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ABSTRACT

Image Captioning is important for many applications such as content-based image
search or accessibility for visually impaired individuals. To achieve rich language
capabilities, recent work conditioned pretrained language models (LMs) on pre-
trained vision-language models (VLMs) that allow for image inputs. However,
pretrained VLMs usually suffer from a modality gap which constitutes the misalign-
ment of image and text representations in the joint embedding space. While this gap
can in principle be minimized by finetuning, this is usually costly or often infeasible
and requires large amounts of task specific data. To address this issue, we propose
to bridge the modality gap at lower costs via a linear mapping that is optimized via a
least-squares solution. This does not require gradients and can be computed within
minutes, even on CPU. At inference, we apply our mapping to images embedded
by the VLM and retrieve the closest captions from the training set. Along with an
instruction, these captions serve as a prompt for the LM to generate a new caption.
In addition, we propose a method to iteratively refine the mapping by bootstrapping
synthetic captions from the LM. This enables explicit optimization for commonly
used image captioning metrics. We find that a reference-free metric, namely the
CLIP-score, often assign high scores to hallucinated content. On reference-based
metrics, our method achieves competitive performance to lightweight captioning
approaches on MS-COCO and Flickr30k datasets.1

1 INTRODUCTION

The task of image captioning aims at understanding the relationship between visual and textual data
and requires generative capabilities on the textual side. It requires machines to generate informative
descriptions for images, which can be useful in various applications such as image retrieval, content-
based image search, and accessibility for visually impaired individuals (Gurari et al., 2020).

Recent works have advanced the state of the art in image captioning by leveraging off-the-shelf foun-
dation models (FMs,Bommasani et al., 2021) combined with large-scale pretraining and finetuning
for transfer to new domains. However, this paradigm induces substantial computational cost. A recent
trend referred to as lightweight captioning aims at reducing the computational cost by updating only
a small amount of parameters during training. Using pretrained VLMs enables retrieval augmentation
for lightweight image captioning, which has proven to be effective in practice (Ramos et al., 2022;
2023). These works rely on a pre-trained CLIP model (Radford et al., 2021) to retrieve captions from
a datastore that are similar to an input image.

However, CLIP suffers from the so-called modality gap (Liang et al., 2022), which refers to a
mis-alignment of images and texts in the joint embedding space. To bridge this gap, prior image
captioning pipelines require training in an end-to-end manner (Ramos et al., 2022; Luo et al., 2023;
Mokady et al., 2021). Our aim is to bridge the modality gap prevalent in CLIP with a simple and
lightweight mapping that does not require end-to-end training. This allows us to close the modality
gap for the downstream task of image captioning while retaining competitive performance compared
to other lightweight captioning approaches.

We propose to mitigate the modality gap via a linear mapping to enable lightweight image captioning
with retrieval augmentation. First, we compile a dataset of image and text correspondences in the

1We will make our code publicly available upon publication.
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Figure 1: (a) We train a linear mapping W to bridge the modality gap prevalent in CLIP. (b) On
inference, we employ the computed mapping to retrieve captions that are similar to the input image
and provide these along with a prompt to a FLAN-T5 LM.

joint embedding space of CLIP by using a publicly available dataset. Then, we compute our mapping
via a least-squares solution in closed form on CPU. At test time, we embed an unseen image in the
CLIP embedding space and apply our mapping. Next, we retrieve the closest texts to an image and
feed them along with a prompt to a generative LM to generate a new caption. Moreover, we introduce
a self-improvement loop that iteratively augments the training set for our mapping with synthetic
captions generated by our base method. To obtain a set of synthetic captions for a training image,
we sample a set of new captions from the LM. Then, we only add synthetic captions to our training
set that achieve a high score according to a commonly used captioning metric. This allows us to
indirectly optimize the mapping toward a certain metric. Our method provides a cheap and efficient
manner to enhance retrieval augmented captioning methods that use a pretrained VLM by mitigating
the modality gap.

We evaluate our lightweight image captioning pipeline on two popular benchmarks, namely MS-
COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014). Our method achieves competitive
performance on both datasets, with only 1 M trainable parameters. Moreover, we investigate transfer
capabilities of our method across domains (e.g., MS-COCO to Flickr30k) where our method outper-
forms other lightweight retrieval-based approaches. The self-improvement loop slightly increases the
performance providing further evidence that synthetic captions can improve captioning performance.
We observe that when optimizing for the commonly used reference-free CLIP score, our method
tends to generate hallucinated content. Contrary, when we filter according to rule-based evaluation
metrics, we observe improvements coherent across different metrics. We further investigate this
phenomenon and demonstrate that CLIP score generally assigns high scores to hallucinated content
or even a simple bag of words. Our contributions are as follows:

• We introduce a novel method for lightweight image captioning with only 1 M trainable
parameters that reaches competitive performance to prior lightweight captioning approaches

• We show that synthetic captions bootstrapped by pretrained LMs can be used to further
improve our method on the downstream task of image captioning

• We demonstrate that CLIP-score (Hessel et al., 2021), a recently proposed reference-free
evaluation metric, is vulnerable to hallucinated content and bag of words

2 METHODS

We propose a novel method for retrieval-augmented image captioning, which we call ReCap. ReCap
leverages pretrained VLMs to retrieve captions that are similar to a given image. Then we feed these
captions to a pretrained LM along with a prompt to generate a new caption. However, the retrieval is
affected by the well-known modality gap present in pretrained VLMs (Liang et al., 2022). ReCap
aims to mitigate this gap via a lightweight linear mapping which can be computed via a closed-form
solution. The key is that we can optimize that mapping for the task/dataset at hand, thus sidestepping
the need for end-to-end finetuning.
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2.1 CLOSING THE GAP

We assume access to a dataset D = {(xi, ci)} that provides image-text pairs, e.g., MS-COCO (Lin
et al., 2014). First, we embed the images of the training split DTrain ⊂ D using a CLIP vision
encoder ϕ : X → Rd, where X is the pixel space and d denotes the dimension of embedding space.
This results in an image embedding matrix FDTrain = (f1, . . . ,fn)

⊤ ∈ Rn×d. Then we embed the
corresponding captions via the CLIP text encoder ψ : C → Rd to obtain EDTrain = (e1, . . . , en)

⊤ ∈
Rn×d, where n denotes the number of embedded captions in Dtrain. If, like in the case of MS-COCO,
we are presented with multiple captions per image, then we assume the same image just appears
multiple times in D (see Figure 1, (a)). Finally, we fit a least-squares linear model W ∈ Rd×d with
inputs FDTrain and targets EDTrain so that ∥Wfi − ei∥2 becomes minimal for all (xi, ci) ∈ Dtrain. The
linear model W bridges the modality gap between image and text modalitites. The solution to the
least-squares problem has a time complexity of O(d3).

2.2 IMAGE CAPTIONING

Using our semantic mapping W we can pair a vision encoder with a generative LM to facilitate
language generation conditioned on visual input (see Figure 1). Given an image x ∈ X , we compute
an embedding f = ϕ(x) and select the set E of top-k targets by

E = arg
k

max
i∈{1,...,n}

cossim(ei,Wf), (1)

where argmaxk denotes an extension of the argmax operator returning the arguments of the k
largest elements of a set and

cossim(a, b) =
a⊤b

∥a∥∥b∥
(2)

is the cosine similarity. The retrieval process has a complexity of O(n), where n is the number of
elements to retrieve from. The retrieved targets in E are provided to a generative LM as context along
with a prompt to generate a new caption for the image x. Algorithm 1 describes the procedure on
how we perform image captioning via ReCap.

2.3 ITERATIVE SELF-IMPROVEMENT

We can refine W by augmenting Dtrain with synthetic captions for images in the training set. Our
aim is to only add synthetic captions of high quality to Dtrain so that the over-all prediction quality of
our model improves. To this end, we assume access to an image captioning metric m(·, ·) that takes
a candidate and a set of reference captions as input and returns a scalar value. Then, we evaluate
ReCap on the validation set and compute the average metric m̄, which provides us with an estimate
of the quality of generated captions. Next, we generate a set of new captions for images in Dtrain
by sampling from the LM. We compute m(·, ·) for each synthetic caption and only keep those for
which their score exceeds m̄. After generating synthetic captions for all images in Dtrain, we add
them to our training set and our datastore and re-train W . Then we again evaluate performance on
the validation set for the new W and update m̄. We repeat this process for several rounds until we do
not observe any improvement in m̄ anymore. Algorithm 2 shows the pseudocode for our proposed
self-improvement loop.

Algorithm 1 Image captioning via ReCap
Require: CLIP vision encoder ϕ(·), CLIP text encoder ψ(·), Training set DTrain = {(xi, ci)}, Test

set DTest = {(xj)}, Hyperparameter k, Language Model LM(·), Prompt P

{(fi, ei)}|DTrain|
i=1 ← ϕ(xi), ψ(ci) for (xi, ci) ∈ DTrain ▷ Embed training set

W ← fit_linear({(fi, ei)}) ▷ Pre-compute linear mapping
B ← {ei} ▷ Initialize datastore with training captions
{Wfj}|DTest|

i=1 ← ϕ(xj) for (xj , cj) ∈ DTest ▷ Embed test images in CLIP space
{Ej} ← topk({Wfj},B, k) ▷ Retrieve top-k captions from datastore
{Sj} ← LM(concat(P + Ej)) ▷ Generate new captions
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3 EXPERIMENTS

In this section, we first describe the experimental setup in Section 3.1. Then we present results
for image captioning on the established benchmarks MS-COCO (Lin et al., 2014) and Flickr30k
(Young et al., 2014) in Section 3.2. Further, we assess the cross-domain transfer capabilities of our
method from MS-COCO to Flickr30k in Section 3.3. We present ablation studies on our mapping
in Section 3.4 and find the best form of language supervision, ranging from single-token level to
narrative level. Finally, Section 3.5 shows qualitative results for our retrieval, correlations between
commonly used metrics, and CLIP-score’s vulnerability to hallucinations.

3.1 EXPERIMENTAL SETUP

We split both benchmark datasets according to Karpathy & Fei-Fei (2017) into training, validation,
and test splits. As preprocessing we perform length normalization and mean centering of both image
and caption embedding vectors as suggested by (Artetxe et al., 2016). We found mean centering of
the embedding spaces to be extremely important. Then we compute our mapping on image-caption
pairs of the respective train split via ordinary least squares. Importantly, the number of parameters
for our mapping varies with the dimensionality d, which is at most 1024. To find the best setting for
image captioning, we search over different vision encoders, LMs, decoding strategies, and prompt
ordering. Moreover, we search over multiple values of retrieved texts (k). For more details about
hyperparameter search and choice of encoders or decoders, see Appendix A. We use faiss (Johnson
et al., 2019) to manage our datastore, since it enables efficient storage and retrieval from vector
databases. Our final setting uses a RN50x64 CLIP encoder2 and a FLAN-T5-Large (Chung et al.,
2022). All generative LMs used in our work are publicly available on the huggingface hub (Wolf
et al., 2020). To generate captions with FLAN-T5, we use the same prompting strategy as used in
(Ramos et al., 2022). Specifically, the used prompt template is ”Similar images show: {} This image
shows: “, where the most similar captions are inserted instead of the curly brackets. We experimented
with different prompts, such as summarization, which lead to slightly worse results. Regarding the
self-improvement loop we experimented with different metrics to threshold the quality of synthetic
captions. We found that CIDEr-D (Vedantam et al., 2015) is well suited and usually leads to a slight
improvement for all other metrics as well.

We report metrics commonly used for image captioning, such as BLEU-4 (B@4, Papineni et al.,
2002), ROUGE-L (R-L, Lin & Och, 2004), CIDEr-D (Vedantam et al., 2015), and SPICE Anderson
et al., 20163. Most prior works do not report error bars on metrics used for evaluation. We consider
error bars to be very important as they indicate the variability of the measurements. Therefore, we
provide them for all our evaluations in the form of the standard error.

3.2 BENCHMARK RESULTS

MS-COCO We show results for ReCap on MS-COCO in Table 1. ReCap carries the least amount
of trainable parameters (1 million) and is by far superior to competitors in terms of training time.
Even though ReCap uses a substantially lower training budget, it reaches performance close to
SmallCap in terms of SPICE. Considering n-gram based metrics, there is still a considerable gap
between them. Inference time is approximately equal for SmallCap and ReCap (approximately 0.5
seconds on average on a TITAN-V). Using our self-improvement loop (ReCap+SelfImprove) we can
improve upon SmallCap in some metrics, e.g. SPICE, where we observe a significant improvement
after two iterations. This effect was not prevalent for the other metrics, where we observed a slight
decrease after one iteration on the test set. We show captions generated via ReCap and SmallCap for
randomly sampled images of the MS-COCO test set in Figure 2.

Flickr30k We compare ReCap and ReCap+SelfImprove to I-Tuning and ClipCap, since these
are the only other lightweight captioning methods that reported results on Flick30k. The results
are shown in Table 2. ReCap achieves a slightly lower score in terms of CIDEr-D and SPICE.
However, ReCap+SelfImprove is capable of closing this gap entirely after only one iteration of

2Taken from the official repository at https://github.com/openai/CLIP
3We evaluate our methods using the code from https://github.com/tylin/coco-caption
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Table 1: Comparison of different lightweight methods on the MS-COCO test set. We show perfor-
mance for ReCap with and without our self-improvement loop. We report mean and standard error
for our methods. Results for other methods are taken from their respective publications. n/a indicates
that a certain metric is not available for a given method. * indicates that self-improvement loop was
performed for each metric separately. † indicates that training time must be multiplied by number of
self-improvement iterations.

BLEU@4 CIDEr-D SPICE |θ| Training

CaMEL (Barraco et al., 2022) 39.1 125.7 22.2 76 n/a
ClipCap (Mokady et al., 2021) 33.5 113.1 21.1 43 6h (GTX1080)
I-TuningBase (Luo et al., 2023) 25.2 116.7 16.9 14 n/a
LLama-AdapterV2 (Gao et al., 2023) 36.2 122.2 n/a 14 n/a
SmallCapd=4,Base (Ramos et al., 2022) 36.0 117.4 21.0 1.8 8h(A100)
ReCap 31.0 ± 0.4 107.4 ± 1.0 20.8 ± 0.1 1.0 20.3 ± 1.91s (CPU)
ReCap + SelfImprove* 28.2 ± 0.3 103.0 ± 0.9 21.2 ± 0.1 1.0 20.3± 1.91s (CPU)†

Method Caption Caption Caption

ReCap
A man sitting at a desk with 
a laptop computer on it.

A group of stuffed bears are 
stting down together.

A group of people flying kits 
on a beach

SmallCap
a man sitting at a desk with a 
laptop.

a group of teddy bears sitting 
next to each other.

a group of people standing on 
top of a beach.

Figure 2: Captions generated via ReCap and SmallCap for four randomly sampeld images of the
MS-COCO validation set.

self-improvement. Beyond that we did not observe any further improvements. Contrary, we observe
a slight decrease for SPICE after one iteration of self-improvement.

3.3 CROSS-DOMAIN TRANSFER

Table 3: Cross-domain transfer from MS-COCO
to Flickr30k for SmallCap and ReCap. We report
mean and standard error for ReCap. Results for
other methods are taken from their respective pub-
lications.

Method CIDEr-D

In-domain Datastore

SmallCap (Ramos et al., 2022) 55.4
ReCapOLS 56.2 ± 1.8
ReCapPr 59.7 ± 1.9

OOD Datastore

SmallCap (Ramos et al., 2022) 52.2
ReCapOLS 42.9 ± 1.5
ReCapPr 44.2 ± 1.6

Next, we investigate the cross-domain transfer
of ReCap from MS-COCO to Flickr30k. We
show results for two settings, (i) transferring the
mapping while using in-domain data, and (ii),
transferring both the datastore and the mapping.
Further we show results for using an orthog-
onality constraint on the mapping (ReCapPr),
since this has shown to be effective for clos-
ing the modality gap in prior work (Ouali et al.,
2023). Table 3 summarizes the results. We
only compare to SmallCap since it is the only
other lightweight captioning method that uses re-
trieval augmentation. ReCapPr attains the high-
est CIDEr-D score, significantly improving upon
SmallCap, while ReCap exhibits only a slight
improvement upon SmallCap. Interestingly, this
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Table 2: Benchmark results for image captioning on the Flickr30k benchmark. We report mean and
standard error for ReCap and ReCap+SelfImprove along with the number of trainable parameters
|θ|. Results for other methods are taken from their respective publications. * indicates that self-
improvement loop was performed for each metric separately.

Method CIDEr-D SPICE |θ|
ClipCap (Mokady et al., 2021) 57.9 15.8 43
I-TuningBase (Luo et al., 2023) 61.5 16.9 14
ReCap 64.4 ± 2.0 15.9 ± 0.3 1
ReCap + SelfImprove* 66.4 ± 1.9 17.1 ± 0.3 1

only concerns the case for transfer of the mapping to data it was not trained on. This indicates that
ReCap is more effective in leveraging new data in a training-free manner.

3.4 ABLATION STUDIES

We illustrated that ReCap is competitive with other lightweight captioning approaches, while requir-
ing substantially less compute during training. Next, we perform an ablation study to assess the
importance of the linear mapping to bridge the modality gap. We provide qualitative examples for
retrievals with and without our mapping in Figure 5. Without the mapping, CLIP retrieves captions
that describe semantically related contents to an image, which might not always be depicted in the
image. Our mapping corrects for that and aligns the images with captions that describe contents
present in the human annotated captions.

Further, we also consider different levels of language abstractions as target vectors ei for computing
the mapping. Specifically, we consider single tokens, prompt-augmented tokens 4, single captions,
multiple captions (AllCaps), and finally, narratives. We obtain the token-level abstraction by tokeniz-
ing the training captions and using these as targets.5 For AllCaps we concatenate all captions for an
image into a single string and use the resulting embedding as target for an image. For narratives we
take captions provided by the localized-narratives dataset (LN, Pont-Tuset et al., 2020). Depending on
the level of abstraction we also change the datastore we retrieve from. That is, if we train the mapping
on narratives, every entry in the datastore represents a narrative of the training set. Importantly,
the different forms of language supervision result in different optimization problems. For token
and caption level we have one-to-many relationships between input image and targets, while for
AllCaps and Narratives we have one-to-one relationships. We assess all setups with and without
linear mapping. We refer to methods that do not utilize the linear mapping as ReCap−.

Additionally to CIDEr-D and SPICE, we report the recently proposed CLIP-score (CLIP-S), and
RefCLIP-score (CLIP-RS) (Hessel et al., 2021) in Table 4. CLIP-S is a reference-free metric based
on the scaled cosine similarity of image and the candidate caption in the joint embedding space of
CLIP. CLIP-RS forms a harmonic mean between CLIP-S and the maximum cosine similarity of the
image to reference captions, thus it is reference-based. As expected, we observe a drastic drop of
CIDEr-D and SPICE for ReCapPrompts+Tokens due to the lack of information. Surprisingly, the worst
method in terms of CIDEr-D and SPICE (ReCap−Tokens) achieves higher scores in terms of CLIP-S and
CLIP-RS than our best method (ReCapCaptions). We observed similar behaviour when using CLIP-S as
a metric for filtering synthetic captions in our self-improvement loop. Narratives contain very tailored
descriptions for images and represent a distribution mismatch with original reference captions used
for evaluation on the test set. Hence, we observe decreased performance for narratives.

3.5 ANALYSIS OF CLIP-SCORE AND REFCLIP-SCORE

We found that CLIP indeed often assigns unusually high scores to low-quality captions produced by
ReCap−Tokens. We further investigate this phenomenon by a qualitative evaluation of captions generated

4We follow the prompting strategy of https://github.com/openai/CLIP/blob/main/
notebooks/Prompt_Engineering_for_ImageNet.ipynb

5We also perform common preprocessing steps, such as stop-word removal and deduplication.
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Table 4: Comparison of different language supervisions ranging from token-level to narratives on
the MS-COCO test split. We report mean and standard error for all metrics except for CLIP-S and
CLIP-RS where the standard error is negligible. − indicates method does not use the linear mapping.

Method CIDEr-D SPICE CLIP-S CLIP-RS

ReCap−Tokens 15.4 ± 0.3 5.5 ± 0.1 75.5 78.5
ReCap−Prompts+Tokens 17.5 ± 0.3 6.2 ± 0.1 75.8 78.7
ReCap−Captions 79.6 ± 0.9 18.1 ± 0.1 78.1 80.0
ReCap−AllCaps 80.0 ± 0.9 17.6 ± 0.1 73.5 77.5
ReCap−LN 41.2 ± 0.7 11.6 ± 0.1 69.4 75.0

ReCapTokens 46.9 ± 0.6 13.8 ± 0.1 73.3 77.4
ReCapPrompts+Tokens 41.1 ± 0.5 12.4 ± 0.1 72.3 76.8
ReCapCaptions 103.3 ± 1.0 20.8 ± 0.1 74.6 78.2
ReCapAllCaps 89.5 ± 0.9 19.0 ± 0.1 73 77.2
ReCapLN 42.7 ± 0.6 12.1 ± 0.1 67.9 74.1

Caption C C-S C-RS Caption C C-S C-RS Caption C C-S C-RS

bobblehead elephant 
colbert phant americani 
ellenshow mammoth

23.3 99 102.7
a baseball fielder in 
havana, cuba

17.9 98 99.6

street photography 
skateboarding skateboard 
on calle malaga sevilla 
madrid skater

14.9 100.3 88.1

A stuffed animal sits in
front of a book.

121.5 65.3 78.6
A young boy holding a 
baseball bat with a man 
standing next to him.

133.4 91.3 95.2
A man riding a 
skateboard down a street.

169.7 77.6 77.7

Figure 3: Sample images, CIDEr-D (C), CLIP-score (C-S), and RefCLIP-score (C-RS) for captions
generated via ReCap (bottom) and ReCapTokens.

by either of the two. In the extreme case, CLIP even assigns higher scores to a bag of words than to
an actual caption. We show some examples for low-quality captions and measured CIDEr-D, CLIP-S,
and CLIP-RS in Figure 3.

The image on the left shows a caption consisting of a bag of words. CLIP-S is higher for the bag-
of-words caption (top) than for the valid caption on the bottom. Further, CLIP-RS does not correct
for this artifact, but is even higher than CLIP-S. This is due to the fact that CLIP-RS only penalizes
a generated caption if the maximum cosine similarity of the references is smaller than CLIP-S, or
if CLIP-S is generally low. However, as long as some semantically related concept appears in the
generated caption, CLIP-S tends to be high. Thus, both scores only give a measure as to whether
or not a caption is semantically related to an image. For the image on the right, CLIP-RS corrects
the low quality score a bit, but this is only due to the fact, that lower similarity is assigned to the
reference captions for this image. Finally, in the middle image CLIP-S and CLIP-RS are affected by
hallucinated content such as ”in havana, cuba“ and assigns a higher score than to the caption on the
bottom which attains a high CIDEr-D score. We provide more of these examples in Appendix C.

To further investigate this phenomenon, we analyze the correlations between all metrics. Usually, one
would expect quite strong positive correlations among commonly used metrics, i.e., the higher quality
of the caption, the higher the score for the different metrics. Figure 4 shows the pearson correlation
for all metrics when evaluating our best ReCap setting on the MS-COCO test split. N-gram based
metrics, such as CIDEr-D, ROUGE-L, and BLEU@4 strongly correlate with each other, while there
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is only a slight positive correlation with CLIP-based metrics. Further, perhaps surprisingly, SPICE is
almost entirely decorrelated from all other metrics. This is because it is not based on n-grams but
uses semantic scene graphs for evaluation (Anderson et al., 2016). Still, SPICE correctly assigns
lower scores to methods that produce low-quality captions, as shown in Table 4. Finally, CLIP-S and
CLIP-RS strongly correlate with each other, while being weakly correlated to all the other metrics.

The overhead view of a city 
street with bikes travelling

An overhead shot of a group of 
people eating outside

An arrangement of biking 
accessories is viewed from above

A lot of bikes parked next to each 
other on a sidewalk

Bicycles are parked at a bike 
stand on the street

A group of bikes parked on the 
street

an open suitcase with three 
purple items of clothing

A suitcase containing basic 
clothing for travel

A person's hand on a suitcase 
that is open

A suitcase on the floor with its 
tags still attached

A suitcase that is sitting on the 
floor

A suitcase that is on the floor 
with its handle up

A woman talks to a man on top 
of a blue bus

A large grey tour bus is parked 
on a tarmac

One woman about to hug another 
on a car transport ferry

two people standing in front of a 
bus in the street

Two people about to get on-board 
a bus

A couple of people standing in 
front of a bus in the street

Figure 5: Sample images with retrieved captions with and without our mapping for closing the
modality gap. We show three of the closest captions to an image. Images are taken from the MS-
COCO validation set.

4 RELATED WORK

Figure 4: Pearson correlation between commonly
used image captioning metrics for captions gener-
ated via ReCap on the MS-COCO test set.

Image Captioning The task of image cap-
tioning has been widely considered in the lit-
erature (Stefanini et al., 2023; Tan & Bansal,
2019; Zhou et al., 2019; Yao et al., 2018; Xu
et al., 2015; Li et al., 2020; Fang et al., 2015;
Chen & Zitnick, 2014; Anderson et al., 2018).
Early works employed pretrained image classifi-
cation models Chen & Zitnick (2014); Chen et al.
(2017); Fang et al. (2015); Xu et al. (2015) or do-
main specific object detectors (Ren et al., 2017).
Further, attention mechanisms were deployed
to allow attending to different visual cues (An-
derson et al., 2018; Xu et al., 2015; Chen et al.,
2017). For mapping visual features to text sev-
eral works used the LSTM architecture (Chen
et al., 2018; Vinyals et al., 2015; Wang et al.,
2017), or the Transformer architecture (Herdade
et al., 2019; Yang et al., 2019; Dosovitskiy et al.,
2021; Liu et al., 2021). Then the focus shifted
towards pretraining on vast datasets of paired
image-text data and subsequent finetuning for image captioning (Li et al., 2020; Tan & Bansal, 2019;
Zhang et al., 2021; Zhou et al., 2019; Wang et al., 2021; 2022).

Transferring visual input to a pretrained LM Due to the rapid evolution of LMs, a plethora of
works proposed to bootstrap their generation capabilities and condition them on visual input. One way
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to transfer visual inputs to a LM is via various forms of cross-attention between pretrained unimodal
models (Luo et al., 2023; Lu et al., 2019; Ramos et al., 2022; Alayrac et al., 2022; Yang et al., 2023b;
Koh et al., 2023; Li et al., 2022). Another way to fuse visual input to a LM is to only train a mapping
network between images and the LM input space (Mokady et al., 2021; Zhu et al., 2023; Merullo
et al., 2022; Li et al., 2023a; Tsimpoukelli et al., 2021; Scialom et al., 2020; Driess et al., 2023; Liu
et al., 2023; Huang et al., 2023) Finally, other approaches rely on a semantic alignment of image and
text modalities via contrastive learning (Radford et al., 2021; Li et al., 2021).

Lightweight Image Captioning Eichenberg et al. (2022); Zhang et al. (2023); Gao et al. (2023)
interleave a pretrained LM with adapter layers (Rebuffi et al., 2018) conditioned on images. Other
works fuse visual input into a LM by training parameter-efficient cross-attention modules (Luo et al.,
2023), or a mapping network between embedding spaces (Mokady et al., 2021; Merullo et al., 2022).
More recently, Ramos et al. (2022) proposed retrieval augmentation leveraging a pretrained VLM
combined with a cross-attention mechanism trained end-to-end. (Ramos et al., 2023) uses retrieval
augmentation to obtain multilingual prompts which enables generation in a certain target language.
All of these approaches optimize the mapping from image space to the embedding space or hidden
space of the pretrained LM. Our work aims at grounding images to captions from the training set in
the joint embedding space of CLIP to bridge the modality gap. This way, we enhance the retrieval
component and only need to provide retrieved captions in the form of text to the LM.

Bridging the modality gap Similar to our approach, Ouali et al. (2023) use orthogonal procrustes
to mitigate the modality gap of CLIP-like models for few-shot classification. Our method uses an
ordinary least squares mapping, to enhance retrieval augmented text generation from images. To
avoid the need for bridging the modality gap, other works consider image captioning using only text
data by training a text decoder for CLIP-style models (Li et al., 2023b; Nukrai et al., 2022; Yu et al.,
2022; Wang et al., 2023; Gu et al., 2022). However, at test time these approaches still receive images
as inputs, thus are still affected by the modality gap. Our approach mitigates this issue by grounding
images to captions in a given dataset via a linear mapping. Other approaches adapt the pretraining
objective in order to achieve a better alignment of image and text modalities in the joint embedding
space (Fürst et al., 2022; Goel et al., 2022; Humer et al., 2023). While these methods effectively
close the modality gap, they were trained on smaller datasets than CLIP. Therefore, we still use CLIP
as our retrieval system and apply the linear mapping for task-specific grounding.

5 DISCUSSION AND LIMITATIONS

Datastore dependency Usually image captioning pipelines are trained end-to-end on a training
collection of image-text pairs. Contrary, ReCap only trains the retrieval mechanism by grounding
training images to corresponding captions. This results in an efficient alternative to end-to-end
training. The drawback of ReCap is that embeddings for training captions need to be stored explicitly,
which increases the memory footprint. In practice, this did not result in substantial overhead though,
since the number of training captions was moderate. In case of large-scale datasets, faiss provides the
possibility to compress the datastore and, in turn, reduce the memory footprint. Further, the datastore
could potentially be augmented with additional captions from different training sets as shown by
(Ramos et al., 2022).

What metrics should be reported? Usually the usefulness of a metric is evaluated by measuring
correlation with human judgement. Humans generally tend to prefer correctness over specificity
in image captions (Rohrbach et al., 2018; 2017). While CLIP-score exhibits strong correlation
with human judgements and is robust to object hallucination (Hessel et al., 2021), we found that it
rather evaluates for semantic relatedness than correctness. Our findings are corroborated by other
works that have found a severe lack of order sensitivity and compositionality in CLIP representations
(Yüksekgönül et al., 2023; Zhao et al., 2022; Thrush et al., 2022). Therefore, we recommend to (i)
report multiple metrics, (ii) always incorporate rule-based metrics such as CIDEr-D or SPICE, and
(iii) opt for metrics that rely on semantic similarity between candidate and reference captions along
with visual information (Jiang et al., 2019; Lee et al., 2020). In case of large gaps between metrics,
as in (Zeng et al., 2023), we recommend to conduct a thorough qualitative analysis to ensure caption
quality.
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Synthetic data Our proposed self-improvement loop relies on synthetic data generated by the
generative LM. Recent works have shown the benefits of adding synthetic data to existing datasets
(Gülçehre et al., 2023; Yang et al., 2023a; Lin et al., 2023). However, other recent work has shown
that training on synthetic data can result in the so-called model-collapse, where the tails of the training
distribution shrink over time (Shumailov et al., 2023). Since we iteratively add synthetic captions
to our dataset, this concerns our self-improvement loop as well. However, we only add captions
to our dataset that yield high scores to certain metrics that capture similarity to human references.
Future work should investigate model-collapse in our setup and whether it is responsible for the slight
decrease in certain metrics.

Training time While training is very efficient, the self-improvement step requires much more
compute, because we need to iterate over the entire training corpus to generate synthetic captions.
For datasets such as MS-COCO this process took approximately 15 hours for one iteration. While
certain metrics can be improved with this procedure it is essentially a performance-vs-complexity
trade-off. If best performance is not the main goal, we recommend to either perform one iteration of
self-improvement, or to neglect it entirely. We believe, however, that our self-improvement loop can
be useful for low-resource data settings, which we aim to investigate in the future.

6 CONCLUSION

We introduced an efficient method to bridge the prevalent modality gap in pretrained VLMs for
the task of image captioning. To this end, we compute a linear mapping between corresponding
image-caption pairs provided by existing datasets, such as MS-COCO or Flickr30k. The linear
mapping can be computed in closed form on CPU. Given an image, we apply our mapping and
retrieve the closest captions of the trainng set. Along with an instruction, these captions serve as
input to a generative LM to generate new captions. Moreover, we propose a novel self-improvement
loop to iteratively refine the mapping based on captions bootstrapped by the LM. We only keep
synthetic captions that attain a high score for a metric of interest and add these to the training set for
the lightweight mapping. This way we can further improve on certain captioning metrics. Moreover,
we find that reference-free metrics, such as CLIP-score can be fooled by hallucinated contents or
even a simple bag of words. Our method attains competitive performance to existing lightweight
image captioning methods. Finally, our mapping enables the use of relatively small LMs for image
captioning. Thus, we make image captioning more accessible for users with limited resources.
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A HYPERPARAMETER SEARCH

Effect of different vision encoders We investigate the effect of different vision encoders on the
captioning performance. In this regard, we compare all publicly available encoder variants of CLIP,
which comprise ViT-based (Dosovitskiy et al., 2021), as well as resnet-based (He et al., 2016)
architectures. We observe a significant improvement in captioning performance when using a resnet
encoder as shown in Table 5.

Different decoding strategies As illustrated by (Holtzman et al., 2020), the decoding strategy
substantially affects human approval of generated captions. Therefore, we evaluate different decoding
strategies, including greedy decoding, sampling, top-k sampling, and nucleus sampling. For the
sampling-based strategies we follow hyperparameter settings from (Holtzman et al., 2020). The
results for the different decoding schemes are shown in Table 6. Surprisingly, we found that ReCap
generates the best captions using greedy decoding. Other sampling strategies tend to diverge from
captions provided in the context, which results in lower CIDEr-D scores. Generally, sampling-based
decoding results in more variety in generated captions. We can achieve a similar effect by permuting
our prompt ordering and using greedy decoding while avoiding divergence of generated captions.
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Table 5: Search over all publicly available CLIP vision encoder backbones evaluated on the MS-
COCO validation set. We report mean and standard error for all settings. |θ| denotes the number of
trainable parameters.

Vision Encoder BLEU@1 BLEU@4 ROUGE-L CIDEr-D SPICE |θ|

RN50 75.3 ± 0.2 27.9 ± 0.3 56.1 ± 0.2 95.9 ± 0.9 19.3 ± 0.1 1 M
RN101 74.9 ± 0.2 27.9 ± 0.3 56.0 ± 0.2 95.7 ± 0.9 19.2 ± 0.1 262 K
RN50x4 75.6 ± 0.2 29.0 ± 0.3 56.7 ± 0.2 99.5 ± 0.9 19.8 ± 0.1 410 K
RN50x16 76.4 ± 0.2 29.5 ± 0.3 57.0 ± 0.2 101.9 ± 0.9 20.1 ± 0.1 590 K
RN50x64 77.5 ± 0.2 30.7 ± 0.4 57.9 ± 0.2 105.8 ± 1.0 20.8 ± 0.1 1 M
ViT-B/32 75.2 ± 0.2 28.0 ± 0.3 56.1 ± 0.2 96.1 ± 0.9 19.2 ± 0.1 262 K
ViT-B/16 76.2 ± 0.2 29.1 ± 0.4 56.7 ± 0.2 100.4 ± 1.0 19.7 ± 0.1 262 K
ViT-L/14 77.0 ± 0.2 30.2 ± 0.4 57.4 ± 0.2 104.2 ± 1.0 20.3 ± 0.1 590 K
ViT-L/14@336px 77.2 ± 0.2 30.1 ± 0.4 57.4 ± 0.2 104.3 ± 0.9 20.4 ± 0.1 590 K

Table 6: Search over different decoding paradigms for captioning on the MS-COCO validation set.
We report mean and standard error for all settings

Decoding BLEU@1 BLEU@4 ROUGE-L CIDEr-D SPICE

Sampling 52.6 ± 0.3 12.3 ± 0.2 42.4 ± 0.2 47.5 ± 0.7 14.2 ± 0.1
Topk 54.0 ± 0.3 12.7 ± 0.2 43.2 ± 0.2 50.0 ± 0.7 14.7 ± 0.1
Nucleus 64.7 ± 0.2 18.6 ± 0.3 49.1 ± 0.2 71.7 ± 0.8 17.5 ± 0.1
Greedy 77.5 ± 0.2 30.7 ± 0.4 57.9 ± 0.2 105.8 ± 1.0 20.8 ± 0.1

Language Model Scale We evaluate FLAN-T5 model sizes of 250M, 720M, 3B, and 11B scales.
Further, we include decoder-only LMs, such as GPT-J (Wang & Komatsuzaki, 2021) and Llama
7B (Touvron et al., 2023). The results can be observed in Table 7. Our results show that there
is not much performance gain going from FLAN-T5-LARGE to FLAN-T5-XXL. We believe that
the summarization task itself is being solved in a very good way by the large version of FLAN-T5
already. Thus, the performance-complexity trade-off imposed by using larger models is not worth
considering. Surprisingly, even the small variant of FLAN-T5 reaches a CIDEr-D score above 90,
outperforming the base version, however we do not have a good intuition why that is the case. For the
decoder-only LMs we use the same prompting strategy as (Ramos et al., 2022). Our results show that
decoder-only LMs generally perform worse than encoder-decoder ones. A possible reason for that is
the lack of bidirectionality in the encoder, which is inherent to encoder-decoder models. We found
that decoder-only models are generally more sensitive to prompt ordering. Also, perhaps surprisingly,
GPT-J (Wang & Komatsuzaki, 2021) outperforms the recently proposed Llama (Touvron et al., 2023),
which reaches performance on-par with GPT-2 (Radford et al., 2018). Overall there is a clear trend
that larger models do not necessarily lead to better performance. The most performance gains can be
achieved by focusing on LMs that are better suited for the task at hand.

Usually we would provide the exemplars in the prompt from most-similar to least similar, i.e. the
least similar prompt is the most recent in the context. However, one may think the exact opposite
ordering might lead to better captioning performance, since the LM might exhibit a form of recency
bias. Hence, we provide results for the worst-to-best ordering in Table 8. Indeed, we found that
different ordering of exemplars in the prompt leads to different results. Ordering from worst-to-best,
i.e. most similar exemplars appear more recently, leads to a significant improvement in CIDEr-D
score. This corroborates findings of (Zhao et al., 2021) that LMs are prone to prompt ordering. In our
case this is illustrated in a recency bias of the used FLAN-T5.

Further, we search over different values for our hyperparameters k and l on the MS-COCO and on the
Flickr30k validation sets. We report results are in Table 9 and Table 10 for MS-COCO, and Flickr30k,
respectively.
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Table 7: Comparison of different language models on the MS-COCO validation set. We report mean
and standard error for all settings.

Model BLEU@1 BLEU@4 ROUGE-L CIDEr-D SPICE

Encoder-Decoder

FLAN-T5-SMALL 57.3 ± 0.3 20.9 ± 0.3 53.9 ± 0.2 89.8 ± 0.9 20.3 ± 0.1
FLAN-T5-BASE 60.2 ± 0.2 22.2 ± 0.3 54.7 ± 0.2 92.5 ± 0.9 20.5 ± 0.1
FLAN-T5-LARGE 77.5 ± 0.2 30.7 ± 0.4 57.9 ± 0.2 105.8 ± 1.0 20.8 ± 0.1
FLAN-T5-XL 76.1 ± 0.2 29.5 ± 0.4 56.8 ± 0.2 103.1 ± 0.9 20.4 ± 0.1
FLAN-T5-XXL 64.0 ± 0.3 23.3 ± 0.3 54.6 ± 0.2 94.4 ± 0.1 - ± 0.1

Decoder-only

GPT-2 67.8 ± 0.3 24.6 ± 0.3 49.6 ± 0.2 87.7 ± 0.9 19.3 ± 0.1
GPT-J 6B 71.1 ± 0.3 27.1 ± 0.3 51.2 ± 0.2 93.6 ± 0.9 19.5 ± 0.1
Llama 7B 63.5 ± 0.3 23.9 ± 0.3 49.6 ± 0.2 87.9 ± 0.9 19.2 ± 0.1

Table 8: Comparison of different orderings for exemplars in the prompt on the MS-COCO validation
set. We report mean and standard error for all settings.

Ordering BLEU@1 BLEU@4 ROUGE-L CIDEr-D SPICE

worst-to-best 77.5 ± 0.2 30.7 ± 0.4 57.9 ± 0.2 105.8 ± 1.0 20.8 ± 0.1
best-to-worst 77.2 ± 0.2 30.6 ± 0.4 57.7 ± 0.2 104.6 ± 0.9 20.7 ± 0.1

B POTENTIAL SOCIETAL IMPACT

Our method uses foundation models, which were trained on uncurated datasets crawled from the
web. Therefore, these models readily reflect prejudices and biases found on the web. Consequently,
our proposed captioning system might also bear these shortcomings. In the worst case, this could
lead to our method producing inappropriate or even harmful contents. Moreover, generative LMs as
used by our method are known to be very sensitive to prompting Zhao et al. (2021) and can therefore
be misused if a user gets to determine certain prompts. However, our method is also very low in
complexity and makes caption generation more accessible to researchers suffering from hardware
constraints. Due to the low number of parameters and the simple training procedure it can efficiently
be adapted to different domains.

C ADDITIONAL QUALITATIVE ANALYSIS

We provide additional examples for the susceptibility of CLIP-score to hallucinated contents in
Figure 6. The captions from ReCapTokens contain plenty of hallucinated content, e.g. the imaginary
person ”clayton cha“, asses grazing along with zebras, a ”mii peripheral“, the ”icelandic shetland“, or
”halt homestead“. We observe that CLIP assigns very high scores to such content, even if the generated
caption is not even syntactically valid, e.g. bottom left image. Although CLIP-RS includes reference
captions, it only corrects the score for the generated caption if the maximum cosine similarity between
references and image is lower than the CLIP-score. Contrary, if the maximum cosine similarity
between image and references is higher than the CLIP-score, CLIP-RS will also be higher. On
the bottom right, for example, the CLIP-S for the valid caption is reduced because the maximum
similarity to reference captions is lower, although there is a high overlap in terms of n-gram overlap,
indicated by the CIDEr-D score.
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Caption C C-S C-RS Caption C C-S C-RS Caption C C-S C-RS

a decal of clayton cha on 
a macbook

67.7 102.4 91.4
a horseback and pony 
pasture in the icelandic 
shetland

0.1 98.0 92.2
A group of zebras and 
asses grazing in a zoo 67.7  102.4  102.1

a laptop computer sitting
on top of a desk 130.1  96.7 69.3

A horse grazing on grass
near a stream 53.6    82.9 84.2

A group of zebras standing 
around and grazing in a 
field

130.1  96.7 98.8

Caption C C-S C-RS Caption C C-S C-RS Caption C C-S C-RS
a sign indicating the 
designation of halt 
homestead, hale nathaniel, 
nh, was erected on the property

29.4 100.4 99.0
a mandarin lemon vendor 
sells segments of oranges 
and lemons

31.7 99.1 95.8
a wii remote with a 
nintendo mii peripheral 57.7  102.8  97.6

A street sign on a pole in 
front of a building 101.6  60.6 75.6

A man is surrounded by 
oranges and lemons 56.9    86.2 89.5

A man holding a Wii remote 
playing a video game 107.8  96.3 93.6

Figure 6: Images from the MS-COCO validation set, along with generated captions from ReCap (top
line) and ReCapTokens (bottom line), along with CIDEr-D (C), CLIP-score (C-S), and RefCLIP-score
(C-RS).
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Table 9: Hyperparameter Search for k on the MS-COCO validation set for different levels of language
abstraction using our semantic mapping computed via OLS. We report mean and standard error for
all settings. We select the best k according to CIDEr-D score.

k BLEU@1 BLEU@4 ROUGE-L CIDEr-D SPICE

Single Captions

10 77.5 ± 0.2 30.3 ± 0.4 57.6 ± 0.2 105.3 ± 1.0 20.9 ± 0.1
11 77.6 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.4 ± 1.0 21.0 ± 0.1
12 77.6 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.4 ± 1.0 21.0 ± 0.1
13 77.5 ± 0.2 30.5 ± 0.4 57.6 ± 0.2 105.3 ± 1.0 20.8 ± 0.1
14 77.4 ± 0.2 30.5 ± 0.4 57.8 ± 0.2 105.4 ± 1.0 20.8 ± 0.1
15 77.5 ± 0.2 30.7 ± 0.4 57.9 ± 0.2 105.8 ± 1.0 20.8 ± 0.1
16 77.4 ± 0.2 30.4 ± 0.4 57.8 ± 0.2 105.3 ± 1.0 20.9 ± 0.1
17 77.3 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.3 ± 1.0 20.9 ± 0.1
18 77.4 ± 0.2 30.6 ± 0.4 57.7 ± 0.2 105.5 ± 1.0 20.9 ± 0.1
19 77.4 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.6 ± 1.0 20.9 ± 0.1
20 77.5 ± 0.2 30.6 ± 0.4 57.8 ± 0.2 105.5 ± 1.0 21.0 ± 0.1

All Captions

1 72.7 ± 0.2 24.8 ± 0.3 53.9 ± 0.2 87.0 ± 0.9 18.0 ± 0.1
2 73.7 ± 0.2 26.4 ± 0.3 54.7 ± 0.2 90.8 ± 0.9 18.2 ± 0.1
3 74.0 ± 0.2 26.4 ± 0.3 54.8 ± 0.2 91.0 ± 0.9 18.2 ± 0.1
4 74.0 ± 0.2 26.6 ± 0.3 55.0 ± 0.2 91.3 ± 0.9 18.5 ± 0.1
5 74.0 ± 0.2 26.9 ± 0.3 55.1 ± 0.2 91.6 ± 0.9 18.4 ± 0.1

Localized Narratives

1 55.3 ± 0.3 11.7 ± 0.2 43.1 ± 0.2 45.4 ± 0.6 11.9 ± 0.1
2 54.3 ± 0.3 11.8 ± 0.2 43.0 ± 0.2 48.0 ± 0.7 13.2 ± 0.1
3 53.8 ± 0.3 12.3 ± 0.2 43.0 ± 0.2 50.9 ± 0.7 14.0 ± 0.1
4 53.0 ± 0.3 12.1 ± 0.2 42.7 ± 0.2 51.7 ± 0.7 14.3 ± 0.1
5 52.5 ± 0.3 12.0 ± 0.2 42.6 ± 0.2 52.6 ± 0.7 14.4 ± 0.1
6 52.0 ± 0.3 12.3 ± 0.2 42.6 ± 0.2 53.1 ± 0.7 14.6 ± 0.1

Algorithm 2 Self-improvement loop
Require: CLIP vision encoder ϕ(·), CLIP text encoder ψ(·), Training set DTrain = {(xi, ci)},

Validation set DVal = {(xj)}, Hyperparameter k, Language Model LM(·), Prompt P , Number of
iterations n

{(fi, ei)}|DTrain|
i=1 ← ϕ(xi), ψ(si) for (xi, ci) ∈ DTrain ▷ Embed training set

W ← fit_linear({(fi, ei)}) ▷ Pre-compute linear mapping
B ← {ei} ▷ Initialize datastore with training captions

m̄← evaluate(DVal, ϕ,W ,LM,B) ▷ Evaluate on the validation set
for _ in range(n) ▷ Run self-improvement for n iterations
{Ei} ← topk({Wfi},B, k) ▷ Retrieve captions from datastore for each training image
{Si} ← LM(concat(P + Ei) ▷ Generate new captions for each trainig image
{Si} ← filter_and_deduplicate({Si}, m̄) ▷ Filter captions according to m̄
{el}|DTrain|

l=1 ← ψ(sl) for (sl) ∈ S ▷ Embed new synthetic captions
B ← B ∪ {(el)} ▷ Add synthetic captions to datastore
{(fi, ei, el)}|DTrain|

i=1,l=1 ← el for (el) ∈ {(el)} ▷ Augment training set
W ← fit_linear({(fi, ei, el)}) ▷ Re-compute W
m̄← evaluate(DVal, ϕ,W ,LM,B) ▷ Update m̄

21



Under review as a conference paper at ICLR 2024

Table 10: Hyperparameter Search for k on the Flickr30k validation set for different levels of language
abstraction using our semantic mapping computed via OLS. For tokens as targets we additionally
search over the number of random permutations l. We report mean and standard error for all settings.

k BLEU@1 BLEU@4 ROUGE-L CIDEr-D SPICE

Single Captions

10 74.9 ± 0.5 26.5 ± 0.7 54.6 ± 0.4 63.9 ± 1.9 15.5 ± 0.3
11 74.7 ± 0.5 26.0 ± 0.7 54.3 ± 0.4 64.0 ± 1.9 15.5 ± 0.3
12 74.4 ± 0.5 26.2 ± 0.7 54.5 ± 0.4 64.3 ± 1.9 15.5 ± 0.3
13 74.2 ± 0.5 26.3 ± 0.7 54.6 ± 0.4 64.6 ± 1.9 15.2 ± 0.3
14 74.5 ± 0.5 26.2 ± 0.7 54.3 ± 0.4 64.4 ± 1.9 15.5 ± 0.3
15 74.2 ± 0.5 26.2 ± 0.7 54.4 ± 0.4 64.6 ± 1.9 15.6 ± 0.3
16 74.8 ± 0.5 26.8 ± 0.7 54.6 ± 0.4 65.0 ± 1.9 15.8 ± 0.3
17 74.5 ± 0.5 26.6 ± 0.7 54.7 ± 0.4 64.7 ± 1.9 15.7 ± 0.3

All Captions

1 65.8 ± 0.5 20.3 ± 0.7 49.8 ± 0.4 48.7 ± 1.8 13.4 ± 0.3
2 67.9 ± 0.5 21.5 ± 0.7 50.5 ± 0.5 52.2 ± 1.8 13.9 ± 0.3
3 68.1 ± 0.5 22.0 ± 0.7 51.0 ± 0.4 53.2 ± 1.9 13.7 ± 0.3
4 69.6 ± 0.5 23.0 ± 0.7 51.4 ± 0.4 54.4 ± 1.9 14.1 ± 0.3
5 69.0 ± 0.5 23.0 ± 0.7 51.3 ± 0.4 54.5 ± 1.9 14.2 ± 0.3

Localized Narratives

1 54.2 ± 0.6 9.0 ± 0.4 40.4 ± 0.4 24.4 ± 1.3 8.1 ± 0.2
2 52.6 ± 0.6 8.6 ± 0.4 39.3 ± 0.4 23.3 ± 1.1 8.4 ± 0.2
3 52.5 ± 0.6 9.5 ± 0.4 39.6 ± 0.4 25.4 ± 1.2 8.9 ± 0.2
4 51.7 ± 0.6 9.6 ± 0.4 39.3 ± 0.4 26.0 ± 1.2 9.1 ± 0.2
5 51.9 ± 0.6 9.6 ± 0.4 39.1 ± 0.4 25.6 ± 1.2 9.0 ± 0.2
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