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ABSTRACT

Recent studies in video- and EEG-based emotion recognition have shown notable
progress. However, multi-modal emotion recognition remains largely unexplored,
particularly the integration of physiological signals with video. This integration is
crucial, as EEG—video fusion combines observable behavioral cues with internal
neural dynamics and enables a more comprehensive and robust characterization
of human emotion. To this end, we propose EVER, a novel EEG-Video Emo-
tion Recognition framework that effectively integrates complementary informa-
tion from both modalities. Specifically, EVER employs a Brain anatomy-aware
Inter-modal Hierarchical Graph Convolution Network (BIH-GCN), which aggre-
gates EEG channel features into region-level representations guided by anatomical
priors. These region-level features are combined with global high-level EEG and
video backbone embeddings to form a unified representation for emotion classifi-
cation. Furthermore, we introduce a correlation-based distribution alignment loss
to reconcile modality-specific embeddings and reduce cross-modal discrepancies.
To provide a comprehensive evaluation, we conduct comprehensive benchmark
across three public EEG-video paired datasets—Emognition, MDMER, and EAV.
We evaluate 12 representative models, consisting of 5 EEG-only, 5 video-only,
and 2 audio-video models, and report their performance under EEG, video, and
EEG-video settings. Our benchmark highlights the strengths and limitations of
both unimodal and multi-modal approaches across diverse environments. Ex-
tensive experiments demonstrate that the proposed EVER achieves state-of-the-
art performance by jointly modeling behavioral cues from video and physiologi-
cal responses from EEG, thereby enabling the recognition of emotional patterns
unattainable by either modality alone.

1 INTRODUCTION

Emotion recognition is a fundamental task in numerous real-world applications, including mental
health monitoring (Aina et al., 2024), human-computer interaction (Chowdary et al., [2023)), and
affective computing (Cortinas-Lorenzo & Laceyl 2023). Recent advances leveraging video (Zhang
et al.,|2021;Ben et al., 2021) or EEG signals (Peng et al.,[2022; |Liu et al.,[2024a)) have demonstrated
the potential of each modality to provide valuable insights into human emotion. Video captures
observable behavioral cues such as facial expressions (Zhang et al.| 2020), whereas EEG reflects
neural dynamics associated with internal states (Lee et al., 2024). These modalities have typically
been studied in isolation, and most existing datasets and benchmarks (Koelstra et al.,|2011;|Zheng &
Lul [2015; |Zateiriou et al.L|2017; Katsigiannis & Ramzan| |2017) are designed for unimodal learning.

However, unimodal networks often struggle to generalize across various scenarios, and relying
solely on either modality provides only a partial and fragile view of human emotion. For instance,
video-based methods can be hindered when individuals intentionally mask their emotions (Iwasaki
& Noguchi, 2016) or when visual cues are ambiguous due to occlusion or adverse lighting condi-
tions (Elsheikh et al., [2024). Conversely, EEG-based methods provide an internal and less ambigu-
ous perspective on affective states, yet they are limited by inter-subject variability and sensor-related
artifacts (Peng et al.| 2022). Although the value of multi-modal fusion has been widely recognized
in related domains such as audio—video emotion recognition (Noroozi et al.,[2017;|Guanghui & Xi-
aoping, 2021} Tang et all 2022} [Sun et al., [2024; Wu et al.| 2025)), the integration of video with
physiological signals like EEG remains largely unexplored due to scarce research efforts.
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Therefore, we introduce a novel EEG-Video Emotion Recognition (EVER) framework that ex-
plicitly unifies video and EEG representations to overcome the limitations of existing multi-modal
architectures across heterogeneous modalities and diverse emotion recognition objectives. Specif-
ically, we propose a Brain anatomy-aware Inter-modal Hierarchical Graph Convolutional Network
(BIH-GCN) with two key stages: (i) a local stage that aggregates EEG channels into anatomically
defined cortical regions to capture region-specific dynamics, and (ii) a global stage that integrates
these region-level representations with video and EEG embeddings through structured inter-modal
message passing. In parallel, we introduce a correlation-based distribution alignment that normal-
izes covariance into correlations, reducing scale discrepancies between modalities while preserving
their complementary variations. Taken jointly, these components move beyond naive fusion by em-
bedding neurophysiological priors and enabling structured, interpretable reasoning across EEG and
video. As a result, our EVER not only improves robustness and generalization across heterogeneous
modalities but also provides an interpretable framework that grounds EEG-video fusion in neuro-
physiological structure, paving the way for more reliable emotion recognition in various scenarios.

To systematically evaluate our framework, we establish an extensive benchmark on three pub-
lic datasets including EAV (Lee et al) |2024), Emognition (Saganowski et al, [2022), and MD-
MER (Yang et al., [2024). These datasets provide time-synchronized EEG-video recordings, es-
sential for aligning observable video cues with neural dynamics in EEG. Moreover, we enforce
subject-independent splits, ensuring that training and test sets do not share participants. This setup
better reflects real-world deployment where unseen users are encountered and prevents subject-
specific biases. To the best of our knowledge, no public benchmark has been explicitly designed for
paired EEG—video emotion recognition. Further details of these datasets are provided in Sec. {.1]

Our evaluation encompasses both unimodal and multi-modal settings and covers a total of 12
representative models. For the video modality, we benchmark 5 transformer-based video back-
bones (Arnab et al.l 2021} |Bertasius et al., 2021} [Liu et al., 2021; Tong et al.} [2022} | Bandara et al.,
2023)). These models were not originally designed for emotion recognition but serve as strong
baseline architectures for video classification tasks. For EEG, we evaluate 4 transformer-based ar-
chitectures for sequence modeling (Zhang & Yan, 2023} Nie et al., 2023} [Liu et al.l [2024b; Wang
et al.| [2024)) together with a Mamba-based state-space network (Erol et al., 2024). Finally, for the
multi-modal setting, we include 2 existing audio—video emotion recognition networks (Tang et al.,
2022; |Sun et al., [2024), which provide a point of comparison against our proposed EEG—video fu-
sion framework. This choice is motivated by the similarity between EEG and audio signals, as well
as the use of strong transformer-based backbones. Extensive benchmarking demonstrates that our
proposed framework consistently achieves state-of-the-art performance across three public datasets.

2 RELATED WORK

2.1 VIDEO AND EEG EMOTION RECOGNITION

Video- and EEG-based emotion recognition have been widely investigated as unimodal tasks. For
video, several studies design task-specific networks with facial expression or affective behavior
analysis (Zhang et al., 2019; [2021} Ben et al., 2021), but these approaches are not grounded in
general-purpose backbones and often lack robustness in challenging conditions. Similarly, EEG-
based methods typically introduce customized sequence or graph architectures (Gao et al.} 20225 Du
et al.,[2022; |Pan et al., [2023)), yet they do not leverage strong backbone models, remaining sensitive
to inter-subject variability and fixed electrode layouts that hinder adaptation across datasets.

This limitation motivates the adoption of general backbone architectures, which have transformed
representation learning in vision and time-series domains but have been largely overlooked in the
field of emotion recognition. To establish a fair benchmark, we adapt representative architectures
to each modality, including ViViT (Arnab et al., 2021), Timeseriesformer (Bertasius et al., [2021),
Swin Transformer (Liu et al.l 2021), VidleoMAE (Tong et al., [2022)), and AdaMAE (Bandara et al.,
2023)) for video, as well as PatchTST (Nie et al.,|2023)), Crossformer (Zhang & Yan) 2023)), iTrans-
former (Liu et al., |2024b), Medformer (Wang et al.| 2024), and AudioMamba (Erol et al., [2024]))
for EEG. Although not originally designed for emotion recognition, these backbones provide a ro-
bust and unbiased basis for evaluating unimodal performance. In the multi-modal setting, we adopt
TVLT (Tang et al.,|2022)) and HicMAE (Sun et al., 2024]), developed for audio—video emotion recog-
nition. Since audio signals share a similar data format with EEG, these models serve as meaningful
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baselines in our benchmarking. However, their fusion strategies rely on naive concatenation, which
overlook modality-specific characteristics and fail to capture inter-modal dependencies.

To overcome this limitation, we introduce a framework that integrates a Brain anatomy-aware Inter-
modal Hierarchical GCN (BIH-GCN) with a correlation-based distribution alignment. The BIH-
GCN embeds anatomical priors and backbone embeddings into a unified graph to enable structured
inter-modal reasoning, while the alignment module transforms covariance into correlations to rec-
oncile feature distributions across two modalities. These components advance beyond naive fusion
and establish a principled foundation for generalizable EEG—video emotion recognition framework.

2.2 GRAPH CONVOLUTIONAL NETWORK

Graph Convolutional Network (GCN) (Kipf & Wellingl 2017) is originally proposed to perform
convolution-like operations on graph-structured data by aggregating neighbor node representations.
In EEG-based emotion recognition, GCN have been employed to exploit spatial dependencies
among electrodes by treating EEG channels as nodes and defining edges based on distances or
anatomical priors (Gao et al.| 2022; [Du et al.| 2022; [Pan et al., 2023). Several studies have further
introduced hierarchical GCNs that aggregate channel-level features into region representations. HD-
GCN (Ye et al.|, |2022)) proposed multi-level spatial dependencies via dual-branch modeling of global
and local connectivity. PGCN (Jin et al., [2024) aggregated features at local, mesoscopic, and global
scales informed by prior brain region definitions. MS-GCN (Du et al.| |2022) introduced multi-scale
relationships among channels and regions to enhance discriminative EEG representations.

However, existing GCN methods remain limited in two aspects. First, while these methods aggre-
gate EEG signals from individual channels into coarse brain regions, this design remains confined
to local grouping and fails to capture interactions between region-level representations and higher-
level features learned by backbone networks. Second, these approaches rely on fixed brain-region
definitions, constraining their applicability across datasets and ultimately limiting generalization. To
address these limitations, we propose BIH-GCN, which enables inter-region information exchange
through a two-stage GCN that first models intra-region dynamics and then captures inter-region in-
teractions, while also integrating high-level global embeddings from EEG and video. For anatomical
grounding, we adopt a standard five-region partition of the scalp (i.e., Frontal, Temporal, Central,
Parietal, and Occipital), following the international 10-20 EEG system in neuroscience (Herwig
et al., 2003; [Macorig et al., 2021). This ensures robustness across different EEG devices and elec-
trode layouts. Our two-stage design enables structured inter-modal reasoning within a unified graph,
moving beyond EEG-only region aggregation and ensuring robustness.

3 METHOD

3.1 OVERALL FRAMEWORK

Figure |1 illustrates our EEG-Video Emotion Recognition (EVER) framework. Our framework is
designed to effectively unify EEG and video. In detail, it consists of the following three components.

Video Network We adopt AdaMAE (Bandara et al.l |2023) to extract video representations from
input frame sequences. Each video is uniformly sampled in time to obtain 32 frames, following
prior studies (Arnab et al., 2021} [Liu et al.l 2021). The resulting video input is denoted as V' &
R32X3xHXW “where H and W are the height and width of the video, respectively. We utilize the
pretrained AdaMAE encoder trained on VoxCeleb (Nagrani et al.l 2017) and discard the decoder,
extracting the video embedding feature z,. Formally, the video embedding is obtained as follows:

z, = f,(V) € RY, (1)

where f, denotes the AdaMAE encoder function and d is the dimensionality of the embedding.
This approach allows us to leverage rich spatiotemporal features learned from large-scale pretraining
while providing compact and consistent representations suitable for fusion with EEG.

EEG Network To extract EEG representations corresponding to each video sample, we first trans-
form raw EEG signals into a time—frequency representation using the Short-Time Fourier Transform
(STFT), and then employ a state-space backbone for feature extraction. Let the input EEG for a sam-
plebe E € RE*Toa where C' is the number of EEG channels and T denotes the total length of
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Figure 1: Overall framework of EEG-Video Emotion Recognition (EVER). Embeddings z. and
z, are extracted from synchronized spectrogram and video, with L,j;gn minimizing their discrepancy.
In BIH-GCN stage 1, the spectrogram projection yields local nodes H, which perform brain-aware
GCN with anatomical masking within region C,, and attention pooling to produce region features
z.,. In stage 2, we form H"¢*" = [z, 7.2, ,...,%,,]  and apply global-local GCN with mask

Mregion Finally, emotion is predicted from the fused logit zgs.q derived from fle and fl@.

the EEG signal. We compute the STFT for each channel with a window length of ng and Hann
window function (Zafar et al.|[2022) as follows:

S. = STFT(e., ng) € Crxben ¢ e [1,07, 2)

where e, € RTew is the raw signal of the c-th channel of E, F},,, is the number of frequency bins, and
Lyaw is the number of frames determined by the window length. Next, we compute the magnitude
and apply logarithmic scaling to compress the dynamic range as:

M. = log (1+|sc\) € RFwxLun ¢ e [1,0]. 3)

Since the total sequence length differs between samples, each spectrogram M., is interpolated to a
fixed size of F' x T along the frequency and time dimensions. By stacking the interpolated spec-
trograms across all channels, we obtain a unified EEG representation E € ROXFXT, Finally, E is
passed through an EEG encoder f, to obtain EEG embedding z,.:

z. = f.(E) € R%. 4)

In our framework, we instantiate f. with AudioMamba (Erol et al.,2024), as its selective state-space
modeling aligns well with the non-stationary and long-range temporal dependencies of EEG signals.
Moreover, the spectrogram of EEG exhibits structural similarity to audio spectrograms. This allows
AudioMamba to transfer its design philosophy effectively to EEG, capturing local spectral variations
as well as global temporal dynamics in a scalable manner.

Fusion and Alignment Module After obtaining the unimodal embeddings, we employ a BIH-GCN
to model structured relationships among EEG channels and capture interactions between the two
modalities. Prior studies (Maffei et al., 2023} [Zhou et al., 2023) have shown that distinct brain
regions respond differently to emotional stimuli, underscoring the importance of anatomical orga-
nization in EEG signals. Building on this insight, our fusion module leverages brain anatomy for
representation learning and further extends it by hierarchically integrating inter-region interactions
with high-level global embeddings from modality networks. In the first stage, channel-wise features
are grouped according to predefined brain regions, and GCN is applied to capture intra-region re-
lationships, producing region-level representations. In the second stage, these region-level features
are integrated with z, and z., and a GCN models inter-modal interactions while directly produc-
ing classification logits. This hierarchical design respects the anatomical organization of the EEG
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while enabling interpretable multi-modal fusion. To further reduce the modality gap, we introduce a
correlation-based distribution alignment objective that encourages the similarity between the latent
space distributions of the EEG and video embeddings. This alignment ensures that the fused features
not only capture complementary information but are also represented in a shared latent space.

3.2 BRAIN ANATOMY-AWARE INTER-MODAL HIERARCHICAL GCN

Given the raw EEG spectrogram E € ROXFXT we flatten each spectrogram channel and project it
into a d-dimensional embedding space via flatten function flatten(-) and a linear layer proj(-) as:

H = proj(flatten(E)) € RE*?, o)

where H is the channel-level embedding node matrix. We denote the i-th row of H as h; € R4,
corresponding to the embedding of the i-th channel.

Stage 1: Local Region-level Graph In the first stage, motivated by evidence that brain anatomy
emphasizes region-specific interactions, we design a region-level graph that embeds anatomical pri-
ors and enables the network to capture intra-region relationships through GCN. Let R = {r; } |
denote K predefined brain regions. Each region 7} is associated with a subset of EEG channels,

represented by the index set C,,, C {1,...,C}. Based on this anatomical prior, the local adjacency
matrix A;; is computed by cosine similarity with region-wise masking as follows:
- hThj
= e Mt 6 € [1,C). (©)
S Y Y R

Ml — {17 if3k st.ieC,, andj €C,,, )

0, otherwise,

where M@l € {0,1}¢%¢ encodes whether channels i and j belong to the same brain region ry.
After that, we apply symmetric normalization to balance node degrees as follows:

A=DY2AD /2 (®)

where D is the degree matrix of A. A standard GCN layer (Kipf & Welling, [2017) is then applied
over all EEG channels as follows:

H"“ = GCN(H,A) € R, )

where H'*? denotes the region-aware channel-level representations after graph propagation. To ob-
tain compact region-level representations, we group the channel outputs according to the anatomical
partition R and apply attention pooling within each brain region 7. Specifically, attention pooling
assigns a learnable weight o; to each channel representation h!° within a region using a parameter
vector w, and aggregates them into a single region-level embedding z,, as follows:

exp (WT hgocal)
Qi = T 1y local
> exp(w hj )

GECr,

, Zpo= Y a;hP e RY (10)

i€Cyy

Stage 2: Region-level Graph with Global Nodes In the second stage, we regard the unimodal
embeddings {z.,z,} as global nodes and the region-level features {z,, }2 | as local nodes. The
overall node set is constructed as {z., z, } U {z,, }/_,. After that, we stack these node embeddings
to form the input node matrix for the region-level GCN as follows:

HeE = [z,,2,,2,,,...,2,,] €REHK)*d (1)

Here, the adjacency matrix is explicitly defined by allowing only semantically valid connections.
Instead of adopting a fully connected or purely similarity-driven graph, we incorporate domain
knowledge through a structured binary mask: (i) the global video and EEG nodes are connected
to model cross-modal interactions, (ii) each global node is linked to all region nodes to bridge
global and local information, and (iii) inter-region connections are retained to reflect intra-brain
dependencies. Formally, the binary mask M™&°" is constructed as follows:

Mr‘e.gion — ]-7 lf (27]) € {(Zevzv)a(Zeaz’l“k)v(Z’Uﬂz’l“k)v(zhmzrk/)}v (]2)
K 0, otherwise,
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where 7,7, € R and k # k’. Following the same strategy as Eq. (6), the region-level adjacency
matrix A" is computed by cosine similarity, restricted to the valid entries of M"™#'°" for ¢, j €
[1,2 + K] instead of using the local mask M'*?', Subsequently, symmetric normalization is applied

in the same manner as Eq. (8] to obtain the normalized adjacency matrix Aregion

A second GCN layer is then applied to this region-level graph, enabling the model to integrate
global video information, global EEG dynamics, and localized brain-region features into a unified
representation. This layer directly projects each node into the label space as follows:

I:I — C]CI\I<Hregion7 Aregion) e R(Q—&-K)XL, (13)
where L denotes the number of target emotion classes. Among the updated node representations,
the global nodes h, and h, correspond to the transformed embedding of z. and z,, respectively.

These nodes encode inter-modal correlations propagated through the global-level graph. The final
fused feature is obtained by a weighted combination of the two global nodes as follows:

Zivsed = whe + (1 —w)h, € RY, (14)
where w denotes a learnable weight. The fused logit vector zgyseq is subsequently used for classifi-
cation without an additional classifier head. Note that we utilize the refined global embeddings to

construct the final logit, balancing the visual and EEG modalities and further confining the role of
region-level nodes to auxiliary and indirect support of global embedding enhancement.

Our two-stage hierarchical design respects the anatomical organization of the EEG by first modeling
fine-grained channel interactions and then aggregating them into region-level features. It further
enables inter-modal reasoning by integrating both unimodal embeddings and brain-region features.

3.3 CORRELATION-BASED DISTRIBUTION ALIGNMENT

To effectively fuse the EEG and video modalities, it is crucial to align their feature distributions
while preserving modality-specific variations. Therefore, we propose a correlation-based distribu-
tion alignment inspired by CORAL (Sun & Saenkol [2016)), which enforces similarity between the
second-order statistics of the unimodal embeddings. Let Z.,Z, € RN %4 denote the batch of uni-
modal embeddings, where NN is the batch size and d is the feature dimension. After centering each
batch by subtracting the mean, the covariance matrices are computed as follows:

1 1
e = e Be To= g By e B €RVC (15)

Each entry captures the covariance between the corresponding feature dimensions. Next, the covari-
ance matrices are converted into correlation matrices to quantify inter-feature dependencies as:

%7 Corrv,pq = %7 p,q € [L d]v (16)
Yie.pp Beyqq X pp Liv,qq

where each entry (p, ¢) captures the correlation between the p-th and ¢-th feature dimensions. In-

stead of directly aligning the covariances, we normalize them into correlation matrices to remove

scale discrepancies and highlight their intrinsic dependency. To align the inter-feature dependencies

between modalities, we minimize the squared differences of the off-diagonal elements as follows:

d d
1 2
Lajign = m Z Z (Corr, g — Corre )" . a7
p=1qg=1,q#p
Minimizing L,jign encourages unimodal embeddings to share similar correlation while preserving
modality-specific characteristics, facilitating more coherent fusion in graph-based modeling.

Corr, g =

3.4 Loss FUNCTIONS

To ensure consistent comparison, we adopt the following unified loss for all benchmark models as:
ﬁbase = wceﬁce + U)fﬁf, (18)
where L. denotes the weighted cross-entropy loss (Cui et al. [2019) to mitigate class imbalance
arising from participant’s self-assessments, and L; denotes the focal loss to further address hard-
to-classify samples. Beyond this baseline formulation, our framework incorporates the proposed
correlation-based distribution alignment. The final loss function is therefore defined as follows:

Liotal = Lpase + walignﬁalign- (19)
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4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION DETAILS

Datasets We conduct experiments on three public datasets including MDMER (Yang et al., |2024),
Emognition (Saganowski et al. [2022), and EAV (Lee et al) [2024), for which we collect paired
EEG-video samples. MDMER dataset involves recordings from 73 participants across 32 emotion-
eliciting video clips. From this dataset, we collect approximately 2.3K paired EEG-video samples,
of which more than 1.8K (58 participants) are used for training and about 0.5K (15 participants) for
validation. EEG was recorded with 18 channels, and videos were captured at 30 fps with 640 x 480
resolution. Ground-truth annotations were obtained from self-assessments of valence, arousal, and
dominance on a 9-point scale. Emognition dataset contains recordings from 37 participants with
affective multimedia stimuli. We construct 407 paired EEG—video samples, which are further split
into 319 samples (29 participants) for training and 88 (8 participants) for validation. EEG was
recorded with 4 channels, and videos were acquired at either 60 fps (297 samples) or 30 fps (110
samples) with 1080 x 1920 resolution. Self-assessments include valence, arousal, and motivation
on a 9-point scale. EAV dataset consists of recordings from 37 participants with conversational
interactions. For each subject, we collect 200 paired EEG-video samples, resulting in a total of
7.4K samples. We split the dataset into 5.8K samples (29 participants) for training and 1.6K (8
participants) for validation. Five discrete emotion categories are defined: Neutral, Anger, Happiness,
Sadness, and Calmness, with EEG recorded using 30 channels and videos captured at 30 fps with
640 x 480 resolution. In our experiments, we evaluate emotion recognition along the valence and
arousal dimensions for the MDMER and Emognition datasets. The original 9-point ratings are
discretized into five categories by treating the midpoint as neutral: {1, 2}, {3,4}, {5}, {6, 7}, {8, 9}.
The EAV dataset is evaluated on five predefined emotion categories. Moreover, we construct brain
regions R in Sec. 3.2 as five regions (e.g., Frontal, Temporal, Central, Parietal, and Occipital) for
MDMER and EAV datasets, and two regions (e.g., Temporal and Frontal) for Emognition dataset,
following the configuration of their EEG devices. As a preprocessing, facial regions from video are
cropped using facial detection and resized to 224 x 224 across all datasets, following standard prior
studies (Zafeiriou et al.| 2017} Sun et al., [2024). Further dataset details are provided in @

Environments All experiments are conducted under consistent settings to ensure fair comparison.
For the benchmark evaluations, networks are trained for 100 epochs with a batch size of 16. To
provide a more comprehensive evaluation, we report performance using not only accuracy but also
unweighted average recall (UAR) (Sun et al.}[2024) and weighted F1-score (W-F1) (Sharma, [2022).
We set wee = 0.9 and wy = 0.1 for all networks, and utilize waign = 0.5 for our proposed Lijign.

4.2 BENCHMARK RESULTS

Tables E] and @] present detailed benchmark results across the MDMER, Emognition, and EAV
datasets, covering unimodal (i.e., Video or EEG) and multi-modal (i.e., Video+EEG) settings. All
reported metrics are obtained under the same weight based on the best accuracy to ensure a fair com-
parison. On the MDMER dataset, AdaMAE achieves the second-best average accuracy of 39.2%
with video, while iTransformer provides the highest UAR and second-best W-F1, and AudioMamba
also attains an average accuracy of 39.2% with EEG. Since the MDMER clips average two minutes,
the EEG modality is effective for capturing long-term emotional variations beyond the 32-frame
limit of video. In the Emognition dataset, video models achieve average accuracy between 26.1%
and 29.6%, whereas EEG models obtain higher accuracy ranging from 27.7% to 30.2%. However,
TimeS achieves the second-highest UAR, and Swin records the second-best W-F1 with video. This
indicates that while EEG networks are stronger in terms of average accuracy, video backbones yield
superior W-F1 scores, reflecting their advantage under class imbalance. In the EAV dataset, TVLT
achieves the second-best average accuracy of 42.0%. Overall, video backbones generally achieve
stronger performance than EEG networks, particularly on class-balanced metrics. Specifically, video
models yield W-F1 between 30.0%—45.5%, whereas EEG models obtain W-F1 of 9.1%-36.9%. In
valence and arousal tasks, existing multi-modal networks (i.e., H'MAE and TVLT) underperform
strong unimodal baselines such as AdaMAE and AudioMamba, indicating that naive fusion is less
effective than a single powerful backbone. To balance accuracy and efficiency, we adopt AdaMAE
and AudioMamba as modality-specific backbones and utilize our proposed BIH-GCN. Our proposed
framework achieves consistent state-of-the-art accuracy, outperforming the best among twelve base-
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Table 1: Performance comparison on the MDMER and Emognition datasets. We report Valence,
Arousal, and their average score in terms of Accuracy (Acc), UAR, and W-F1.

MDMER Emognition
Acc  UAR W-F1 | Acc UAR W-FI

Valence | 0.350 0.177 0.273 | 0.279 0.267 0.275
ViViT (Arab et al.|[2021) Arousal | 0.354 0.253 0.264 | 0.244 0.211 0.213
Average | 0.352 0.215 0.269 | 0.262 0.244 0.244
Valence | 0.419 0.289 0.342 | 0.284 0.291 0.379
TimeS (Bertasius et al.|[2021) Arousal | 0.329 0.196 0.193 | 0.284 0.300 0.323
Average | 0.374 0.243 0.268 | 0.284 0.296 0.351
Valence | 0.398 0.201 0.309 | 0.273 0.308 0.434
Video Swin (Liu et al.;[2021) Arousal | 0.310 0.190 0.229 | 0.250 0.208 0.274
Average | 0.354 0.196 0.269 | 0.262 0.258 0.352
Valence | 0.363 0.212 0.338 | 0.261 0.222 0.173
VideoMAE (Tong et al.|[2022) Arousal | 0.310 0.184 0.200 | 0.261 0.225 0.285
Average | 0.337 0.198 0.269 | 0.261 0.224 0.229
Valence | 0.419 0.217 0.326 | 0.284 0.311 0.354
AdaMAE (Bandara et al.|[2023) Arousal | 0.365 0.227 0.229 | 0.307 0.200 0.117
Average | 0.392 0.222 0.278 | 0.296 0.256 0.236
Valence | 0.417 0.201 0.249 | 0.247 0.205 0.198
PatchTST (Nie et al.;[2023) Arousal | 0.240 0.209 0.155 | 0.318 0.284 0.290
Average | 0.329 0.205 0.202 | 0.283 0.245 0.244
Valence | 0.404 0.251 0.324 | 0.306 0.269 0.247
iTransformer (Liu et al.}[2024b) Arousal | 0.365 0.267 0.296 | 0.247 0.219 0.225
Average | 0.385 0.259 0.310 | 0.277 0.244 0.236
Valence | 0.423 0.2I8 0.266 | 0.318 0.262 0.272
EEG Crossformer (Zhang & Yan![2023) | Arousal | 0.358 0.284 0.307 | 0.271 0.229 0.196
Average | 0.391 0.251 0.287 | 0.294 0.246 0.234
Valence | 0.375 0.215 0.262 | 0.282 0.267 0.268
Medformer (Wang et al.|[2024) Arousal | 0.317 0.223 0.209 | 0.282 0.292 0.289
Average | 0.346 0.219 0.236 | 0.282 0.280 0.279
Valence | 0.425 0.263 0.292 | 0.273 0.200 0.084
AudioMamba (Erol et al.]|[2024) Arousal | 0.358 0.217 0.226 | 0.330 0.300 0.296
Average | 0.392 0.240 0.259 | 0.302 0.250 0.190
Valence | 0.406 0.215 0.248 | 0.261 0.333 0.284
TVLT (Tang et al.|[2022) Arousal | 0.350 0.192 0.227 | 0.239 0.217 0.229
Average | 0.378 0.204 0.238 | 0.250 0.275 0.257
Valence | 0.390 0.218 0.273 [ 0.250 0.213 0.288
Video+EEG HicMAE (Sun et al.|[2024) Arousal | 0.354 0.200 0.174 | 0.307 0.200 0.117
Average | 0.372 0.209 0.224 | 0.279 0.207 0.203
Valence | 0.421 0.214 0.320 | 0.295 0.317 0.217
EVER (Ours) Arousal | 0406 0.264 0.301 | 0.375 0.400 0.492
Average | 0.414 0.239 0.311 | 0.335 0.359 0.355

Bold: The best, Underline: The second-best

Modality Model Target

Table 2: Performance comparison on the EAV dataset. We report Accuracy (Acc) and W-F1 with the
number of network parameters. Since each class is equally represented in EAV, UAR equals Acc.

Modality | Model | Acc  W-Fl | Param (M)
ViViT (Arnab et al./[2021) 0.395 0.300 86.244
TimeS (Bertasius et al.|[2021) 0.304 0.311 121.108
Video Swin (Liu et al.[[2021) 0.369 0.383 58.730

VideoMAE (Tong et al.|[2022) 0.408 0.446 64.983
AdaMAE (Bandara et al.|[2023) 0.419 0.455 64.983

PatchTST (Nie et al.|[2023) 0.209 0.137 5.775
iTransformer (Liu et al.[[2024b) 0.378  0.091 0.992
EEG Crossformer (Zhang & Yan|[2023) | 0.358  0.345 12.760

Medformer (Wang et al.[[2024) 0.377 0.110 1.918
AudioMamba (Erol et al.|[2024) 0.418 0.369 0.008

TVLT (Tang et al.][2022) 0.420 0.441 87.634
Video+EEG HicMAE (Sun et al.|[2024) 0.378 0.412 110.248
EVER (Ours) 0.468 0.489 91.922

Bold: The best, Underline: The second-best



Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of various combinations of our proposed methods on the MDMER
and Emognition datasets. For each metric, we report the average score of valence and arousal.

Method ] MDMER Emognition
(Loase) Laign | BIH-GCN AR W-FT | Acc  UAR  W-FI
AdaMAE 0.392 0.222  0.278 | 0.296 0.256 0.236
AudioMamba 0.392  0.240 0.259 | 0.302 0.250 0.190
0.373 0.207 0.250 | 0.261 0.258 0.199
. v 0.365 0.207 0.258 | 0.267 0.253 0.306
AdaMAE + AudioMamba v 0405 0215 0274 | 0.324 0317 0.296
v v 0.414 0.240 0.310 | 0.335 0.359 0.355
Bold: The best, Underline: The second-best
: EEG : EEG
Table 4: Ablation study of the proposed BIH-

GCN with respect to brain-region components on
the Emognition dataset.

w/o Stagel | w/o Stage2 Emognition
Method Mol (#0,,2,,) | Acc  UAR _W-FI
0335 0.359 0.355
v 0313 0.350 0.354 without Ly with L
Ours v 0278 0238 0307 aien align
v v 0278 0.231 0.287

w/o: without, Bold: The best, Underline: The second-best Figlll‘? 2: PCA visualization of la.te.nt space with
and without L,ig, on the Emognition dataset.

line models by 2.2%p—4.8%p across all datasets. Moreover, our EVER attains the highest W-F1 and
competitive UAR scores, while maintaining comparable parameters and achieving a balanced per-
formance across all three metrics. These improvements stem from aggregating EEG channels into
anatomically grounded region embeddings, applying structured graph reasoning where global nodes
interact with local regions, and aligning EEG—video representations to better exploit complementary
cues for robust emotion recognition. A detailed analysis of our proposed methods is provided in the
following section.

4.3 EFFECTIVENESS OF THE PROPOSED FRAMEWORK

Table [3] compares different combinations of our proposed methods on the MDMER and Emog-
nition datasets. While naive fusion (i.e., AdaMAE + AudioMamba) of EEG and video does not
surpass unimodal networks, utilizing our BIH-GCN yields substantial improvements, with accuracy
gains of 3.2%p on MDMER and 6.3%p on Emognition. Furthermore, correlation-based distribu-
tion alignment (L,jign) enhances graph learning by reducing discrepancies between heterogeneous
embeddings, resulting in the highest accuracy among all metrics across both datasets. Table |4 fur-
ther validates the role of our BIH-GCN components. Removing either the region masking (V')
in Stage 1 or the global inter-region connections (z,,, z,,,) in Stage 2 causes clear performance
drops. The full two-stage design achieves the best overall performance, confirming that both local
anatomical grouping and global region-level graph are essential for robust fusion. For qualitative
visualization of regional activations, please refer to[A.T] Moreover, we perform PCA visualization
of EEG and video embeddings (i.e., z. and z,) to validate our correlation-based distribution align-
ment 10ss (Lalign), as shown in Fig. E} Laiign enforces a shared subspace across modalities, mitigating
modality discrepancy and facilitating BIH-GCN performance as shown in Tab. [3]

5 CONCLUSION

In this paper, we propose the EVER framework, which integrates brain anatomy-aware hierarchi-
cal graph reasoning with correlation-based distribution alignment, consistently outperforming exist-
ing networks. Furthermore, we conducted an extensive benchmark for EEG-video paired emotion
recognition, covering three public datasets and twelve representative models. Future research may
focus on refining video cues via precise facial landmark and addressing temporal alignment chal-
lenges between modalities. We believe our framework, benchmark, and analyses provide a solid
foundation for advancing research in interpretable EEG-video paired emotion recognition.
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A APPENDIX

This appendix provides (i) additional visualizations of attention patterns across brain regions to fur-
ther validate our proposed Brain anatomy-aware Inter-modal Hierarchical Graph Convolution Net-
work (BIH-GCN), (ii) implementation details of the benchmark setup, and (iii) detailed descriptions
of the datasets used in our experiments. Please refer to the following sections for details.

A.1 BRAIN MAP VISUALIZATION

Label 4

" Region Activation
" Region Activation
" Region Activation
" Region Activation

Figure Al: Average brain-region attention maps for five emotion categories: Neutral (label 0), Anger
(label 1), Happiness (label 2), Sadness (label 3), and Calmness (label 4).

As shown in Fig. [AT] we visualize the region-level brain activation maps for the five canonical ar-
eas (i.e., Frontal, Temporal, Central, Parietal, and Occipital) on the EAV dataset 2024).
These maps are generated to illustrate the effectiveness of BIH-GCN in modeling regional inter-
actions, with Stage 1 capturing intra-region dynamics and Stage 2 focusing on inter-region depen-
dencies. By visualizing accumulated activation patterns across validation samples, we observe that
different emotions elicit distinct regional activation distributions. This indicates that the two-stage
design effectively leverages both local anatomical grouping and global region-level relationships.
Specifically, modest emotions (i.e., Neutral and Calmness) exhibit similar activations concentrated
in the temporal region. In contrast, Anger induces elevated activation in the occipital region, con-
sistent with increased posterior head tension commonly associated with heightened anger states.
Moreover, Sadness shows stronger activations in the frontal and temporal regions, highlighting its
link to affective regulation. This qualitative observation aligns with the quantitative results in Tab. 4]
where removing either the region masking (M) in Stage 1 or the global inter-region connections
(Zr,,Zr,,) in Stage 2 leads to clear performance drops, and the full two-stage BIH-GCN achieves
the best overall performance. Together, these results confirm that both intra-region and inter-region
modeling are essential for robust brain-informed multi-modal fusion.

A.2 IMPLEMENTATION DETAILS

Although we have already described the environment setup in Sec. [4.1] of the main manuscript, we
provide additional details of the benchmark configuration. We employ the AdamW optimizer with
B = (0.9,0.999), ¢ = 10~%. A cosine annealing warm restart schedule is used for learning rate
adjustment. The initial learning rates are set to 2 x 10~ for transformer-based architectures
et al.}, 2021}, Bertasius et al} 2021} [Ciu et all, 2021}, [Zhang & Yan|, [2023} Nie et al.} 2023} [Liu et al.}
2024b}; [Wang et al.;[2024), 1 x 10~* for MAE-style foundation models (Tong et al.,[2022} [Bandaral
et al., 2023} Tang et al., 2022} |Sun et al., 2024), and 2 x 10~* for Mamba model (Erol et al.|[2024).
The implementation is based on PyTorch with CUDA 12.1 and executed on four NVIDIA RTX
A6000 GPUs.

A.3 DETAILS OF DATASET

To further describe the details of the datasets, we visualize the 3D scatter plots of the self-
assessment annotations for the Emognition (Saganowski et al., 2022) and MDMER
datasets as shown in Fig. [A2] Each axis in the visualization corresponds to the respective
annotation dimensions. The Emognition dataset is originally annotated along the dimensions of
valence—arousal-motivation, while MDMER is based on valence—arousal-dominance. We observe
that Emognition annotations are unevenly distributed across the space, whereas MDMER covers a
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Figure A2: Distribution of self-assessment annotations (i.e., ground-truth scores) on the Emognition
and MDMER datasets.

wider range but remains concentrated near the middle scores. To address such imbalance and con-
centration issues during training, we adopt a combination of weighted cross-entropy loss and focal
loss as described in Sec. @ We focus our prediction on valence and arousal, which are the most
widely adopted dimensions in emotion research (e.g., the circumplex model of affect) and serve
as a common, interpretable basis for evaluating emotional states. In the EAV dataset (Lee et al.
2024), each interaction lasted 20 seconds and was organized in paired Listen/Speak sessions. Since
participants experienced 20 interactions for each of the five target emotions (i.e., Neutral, Anger,
Happiness, Sadness, and Calmness), the stimuli design ensures that all emotion categories are rep-
resented in equal proportions. Throughout our experiments, we excluded samples with missing
EEG-video pairs.

Figures [A3] [A5] and [A7] show representative video samples from the EAV, Emognition, and MD-
MER datasets, while Figures[A4] [A6] and [A8]present their corresponding EEG spectrograms across
channels. Although these datasets contain salient affective stimuli (e.g., sadness, disgust), visual
cues alone often remain insufficient to accurately capture the underlying emotion. In contrast, EEG
recordings directly reflect internal neural responses, offering complementary information about la-
tent affective states. These observations underscore the necessity of combining EEG with video,
thereby motivating our EEG-Video framework for emotion recognition. While the EEG signals
vary across datasets due to differences in acquisition devices (e.g., Muse 2), we apply a consistent
Short-Time Fourier transform (STFT) to normalize the spectral representations, thereby enabling
the network to learn in a consistent manner across heterogeneous recording setups. Please refer to
our supplementary material for sample of videos.
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Figure A3: Sample of video frames on the EAV dataset with sad stimuli.
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Figure A4: Sample of EEG spectrograms on the EAV dataset with sad stimuli.
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Figure AS: Sample of video frames on the Emognition dataset with disgust stimuli.

channel 1

channel 3 channel 4

Figure A6: Sample of EEG spectrograms on the Emognition dataset with disgust stimuli.
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Figure A7: Sample of video frames on the MDMER dataset.

annel 14 ~ channel 15 channel 16

Figure A8: Sample of EEG spectrograms on the MDMER dataset.
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