
BERT (Non-Triplet) (Rao et al., 2019) Character 20 16.57 7.57 0.70 2.47
CNN (Triplet) (Lennox et al., 2020a) Character 20 17.14 5.93 0.63 2.58
CNN (Non-Triplet) (Lennox et al., 2020a) Character 20 25.28 8.01 0.67 3.32
Doc2Vec (Lennox et al., 2020b) Unigram 2000 26.41 6.77 0.65 2.98

4000 18.09 6.90 0.76 2.80
8000 20.92 8.58 0.86 2.59
16000 24.05 7.07 0.77 3.33
32000 21.98 9.53 0.76 2.96

Doc2Vec (Lennox et al., 2020b) BPE 2000 23.83 10.38 0.66 2.70
4000 20.80 9.76 0.67 3.01
8000 18.46 6.72 0.75 2.75
16000 20.64 6.08 0.73 2.76
32000 24.27 7.03 0.67 2.80

Doc2Vec (Yang et al., 2018b) Tri-gram 8000 23.30 9.14 0.73 2.91
Doc2Vec (Lennox et al., 2020b) Character 20 46.08 12.55 0.81 4.32

then built on this approach by testing the advantages of combining both pre-training and deep metric
learning to the same tasks, as shown in Table 1. Just as past studies, we adopted an eighty-twenty
split of the generated triplets from the training data to train and validate the performance of the
model for each dataset. Doing so provided a stable training setup during the fine-tuning stage of
development. Unsurprisingly, the triplet tuned version of the BERT model easily outperformed the
original pre-trained baselines along with the other examples that included both CNN and Doc2Vec
based models with an improved mean absolute error (MAE) score in each task. Our results indicate
that the fine-tuning stage does alter the latent space produced by the original model, and tailors it
to each specific downstream task improving the final representation of each protein. The real value
in applying pre-training is observed when the model can successfully encode a protein without any
prior knowledge of biochemistry. Only during the pre-training stage does the model begin to learn
these complex relationships between the amino acids within the protein sequence. Through proper
fine-tuning can these pre-trained embeddings be improved by using deep metric learning to model
subtle mutations within a set of amino acids.

The encodings produced by both strategies are visualised using a set of t-distributed stochastic neigh-
bour embedding (t-SNE) (Maaten & Hinton, 2008) plots along with cluster maps, as shown in Fig-
ures 3a - 3b (with all t-SNE projections using a perplexity of 30) were produced for each downstream
task. Figure 3a depicts the encodings of the original BERT model for each downstream task. While
Figure 3b is the final encodings produced once the BERT model had been tuned using our triplet net-
work approach. By considering the combination of both plots, it is easier to envision how the BERT
model perceives each protein sequence when using either strategy and observe the contribution of
each mutation in the final feature vector representation.

For the absorption task, we see how there is less of an order to the original encoding when compared
to the triplet tuned counterparts, as shown in Figures 3a-3b. In Figure 3b, it is far easier to determine
which modifications will have a more significant effect on the proteins absorption value as the triplet
tuned encodings become more tailored to the task. Figures 3a-3b presents the model’s ability to
capture even the most minor modifications to the original parent protein, regardless of the length of
the sequence. The high correlations observed in the cluster map in Figure 3a reflect the fact that all
the modified proteins were based on one protein and indicated two main clusters within the dataset.
However, in Figure 3b the cluster map based on the triplet tuned encodings provide a more detailed
depiction of how the proteins are correlated to one another as we observe smaller sub-clusters within
the dataset.

In the enantioselectivity task, we again see the best performance from the triplet-BERT model, as
shown in Table 1. Still, both versions of the BERT model were capable of detecting any modifi-
cations present within the parent protein. However, when considering the cluster maps in Figures
3a-3b we can see the triplet tuned encodings provide more distinct clusters when compared to the
originals. In Figures 3a-3b, we observe that the triplet encodings incorporate information with re-
gards to the measured property and the modifications present within the protein. In the absorption
task, we notice that an increase in the number of modifications could lead to either an increase or de-
crease in absorption values. However, for enantioselectivity, the more modifications that are present
in the protein, the higher its expected e-value will be for this particular dataset.
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(a) Original BERT. (b) Triplet-BERT.

Figure 3: A set of t-SNE and cluster plots for both versions of the BERT model, thereby visualising
the correlations within each learned embedding space (e.g. the number of modifications present and
the functional property of each protein) (see text for details).

When examining the plasma membrane localisation task, we again observed the best results from
the triplet-BERT encodings, as shown in Table 1. When visualising both sets of encodings in Figures
3a-3b, we can see how the BERT model easily clusters the three families tested in this specific task.
Interestingly in Figure 3b, the triplet encoding clusters these families further away from one another.
With smaller sub-clusters appearing for the proteins that have a higher localisation value. The num-
ber of mutations appears to have an opposite effect to that of absorption and enantioselectivity. From
Figures 3a-3b, we see that the fewer mutations present within this protein leads to a higher overall
localisation value. Just as in the case of the absorption and enantioselectivity, we again notice a far
sharper cutoff between suspected groups within the data when using the triplet encodings for Figure
3b. In considering the cluster maps in Figures 3a-3b, it becomes easier to recognise which parent
protein is more or less receptive to the task as the model becomes better at detecting the relevant
modifications.

In the final task, we again observed the triplet-BERT model producing the best encodings for mod-
elling thermostability (i.e. T50) values, as outlined in Table 1. When we visualise the encodings
produced by each strategy in Figures 3a-3b, the proteins that possess the highest T50 values are
clustered into the centre of each plot. Unlike in the localisation task, the encodings produced by the
BERT model for the thermostability task are not initially separated into three distinct clusters based
on the parent proteins. Instead, we see a series of smaller groups with most of the proteins with high
thermostability values congregating in the centre. Similarly to absorption and enantioselectivity, the
number of mutations present in the protein is positively correlated to the thermostability value. Sim-
ilarly to the localisation task, when we consider the cluster maps in Figures 3a-3b, we can see that
triplet-BERT model is better at clustering the proteins with higher thermostability values together.

To reinforce the utility and interpretability of this approach, we have also included a set of Figures
5-8 that focus on a few examples from the peak absorption task. In Figure 5, we have mapped
the attention weights of the final layer onto the parent protein and two mutated (i.e. the most and
least absorbent) versions of this protein. In Figure 5, we can see which what parts of the protein and
specific mutations (i.e. red lettering) contribute the most to the final vector representation. Moreover,
we consider the average attention in each head of the final layer for these modified proteins in Figures
6a-6b. These figures illustrate the complexity of this model as no two heads attend to the same parts
of the proteins. In Figures 4a-4b, by taking an average over each head of the BERT model, can we
ascertain the critical parts of the protein within each layer. Likewise, In Figures 7a-7b, by taking
an average over each layer of the BERT model, can we observe similar patterns within each head.
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Figure 4: Average Attentions within the BERT model. The least and most absorbent mutated ver-
sions of the parent protein are coloured blue and red respectfully.

Finally, we compare the parent protein to both of its modified counterparts in Figure 8, by taking the
absolute difference in attention for the final layer. In Figure 8a, we can discern that mutations one
and four play a significant role in modifying the function of the original protein. While in Figure 8b,
we can see that it is mutations two and four respectfully. In both cases, these particular modifications
cause the model to attend to the surrounding amino acids within the protein, thereby altering the final
vector representation.

5 CONCLUSION

In this work, we have illustrated how pre-training can be utilised for robust modelling of a protein’s
functional properties, and with some additional fine-tuning through the use of a triplet-network,
these models can be further improved. From the results, the triplet-BERT network produced more
detailed encodings in each downstream task when compared to the original pre-trained BERT en-
codings and previous baselines. When using both strategies of pre-training and metric learning,
we observed state-of-the-art results for all downstream tasks when compared to using just one of
these approaches. This investigation has shown that deep learning can still be applied to produce
state-of-art regardless of the limited number of examples within the dataset. More specifically, we
have highlighted the potential for pre-training and metric learning within the field of proteomics. By
visualising the intermediate features generated by the BERT model, we also provided insight into
the function of a protein as we measured the impact of specific modifications featured in all four
downstream tasks.

As modern sequencing technology continues to improve proteomics to provide more data on the
properties of a protein, it will become paramount to link these extensive resources to specific tasks
through the use of techniques such as pre-training and metric learning. In future work, we postulate
that subword encodings could improve the encodings generated during pre-training by the BERT
model. This will allow the network to model the learn a far more substantial vocabulary for each
protein and will reduce the overall sequence length of the protein, which in turn will reduce the time
and cost required to perform pre-training.
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A APPENDIX

Figure 5: A set of attention maps highlighting the importance of each amino-acid with three pro-
teins from the peak absorption task. The parent protein is outlined in green, and its least and most
absorbent versions are outlined in blue and red respectfully. Any modifications are represented by
red lettering.
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Figure 6: Average Attentions within the BERT model. The least and most absorbent mutated ver-
sions of the parent protein are coloured blue and red respectfully.
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Figure 7: Average Attentions within the BERT model. The least and most absorbent mutated ver-
sions of the parent protein are coloured blue and red respectfully.
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(a) Least absorbent mutated version.
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Figure 8: The absolute difference in attention between a protein and its parent for each head of the
final layer. The modification are highlighted by the white crosses.
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