
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MTSTREC: MULTIMODAL TIME-ALIGNED SHARED
TOKEN RECOMMENDER

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential recommendation in e-commerce leverages users’ anonymous brows-
ing histories to offer personalized product suggestions without relying on per-
sonal information. While item ID-based sequential recommendations are com-
monly used, they often fail to fully capture the diverse factors influencing user
preferences, such as textual descriptions, visual content, and pricing. These fac-
tors represent distinct modalities in recommender systems. Existing multimodal
sequential recommendation models typically employ either early or late fusion of
different modalities, overlooking the alignment of corresponding positions in time
of product sequences that represent users’ browsing preferences. To address these
limitations, this paper proposes a unified framework for multimodal fusion in rec-
ommender systems, introducing the Multimodal Time-aligned Shared Token Rec-
ommender (MTSTRec). MTSTRec leverages a transformer-based architecture
that incorporates a single time-aligned shared token for each product, allowing for
efficient cross-modality fusion that also aligns in time. This approach not only
preserves the distinct contributions of each modality but also aligns them to bet-
ter capture user preferences. Additionally, the model extracts rich features from
text, images, and other product data, offering a more comprehensive representa-
tion of user decision-making in e-commerce. Extensive experiments demonstrate
that MTSTRec achieves state-of-the-art performance across multiple sequential
recommendation benchmarks, significantly improving upon existing multimodal
fusion strategies.

1 INTRODUCTION

In e-commerce and online platforms, Sequential Recommendation Systems (SRS) have become
crucial for providing personalized product suggestions based on users’ browsing history. SRS has
evolved from simple Markov Chains (Shani et al., 2013) to more sophisticated neural networks.
Early approaches like GRU4Rec (Hidasi et al., 2016) employed recurrent neural networks (RNNs)
to model user behavior sequences. While RNNs can capture short-term dependencies, they struggle
with long-term dependencies due to vanishing gradients. Transformer-based models have been pro-
posed to address the above issue, such as SASRec (Kang & McAuley, 2018) and BERT4Rec (Sun
et al., 2019). They leverage self-attention mechanisms to capture dependencies across the entire
sequence, thereby improving both efficiency and scalability. However, these models still primarily
focus on single-modal data and overlook the rich multimodal information available in real-world
applications, which could provide deeper insights into user preferences.

Multimodal recommendation systems combine diverse data types, such as images and texts. Image-
based methods use pre-trained convolutional neural networks (CNNs) (O’Shea & Nash, 2015) like
ResNet (He et al., 2015), to capture the visual features, while text-based methods use models like
BERT (Devlin et al., 2019) for product descriptions and reviews. CLIP aligns text and images
through a multimodal approach, enabling zero-shot transfer for various vision-language tasks (Rad-
ford et al., 2021). Recently, large language models (LLMs) have excelled in extracting hidden
textual information, enriching item representations (Geng et al., 2023; Lyu et al., 2024). Rather than
full-scale LLM training, we focus on leveraging LLMs to enrich item descriptions by extracting
hidden textual features. Additionally, while many recommendation models rely on image classifi-
cation or recognition to predict purchase intent, we argue that textual data alone is often sufficient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

for identifying what a product is. Instead, images should capture product aesthetics and style, which
are especially important on platforms that sell the same product in various patterns or designs.

When it comes to multimodal fusion, designing a unified model that effectively integrates different
modalities presents significant challenges. Different modalities and their specialized formats learn
at different speeds and patterns. This makes it challenging to combine them effectively into a single
system. In the context of recommendation systems, the common modalities are typically images
and text, which have fundamentally different input representations. Early fusion techniques are
often used to unify these features, where modalities are combined before entering the recommen-
dation model (He & McAuley, 2015; Liu et al., 2019). However, this approach fails to account for
the significant differences in input representations and neural network architectures across modali-
ties. In contrast, late fusion methods process each modality separately, addressing modality-specific
challenges, but overlook the fact that at each time step, different modalities correspond to the same
product (Liang et al., 2023).

To address both the modality processing and fusion issues, we propose MTSTRec (Multimodal
Time-aligned Shared Token Recommender), a novel framework for multimodal feature integra-
tion and cross-modal interaction using time-aligned shared tokens. MTSTRec consists of two main
components: the Feature Extractor and the Multimodal Transformer. The feature extractor takes the
browsing history sequence, where each item includes a product ID, image, text, and price. We use
different extractors for each modality. For text, we enrich the data through LLMs with task-specific
prompts to extract implicit consumer preferences. For images, we focus on style rather than clas-
sification, using Gram metrics to capture visual patterns that influence purchasing behavior. These
inputs are then projected into separate feature embeddings for each modality. In the proposed multi-
modal transformer, a self-attention encoder is first applied to model the information for each feature.
During fusion, we adopt a mid-fusion strategy, where modalities are processed independently and
then combined in the intermediate stage. Our proposed Time-aligned Shared Token fusion module
(TST) learns cross-modal interactions by aligning features from different modalities at each time
step of the product interaction sequence. This ensurs efficient feature sharing across modalities
while maintaining the chronological order and consistency of product interactions.

Our contributions can be summarized as follows:

• We propose a unified framework for the multimodal recommendation that seamlessly accommo-
dates various input data types, effectively integrating diverse information such as ID, text, image,
and other modalities. This flexible approach ensures that different types of data are processed and
combined in a cohesive manner, enhancing the system’s adaptability across different tasks.

• We introduce a novel TST module that leverages shared tokens to learn cross-modal interactions
at each time step of the sequence. This design ensures that information from different modalities
is aligned and fused in a time-consistent manner. By maintaining the chronological structure of
the sequential data, the TST module effectively captures the evolving relationships between user
interactions and product features. This innovative module not only enhances the performance of
multimodal recommendation systems but also offers a flexible and scalable that can be applied
to various tasks beyond recommendation, making it suitable for a wide range of multimodal
applications.

• MTSTRec outperforms state-of-the-art methods on three real-world e-commerce datasets, setting
a new benchmark in multimodal recommendation systems. Our ablation studies not only highlight
the contribution of individual features but also reveal deeper insights into the distinct roles of
various modalities across diverse e-commerce environments, offering a valuable understanding
for future advancements in the field.

2 RELATED WORK

2.1 SEQUENTIAL RECOMMENDATION SYSTEMS

SRS aims to predict the next item a user will interact with based on their browsing history, provid-
ing personalized recommendations. Traditional Markov Chain model (Shani et al., 2013) employed
simple probabilistic methods but struggled to capture complex user behavior patterns. GRU4Rec

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(Hidasi et al., 2016) introduced RNNs to improve sequence modeling by capturing temporal depen-
dencies. Transformer-based models like SASRec (Kang & McAuley, 2018) enhance this approach
by using self-attention mechanisms (Vaswani et al., 2017) and causal masking, preserving tempo-
ral order and efficiently capturing short and long-term dependencies. BERT4Rec (Sun et al., 2019)
extends this further by adopting a bidirectional Transformer model and using a CLOZE task for
training. Unlike SASRec’s causal masking, BERT4Rec allows the model to attend to both past
and future items in the sequence, capturing richer contextual information. However, these models
remain focused primarily on single-modal data, overlooking the potential benefits of multimodal
information.

2.2 MULTIMODAL RECOMMENDATION SYSTEMS

Multimodal recommendation systems are essential for integrating information from multiple modal-
ities to create more accurate and comprehensive predictions. These systems generally operate
through two main stages: raw feature extraction and feature fusion (Liu et al., 2024).

Different modalities require tailored methods to capture their unique attributes in the raw feature ex-
traction stage. For instance, image-based features are often extracted using CNNs (O’Shea & Nash,
2015) or, more recently, Vision Transformers (ViT) (Dosovitskiy et al., 2021), which excel at pro-
cessing visual data. Textual features often rely on pre-trained language models (Devlin et al., 2019),
capturing semantic meanings from product textual information. In addition, advances in LLMs
(Dubey et al., 2024; OpenAI et al., 2024) have significantly enhanced text-based feature extraction.
LLM-Rec (Lyu et al., 2024) utilizes LLM and prompts to generate richer contextual representations,
enhancing recommendation quality. Other LLM-based approaches have also emerged, further re-
fining text comprehension to optimize the use of textual features in recommendation systems (Zhao
et al., 2024; Li et al., 2023; Wu et al., 2024).

After raw feature extraction, the system proceeds to the feature fusion stage, where these multi-
modal data are combined and processed, it can be categorized into three main approaches (Zhou
et al., 2023): (i) Early fusion involves merging the features from different modalities at the initial
stages of the model. For example, VBPR (He & McAuley, 2015) integrates visual features into a
matrix factorization approach. However, early fusion may miss important temporal relationships and
modality-specific behaviors by merging features too early.(ii) Mid-fusion delays modality combina-
tion for more refined processing, as seen in MM-Rec (Wu et al., 2022), which uses a cross-modal
attention mechanism to combine textual and visual information effectively. However, these methods
often fail to capture temporal relationships, which are crucial in sequential recommendations. (iii)
Late fusion keeps modalities separate until the final stage, as in MMMLP (Liang et al., 2023), the
final outputs from three different modalities are concatenated before making the prediction. While
preserving modality-specific features, it fails to capture early interactions between modalities and
sequences, leading to suboptimal performance with complex sequential patterns.

To address these limitations, we aim to design a fusion method that can temporally align and inte-
grate different modalities, facilitating cross-modal interactions at each time step. This novel fusion
ensures that the chronological order of product interactions, ensuring temporal consistency while
allowing for efficient multimodal feature sharing across the entire sequence.

3 PROPOSED METHOD: MTSTREC

This section presents the MTSTRec framework and describes how we effectively extract multimodal
features from a consumer-centric perspective, including introducing a style and an LLM-based
prompt text extractor module to better simulate the consumer’s purchasing context. This frame-
work can potentially be extended to integrate additional modalities for even more comprehensive
consumer behavior modeling. Furthermore, we present how we utilize TST module to synchronize
the features of the same product from multimodal encoders across different layers. An overview of
the MTSTRec is illustrated in Figure 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: MTSTRec consists of feature extractors and multimodal transformers. The feature extrac-
tors take inputs as a browsing history sequence S, where each item consists of a product ID, image,
text, and price, transforming them into the corresponding feature embeddings, along with a CLOZE
embedding zcz for each modality. The multimodal transformers begin by applying a self-attention
encoder to independently process the information for each feature. When fusion begins, we utilize
the TST module across different modalities at each time step and across multiple layers, ensuring
both modality-specific and cross-modal information are captured effectively.

3.1 PRELIMINARIES

Let the set of items be defined as I = {i1, i2, . . . , ik, . . . , i|I|}, where each item ik ∈ I consists
of four essential elements: bk, which represents the product ID; vk, which represents the image
of the item; tk, which contains the textual information; and ck, which represents the price of the
item. Therefore, each item ik can be expressed as a tuple ik = (bk,vk, tk, ck), capturing the
multiple modalities that describe it. For each user, their browsing history is represented as S =
[s1, s2, . . . , sn], where each si ∈ I corresponds to an item the user has interacted with, and n is the
length of the session. The goal of SRS is to predict the next item sn+1 that a user will interact with,
based on the user’s interaction history S.

3.2 FEATURE EXTRACTOR MODULE

3.2.1 ID EXTRACTOR

The ID extractor converts raw ID data into meaningful embeddings. We construct an item ID em-
bedding matrix M id ∈ Rd×|I|, where d represents the dimension of the ID embedding. The input ID
embedding matrix for each session Eid ∈ Rd×n is then retrieved such that Eid

i = M id
si

, correspond-
ing to the item si in the user’s interaction sequence, the i th in the row of matrix. A constant zero
vector 0 is used as the embedding for any padding items within the sequence, typically added when
sequences are shorter than the maximum length. This embedding mechanism enables the model
to capture item relationships, improving the accuracy of recommendations by understanding item
identities within sequences. The processing method for the price extractor is similar; please refer to
the Appendix A.1 for details.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.2 STYLE EXTRACTOR

We are inspired by the Neural Style Transfer (NST) algorithm (Gatys et al., 2015; 2016) to extract
style features. Instead of transferring style, we focus solely on extracting it. Using the VGG-19 (Si-
monyan & Zisserman, 2015) model, we pass the image through the network to obtain feature maps,
from which we compute Gram matrices G. These matrices capture image texture and color pat-
terns and are invariant to spatial transformations, ensuring similar matrices for images with similar
styles. We then generate the input style embedding matrix for each session, Estyle ∈ Rd×n. Further
implementation details are in the Appendix A.2.

3.2.3 TEXT EXTRACTOR

The text extractor focuses on extracting features from product titles and descriptions. We use Llama
3.1 (Dubey et al., 2024) as our chosen backbone for generating text embeddings that capture the key
attributes of the product (see Appendix A.3 for details). Each product is assigned a text embedding,
forming the item text embedding matrix M text ∈ Rd×|I|, which is generated by feeding the product’s
textual information into an LLM text encoder to obtain initial text embeddings, followed by a one-
layer projection to adjust the dimensionality. The input text embedding matrix for each session
Etext ∈ Rd×n is then retrieved, such that Etext

i = M text
si

corresponding to the item si in the user’s
interaction sequence.

3.2.4 PROMPT-TEXT EXTRACTOR

In the second part of text processing, we explore how LLM can be prompted to generate additional
textual information to improve recommendation performance. Inspired by Lyu et al. (2024), we
employ two prompt strategies: basic prompt and recommendation prompt. Additionally, we utilize
five variations tailored to the task, including three for basic tasks, along with two designed for
recommendation tasks (see Appendix A.4 for more details). The LLM input is divided into a system
and a task-specific prompt. The system prompt provides a brief description of the e-commerce
context Pinfo to ensure that the LLM understands the task’s background, and a task-specific prompt
P j , selected from five predefined prompt variations described earlier. For each product i, its textual
information, such as the title and description, is fed into the user prompt. The LLM then generates
a response P j

i for each product i, using each prompt variant j. These responses are converted into
prompt embeddings for further processing (see Appendix A.4 for more details). The process is
formalized as follows:

P̂ j
i = EncoderLLM (P j

i). (1)

Gating Network: Inspired by (Yu et al., 2024), we introduce a gating network G to manage the
varying importance of each prompt variant P̂ j . This network controls the information flow to the
final prediction layer. The weights of the prompt-text embeddings w are calculated as follows:

w = G(∥jP̂ j) := softmax(W [∥jP̂ j] + b),∀j ∈ {1, . . . , 5}. (2)

The item prompt embedding matrix M pt ∈ Rd×|I| is then computed by:

M pt = Lp

 5∑
j=1

wj · P̂ j

 , (3)

where Lp is a linear projection layer applied to the gated prompt embeddings. Further details are
provided in the Appendix A.5. The input prompt embedding matrix for each session Ept ∈ Rd×n is
then retrieved, such that Ept

i = M pt
si corresponding to the item si in the user’s interaction sequence.

3.3 MULTIMODAL TRANSFORMER WITH TIME-ALIGNED SHARED TOKEN FUSION

The multimodal transformer is built based on the Transformer encoder architecture proposed
by Vaswani et al. (2017), where each feature has its own encoder to begin with. The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

user sequence is processed through each feature extractor, producing five distinct embeddings:
Eid,Estyle,Etext,Ept,Eprice, all in Rd×n. Positional embeddings are added to each embedding,
and zcz is appended to the sequence to indicate the item to be predicted. The recommendation is
made based on the final representation of zcz. Using the ID embedding matrix Eid as an example,
the final input to the ID encoder is:

Z id = [Eid
1 ,E

id
2 , ...,E

id
N , zid

cz]⊕ p, (4)

where p ∈ Rd×(n+1) is the learnable positional embedding, and ⊕ denotes element-wise addition.
Thus, we obtain the inputs to the multimodal transformer: Z id,Zstyle,Z text,Zpt,Zprice, which are
passed through separate encoders.

3.3.1 SELF-ATTENTION ENCODER

In the next step, input embeddings from each modality Z are processed independently through
a self-attention encoder Vaswani et al. (2017). This approach enables each modality to learn its
unique features, and the resulting representations are then prepared for cross-modal fusion using the
TST module. Further details are provided in Appendix A.6.

Figure 2: The TST module is shared across different modalities in a manner that aligns each item in
the sequence. For example, in the fusion of style and text embeddings, each TST embedding zsh is
updated element-wise by averaging the corresponding tokens from the style and text modalities at
the same time step in the sequence, ensuring cross-modal information exchange that aligns in time.

3.3.2 TIME-ALIGNED SHARED TOKEN FUSION WITH SEQUENTIAL MULTIMODAL
INTEGRATION

We now introduce our TST fusion module, as illustrated in Figure 2, which facilitates multimodal
information sharing by aligning item tokens across different modalities. Inspired by the attention
bottleneck mechanism (Nagrani et al., 2021), which focuses on efficiently transferring information
between modalities, we re-design the mid-fusion module such that the embeddings for each item are
aligned in time. This design introduces a strong prior that the embeddings from each modality be-
long to the same item in the sequence, ensuring that representations of the same item from different
modalities are effectively fused.

Each sequence contains n + 1 tokens, includding the CLOZE embedding zcz (Sun et al.,
2019). The number of time-aligned shared tokens (zsh) matches the sequence length, with each
shared token zsh

t at time step t corresponding to modality-specific tokens zmod
t , where mod ∈

{id, style, text, pt, price}. These shared tokens enable cross-modal interaction for the same item
at each time step. For each modality, modality-specific tokens Zmod = [zmod

1 , . . . ,zmod
n , zmod

cz] and
the time-aligned shared tokens Zsh = [zsh

1 , . . . ,zsh
n , zsh

n+1] are concatenated and fed into the self-
attention encoder Att (Vaswani et al., 2017). It processes input tokens from each modality indepen-
dently through L transformer layers, where the transformation at layer l is defined as:

Zmod,l = Att(Zmod,l−1∥Zsh,l−1). (5)

At each layer, modality-specific tokens are updated into Zmod,l for the next layer l. These tokens
capture the modality-specific features, which will be further enhanced by interaction with the TST
module. Similarly, for time-aligned shared tokens, the tokens from all modalities are averaged at

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the end of each layer to form the next layer’s shared tokens Zsh,l, facilitating further fusion across
subsequent layers. This process is defined as:

Zsh,l =
1

#mod

∑
mod

Att(Zmod,l−1∥Zsh,l−1),∀mod ∈ {id, style, text, pt, price}. (6)

In the first layer of the fusion encoder, the modality-specific sequences do not take inputs from the
time-aligned shared tokens yet, as these tokens are initially unlearned. However, each shared token
zsh can take inputs from its corresponding modality tokens, learning multimodal information. From
the second layer onward, modality-specific tokens and their corresponding shared tokens attend to
each other, enabling cross-modal learning and information exchange.

After fusion, the learned representations are passed to the prediction layer. The sequence token
zcz plays a critical role in capturing the information needed for predicting the next item in the user’s
interaction sequence. By integrating information from the modality-specific tokens and time-aligned
shared tokens, the model achieves a cohesive multimodal representation, improving the accuracy of
the recommendation task. The final modality representations are normalized to ensure stability, then
combined and used for prediction and loss computation. The zcz tokens are concatenated to form
the final recommendation representation for each sequence:

zoutput = zid
cz∥zstyle

cz ∥ztext
cz ∥zpt

cz∥zprice
cz . (7)

This final representation zoutput encapsulates the key information from each modality, allowing the
model to make accurate predictions for the next item in the user interaction sequence.

3.4 LOSS FUNCTION

For each sequence, the model computes the cosine similarity between the final recommendation
representation zoutput and both the ground truth and negative samples. The embeddings for both
the ground truth and negative samples y, are generated by concatenating features E extracted for
each item through the same feature extractors. Let cos(zoutput,y

k) represent the cosine similarity
between zoutput and the k-th sample, where k ∈ Kgt for positive samples (ground truth) and k ∈ Kn

for negative samples. These cosine similarities are then used to compute the binary cross-entropy
(BCE) loss for the sequence as follows:

LBCE = − 1

|Kgt ∪Kn|

 ∑
k∈Kgt

log
(
cos(zoutput,y

k)
)
+

∑
k∈Kn

log
(
1− cos(zoutput,y

k)
) . (8)

This formula drives the model to maximize cosine similarity with ground truth and minimize it with
negative samples, improving recommendation accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. Our experiments utilize three datasets: two proprietary datasets from AviviD Innovative
Multimedia—Fresh-Food E-commerce and House-Hold E-commerce, which will be released after
the study, and a public dataset from H&M. The proprietary datasets capture user interactions, includ-
ing pageviews and purchases, while the public dataset focuses on purchase records in the trousers
category from H&M. Detailed information is provided in Appendix A.7.
Dataset Splitting. Each session in the proprietary datasets consists of historical clicks and a final
purchase order. The data is split chronologically into 75% for training, 12.5% for validation, and
12.5% for testing based on the purchase orders. For the H&M (Trousers) dataset, which contains
only purchase actions, items are sorted by purchase time, and those bought on the last day are used
as the answer set, ensuring consistency across all datasets (Meng et al., 2020). The model predicts

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

items in purchase orders as a multi-label recommendation task, where each sequence may have mul-
tiple correct answers (purchases).
Evaluation Metrics. We evaluate all models using three popular top-k ranking metrics: Nor-
malized Discounted Cumulative Gain (NDCG@k), Hit Rate (HR@k), and Mean Reciprocal Rank
(MRR@k), with k set to 5 and 10. NDCG@k remains unchanged as it inherently supports multiple
selections. For HR@k and MRR@k, we adjust the calculations to account for the multi-answer
format, ensuring a fair evaluation. For more detail, please refer to Appendix A.8.

Benchmark Models. We compare our MTSTRec model with well-known SRS baselines, which are
grouped into two categories. The first category includes general models that rely solely on historical
interaction data, using item IDs as the primary feature, such as GRU4Rec (Hidasi et al., 2016;
Hidasi & Karatzoglou, 2017), SASRec (Kang & McAuley, 2018), and BERT4Rec (Sun et al., 2019).
The second category extends beyond item IDs by incorporating additional modalities, including
text, image, and price data. This group includes models like MMMLP (Liang et al., 2023), as
well as the enhanced versions of SASRec+ and BERT4Rec+, which concatenate image and text
features as in our model. These modifications allow them to act as early fusion models, combining
all features upfront to ensure a fair comparison of multimodal inputs. For more details on the
benchmark models, refer to Appendix A.9.

Table 1: Performance Comparison of Benchmark Models and MTSTRec on Two Datasets
Dataset Model NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10

Fresh-Food
E-commerce

GRU4Rec 0.7800 0.7782 0.7345 0.7652 0.6912 0.6957
SASRec 0.8015 0.7999 0.7505 0.7836 0.7099 0.7143
Bert4Rec 0.8076 0.8094 0.7658 0.8010 0.7146 0.7193
SASRec+ 0.8512 0.8446 0.8013 0.8250 0.7729 0.7760
Bert4Rec+ 0.8441 0.8394 0.7962 0.8218 0.7641 0.7675
MMMLP 0.8276 0.8239 0.7845 0.8129 0.7450 0.7487
MTSTRec 0.8800 0.8765 0.8407 0.8651 0.8086 0.8118

House-Hold
E-commerce

GRU4Rec 0.7432 0.7652 0.7451 0.7806 0.6857 0.6914
SASRec 0.7563 0.7736 0.7578 0.7960 0.7024 0.7076
Bert4Rec 0.7596 0.7761 0.7603 0.7968 0.7068 0.7116
SASRec+ 0.8150 0.8258 0.8144 0.8410 0.7688 0.7723
Bert4Rec+ 0.7969 0.8110 0.7959 0.8287 0.7477 0.7521
MMMLP 0.8335 0.8425 0.8303 0.8525 0.7930 0.7959
MTSTRec 0.8942 0.9086 0.9067 0.9358 0.8568 0.8607

H&M
(Trousers)

GRU4Rec 0.1302 0.1520 0.1571 0.2132 0.1027 0.1181
SASRec 0.1520 0.1759 0.1809 0.2489 0.1258 0.1348
Bert4Rec 0.1468 0.1692 0.1738 0.2378 0.1223 0.1306
SASRec+ 0.1605 0.1811 0.1828 0.2415 0.1371 0.1448
Bert4Rec+ 0.1633 0.1848 0.1878 0.2492 0.1387 0.1466
MMMLP 0.1754 0.1923 0.1971 0.2451 0.1502 0.1565
MTSTRec 0.2307 0.2797 0.3139 0.4481 0.1871 0.2049

4.2 PERFORMANCE COMPARISON

To assess the generalizability of MTSTRec, we conducted experiments on three datasets and com-
pared the results with baseline models. The results, summarized in Table 1, reveal critical insights
into the effectiveness of different models.

MTSTRec surpasses all baselines, leveraging its TST module to outperform both early and late fu-
sion approaches. In the Fresh-Food E-commerce dataset, MTSTRec achieves the highest NDCG@5
score of 0.8800, and in the House-Hold E-commerce dataset, it achieves 0.8942, outperforming
SASRec+ by approximately 7% in both cases. Notably, in the H&M (Trousers) dataset, MTSTRec
achieves an NDCG@5 of 0.2307, further solidifying its dominance across all metrics. In compari-
son, self-attention-based models, SASRec and BERT4Rec, have consistently demonstrated superior
performance over the RNN-based model, GRU4Rec. Besides, SASRec+ and BERT4Rec+, which
integrate text and image features, further boost performance. In the Fresh-Food E-commerce dataset,
SASRec+ achieves an NDCG@5 of 0.8512, and in the House-Hold E-commerce dataset, it reaches
0.8150, which demonstrates the importance of incorporating multimodal data to better capture user

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

preferences and provide more accurate recommendations. However, these models still fell short of
MTSTRec’s performance.

In summary, MTSTRec consistently outperforms both early fusion models SASRec+ and
BERT4Rec+, and late fusion models MMMLP, across all datasets. The model’s effective integra-
tion of multimodal information via TST module ensures that feature interactions are fully captured,
leading to state-of-the-art performance, particularly in complex datasets like H&M (Trousers), with
performance gains of approximately 31.5%–45.5% over competing models in terms of NDCG.

4.3 ABLATION STUDY OF MODALITIES

In this section, we conduct an ablation study on Fresh-Food E-commerce and House-Hold E-
commerce datasets to evaluate the contribution of modalities, including item ID, text, prompt text,
images, and price. By removing each modality, we can assess their impact on model performance.

As shown in Table 2, removing the item ID modality has the most significant impact on both datasets,
with NDCG@5 dropping sharply from 0.8800 to 0.7582 on the Fresh-Food E-commerce dataset.
This highlights the critical role of product identity in differentiating items. The absence of item
IDs also increased training time as the model struggled to manage without clear product identifiers.
Text information proves to be another important modality. In the House-Hold E-commerce dataset,
removing both text and prompt text leads to a noticeable performance drop, with NDCG@5 de-
creasing from 0.8942 to 0.8191. This highlights the significance of detailed product descriptions
in capturing user preferences. Even when standard text is removed, the prompt text still provides
valuable contextual information, enabling the model to maintain reasonable accuracy, as indicated
by a smaller drop to 0.8488 NDCG@5 compared to removing both text and prompt text.

In summary, item ID and text modalities are essential for accurate recommendations, with ID playing
a particularly crucial role in guiding predictions. Prompt text can compensate for missing standard
text. Other modalities are less critical for accurately predicting user preferences in these domains.

Table 2: The Impact of Removing Different Modality Modules across E-commerce Platforms
Ablation Study Fresh-Food E-commerce House-Hold E-commerce

NDCG@5 HR@5 MRR@5 NDCG@5 HR@5 MRR@5

MTSTRec 0.8800(±0.0023) 0.8407(±0.0031) 0.8086(±0.0023) 0.8942(±0.0035) 0.9067(±0.0024) 0.8568(±0.0041)
w/o ID 0.7582(±0.0049) 0.7506(±0.0049) 0.6459(±0.0062) 0.7913 (±0.0244) 0.8337(±0.0191) 0.7184(±0.0288)
w/o Text & Prompt 0.8574(±0.0013) 0.8102(±0.0011) 0.7813(±0.0015) 0.8191(±0.0047) 0.8142(±0.0041) 0.7761(±0.0062)
w/o Text 0.8729(±0.0016) 0.8308(±0.0024) 0.7998(±0.0022) 0.8488(±0.0095) 0.8553(±0.0139) 0.8051(±0.0087)
w/o Prompt Text 0.8749(±0.0046) 0.8331(±0.0056) 0.8030(±0.0054) 0.8770(±0.0035) 0.8895(±0.0079) 0.8366(±0.0031)
w/o Style 0.8784(±0.0020) 0.8391(±0.0030) 0.8068(±0.0026) 0.8932(±0.0093) 0.9061(±0.0082) 0.8524(±0.0111)
w/o Price 0.8791(±0.0025) 0.8404(±0.0031) 0.8077(±0.0030) 0.8941(±0.0048) 0.9066(±0.0040) 0.8553(±0.0063)

4.4 ABLATION STUDY OF FUSION MODULE

In this ablation study, we evaluated the impact of different fusion strategies on the Fresh-Food E-
commerce dataset, comparing TST (used in MTSTRec) with two alternative setups: one resembling
late fusion by removing the TST and fusion encoder, and another resembling early fusion by re-
moving the entire multimodal transformer. In the late fusion alternative, features are processed
independently and concatenated only at the final step, and in the early fusion alternative, all features
are concatenated immediately after feature extraction and passed through a single encoder.

As shown in Table 3, TST outperforms both alternatives. TST achieves an NDCG@5 of 0.8800,
compared to 0.8621 for early fusion. In the early fusion, all features are processed together from the
start, which can lead to the dilution of unique information from each modality, as the model is not
able to treat them distinctly. This reduces the model’s ability to fully leverage the strengths of each
feature. On the other hand, late fusion limits the interaction between different features until the end
of the sequence. This restriction hinders the model’s ability to capture cross-modal dependencies
throughout the sequence, leading to a decrease in performance. Specifically, the NDCG@5 score
dropped from 0.8800 to 0.8211, a decrease of 0.0589.

In conclusion, TST’s ability to facilitate cross-modal interaction at each time step leads to better
results, whereas early and late fusion approaches fall short due to inefficient handling of feature
interactions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: The Impact of Removing Different Modules on Fresh-Food E-Commerce Results
Fusion Method NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10

MTSTRec 0.8800 0.8765 0.8407 0.8651 0.8086 0.8118
w/o TST & Fusion Encoder (Late Fusion) 0.8211 0.8301 0.7912 0.8378 0.7271 0.7333
w/o Multimodal Encoder (Early Fusion) 0.8621 0.8590 0.8206 0.8483 0.7862 0.7899

4.5 COMPARISON OF SHARED TOKENS CONFIGURATIONS

We evaluate the different shared token configurations on the Fresh-Food E-commerce dataset, focus-
ing on three key setups: the proposed TST (1:1), TST with multiple shared tokens per time step (TST
(1:2) and TST (1:4)), and fusion bottlenecks. Each configuration represents a unique mid-fusion ap-
proach to feature sharing during the sequence learning process. Further details are provided in the
Appendix A.11.

As shown in Table 4, the proposed TST (1:1) configuration delivers the best performance, with an
NDCG@5 of 0.8800. This setup ensures that only one shared token per time step facilitates in-
formation transfer, which helps the model focus on product-specific features without introducing
unnecessary noise. TST (1:2) and TST (1:4) show a slight drop in performance, with NDCG@5
ranging from 0.8769 to 0.8795. The increase in shared tokens per time step introduces more infor-
mation exchange but also adds redundancy and potential noise, slightly affecting model efficiency.
Bottlenecks configurations perform worse than TST, with bottlenecks (all:5) Nagrani et al. (2021)
achieving an NDCG@5 of 0.8737 and bottlenecks (all:21) achieving an NDCG@5 of 0.8754, which
is 0.5% lower than TST (1:1). Despite allowing broader information sharing, these setups lack the
precise, time-aligned interaction that enhances TST’s performance.

The TST (1:1) configuration outperforms other setups, including multi-token and fusion bottleneck
approaches, likely due to its ability to maintain precise, time-aligned interactions between product
features. This configuration effectively balances information sharing and efficiency, making it the
most optimal choice for multimodal sequential recommendation in our scenario.

Table 4: The Impact of Time-aligned Shared Tokens on Fresh-Food E-commerce Dataset Results
Setting NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10

TST (1:1) (Ours) 0.8800(±0.0023) 0.8765(±0.0021) 0.8407(±0.0031) 0.8651(±0.0029) 0.8086(±0.0023) 0.8118(±0.0023)
TST (1:2) 0.8795(±0.0022) 0.8758(±0.0020) 0.8406(±0.0025) 0.8641(±0.0023) 0.8079(±0.0026) 0.8110(±0.0026)
TST (1:4) 0.8769(±0.0041) 0.8737(±0.0038) 0.8384(±0.0039) 0.8631(±0.0036) 0.8044(±0.0051) 0.8077(±0.0050)
Bottlenecks (all:5) 0.8737(±0.0028) 0.8695(±0.0024) 0.8323(±0.0030) 0.8560(±0.0027) 0.8012(±0.0029) 0.8044(±0.0028)
Bottlenecks (all:21) 0.8754(±0.0036) 0.8716(±0.0035) 0.8346(±0.0043) 0.8587(±0.0040) 0.8037(±0.0039) 0.8069(±0.0038)

5 CONCLUSION

This paper introduces MTSTRec, a novel Multimodal Time-aligned Shared Token Recommender to
fuse and transmit essential information across different modalities. Our approach allows for precise
integration of multimodal features such as product IDs, images, text, and prices while maintaining
the unique contributions of each modality. Through extensive experimentation on real-world e-
commerce datasets, we demonstrated that MTSTRec significantly outperforms state-of-the-art base-
lines across various evaluation metrics. Our ablation studies revealed the critical role of each feature
type in improving recommendation accuracy, particularly the importance of item identity and textual
descriptions in different e-commerce scenarios. Moreover, we showed that the proposed TST fusion
method consistently surpasses both early and late fusion strategies by enabling cross-modal inter-
action that aligns in time throughout the sequence. In summary, MTSTRec represents a significant
advancement in multimodal sequential recommendation, offering a flexible and efficient framework
that can be adapted to various e-commerce applications. Future work will focus on extending the
model to other domains and exploring additional multimodal features for even more personalized
recommendations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey et al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm of artistic style, 2015.
URL https://arxiv.org/abs/1508.06576.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2414–2423, 2016.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5),
2023. URL https://arxiv.org/abs/2203.13366.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Ruining He and Julian McAuley. Vbpr: Visual bayesian personalized ranking from implicit feed-
back, 2015. URL https://arxiv.org/abs/1510.01784.

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for session-
based recommendations. CoRR, abs/1706.03847, 2017. URL http://arxiv.org/abs/
1706.03847.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks, 2016. URL https://arxiv.org/abs/
1511.06939.

Chun-Kai Huang, Yi-Hsien Hsieh, Ta-Jung Chien, Li-Cheng Chien, Shao-Hua Sun, Tung-Hung
Su, Jia-Horng Kao, and Che Lin. Scalable numerical embeddings for multivariate time series:
Enhancing healthcare data representation learning, 2024. URL https://arxiv.org/abs/
2405.16557.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In 2018 IEEE
International Conference on Data Mining (ICDM), pp. 197–206. IEEE, 2018.

Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi Zhang, and Fajie Yuan. Exploring the upper
limits of text-based collaborative filtering using large language models: Discoveries and insights,
2023. URL https://arxiv.org/abs/2305.11700.

Jiahao Liang, Xiangyu Zhao, Muyang Li, Zijian Zhang, Wanyu Wang, Haochen Liu, and Zitao
Liu. Mmmlp: Multi-modal multilayer perceptron for sequential recommendations. In WWW, pp.
1109–1117, 2023. URL https://doi.org/10.1145/3543507.3583378.

Fan Liu, Zhiyong Cheng, Changchang Sun, Yinglong Wang, Liqiang Nie, and Mohan Kankanhalli.
User diverse preference modeling by multimodal attentive metric learning. In Proceedings of
the 27th ACM International Conference on Multimedia, MM ’19. ACM, October 2019. doi:
10.1145/3343031.3350953. URL http://dx.doi.org/10.1145/3343031.3350953.

Qidong Liu, Jiaxi Hu, Yutian Xiao, Xiangyu Zhao, Jingtong Gao, Wanyu Wang, Qing Li, and Jiliang
Tang. Multimodal recommender systems: A survey, 2024. URL https://arxiv.org/abs/
2302.03883.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/2203.13366
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1510.01784
http://arxiv.org/abs/1706.03847
http://arxiv.org/abs/1706.03847
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/2405.16557
https://arxiv.org/abs/2405.16557
https://arxiv.org/abs/2305.11700
https://doi.org/10.1145/3543507.3583378
http://dx.doi.org/10.1145/3343031.3350953
https://arxiv.org/abs/2302.03883
https://arxiv.org/abs/2302.03883

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Christo-
pher Leung, Jiajie Tang, and Jiebo Luo. Llm-rec: Personalized recommendation via prompting
large language models, 2024. URL https://arxiv.org/abs/2307.15780.

Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. Exploring data splitting
strategies for the evaluation of recommendation models. In Proceedings of the 14th ACM Con-
ference on Recommender Systems, RecSys ’20, pp. 681–686, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery. ISBN 9781450375832. doi: 10.1145/3383313.3418479. URL
https://doi.org/10.1145/3383313.3418479.

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen, Cordelia Schmid, and Chen Sun. Attention
bottlenecks for multimodal fusion. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=KJ5h-yfUHa.

OpenAI. Openai embedding api [text-embedding-3-large]. Technical report, OpenAI, 2024a. URL
https://openai.com/index/new-embedding-models-and-api-updates/.

OpenAI. Openai gpt-4o api [gpt-4o-mini]. Technical re-
port, OpenAI, 2024b. URL https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/.

OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal et al. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks, 2015. URL
https://arxiv.org/abs/1511.08458.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Guy Shani, Ronen I. Brafman, and David Heckerman. An mdp-based recommender system. CoRR,
abs/1301.0600, 2013. URL http://arxiv.org/abs/1301.0600.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. 3rd International Conference on Learning Representations (ICLR), pp. 1–14, 2015.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer, 2019. URL
https://arxiv.org/abs/1904.06690.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30:6000–6010, 2017.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Mm-rec: Multimodal news recommen-
dation, 2022. URL https://arxiv.org/abs/2104.07407.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
for recommendation, 2024. URL https://arxiv.org/abs/2305.19860.

Chu-Chun Yu, Ming-Yi Hong, Chiok-Yew Ho, and Che Lin. Push4rec: Temporal and contextual
trend-aware transformer push notification recommender. In ICASSP 2024 - 2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6625–6629, 2024.
doi: 10.1109/ICASSP48485.2024.10447336.

Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Zhen Wen, Fei Wang,
Xiangyu Zhao, Jiliang Tang, and Qing Li. Recommender systems in the era of large language
models (llms), 2024. URL https://arxiv.org/abs/2307.02046.

Hongyu Zhou, Xin Zhou, Zhiwei Zeng, Lingzi Zhang, and Zhiqi Shen. A comprehensive survey
on multimodal recommender systems: Taxonomy, evaluation, and future directions, 2023. URL
https://arxiv.org/abs/2302.04473.

12

https://arxiv.org/abs/2307.15780
https://doi.org/10.1145/3383313.3418479
https://openreview.net/forum?id=KJ5h-yfUHa
https://openreview.net/forum?id=KJ5h-yfUHa
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2103.00020
http://arxiv.org/abs/1301.0600
https://arxiv.org/abs/1904.06690
https://arxiv.org/abs/2104.07407
https://arxiv.org/abs/2305.19860
https://arxiv.org/abs/2307.02046
https://arxiv.org/abs/2302.04473

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PRICE EXTRACTOR

We represent all product prices in the list using a unified normalization approach for consistency.
Following the Scalable Numerical Embedding (SCANE) method (Huang et al., 2024), an item price
embedding matrix M price ∈ Rd×|I| is constructed, and an input price embedding matrix Eprice ∈
Rd×n, captures the product prices within a user’s interaction history. These embeddings are then
scaled by their corresponding price value Psi

, such that Eprice
i = M price

si × Psi
for each item si in

the sequence, enhancing the model’s ability to understand pricing patterns in recommendations.

Furthermore, We experimented with a variant of the SCANE method, where the entire price embed-
ding matrix M price was replaced such that each element of M price

i j was set to 1, effectively disabling
embedding learning. In this case, the price embeddings were simply the expanded price values Pi

themselves. In our scenario, this variant yielded better performance, as the embedding effectively
represented the expanded price without the complexity of learning additional embedding weights.

A.2 IMPLEMENTATION DETAILS OF THE STYLE EXTRACTOR

In our experiments, we extract style features from the first two layers of VGG-19 (Simonyan &
Zisserman, 2015) to capture the relevant style information. Each of these layers produces 64 feature
maps, resulting in Gram matrices of size 64× 64 (Gatys et al., 2015; 2016).

The Gram matrix for each layer is calculated as follows:

Let F l ∈ RQl×Rl represent the feature map from layer l, where Ql is the number of feature maps
(or channels) in layer l, and Rl is the product of the height and width of the feature map (i.e., the
spatial dimensions of the feature map). The Gram matrix Gl ∈ RQl×Ql for layer l is calculated as
the inner product between the vectorized feature maps F l

ik and F l
jk at spatial positions k, across all

feature maps i and j. Mathematically, this can be expressed as:

Gl
ij =

Rl∑
k=1

F l
ikF

l
jk, (9)

where Gl
ij represents the element of the Gram matrix that captures the correlation between feature

map i and feature map j in layer l, and the summation over k accounts for all Rl spatial positions in
the feature map. After calculating the Gram matrices, we apply max-pooling to compress these ma-
trices, which reduces the computational complexity while retaining the essential style information.
This step compresses the Gram matrices to 2× 16× 16 style embeddings.

Once each image undergoes the process of Gram matrix computation and subsequent max-pooling,
the compressed and flattened Gram matrices for all images are concatenated across layers to form
the item style embedding matrix M style ∈ Rd×|I|. This matrix encapsulates the style features of
all items in the dataset. The input style embedding matrix for each session Estyle ∈ Rd×n is then
retrieved, such that Estyle

i = M style
si

, corresponding to the item si in the user’s interaction sequence.

A.3 COMPARISON OF LANGUAGE MODELS FOR TEXT EMBEDDING

We evaluated the pre-trained language model, BERT (Devlin et al., 2019), and large language mod-
els, text-embedding-3-large (OpenAI, 2024a), Llama 3 (Dubey et al., 2024), and Llama 3.1 (Dubey
et al., 2024). These comparisons were conducted with the MTSTRec model, focusing solely on
product ID and text. The handling of product IDs is discussed in Section 3.2.1. For the text portion,
we used product titles and descriptions, converting them into embeddings via the respective Lan-
guage Models, followed by a linear reduction layer WR that reduces the embedding dimension to d,
as shown in Equation ??.

The results are presented in Table 5. Llama 3.1 achieves the best performance across all evaluation
metrics (NDCG, HR, and MRR). Thus, we choose Llama 3.1 as the backbone for generating text
embeddings in our main experiments.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: Comparison of Language Models for Text Embedding in MTSTRec
Feature NDCG@5 HR@5 MRR@5

ID 0.8554 0.8074 0.7792
ID + textBERT 0.8585 0.8108 0.7829
ID + textopenai 0.8594 0.8119 0.7838
ID + textLlama3 0.8732 0.8329 0.8000
ID + textLlama3.1 0.8754 0.8340 0.8037

A.4 IMPLEMENTATION DETAILS AND RESULTS OF PROMPT-TEXT FEATURE

As outlined in Section 3.2.3, we employed various prompting strategies to generate rich textual
information, with detailed examples of these prompts provided in Table 6. For Basic Prompt, we
utilize three variations: Ppara, Ptags, and Pguess. Ppara prompts the LLM to rephrase the original
product description while retaining the same information. Ptags aims for a concise summary using
tags, guiding the LLM to extract key details. Lastly, Pguess prompts the LLM to predict what other
items the user might purchase based on the product’s title and description. Recommendation Prompt
extends the Basic Prompt by introducing a recommendation-oriented task. We define two variations:
P rec
para and P rec

tags.

In our experiments, we explored text generation with Llama 3.1 (Dubey et al., 2024) and GPT-
4o-mini (OpenAI et al., 2024; OpenAI, 2024b) and compared their effectiveness in creating useful
text embeddings. Each prompt was carefully designed with specific settings to match its intended
function.

For instance:

• Ppara: This prompt was used to paraphrase the product title and description, configured
with a temperature of 0.7, a maximum token limit of 256, and top p = 1.

• Ptags: For this prompt, which focuses on summarizing product information using tags, we
set the temperature to 0.5, a maximum token limit of 128, and top p = 1.

• Pguess: This prompt aims to infer potential additional products the user might purchase
based on the current product. It was configured with a temperature of 1, a maximum token
limit of 512, and top p = 1.

• P rec
para: This recommendation-focused paraphrase prompt had a temperature of 1, a maxi-

mum token limit of 384, and top p = 1.

• P rec
tags: Designed to summarize product information for recommendations, this prompt used

a temperature of 1, a maximum token limit of 128, and top p = 1.

The text generated by Llama 3.1 (Dubey et al., 2024) or GPT-4o-mini (OpenAI et al., 2024; OpenAI,
2024b) was uniformly converted into embeddings using Llama 3.1 (shown in Appendix A.3) to
maintain consistency across experiments. This approach allowed for reliable comparisons, focusing
on how different prompts and their corresponding embeddings affected recommendation accuracy in
MTSTRec. Each experiment incorporated prompt embeddings alongside the product ID to measure
performance.

We also assessed the influence of different LLMs—Llama 3.1 and GPT-4o-mini on overall model
performance by comparing how each model’s generated text, once converted into embeddings, im-
pacted recommendation results. The detailed outcomes are summarized in the following Table 7.

Based on the results, we observe that incorporating prompt embeddings into the model helps im-
prove performance compared to using only the product ID. While the results for prompt embeddings
are not as high as directly using text embeddings, this might suggest that the original product titles
and descriptions, when processed by the LLM, sufficiently capture the characteristics of the items.
However, our findings demonstrate that prompt embeddings positively influence recommendation
outcomes. Additionally, the prompt embeddings generated by both Llama 3.1 and GPT-4o-mini
show comparable performance across the five strategies. Llama 3.1 has a slight edge on average,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: All prompts in prompt-text feature extraction module
Prompt Type System and User Prompt

Ppara

System: ”FFE is an e-commerce website that sells fresh, healthy, high-quality
food products without unnecessary additives. You will be provided with the
product title and description sold on this e-commerce website. Your task is to
paraphrase them.”
User: ”Title: product title, Description: product description.”

Ptags

System: ”FFE is an e-commerce website that sells fresh, healthy, high-quality
food products without unnecessary additives. You will be provided with the
product title and description sold on this e-commerce website. Your task is to
summarize this product using tags.”
User: ”Title: product title, Description: product description.”

Pguess

System: ”FFE is an e-commerce website that sells fresh, healthy, high-quality
food products without unnecessary additives. You will be provided with the
product title and description sold on this e-commerce website. Your task is to
infer what other products on the site a consumer might be interested in if they
purchase this product.”
User: ”Title: product title, Description: product description.”

P rec
para

System: ”FFE is an e-commerce website that sells fresh, healthy, high-quality
food products without unnecessary additives. Your task is to tell me what else
I should say if I want to recommend this product to someone.”
User: ”Title: product title, Description: product description.”

P rec
tags

System: ”FFE is an e-commerce website that sells fresh, healthy, high-quality
food products without unnecessary additives. Your task is to tell me which tags
should be used if I want to recommend this product to someone.”
User: ”Title: product title, Description: product description.”

Table 7: Comparison of Prompt Strategies and LLMs (Llama 3.1 vs GPT-4o-mini) in MTSTRec
Feature Prompt Strategy Llama 3.1 GPT-4o-mini

ID + prompt

Ppara 0.8727 0.8747
Ptags 0.8727 0.8723
Pguess 0.8718 0.8702
P rec
para 0.8697 0.8703

P rec
tags 0.8725 0.8716

Average 0.8719 0.8718

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

which is why we chose to primarily use Llama 3.1 for generating our prompt-text features in subse-
quent experiments.

A.5 GATING WEIGHTS AND PERFORMANCE OF PROMPT-TEXT FEATURE

As explained in Section 3.2.4, a gating network is applied to the five prompt strategies to learn
their relative importance. The gating weights (Table 9) are derived from the validation results of
the ID + Text + Prompt features. In addition, we compare the performance of ID + Text versus ID
+ Text + Prompt, demonstrating improved recommendation accuracy with the inclusion of prompt
embeddings, regardless of the LLM used, as shown in Table 8.

Table 8: Performance Comparison of ID + Text and ID + Text + Prompt in MTSTRec
Feature NDCG@5

ID + Text 0.8754
ID + Text + Prompt (GPT-4o-mini) 0.8790
ID + Text + Prompt (Llama 3.1) 0.8795

Table 9: Gating Weights for Different Prompt Strategies
Prompt Strategy Llama 3.1 GPT-4o-mini

Ppara 0.1391 0.2766
Ptags 0.4485 0.1846
Pguess 0.1367 0.1403
P rec
para 0.1328 0.1325

P rec
tags 0.1428 0.2659

In conclusion, adding prompt embeddings significantly enhances recommendation performance, as
shown by the improved NDCG@5 scores. Furthermore, based on the Llama 3.1 gating weights,
Ptags emerge as a critical factor in improving recommendation accuracy. Similarly, the gating
weights from GPT-4o-mini align with the results from individual prompt embeddings , reinforcing
the importance of specific prompts, such as Ppara, Ptags, and P rec

tags, in optimizing model perfor-
mance shown in Table 7.

A.6 DETAILED ARCHITECTURE AND PROCESS OF THE SELF-ATTENTION ENCODER

Self-Attention Encoder architecture follows transformer encoder architecture proposed by Vaswani
et al. (2017). The input embedding from each modality Z are processed independently through
independent transformer encoder Encoder with multiple layers. Each layer consists of three key
components: Multi-Head Self-Attention (MSA), Layer Normalization (LN), and Multilayer Per-
ceptron (MLP), all connected via residual connections. The transformation at layer l is defined as
follows:

Y l−1 = MSA(LN(Zl−1)) + LN(Zl−1), (10)

Zl = MLP(LN(Y l−1)). (11)

In the MSA block, self-attention computes the attention scores between tokens, allowing each token
to dynamically attend to other tokens in the sequence. The attention mechanism is defined as:

MSA(X) = Attention(WQX,WKX,WV X), (12)

where WQ, WK , and WV are the weight matrices used to project the input tensor X into queries,
keys, and values, respectively. The attention scores are computed as the dot product of queries and
keys, enabling the model to focus on the most relevant parts of the input.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.7 DATASET

Our experiments utilize three datasets: Fresh-Food E-commerce, House-Hold E-commerce, H&M
(Trousers). The Fresh-Food E-commerce dataset includes a total of 1,507,388 interactions, with
an average session length of 4.693 and a total of 216,576 sessions. The House-Hold E-commerce
dataset consists of 94,984 interactions, an average session length of 5.914, and a total of 12,345
sessions. The H&M (Trousers) dataset contains user 3,576,972 purchase records, and a total of
416,794 sessions, with further details provided in Table 10.

We apply preprocessing steps to filter out sessions with fewer than 3 interactions to ensure sufficient
data for model training. Session lengths are limited to 20 items. For shorter sessions, we pad them
with zeros, while for longer sessions, we retain only the last 20 products, removing any repeat items
at the end of the sequence. This adjustment allows the model to better focus on complex patterns,
enhancing its applicability to real-world scenarios.

For the first two datasets, each session’s purchase order involves multiple items, so we treat the
answer set as a multi-choice task. The same preprocessing steps are applied to the third dataset,
H&M (Trousers). Although it consists solely of purchase actions, we sort the items by purchase time
and treat the products bought on the last day as the answer set. Since users may purchase multiple
items on the last day, this is also treated as a multi-choice task. To facilitate model computation, we
pad all answers to a fixed length of 50 items.

Table 10: Statistics of Datasets
Dataset # Sessions # Products Avg. Session Avg. Purchase # Actions

Fresh-Food 216,576 770 4.693 2.267 1,507,388
House-Hold 12,345 2464 5.914 1.780 94,984
H&M (Trousers) 416,794 11150 7.029 1.553 3,576,972

A.8 EVALUATION METRICS

For each session, we randomly sampled 100 items that the user did not interact with under the
target behavior as negative samples. Finally, we report the results on the test set, while selecting
the best hyper parameters using the validation set. We detail the three evaluation metrics used in
our experiments: NDCG@k, HR@k, and MRR@k, where k is set to 5 and 10. Since our problem
involves multiple correct answers (multi-label), we have adjusted the definitions of HR@k and
MRR@k accordingly. HR is calculated by treating each correct answer as a separate single-choice
task. The model ranks each correct item among negative samples, and we calculate the hit rate
for each task. The final HR@k is the average of these hit rates across all correct answers in the
sequence. MRR@k follows a similar approach, where we compute the reciprocal rank for each
correct answer, and the final MRR@k is the average across all correct answers. Below are the
definitions of each metric along with an example calculation.

NDCG@k (Normalized Discounted Cumulative Gain). NDCG@K considers both the relevance
and the position of the correct items in the ranked list, with higher-ranked relevant items contributing
more to the score.
The Discounted Cumulative Gain (DCG@k) is calculated by summing the relevance scores of the
correct items, where the relevance score decreases logarithmically based on the item’s rank position.
The formula for DCG@k is:

DCG@k =

k∑
r=1

rel(r)

log2(r + 1)
, (13)

where rel(r) represents the relevance score of the item at rank r, where all items in the purchase
order are assigned a relevance score of 1. Higher-ranked relevant items contribute more to the final
score, as their positions are weighted more heavily in the DCG calculation.
The Ideal DCG (IDCG@k) represents the best possible ranking scenario, where all relevant items
are ranked at the top. Since we are normalizing the DCG score, the ideal ranking is computed by

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

assuming the best-case relevance distribution. The formula for IDCG@k is:

IDCG@k =

min(k,n)∑
r=1

1

log2(r + 1)
, (14)

where min(k, n) ensures that we only consider the smaller of k (the cutoff) and n (the number of
correct answers).
Finally, the NDCG@k is calculated by normalizing DCG by the ideal DCG. The formula for
NDCG@k is:

NDCG@k =
DCG@k
IDCG@k

. (15)

This normalization makes NDCG range between 0 and 1, allowing consistent comparison across
different queries. A higher NDCG score indicates that the correct items are ranked closer to the top.
HR@k (Hit Rate). HR@k is calculated by checking whether any of the ground truth items appear
within the top k ranked items. For the multi-label task, we calculate HR for each correct item and
then average the results. The formula for HR@k is:

HR@k =
1

|n|

|n|∑
i=1

1[ranki ≤ k], (16)

where 1[ranki ≤ k] is 1 if the correct item i is ranked within the top k, and 0 otherwise.
MRR@k (Mean Reciprocal Rank). MRR@k measures the ranking of the first correct item within
the top k positions. For the multi-label task, MRR@k is calculated by averaging the reciprocal
ranks of the correct items:

MRR@k =
1

|n|

|n|∑
i=1

1

ranki
, (17)

where ranki is the rank position of the correct item i.

A.9 BENCHMARK MODELS

•GRU4Rec(Hidasi et al., 2016; Hidasi & Karatzoglou, 2017): An RNN-based model that captures
short-term user interactions, improving accuracy over item-to-item methods.
•SASRec(Kang & McAuley, 2018): A self-attention-based sequential model with causal masking
that captures long-term user preferences by attending only to previous tokens.
•BERT4Rec(Sun et al., 2019): A bidirectional sequential recommendation model that uses self-
attention to predict masked items in user behavior sequences, capturing both left and right context.
•SASRec+: An enhanced version of SASRec (Kang & McAuley, 2018), which integrates item
ID, text, image features. The text and image features are processed using the techniques from our
MTSTRec model. To ensure stable training, we reduce the dimensionality to 256, as the model
would otherwise fail to converge properly.
•BERT4Rec+: An enhanced version of BERT4Rec (Sun et al., 2019), which integrates item ID,
text, image features. The text and image features are processed using the techniques from our
MTSTRec model. To ensure stable training, we reduce the dimensionality to 256, as the model
would otherwise fail to converge properly.
•MMMLP(Liang et al., 2023): A multimodal MLP-based model that processes text, image, and
price features (with price added for fair comparison) through a Feature Mixer Layer, Fusion Mixer
Layer, and Prediction Layer, achieving state-of-the-art performance with linear complexity.

A.10 IMPLEMENTATION DETAILS

In our experiments, we tuned the hyperparameters based on validation data to ensure optimal perfor-
mance. The batch size was uniformly set to 64 for all models, and the input dimension d was fixed
at 512. We employed the AdamW optimizer, while the maximum sequence length N was set to 20.
The fusion layers were standardized across models, with Lfusion = 3 and a dropout rate of 0.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For the ID feature encoder, we used 2 transformer blocks (Lid = 2) with 4 attention heads, applying
a hidden layer dropout of 0.1 to maintain fairness with other benchmark models.

For other feature encoders, such as text, image, and price, we experimented with different settings.
The number of each encoder layer (Lmod) was tested across values of {2, 4, 8}, and the number
of attention heads across {1, 2, 4, 8, 16}. We also experimented with dropout rates of {0.1, 0.2,
0.3} in the hidden layers. The learning rate was tested across a range of {0.001, 0.0005, 0.0001,
0.00005, 0.00001}, while the L2 regularization penalty was tuned from {0.0001, 0.00005, 0.00001,
0.000005, 0.000001}. A gamma value of {0.9, 0.75, 0.5}was set for learning rate decay.

For the baseline models (e.g., BERT4Rec (Sun et al., 2019), SASRec (Kang & McAuley, 2018)),
we ensured that key settings such as batch size, the number of encoder blocks and attention heads
were aligned with our model for fair comparison. However, for other settings, we followed the
recommended configurations in the original papers.

A.11 CONGIGURATION DETAILS OF THE SHARED TOKEN

Time-aligned Shared Tokens (TST) (1:1), used in our MTSTRec model, pairs each time step in
the sequence with a corresponding shared token in a 1:1 relationship. This means that each product
in the sequence is aligned with a single shared token, allowing features from different modalities of
the same product to interact and share information at that specific time step. This design ensures
that information sharing is precise and time-aligned, leading to more accurate feature fusion. TST
(1:2) & TST (1:4) include configurations where each time step is associated with multiple shared
tokens rather than just one. For example, in TST (1:2), each product in the sequence is paired with
two shared tokens, and in TST (1:4), each product is paired with four shared tokens. These variants
allow for more extensive information sharing at each time step.

Fusion Bottlenecks (all:4+1) is based on a configuration from Google (Nagrani et al., 2021) orig-
inally designed for sequence fusion classification tasks involving image and speech data. In this
setting, shared tokens are not tied to a specific time step but attend to the entire sequence, enabling
broader information exchange across the sequence. For a fair comparison in our multimodal sequen-
tial recommendation task, we adapted this method to a Fusion Bottlenecks (all:20+1) configuration,
matching the number of tokens used in our TST approach.

19

	Introduction
	Related Work
	Sequential Recommendation Systems
	Multimodal Recommendation Systems

	Proposed Method: MTSTRec
	Preliminaries
	Feature Extractor Module
	ID Extractor
	Style Extractor
	Text Extractor
	Prompt-Text Extractor

	Multimodal Transformer with Time-aligned Shared Token Fusion
	Self-Attention Encoder
	Time-aligned Shared Token Fusion with Sequential Multimodal Integration

	Loss Function

	Experiments
	Experimental Settings
	Performance Comparison
	Ablation Study of Modalities
	Ablation Study of Fusion Module
	Comparison of Shared Tokens Configurations

	Conclusion
	Appendix
	Price Extractor
	Implementation Details of the Style Extractor
	Comparison of Language Models for Text Embedding
	Implementation Details and Results of Prompt-Text Feature
	Gating Weights and Performance of Prompt-Text Feature
	Detailed Architecture and Process of the Self-Attention Encoder
	Dataset
	Evaluation Metrics
	Benchmark Models
	Implementation details
	Congiguration Details of the Shared Token

