

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BLUE: BI-LAYER HETEROGENEOUS GRAPH FUSION NETWORK FOR AVIAN INFLUENZA FORECASTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurate forecasting of avian influenza outbreaks within wild bird populations requires models that account for complex, multi-scale transmission patterns driven by various factors. Spatio-temporal GNN-based models have recently gained traction for infection forecasting due to their ability to capture relations and flow between spatial regions, but most existing frameworks rely solely on spatial regions and their connections. This overlooks valuable genetic information at the case level, such as cases in one region being genetically descended from strains in another, which is essential for understanding how infectious diseases spread through epidemiological linkages beyond geography. We systemically formulate AIV forecasting problem by proposing a Bi-Layer heterogeneous graph fUision pipEline (**BLUE**). This pipeline integrates genetic, spatial, and ecological data to achieve highly accurate outbreak forecasting. It 1) defines heterogeneous graphs from multiple information sources and multiple layers, 2) smooths across relation types, 3) performs fusion while retaining structural patterns, and 4) predicts future outbreaks via an autoregressive graph sequence model that captures transmission dynamics over time. To facilitate further research, we introduce **Avian-US** dataset, the dataset for avian influenza outbreak forecasting in the United States, incorporating genetic, spatial, and ecological data across locations. **BLUE** achieves superior performance over existing baselines, highlighting the value of incorporating multi-layer information into infectious disease forecasting. The code is available at: <https://anonymous.4open.science/r/BLUE-60F8/README.md>.

1 INTRODUCTION

Predicting the transmission of Avian Influenza Virus (AIV) remains a critical challenge in epidemiological research, due to the virus’s capacity for widespread dissemination among avian populations. Increasing cross-species transmission poses serious risks to public health infrastructure and global biosecurity. Accurately predicting where outbreaks may occur is vital for initiating early interventions that reduce infection risk. To enable timely intervention and reduce the risk of zoonotic spillover, it is essential to identify high-risk regions prior to outbreak emergence (Caliendo et al., 2022; Prosser et al., 2024). Earlier epidemiological models primarily adopt mechanistic strategies based on biological assumptions, often structured around fixed compartments such as SIR or SEIR (Geng et al., 2021; Della Marca et al., 2023). While effective in simplified scenarios, they lack network topology and interaction semantics (Hunter & Kelleher, 2022) as they work under low-dimensional Ordinary Differential Equation systems that only track infected counts in discrete disease states, thus falling short in representing time-sequence reasoning and inter-location impact in real-world disease transmission.

To address the limitations of traditional epidemiological models, recent approaches have incorporated temporal architectures with Graph Neural Networks (GNNs) to capture spatio-temporal transmission dynamics from observational data (Liu et al., 2024). These models identify topological patterns both within and across time steps, enabling the learning of temporal correlations across spatially distributed locations in graph structures. This formulation offers a flexible and data-driven framework for supporting decision-making in disease surveillance and control, representing a significant advancement over classical forecasting methods (Brüel Gabrielsson, 2020; Liu et al., 2024). For example, Cola-GNN (Deng et al., 2020) captures the influence between the locations by combining the attention matrix with the geographical adjacency matrix. MSDNet (Tang et al., 2023) enhances regional epidemic predictions by integrating large-scale mobility data and fine-grained contact patterns.

Nevertheless, existing methods fail on two fronts. First, AIV forecasting formulation differs fundamentally from Influenza-Like Illness (ILI) forecasting. Conventional influenza-like and COVID-19 forecasting are typically modeled as *spatio-temporal processes* over locations, with transmission approximated via inter-location mobility flows and demographic factors. By contrast, AIV spread is inherently multi-source and multi-level. It spreads through *multiple concurrent pathways*, including long-range geographical seeding by migratory wild birds and evolutionary reassortment, operating on *distinct spatial and genetic levels*. This makes AIV forecasting a different formulation compared to ILI forecasting. Second, conventional modeling paradigm is mismatched to AIV dynamics. Previous models follow a *homogeneous setup*, where nodes represent locations and are connected with static adjacencies (Liu et al., 2023b; Yu et al., 2023; Lin et al., 2023) or learned correlations (Nguyen et al., 2023; Pu et al., 2024). This simplification assumes that *geographic proximity implies transmission risk*, focusing solely on location-level transmission and treating all infected cases as equally infectious. This paradigm overlooks subclade-specific transmission patterns and mutation-driven variation in virulence among cases, ignoring case-to-case interactions and temporal variability that often drive outbreak dynamics. Consequently, they struggle to capture multi-level transmission patterns, particularly how individual cases interact both within and across geographic regions.

Although recent efforts bring in meteorological variables (Lim et al., 2021; Papagiannopoulou et al., 2024) or integrate GNNs with mechanistic components (Cao et al., 2022; Wang et al., 2022a; Sha et al., 2021), they still operate under a homogeneous graph structure based on spatial locations. This limits their ability to model fine-grained case-level interactions critical to understanding the spread of AIV. Differently, genetic correlations can offer an epidemiologically informative view by capturing infection-driven linkages that are invisible to spatial or ecological proximity alone. By modeling cases and locations as distinct node types and constructing edges based on both spatial and genetic relations, the problem transfers from standard homogeneous GNNs to heterogeneous GNNs (HGNNs) (Zhang et al., 2019). HGNNs support multiple node and edge types, and are better equipped to handle multi-relational, multi-typed graphs, making them highly suitable for epidemiological modeling. Although prior works considering combining multi-type information (Hemker et al., 2024; Kim et al., 2023; Yu et al., 2022; Guo et al., 2023), they typically perform as a static multi-modal disease diagnosis for cases, ignoring the temporal patterns. These methods are not readily adaptable to the AIV forecasting context, where cases and locations each possess unique intra-layer connectivity patterns and changes over time, leading to spatio-temporal multi-layer graphs with changing node sets and distinct inter-layer semantics. Moreover, most existing fusion techniques do not explicitly preserve structural information during the fusion process, which can potentially lead to information loss in transmission structures. A principled information-preserving method is therefore essential to handle multi-layer heterogeneous graphs while preserving structural integrity and semantic distinctions across layers.

To this end, we systematically formulate AIV forecasting problem and design **BLUE**, a bi-layer heterogeneous graph fusion pipeline with dual layers that defines infectious cases and related locations as heterogeneous nodes within graphs, and integrates three types of information, e.g., spatial, genetic, and ecological information, into a unified framework for forecasting AIV outbreaks. The process begins by building a bi-layer heterogeneous graph that identifies diverse nodes and constructs multi-type edges. It then applies a cross-layer smoothing block inspired by Markov Random Fields (Dobruschin, 1968) to smooth heterogeneous connections. Trainable fusion nodes and fusion edges are formed to produce the fusion graph using a locality-sensitive hashing (LSH)-based sampler (Datar et al., 2004; Jafari et al., 2021) for efficient information integration. To preserve fine-grained structural semantics, we design a spectral regularizer that constrains the learned fusion graph to approximate that of the bi-layer structures, thereby maintaining its global diffusion geometry. Temporal dynamics are captured by an autoregressive framework, learning both spatial and temporal trends. To support evaluation and motivate further research, we publicly release a new avian influenza dataset, named **Avian-US** dataset¹. Our main contributions are:

1. *New pipeline design:* We systematically define the AIV forecasting problem and propose **BLUE**, a pipeline that models heterogeneous nodes with multi-type information within a unified framework, establishing a principle formulation beyond prior work.
2. *Theoretical guarantees:* We design an information-preserving graph fusion to simplify the heterogeneous graphs without discarding the epidemiologically crucial structure, guaranteed with a theoretical bound from the spectral perspective.

¹<https://figshare.com/s/b369cd3447dd312ecd94>, detailed in Appendix D.

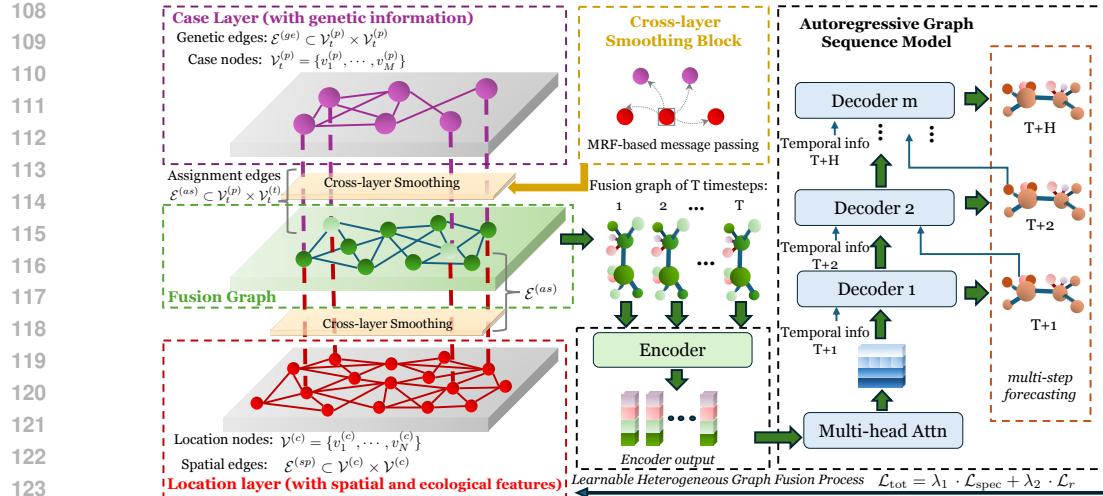


Figure 1: **BLUE** consists of 4 components: *Bi-layer Heterogeneous Graph Construction* models AIV spread using a bi-layer heterogeneous graph with two types of nodes (location and case) and three types of edges (spatial, genetic, and assignment). Then, the MRF-inspired *Cross-layer Smoothing block* aggregates neighbor information to create coherent representations for heterogeneous nodes and their connections. Graphs are then fused into *Information-Preserving Fusion Graphs* that preserve the original transmission structure using a spectral regularizer. Finally, *Autoregressive Encoder–Decoder Forecasting* encodes node interactions over time to generate multi-step forecasts.

3. *Empirical gains*: We publicly release and empirically validate **BLUE** on the avian influenza surveillance data in the United States, named **Avian-US**, demonstrating its superior performance.

2 RELATED WORKS

Based on the types of graph structures used, we summarize previous epidemiological methods into two categories: Static Graph-based (SG) approaches and Dynamic Graph-based (DG) approaches (refers to Appendix C for details). The topology of SG methods is fixed during training and inference, commonly specified by geographic adjacency or mobility priors (Xie et al., 2022; Yu et al., 2023; Lin et al., 2023; Liu et al., 2023b; Tang et al., 2023). Representative examples include EpiGNN (Xie et al., 2022), STEP (Yu et al., 2023), SMPNN (Lin et al., 2023), MSDNet (Tang et al., 2023), STSGT (Banerjee et al., 2022), and DGDI (Liu et al., 2023b). While these designs incorporate strong spatial priors, they cannot adjust the topology to reflect evolving or heterogeneous factors, such as case-to-case genetic relationships or changes, limiting expressiveness in AIV spread forecasting. For DG approaches, the topology evolves or is learned from data, allowing time-aware transmission patterns. Cola-GNN (Deng et al., 2020) implements a distance-based graph with attention to infer hidden cross-location dependencies. Epi-Cola-GNN (Liu et al., 2023a) couples SIR dynamics with a learnable, time-varying transmission matrix. CausalGNN (Wang et al., 2022a) introduces causal components to mitigate confounding and account for policy interventions. Despite flexibility, most DG models remain homogeneous and operate on a single location-view, overlooking heterogeneous relations that are central to characterizing multi-pathway transmission in AIV.

3 METHODOLOGY

Problem Definition. We formally define AIV forecasting as predicting future outbreaks by leveraging historical multi-source observations, structured as a sequence of heterogeneous graphs with multi-type relations. Let $\mathcal{G}_t = (\mathcal{T}_V, \mathcal{T}_E)$ denote a heterogeneous graph snapshot at week t , where $\mathcal{T}_V = \{\mathcal{V}^{(c)}, \mathcal{V}_t^{(p)}\}$ consists of location nodes $\mathcal{V}^{(c)}$ and case nodes $\mathcal{V}_t^{(p)}$. $\mathcal{T}_E = \{\mathcal{E}^{(sp)}, \mathcal{E}^{(ge)}, \mathcal{E}^{(as)}\}$ denotes *Spatial edges* (red lines), *Genetic edges* (purple lines), and *Assignment edges* (purple and red dash lines), respectively. *Spatial edges* $\mathcal{E}^{(sp)} = \{e_{i,j}^{(sp)}\}_{(i \in \mathcal{V}^{(c)}, j \in \mathcal{V}^{(c)})}$ connects spatially neighboring locations from geographical modality. Each edge $\langle v_i^{(c)}, v_j^{(c)} \rangle$ is weighted by a geographic similarity score ω_{ij}^{sp} derived from inter-location distances. *Genetic edges* $\mathcal{E}^{(ge)} \subset \mathcal{V}_t^{(p)} \times \mathcal{V}_t^{(p)}$ connect genetically similar cases from biological modality, where each edge $\langle v_k^{(p)}, v_l^{(p)} \rangle$ carries a similarity

162 weight $w_{kl}^{(ge)}$ between case k and case l . *Assignment edges* $\mathcal{E}^{(as)} \subset \mathcal{V}_t^{(p)} \times \mathcal{V}_t^{(t)}$ link each case to the
 163 location in which it was reported. Given a sequence of dynamic heterogeneous graphs over the past
 164 T weeks, i.e., $\{\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_T\}$, AIV forecasting is to predict the number of new infections in each
 165 location for the subsequent H weeks $\{\mathbf{y}_{T+1}, \dots, \mathbf{y}_{T+H}\} = f_\theta(\mathcal{G}_1, \dots, \mathcal{G}_T)$, and our pipeline aims
 166 to learn the function f_θ that maps the historical graph sequence to future case counts accordingly.

167 **Bi-layer Heterogeneous Graph Construction.** Conventional GNN-based forecasting models
 168 for infectious diseases typically rely on a single-view representation of static spatial and temporal
 169 correlations among locations. These models assume that all infected cases contribute equally to
 170 transmission intensity, failing to distinguish between cases with high or low transmission potential.
 171 To overcome this limitation, we propose a bi-layer heterogeneous graph that simultaneously captures
 172 case-level infection intensity and location-level spatial connectivity within a single unified structure.

173 As shown in Fig.1, the bi-layer graph comprises two types of nodes, location nodes (red nodes) and
 174 case nodes (purple nodes), connected by three types of edges, *Assignment edges* (purple and red
 175 dash lines), *Genetic edges* (purple lines), and *Spatial edges* (red lines). A fixed set of **location nodes**
 176 $\mathcal{V}^{(c)} = \{v_1^{(c)}, \dots, v_N^{(c)}\}$ represents N distinct locations. Each location node $v_i^{(c)}$ is associated with a
 177 feature vector $\mathbf{x}_i^{(c)}(t) = [infected_i(t), population_i(t)]$, where $infected_i(t)$ is the number of newly
 178 reported infection cases and $population_i(t)$ represents the bird abundance in location i at week t .
 179 Consistent with empirical studies showing localized avian influenza transmission (Bonney et al.,
 180 2018), we define spatial edges (red lines) between locations using a kernel-based weighting scheme
 181 rather than a rigid distance cutoff. For each undirected spatial edge $e_{<i,j>}^{(sp)}$ connecting locations i
 182 and j , we assign a weight using a Gaussian kernel $\omega_{ij}^{sp} = K(D_{ij}) = \exp\left(-\frac{D_{ij}^2}{2\sigma^2}\right)$, where D_{ij} is the
 183 geographic distance and $\sigma = \tau_d/3$ is the predefined connection range.

184
 185 A time-varying set of **case nodes** $\mathcal{V}_t^{(p)} = \{v_1^{(p)}, \dots, v_M^{(p)}\}$ represents individual infected samples
 186 reported at time t . The feature vector $\mathbf{x}_m^{(p)}(t)$ encodes the genetic profile of case m at timestep
 187 t , computed as the average of its pairwise genetic distances to other cases using the Kimura 2-
 188 parameter (K80) model on aligned hemagglutinin (HA) segment sequences (Kimura, 1980). Genetic
 189 edges $\{e_{<m,n>}^{(ge)}\}$ connect cases n and m based on their genetic similarity, forming the case layer
 190 (see Appendix A for details). The final bi-layer heterogeneous graph is constructed by connecting
 191 each case node $v_m^{(p)}$ to its reported location node $v_i^{(c)}$ through an assignment edge $e_{<i,m>}^{(as)}$, thereby
 192 integrating the case and location layers.

3.1 CROSS-LAYER SMOOTHING BLOCK

193 Avian influenza transmission involves complex interactions across the case layer and location layer.
 194 We introduce the MRF-inspired cross-layer connection smoothing block to address the discrepancy
 195 of heterogeneous edges and nodes by explicitly leveraging local dependencies across heterogeneous
 196 graph neighborhoods, encouraging coherent representations within epidemiologically linked groups
 197 of nodes while preserving type-specific semantics.

198 The smoothing module leverages a mean-field approach that iteratively refines node embeddings on
 199 each heterogeneous graph. Formally, given an initial node embedding $x_v^{(0)}$ and three distinct edge
 200 types (spatial, genetic, and assignment edges), we perform K -time relation-specific message passing

$$m_r^{(k)}(v) = \frac{1}{|\mathcal{N}_r(v)|} \sum_{u \in \mathcal{N}_r(v)} \mathbf{W}_r x_u^{(k-1)} \quad (1)$$

201 where $\mathcal{N}_r(v)$ denotes immediate neighbors of node v . \mathbf{W}_r is a trainable parameter matrix representing
 202 the strength of interactions between connected nodes under relation r , adhering to the local Markov
 203 property. These messages, reflecting smoothed neighbor information, are aggregated across relations
 204 and combined with a node type-specific bias $b_{\tau(v)}$:

$$x_v^{(k)} = \text{ReLU}(\sum_r m_r^{(k)}(v) + \mathbf{b}_{\tau(v)}) \quad (2)$$

205 Here, we employ a ReLU activation, ensuring each node embedding is influenced by its neighbors'
 206 semantics. Iteratively applying this update K times mimics multiple rounds of belief propagation,
 207 spreading information across the graph structure while explicitly considering different relational

contexts. Thus, by restricting propagation to immediate neighbors, applying learnable, relation-specific transformations, and iteratively refining node representations, this approach effectively integrates key aspects of MRF inference into a differentiable graph-based learning framework.

3.2 INFORMATION-PRESERVING FUSION GRAPHS

Heterogeneous graphs contain different types of nodes and relationships, making their structures inherently complex. This complexity arises from the simultaneous presence of diverse local and global relational dependencies. Converting heterogeneous graphs into a homogeneous form can significantly simplify representation; however, doing so typically risks losing valuable relational information from multiple sources. To overcome this limitation, we propose the *Fusion Graph* to transform the original heterogeneous structure, comprising location and case nodes connected by multiple relational types, into a unified one under spectral alignment (refers to Sec. 3.4 for details). Consequently, the Fusion Graph effectively captures the original heterogeneous complexity while providing a simpler and more interpretable structure (timestep t is omitted for clarity).

Fusion Nodes. Implementationally, we define fusion nodes as aggregated representations of locations, constructed by systematically integrating neighbor information from the original heterogeneous graph. Given an initial heterogeneous graph \mathcal{G}_t , fusion node embedding \mathbf{x}_i corresponding to the location node $v_i^{(c)} \in \mathcal{V}^{(c)}$ at timestep t is generated by

$$\mathbf{z}_i^{(c)} = f_1(\mathbf{x}_i^{(c)} \parallel \mathbf{x}_i^{(\text{spatial})}), \mathbf{z}_i^{(p)} = f_2(\mathbf{x}_i^{(\text{genetic})}), \mathbf{x}_i = f_m([\mathbf{z}_i^{(c)} \parallel \mathbf{z}_i^{(p)}]), \quad (3)$$

where $\mathbf{x}_i^{(c)}$ denotes the intrinsic features of location node i , and \parallel represents the concatenation operation. The aggregation functions f_1 , f_2 , and f_m are implemented as MLPs with nonlinear activation functions. $\mathbf{x}_i^{(\text{spatial})}$ are the **spatial context vector** for location i , calculated by averaging over connected nodes of the same type $\mathbf{x}_i^{(\text{spatial})} = \frac{1}{|\mathcal{N}_i^{(\text{sp})}|} \sum_{j \in \mathcal{N}_i^{(\text{sp})}} \mathbf{x}_j^{(c)}$. $\mathbf{x}_i^{(\text{genetic})}$ is the **genetic context vector** for location i , computed by applying mean pooling to the feature vectors of all case nodes associated with location i . $\mathbf{x}_i^{(\text{spatial})}$ aggregates information from neighboring locations connected by spatial relationships, while $\mathbf{x}_i^{(\text{genetic})}$ summarizes genetic information derived from cases within location i . The specific aggregation functions, f_1 and f_2 , and the subsequent fusion function f_m employ Multi-Layer Perceptrons (MLPs) with nonlinear activation functions, effectively integrating diverse nodes into coherent fusion node embeddings.

Fusion Edges. Once fusion node embeddings are obtained, we construct edges to induce a coherent relational topology. Instead of forcing every possible pair or using a hard cut-off, we employ a learnable link prediction network augmented with Locality-Sensitive Hashing (LSH) to select edges and ensure computational tractability. Specifically, for any pair of fusion nodes v_i and v_j (generated from location nodes $v_i^{(c)}$ and $v_j^{(c)}$), we define the link probability p_{ij} as $p_{ij} = \sigma(W_l[\mathbf{x}_i \parallel \mathbf{x}_j] + b_l)$, with $\sigma(\cdot)$ is Sigmoid activation for normalization probabilities. \parallel indicate vector concatenation, and W_l, b_l are learnable parameters. To avoid $O(N^2)$ enumeration over all node pairs, we generate a reduced candidate set via LSH: node embeddings are projected onto K random hyperplanes to produce binary codes, which approximate cosine similarity in the embedding space (Charikar, 2002). Specifically, each fusion node embedding $\mathbf{x}_i^{(f)}$ is converted into a B -bit binary code

$$\mathbf{h}_i = [\text{sign}(\mathbf{r}_1^\top \mathbf{x}_i), \dots, \text{sign}(\mathbf{r}_B^\top \mathbf{x}_i)] \in \{0, 1\}^B \quad (4)$$

where \mathbf{r}_h are independent random projection vectors sampled from a spherical distribution and B is the length of binary codes. Nodes with identical hash codes are placed into the same group, and within-bucket pairs (i, j) are considered candidate edges, leveraging the high collision probability of similar vectors. If the number of exact-match candidates is below a predefined maximum M_{\max} , the candidate set is supplemented by selecting node pairs whose Hamming distance between codes does not exceed a threshold $\tau_h=1$. By grouping nodes via code matches, we avoid the cost of exhaustive pairwise comparison and reduce to approximately $O(N + M_{\max})$ operations, where $N = |\mathcal{V}^{(c)}| + |\mathcal{V}_t^{(p)}|$ denotes the total number of location and case nodes at time t .

To integrate original heterogeneous relations into the fusion graph, **BLUE** further employs a gate network that dynamically weights spatial and genetic edges based on node-pair interactions. Formally, for each pair of fusion nodes v_i and v_j , the relation-specific embedding $\mathbf{e}_{ij}^{(r)} = \mathbf{e}_r + \mathbf{W}_{\text{edge}} \mathbf{x}_{ij}^{(r)} + \mathbf{b}_{\text{edge}}$, where $r \in \{\text{spatial, genetic}\}$, \mathbf{e}_r is a learnable vector encoding relation type, and $\mathbf{x}_{ij}^{(r)} =$

270 $\{\mathbf{x}_i^{(c)}, \mathbf{x}_j^{(p)}\}$ contains the corresponding edge features. These embeddings are then fed into a multi-head self-attention network (Vaswani et al., 2017) to produce normalized scores across relations
271
272

$$273 \quad \alpha_{ij}^{(r)} = \text{Attn}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{e}_{ij}^{(r)}), \mathbf{e}_{ij}^{(r)} = \sum_r \frac{\exp(\alpha_{ij}^{(r)})}{\sum_{r'} \alpha_{ij}^{(r')}} \mathbf{e}_{ij}^{(r)} \quad (5)$$

275 The fusion-edge embedding is obtained as a weighted sum $\mathbf{e}_{ij} = \sum_r \alpha_{ij}^{(r)} \mathbf{e}_{ij}^{(r)}$. Thus, we obtain the
276 unified fusion graphs with updated fusion node embeddings \mathbf{X}_t and edge embeddings $\mathbf{E}_t^{(f)}$. This
277 process enables our model to emphasize the most informative relationships for each node pair while
278 preserving spatial and genetic interpretability and maintaining end-to-end differentiability. To ensure
279 the maximum information preservation during the fusion process, we employ a spectral regularizer
280 $\|\mathbf{L}_{\text{hetero}} - \mathbf{L}_f\|_F^2$ to ensure the diffusion modes consistency (detailed in Sec. 3.4).
281

282 3.3 AUTOREGRESSIVE ENCODER-DECODER FORECASTING

283 To model temporal dynamics over compressed fusion graphs, we use the sequence-to-sequence
284 architecture. For each time step $t \in \{T-w+1, \dots, T\}$, node embeddings \mathbf{X}_t are processed by L
285 GraphSAGE layers G_l (Hamilton et al., 2017)

$$286 \quad \mathbf{H}_t^{(l+1)} = \sigma(G_l(\mathbf{H}_t^{(l)}, \mathbf{E}_t^{(f)})), l = 0, \dots, L-1, \quad (6)$$

287 where the initial layer input is the node embedding with an added positional encoding $\mathbf{H}_t^{(0)} = \mathbf{X}_t + \mathbf{p}_t$.
288 Here, \mathbf{p}_t is a learnable positional encoding. The outputs from the final GraphSAGE layer for each
289 time step are stacked to form the overall representation $\mathcal{H} = [\mathbf{H}_{T-w+1}^{(L)}, \dots, \mathbf{H}_T^{(L)}] \in \mathbb{R}^{w \times N \times d}$. This
290 tensor is then processed by a multi-head attention mechanism (Vaswani et al., 2017) to produce a
291 context vector $\mathbf{H}^{(c)} = \text{Attn}(\mathcal{H})$, capturing the temporal dependencies. The decoder then forecasts
292 for a horizon H , in an autoregressive manner. Final predictions are $\hat{\mathbf{y}}_h = \mathbf{W}_{\text{out}} \tilde{\mathbf{d}}_h$, where $\tilde{\mathbf{d}}_h$ is the
293 decoder output. Further implementation and complexity details are in Appendix. A.
294

295 3.4 OPTIMIZATION

296 During training, **BLUE** minimizes the objective that couples (i) multi-step forecasting term, (ii)
297 spectral alignment of the learned fusion graph, and (iii) standard parameter regularization. Forecasting
298 term measures the differences between the forecast $\hat{y}_{i,h}$ and the ground-truth infection count $y_{i,h}$.
299 Since epidemiological data requires more critical predictions of higher infection cases than zero
300 infection cases, we introduce a hierarchical weighting scheme that assigns different importance to
301 prediction errors based on the magnitude of actual infection counts

$$302 \quad \mathcal{L}_{\text{pred}} = \frac{1}{N} \sum_{h=T+1}^{T+H} \sum_{i=1}^N w_i \cdot (\hat{y}_{i,h} - y_{i,h})^2, \quad (7)$$

303 with three distinct infection severities τ_i ($i \in \{\text{low, med, high}\}$) with corresponding weight coefficients
304 w_i . By emphasizing importance of higher infection cases with higher w_i , **BLUE** concentrates
305 on non-zero infections through progressive weighting and learns to predict critical outbreak scenarios.
306

307 Compressing bi-layer graphs into fusion graphs is a spectral low-pass filter: high-frequency components
308 on the fine, case-level sub-graph are discarded. Consequently, operating only on the fused
309 graph risks under-representing subtle transmission channels driven by a few genetically distinctive
310 samples. To best preserve useful information, we employ a spectral regularizer to force the spectral
311 alignment between the original bi-layer heterogeneous graphs and fusion graphs.
312

313 Let $P \in \{0, 1\}^{(N+M_{\text{max}}) \times N}$ be the projection that maps case nodes into their home locations.
314 $\mathbf{A}_{\text{hetero}}$ and $\mathbf{L}_{\text{hetero}}$ be the layer-adjacency and Laplacian of the heterogeneous graph, and let \mathbf{A}_f
315 and \mathbf{L}_f be the adjacency and Laplacian of the learned fusion graph. Define the fusion Laplacian
316 $\tilde{\mathbf{L}}_f := P \mathbf{L}_f P^\top$ and the corresponding normalized adjacencies $\mathbf{M}_{\text{hetero}} = \mathbf{I} - \mathbf{L}_{\text{hetero}}$, $\tilde{\mathbf{M}}_f = \mathbf{I} - \tilde{\mathbf{L}}_f$.
317

318 **Theorem 3.1.** *Assume spectral approximation under $\|\mathbf{L}_{\text{hetero}} - \tilde{\mathbf{L}}_f\| \leq \varepsilon$ ($0 < \varepsilon \ll 1$). For any
319 polynomial filter $p(\cdot)$ and content vector \mathbf{H} , we have $\|p(\mathbf{M}_{\text{hetero}})\mathbf{H} - p(\tilde{\mathbf{M}}_f)\mathbf{H}\|_F \leq O(\varepsilon)\|\mathbf{H}\|_F$.*

320 *Proof.* Consider a GraphSAGE layer $\Phi(\mathbf{H}) = \sigma(\mathbf{W}_s \mathbf{H} + \mathbf{W}_n p(\mathbf{M}) \mathbf{H})$, where weight norms
321 $\|\mathbf{W}_s\| \leq \beta_s$, $\|\mathbf{W}_n\| \leq \beta_n$. Define $Z := \beta_s + \beta_n \|p(\mathbf{M}_{\text{hetero}})\|_2$. Under $\|\mathbf{L}_{\text{hetero}} - \tilde{\mathbf{L}}_f\|$,

$$322 \quad \|\Phi_{\text{hetero}}(\mathbf{H}) - \Phi_f(P^\top \mathbf{H})\|_F \leq O(\beta_n \varepsilon) \|\mathbf{H}\|_F + \underbrace{\beta_s \|\mathbf{H} - P P^\top \mathbf{H}\|_F}_{\text{fusion mismatch term}}. \quad (8)$$

324 Table 1: Performance on Avian-US dataset. Experiments are run under $T=4$ and $H=4$, with 5-fold
 325 validation. * denote statistically significant improvements, validated by a paired t-test at a significance
 326 level of $p < 0.05$ against the runner-up model. Best results are **bolded**.

model	STGCN	SelfAttnRNN	ST-Net	EAST-Net	DRCNN	EpiGNN	Cola-GNN	STSGT	Epi-Cola-GNN	HGT	BLUE
RMSE(↓)	0.874 \pm 0.143	0.896 \pm 0.175	0.902 \pm 0.160	0.897 \pm 0.177	0.797 \pm 0.131	0.783 \pm 0.120	0.712 \pm 0.100	0.826 \pm 0.125	0.691 \pm 0.114	0.652 \pm 0.083	0.611\pm0.072
MAE(↓)	0.420 \pm 0.091	0.372 \pm 0.057	0.457 \pm 0.084	0.556 \pm 0.077	0.612 \pm 0.040	0.263 \pm 0.044	0.178 \pm 0.022	0.169 \pm 0.125	0.097 \pm 0.017	0.090 \pm 0.016	0.085\pm0.018
PCC(↑)	0.048 \pm 0.002	0.052 \pm 0.005	0.058 \pm 0.003	0.065 \pm 0.004	0.059 \pm 0.005	0.072 \pm 0.005	0.077 \pm 0.004	0.040 \pm 0.008	0.078\pm0.004	0.077 \pm 0.005	0.087\pm0.013
SCC(↑)	0.077 \pm 0.009	0.080 \pm 0.011	0.087 \pm 0.013	0.084 \pm 0.013	0.087 \pm 0.012	0.082 \pm 0.011	0.085 \pm 0.010	0.108 \pm 0.020	0.083 \pm 0.011	0.097 \pm 0.017	0.122\pm0.014
F1(↑)	0.064 \pm 0.004	0.070 \pm 0.004	0.075 \pm 0.017	0.078 \pm 0.008	0.067 \pm 0.008	0.067 \pm 0.005	0.065 \pm 0.010	0.073\pm0.018	0.082 \pm 0.020	0.080 \pm 0.008	0.100\pm0.019

331 Since heterogeneous nodes are fused at location level ($\mathbf{H} = PP^\top \mathbf{H}$), it simplifies to $\|\Phi(\mathbf{H}) -$
 332 $\Phi(P^\top \mathbf{H})\| \leq \beta_n \varepsilon \|\mathbf{H}\|$ without mismatch. **BLUE** are implemented with L GraphSAGE layers,

$$334 \|\mathcal{F}_{hetero}(\mathbf{H}) - \mathcal{F}_f(P^\top \mathbf{H})\|_F \leq O\left(\frac{Z^L - 1}{Z - 1}\varepsilon\right)\|\mathbf{H}\|_F. \quad (9)$$

336 For a tighter upper bound, we apply the weight normalization on GraphSAGE layers to ensure
 337 $Z \approx 1$, reducing to an $O(L\varepsilon)$ bound. Hence, the fusion graph retains the effective information of the
 338 heterogeneous process up to a controllable, linear-in-depth spectral error. \square

340 With λ_1, λ_2 controlling the weights of spectral alignment and regularization, the final objective is

$$341 \mathcal{L}_{\text{tot}} = \underbrace{\frac{1}{N} \sum_{h=T+1}^{T+H} \sum_{i=1}^N w_i \cdot (\hat{y}_{i,h} - y_{i,h})^2}_{\mathcal{L}_{\text{pred}}} + \lambda_1 \cdot \underbrace{\|\mathbf{L}_{\text{hetero}} - \tilde{\mathbf{L}}_f\|_F^2}_{\mathcal{L}_{\text{spec}}} + \lambda_2 \underbrace{\sum_{w \in \Theta} \|w\|_2^2}_{\mathcal{L}_r}. \quad (10)$$

4 EXPERIMENTS

347 We evaluate **BLUE** on two datasets: (1) **Flu-Japan** dataset, introduced by (Deng et al., 2020), com-
 348 prises weekly influenza-like illness counts from 47 prefectures in Japan over the period 2012–2019.
 349 (2) Our proposed **Avian-US** dataset, constructed as described in Appendix D, covers 3,227 counties
 350 and integrates genetic, spatial, and ecological modalities. Combining two datasets, we aim to demon-
 351 strate **BLUE**’s capacity to leverage both homogeneous and heterogeneous relational information².

352 **Baselines.** We compare **BLUE** against following GNN-based models: 1) homogeneous spatio-
 353 temporal forecasting models (**ST-GCN** (Yu et al., 2018), **SelfAttnRNN** (Cheng et al., 2016),
 354 **DCRNN** (Li et al., 2018), and **EAST-Net** (with a simplify version **ST-Net**) (Wang et al., 2022b)),
 355 2) influenza-like epidemic prediction models (**Cola-GNN** (Deng et al., 2020), **EpiGNN** (Xie et al.,
 356 2022), **Epi-cola-GNN** (Liu et al., 2023a), **STSGT** (Banerjee et al., 2022)), and 3) heterogeneous-
 357 based model (**HGT** (Hu et al., 2020)). We adopt 5 complementary metrics: Root Mean Squared
 358 Error (**RMSE**), Mean Absolute Error (**MAE**), Pearson Correlation Coefficient (**PCC**), Spearman
 359 Correlation Coefficient (**SCC**), and Threshold F1 Score (**F1**, only detected when prediction exceeds
 360 threshold $t = 0.3$). Please refer to Appendix E for implementation details and experimental settings.

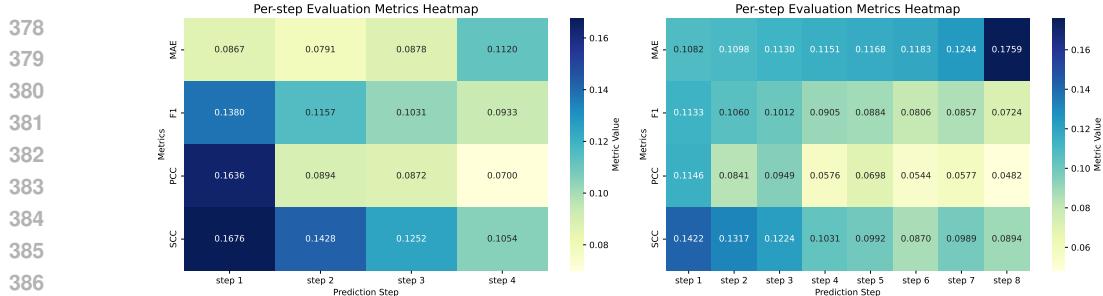
4.1 OVERALL PERFORMANCE

362 In the Avian-US dataset, **BLUE** achieves the highest PCC. However, as PCC is sensitive to small
 363 fluctuations and can be skewed in sparse datasets like Avian-US, we also incorporate SCC, a rank-
 364 based metric better suited for sparse, non-linear epidemic signals. As shown in Table.1, HGT is the
 365 runner-up in regression-based metrics (RMSE/MAE) owing to its capacity to model heterogeneous
 366 nodes. Epi-cola-GNN excels at capturing linear correlations, while STSGT demonstrates superior
 367 performance in outbreak detection, achieving the runner-up F1 score. Notably, **BLUE** achieves the
 368 highest PCC and SCC, confirming its strong capacity to capture both linear and non-linear correlations.
 369 Across all metrics, **BLUE** exhibits a clear advantage: it reduces the RMSE by 0.041 and the MSE by
 370 0.005 compared to the runner-up, HGT. Furthermore, **BLUE** achieves the highest F1 score, which
 371 highlights its superior ability to detect outbreak occurrences rather than merely predicting precise
 372 case counts (comprehensive performance shown in Appendix. F).

4.2 PER-STEP PERFORMANCE

373 To provide finer-grained insights into forecasting performance, we conducted a temporal analysis of
 374 per-step results on the Avian-US dataset under $T = 4$ and $H \in \{4, 8\}$. As shown in Fig. 2, nearly

375 ²Flu-Japan does not include genomic information for case-case correlations. Its graph structure reduces to
 376 only 47 prefecture-level homogeneous nodes connected by spatial edges. We include it as a fair comparison with
 377 previous baselines on homogeneous settings and move the detailed experiments on Flu-Japan to Appendix. F.

Figure 2: Per-step performance on Avian-US with $H = 4$ (left) and $H = 8$ (right).

all evaluation metrics decrease as the prediction horizon H increases, which is consistent with the inherent difficulty of long-range forecasting. For per-step performance, **BLUE** performs optimally at step 1 under both horizon settings, achieving its highest F1 score, PCC, and SCC. Performance consistently declines as the predicted step increases, resulting in the lowest outbreak detection ability and largest prediction errors at the final step. Specifically, **BLUE**’s capacity to detect outbreaks decreases, with the F1 score falling from 0.1380 to 0.0933 for $H = 4$ and from 0.1133 to 0.0724 for $H = 8$. SCC, indicating the capacity for capturing spread trends, also decreases. Despite slight fluctuations, MAE of predicted infection counts increases with each successive step, rising from 0.0867 to 0.1120 for $H = 4$ and from 0.1082 to 0.1759 for $H = 8$.

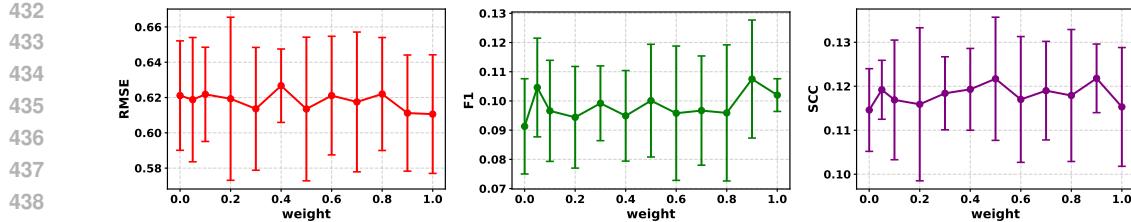
4.3 ABLATION STUDY

Ablation studies are conducted to evaluate the contributions of each part in **BLUE**. We introduce following variants: 1) *w/o gen* only utilizes the spatial distances and assignment relationships; 2) *w/o CS+Spec* only implement the auto-regressive encoder-decoder framework; 3) *w/o CS* excludes the cross-layer smoothing block; 4) *w/o Spec* excludes the spectral regularizer from the objective function; 5) *w/ LSH* removes attention gate with simple averaging; 6) *w/ attn* only use attention gate for fusion edge calculation; 7) *w/o eco* removes location ecological features (bird abundance); 8) *w/ drop* randomly drop 20% of edges from bi-layer heterogeneous graphs. The results are shown in Table. 2.

The CS block and the Spectral Regularizer function work collaboratively. Disabling CS (*w/o CS*) allows noise from the initial sparse graph construction to propagate, harming ranking metrics. Similarly, removing the spectral constraint (*w/o Spec*) decouples the learned graph structure from the true epidemiological diffusion process, leading to overfitting. The combined removal of these components (*w/o CS+Spec*) yields the poorest performance, demonstrating that raw auto-regressive encoding is insufficient without structurally guided regularization. Removing genetic edges (*w/o gen*) causes a sharp increase in MAE, confirming that AIV outbreaks follow complex biological pathways that spatial proximity cannot fully explain. This is further supported by the *w/ drop* experiment, where randomly severing 20% of edges degrades performance, showing that AIV spread forecasting relies on a reliable, complete connectivity structure for aggregation. Moreover, two key observations arise from the attention experiments. First, replacing the dynamic gate with simple averaging (*w/ LSH*) increases MAE, proving that the model must learn to weigh spatial versus genetic risks adaptively. Second, using full dense attention (*w/ attn*) underperforms compared to the LSH-based approach (reducing F1 to 0.0901). This suggests that LSH acts as a beneficial constraint—limiting aggregation to high-probability neighborhoods prevents the model from overfitting to noisy, long-range interactions common in sparse data. Overall, **BLUE** achieves the best performance across all metrics, confirming that each component contributes distinctly to capturing the spatiotemporal dynamics of AIV spread.

4.4 SPECTRAL ALIGNMENT \mathcal{L}_{spec}

The spectral regularizer, \mathcal{L}_{spec} , ensures the alignment of transmission information between the original bi-layer heterogeneous graphs and the fused graphs. As demonstrated in Fig. 3, increasing the weight λ_1 steadily enhances the model’s ability to capture trends, detect events, and reduce forecasting error. Specifically, as λ_1 increases across the tested range, RMSE shows a fluctuating

Figure 3: Impact of spectral alignment weight λ_1 .Table 3: Different predicted horizon H under window size $T = 4$ (up) and $T = 8$ (down).

T	1	2	4	4	8	T	1	2	8	4	8
RMSE	0.6018 ± 0.0730	0.6098 ± 0.0653	0.6106 ± 0.0719	0.6174 ± 0.0319		RMSE	0.6337 ± 0.0394	0.6112 ± 0.0411	0.6268 ± 0.0292	0.6178 ± 0.0434	
MAE	0.0955 ± 0.0217	0.0924 ± 0.0198	0.0848 ± 0.0182	0.0961 ± 0.0358		MAE	0.1151 ± 0.0200	0.0952 ± 0.0245	0.1061 ± 0.0383	0.1065 ± 0.0212	
F1	0.1271 ± 0.0166	0.1109 ± 0.0273	0.1001 ± 0.0193	0.0949 ± 0.0113		F1	0.1226 ± 0.0169	0.1269 ± 0.0175	0.1030 ± 0.0074	0.0950 ± 0.0069	
PCC	0.1195 ± 0.0339	0.0976 ± 0.0188	0.0871 ± 0.0132	0.0683 ± 0.0074		PCC	0.1225 ± 0.0237	0.1084 ± 0.0151	0.0828 ± 0.0208	0.0788 ± 0.0088	
SCC	0.1489 ± 0.0148	0.1345 ± 0.0230	0.1217 ± 0.0140	0.1029 ± 0.0066		SCC	0.1587 ± 0.0158	0.1472 ± 0.0085	0.1208 ± 0.0161	0.1172 ± 0.0127	

yet decreasing trend, from 0.6211 to 0.6112. The F1 Score rises from 0.0913 at $\lambda_1 = 0$ and peaks at $\lambda_1 = 0.9$, marking a 17.1% improvement over the baseline. Similarly, SCC steadily improves with the weight and reaches its maximum value at $\lambda_1 = 0.9$. Although a slight drop is observed at $\lambda_1 = 1$, the narrow error bars at this point suggest a more robust performance. Therefore, using an excessively large value for λ_1 could cause the model to over-prioritize spectral alignment, potentially leading to the neglect of the primary forecasting task.

4.5 IMPACTS OF WINDOW SIZE T AND PREDICTED HORIZON H

Impact of Prediction Horizon H . When the observation window is short ($T = 4$), the lowest RMSE and MSE are achieved at the shortest prediction horizon. This suggests that **one-week patterns** in the Avian-US dataset are more stable and predictable than dynamics over longer horizons. As the prediction horizon H increases, F1, PCC, and SCC tend to decline. This decline is attributed to the **high variability of temporal patterns** and the sparse ground-truth infection counts. The irregularity in avian influenza outbreaks, potentially due to variations in viral infectivity across different strains, makes long-term forecasting challenging. The worst results for all metrics are observed at the longest horizon ($H = 8$), a common outcome due to **error accumulation** in the autoregressive decoding process, indicating a loss of predictive accuracy when the forecast horizon is too long.

Impact of Observation Window T . Considering a fixed prediction horizon H , increasing the observation window T (from $T = 4$ to $T = 8$) shows a consistent positive trend: (i) **Enhanced Pattern Capture**: There is a consistent decrease in RMSE and MAE, along with an upward trend in F1/PCC/SCC. This indicates that longer historical observations enhance BLUE’s ability to capture underlying patterns in the Avian-US dataset. (ii) **Increased Variability**: the performance variances of nearly all metrics increase with larger T . This is likely because longer observation windows, especially with sparse data, introduce a higher proportion of zero-valued regions across counties, which enlarges variability across validation folds and leads to greater fold-to-fold variability in results.

5 CONCLUSION AND DISCUSSION

We present **BLUE**, a bi-layer heterogeneous graph fusion network that integrates genetic and spatial data to improve epidemic forecasting. **BLUE** uses cross-layer smoothing and information-preserving graph fusion to learn coherent representations of disease spread through an autoregressive encoder-decoder architecture. We evaluate **BLUE** on two datasets: the newly constructed Avian-US dataset and the publicly available Flu-Japan dataset. In both settings, **BLUE** outperforms strong spatio-temporal and epidemic forecasting baselines, demonstrating its effectiveness across different spatial and epidemiological contexts. The spectral fusion mechanism within **BLUE** is generalizable and can be extended to maintain structural alignment in more complex, multi-layer graph settings. While the current version of the Avian-US dataset does not include environmental variables, the architecture of **BLUE** is inherently modular and extensible. Additional information, such as location-level temperature, humidity, or other ecological indicators, can be incorporated as new features with corresponding cross-layer connections. In future work, we plan to expand the dataset with richer environmental attributes and biological categories, such as mammals and humans, to better support realistic forecasting, extending **BLUE**’s applicability to more comprehensive, real-world scenarios.

486 6 ETHICS STATEMENT**487**
488 All authors have read the ICLR Code of Ethics and will adhere to it throughout submission, review,
489 and discussion. Our study uses public, non-human data only; no human subjects or personally
490 identifiable information are involved, and no animal experimentation is conducted. We follow the
491 Code’s principles to uphold scientific excellence with honest, transparent, and reproducible reporting;
492 to respect privacy and confidentiality and comply with data licences; and to avoid harm and consider
493 potential dual-use impacts. We disclose any conflicts of interest and funding transparently and
494 welcome reviewer feedback on ethical concerns.**495**
496 7 REPRODUCIBILITY STATEMENT**497**
498 An anonymous code repository with training/inference scripts and configuration files is linked in
499 the Abstract. Model architecture, forecasting procedure, and optimization objectives are specified in
500 Section 3, including the autoregressive encoder–decoder framework (detailed in Appendix A.4) and
501 loss/regularization details (in Section 3.4). Computational complexity and implementation notes are
502 provided in Appendix A. Dataset sources, processing/alignment steps, and statistics are documented
503 in Section 4 and Appendix D. The experimental setup, baseline implementations, evaluation metrics,
504 and other practical details are summarized in Section 4 and Appendix E.**505**
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

541 Soumyanil Banerjee, Ming Dong, and Weisong Shi. Spatial-temporal synchronous graph transformer
542 network (stsgt) for covid-19 forecasting. *Smart Health*, 26:100348, 2022.

543

544 Peter J Bonney, Sasidhar Malladi, Gert Jan Boender, J Todd Weaver, Amos Ssematimba, David A
545 Halvorson, and Carol J Cardona. Spatial transmission of h5n2 highly pathogenic avian influenza
546 between minnesota poultry premises during the 2015 outbreak. *PloS one*, 13(9):e0204262, 2018.

547

548 Rickard Brüel Gabrielsson. Universal function approximation on graphs. *Advances in neural
549 information processing systems*, 33:19762–19772, 2020.

550

551 Valentina Caliendo, Nicola S Lewis, Anne Pohlmann, Stephen R Baillie, Ashley C Banyard, Martin
552 Beer, Ian H Brown, RAM Fouchier, Rowena DE Hansen, Thomas K Lameris, et al. Transatlantic
553 spread of highly pathogenic avian influenza h5n1 by wild birds from europe to north america in
554 2021. *Scientific reports*, 12(1):11729, 2022.

555

556 Qi Cao, Renhe Jiang, Chuang Yang, Zipei Fan, Xuan Song, and Ryosuke Shibasaki. Mepognn:
557 Metapopulation epidemic forecasting with graph neural networks. In *Joint European conference
558 on machine learning and knowledge discovery in databases*, pp. 453–468. Springer, 2022.

559

560 Moses S Charikar. Similarity estimation techniques from rounding algorithms. In *Proceedings of the
561 thiry-fourth annual ACM symposium on Theory of computing*, pp. 380–388, 2002.

562

563 Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine
564 reading. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language
565 Processing*. Association for Computational Linguistics, 2016.

566

567 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
568 scheme based on p-stable distributions. In *Proceedings of the twentieth annual symposium on
569 Computational geometry*, pp. 253–262, 2004.

570

571 Rossella Della Marca, Nadia Loy, and Andrea Tosin. An sir model with viral load-dependent
572 transmission. *Journal of Mathematical Biology*, 86(4):61, 2023.

573

574 Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. Cola-gnn: Cross-
575 location attention based graph neural networks for long-term ili prediction. In *Proceedings of the
576 29th ACM international conference on information & knowledge management*, pp. 245–254, 2020.

577

578 PL Dobruschin. The description of a random field by means of conditional probabilities and conditions
579 of its regularity. *Theory of Probability & Its Applications*, 13(2):197–224, 1968.

580

581 eBird. Weekly bird abundance data, 2022. URL <https://science.ebird.org/en-status-and-trends>. Accessed January 2025.

582

583 National Center for Biotechnology Information (NCBI). Genbank sequence database, 2025. URL
584 <https://www.ncbi.nlm.nih.gov/genbank/>. Accessed January 2025.

585

586 Xiaolong Geng, Gabriel G Katul, Firas Gerges, Elie Bou-Zeid, Hani Nassif, and Michel C Boufadel. A
587 kernel-modulated sir model for covid-19 contagious spread from county to continent. *Proceedings
588 of the National Academy of Sciences*, 118(21):e2023321118, 2021.

589

590 Rui Guo, Xu Tian, Hanhe Lin, Stephen McKenna, Hong-Dong Li, Fei Guo, and Jin Liu. Graph-
591 based fusion of imaging, genetic and clinical data for degenerative disease diagnosis. *IEEE/ACM
592 Transactions on Computational Biology and Bioinformatics*, 21(1):57–68, 2023.

593

594 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
595 *Advances in neural information processing systems*, 30, 2017.

596

597 Konstantin Hemker, Nikola Simidjievski, and Mateja Jamnik. Healnet: Multimodal fusion for
598 heterogeneous biomedical data. *Advances in Neural Information Processing Systems*, 37:64479–
599 64498, 2024.

600

601 Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
602 *Proceedings of the web conference 2020*, pp. 2704–2710, 2020.

594 Elizabeth Hunter and John Kelleher. Understanding the assumptions of an seir compartmental model
 595 using agentization and a complexity hierarchy. *Journal of Computational Mathematics and Data
 596 Science*, 4:100056, 07 2022. doi: 10.1016/j.jcmds.2022.100056.

597

598 Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and Chidambaram Cru-
 599 shew. A survey on locality sensitive hashing algorithms and their applications. *arXiv preprint
 600 arXiv:2102.08942*, 2021.

601 Sein Kim, Namkyeong Lee, Junseok Lee, Dongmin Hyun, and Chanyoung Park. Heterogeneous
 602 graph learning for multi-modal medical data analysis. In *Proceedings of the AAAI Conference on
 603 Artificial Intelligence*, volume 37, pp. 5141–5150, 2023.

604 Motoo Kimura. A simple method for estimating evolutionary rates of base substitutions through
 605 comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16(2):111–120,
 606 1980. doi: 10.1007/BF01731581.

607

608 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
 609 Data-driven traffic forecasting. In *International Conference on Learning Representations*, 2018.

610

611 Bryan Lim, Sercan Ö Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
 612 interpretable multi-horizon time series forecasting. *International Journal of Forecasting*, 37(4):
 613 1748–1764, 2021.

614

615 Chen Lin, Jianghong Zhou, Jing Zhang, Carl Yang, and Eugene Agichtein. Graph neural network mod-
 616eling of web search activity for real-time pandemic forecasting. In *2023 IEEE 11th International
 617 Conference on Healthcare Informatics (ICHI)*, pp. 128–137. IEEE, 2023.

618

619 Mutong Liu, Yang Liu, and Jiming Liu. Epidemiology-aware deep learning for infectious disease
 620 dynamics prediction. In *Proceedings of the 32nd ACM International Conference on Information
 621 and Knowledge Management*, pp. 4084–4088, 2023a.

622

623 Yang Liu, Yu Rong, Zhuoning Guo, Nuo Chen, Tingyang Xu, Fugee Tsung, and Jia Li. Human
 624 mobility modeling during the covid-19 pandemic via deep graph diffusion infomax. In *Proceedings
 625 of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 14347–14355, 2023b.

626

627 Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph
 628 neural networks in epidemic modeling. In *Proceedings of the 30th ACM SIGKDD Conference on
 629 Knowledge Discovery and Data Mining*, pp. 6577–6587, 2024.

630

631 Viet Bach Nguyen, Truong Son Hy, Long Tran-Thanh, and Nhung Nghiem. Predicting covid-19
 632 pandemic by spatio-temporal graph neural networks: A new zealand’s study. *arXiv preprint
 633 arXiv:2305.07731*, 2023.

634

635 Eirini Papagiannopoulou, Matías Nicolás Bossa, Nikos Deligiannis, and Hichem Sahli. Long-term
 636 regional influenza-like-illness forecasting using exogenous data. *IEEE Journal of Biomedical and
 637 Health Informatics*, 28(6):3781–3792, 2024.

638

639 Dianne J Prosser, Cody M Kent, Jeffery D Sullivan, Kelly A Patyk, Mary-Jane McCool, Mia Kim
 640 Torchetti, Kristina Lantz, and Jennifer M Mullinax. Using an adaptive modeling framework to
 641 identify avian influenza spillover risk at the wild-domestic interface. *Scientific Reports*, 14(1):
 14199, 2024.

642

643 Xiaojun Pu, Jiaqi Zhu, Yunkun Wu, Chang Leng, Zitong Bo, and Hongan Wang. Dynamic adaptive
 644 spatio-temporal graph network for covid-19 forecasting. *CAAI Transactions on Intelligence
 645 Technology*, 9(3):769–786, 2024.

646

647 Hao Sha, Mohammad Al Hasan, and George Mohler. Source detection on networks using spatial
 648 temporal graph convolutional networks. In *2021 IEEE 8th International Conference on Data
 649 Science and Advanced Analytics (DSAA)*, pp. 1–11. IEEE, 2021.

648

649 Yinzhou Tang, Huandong Wang, and Yong Li. Enhancing spatial spread prediction of infectious
 650 diseases through integrating multi-scale human mobility dynamics. In *Proceedings of the 31st
 651 ACM International Conference on Advances in Geographic Information Systems*, pp. 1–12, 2023.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 650 *systems*, 30, 2017.

651

652 Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan Venkatramanan, and
 653 Madhav Marathe. Causalgnn: Causal-based graph neural networks for spatio-temporal epidemic
 654 forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp.
 655 12191–12199, 2022a.

656

657 Zhaonan Wang, Renhe Jiang, Hao Xue, Flora D Salim, Xuan Song, and Ryosuke Shibasaki. Event-
 658 aware multimodal mobility nowcasting. In *Proceedings of the AAAI Conference on Artificial*
 659 *Intelligence*, volume 36, pp. 4228–4236, 2022b.

660

661 Feng Xie, Zhong Zhang, Liang Li, Bin Zhou, and Yusong Tan. Epignn: Exploring spatial transmission
 662 with graph neural network for regional epidemic forecasting. In *Joint European Conference on*
 663 *Machine Learning and Knowledge Discovery in Databases*, pp. 469–485. Springer, 2022.

664

665 Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
 666 learning framework for traffic forecasting. In *Proceedings of the Twenty-Seventh International*
 667 *Joint Conference on Artificial Intelligence*, pp. 3634–3640. International Joint Conferences on
 668 Artificial Intelligence Organization, 2018.

669

670 Fuqiang Yu, Lizhen Cui, Huanhuan Chen, Yiming Cao, Ning Liu, Weiming Huang, Yonghui Xu, and
 671 Hua Lu. Healthnet: A health progression network via heterogeneous medical information fusion.
 672 *IEEE Transactions on Neural Networks and Learning Systems*, 34(10):6940–6954, 2022.

673

674 Shuo Yu, Feng Xia, Shihao Li, Mingliang Hou, and Quan Z Sheng. Spatio-temporal graph learning
 675 for epidemic prediction. *ACM Transactions on Intelligent Systems and Technology*, 14(2):1–25,
 676 2023.

677

678 Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous
 679 graph neural network. In *Proceedings of the 25th ACM SIGKDD international conference on*
 680 *knowledge discovery & data mining*, pp. 793–803, 2019.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A COMPUTATIONAL COMPLEXITY
703704 Although **BLUE** introduces multiple components, each is carefully designed to ensure both scalability
705 and practical implementability.
706707 A.1 BI-LAYER HETEROGENEOUS GRAPH CONSTRUCTION
708709 At any given timestep t , the bi-layer heterogeneous graph contains $|V| = N + M_t$ nodes, where
710 N is the number of location nodes and M_t is the number of infected case nodes at timestep t .
711 When δ additional genetic samples are introduced, the node set grows to $|V| = N + M_t + \delta$. The
712 corresponding edge sets expand: 1) Assignment edges: $E^{(as)}: O(M_t) \rightarrow O(M_t + \delta)$; 2) Genetic
713 edges: $E^{(ge)}: O(kM_t) \rightarrow O(k(M_t + \delta))$ (assume a k-Nearest Neighbor connectivity). They result
714 in a **linear increase** in graph construction complexity relative to the number of genetic samples.
715716 A.2 CROSS-LAYER SMOOTHING BLOCK
717718 Given K -round smoothing, for all the relations $r \in \{sp, ge, as\}$, the cross-layer smoothing block
719 calculates a relation-specific message passing process by averaging over the immediate neighbors
720 $\mathcal{N}_r(v)$ and applying a learnable map $\mathbf{W}_r \in \mathbb{R}^{d \times d}$, then aggregates messages across relations with a
721 type-specific bias and ReLU activation.722 Let $|V| = N + M_t$ be the total number of nodes and $|\mathcal{E}_r|$ the number of edges of type r (spatial,
723 genetic, assignment). Each relation's neighbor aggregation corresponds to a sparse–dense product
724 $\mathbf{D}^{-1} \mathbf{A}_r \mathbf{X}^{k-1}$, requiring $\mathcal{O}(|\mathcal{E}_r| \cdot d)$. The subsequent relation-specific transform $M_r^{(k)} \mathbf{W}_r$ costs
725 $\mathcal{O}(|V| \cdot d^2)$ per relation r , and the element-wise nonlinearity is $\mathcal{O}(|V| \cdot d)$, which can be omitted.
726727 Summing over the three relations and iterating K times yields $\mathcal{O}(K[d \cdot (|\mathcal{E}_{sp}| + |\mathcal{E}_{ge}| + |\mathcal{E}_{as}|) +
728 3|V| \cdot d^2])$. Since assignment edges link each infected case to its report location node and are binary,
729 $|\mathcal{E}_{as}| = M$ in our setting.
730731 A.3 INFORMATION-PRESERVING FUSION GRAPHS
732

733 A.3.1 FUSION NODES.

734 Fusion node embeddings are constructed by first aggregating neighboring locations (spatial) and
735 within-location genetic information, and then employing MLPs f_1, f_2, f_m to obtain the fused representations,
736 which costs $\mathcal{O}(|\mathcal{E}_{sp}| \cdot d)$ for spatial neighbors and $\mathcal{O}(M \cdot d)$ for case-to-location assignment.
737 The subsequent per-node MLP transforms cost $\mathcal{O}(N \cdot d)$.
738739 A.3.2 LOCAL SENSITIVE HASHING-BASED EDGE SELECTION.
740741 **Code Construction.** For each bi-layer heterogeneous graph, the total number of location nodes
742 is N . The length of each binary code for the Local Sensitive Hashing sampler is denoted as B .
743 To generate LSH codes, we take B dot products between node embeddings (with dimension d)
744 and independently sampled random hyperplanes \mathbf{r}_b , retaining only the sign of each projection and
745 resulting in a per-node cost of $\mathcal{O}(Nd)$ for computing projections and $\mathcal{O}(B)$ for extracting sign bits.
746 Across all N nodes, the overall cost is $\mathcal{O}(N Bd)$, primarily from matrix–vector multiplications. Once
747 the LSH codes are computed, each node is inserted into a hash map using its binary signal as the key,
748 adding a total $\mathcal{O}(N)$ time cost for the hash table construction. The complete time complexity for
749 code generation and hashing is thus $\mathcal{O}(N Bd + N)$.
750751 **Bucket Matching.** Each bucket with k nodes encodes $\frac{k(k-1)}{2}$ potential node pairs. The LSH-based
752 sampler terminates when the number of collected fusion-edge pairs reaches the limit of M_{max} ,
753 ensuring this step remains within $\mathcal{O}(M_{max})$ time.754 If additional pairs are needed, we perform the following strategy: With randomly selected nodes, we
755 search their neighbors within the Hamming distance threshold $\tau_h = 1$. Since the number of selected
nodes and their neighbors are constants, the computation takes $\mathcal{O}(B)$ in total.
756

756 Combining all terms gives:

$$757 \quad T_{total} = O(NBd + N + M_{max} + B) \quad (11)$$

758 Since the embedding size d and code length B are fixed constants in implementation, the complexity
 759 simplifies to $O(N + M_{max})$, highlighting the scalability of our LSH-based sampler compared to
 760 naive pairwise similarity joins, which require $O(N^2)$ pairwise operations.
 761

762 In practice, we replace the hash table implementation with a sorting-based alternative. Specifically,
 763 each node's B -bit binary code is converted into a single integer representation in $O(NB)$ time. The
 764 resulting integer codes are then sorted in $O(N \log N)$ time. Although the total time complexity of
 765 this sorting-based LSH variant becomes $O(N \log N + M_{max})$, which is asymptotically higher than
 766 the hash map-based approach, it is empirically faster on GPU architectures due to the inefficiency of
 767 hash table operations in parallel settings.
 768

768 A.3.3 FUSION EDGES.

769 Given a candidate set M_{max} of fusion-edge pairs produced by LSH, fusion edges are then scored
 770 by the learnable link prediction network p_{ij} , requiring up to $\mathcal{O}(M_{max} \cdot d)$. The gate network then
 771 defines the relation-specific embeddings and computes normalized scores across relations. With a
 772 constant number of heads and relations, the complexity is mainly determined by per-pair projections,
 773 resulting in $\mathcal{O}(M_{max} \cdot d^2)$.
 774

775 A.4 ENCODER-DECODER FORECASTING

776 To model temporal dynamics, we adopt a sequence-to-sequence architecture over the compressed
 777 fusion graphs. At each time step t of the window size T , the fusion node embeddings \mathbf{X}_t are
 778 propagated through L GraphSAGE layers G_l (Hamilton et al., 2017)³:

$$779 \quad \mathbf{H}_t^{(l+1)} = \sigma(G_l(\mathbf{H}_t^{(l)}, \mathbf{E}_t^{(f)})), \text{ for } l = 0, 1, \dots, L-1 \quad (12)$$

780 where $\mathbf{H}_t^{(0)} = [\mathbf{X}_t + \mathbf{p}_t]$, \mathbf{p}_t denotes learnable positional encoding. $\mathbf{E}_t^{(f)} = \{\mathbf{e}_{ij}\}$ is the edge
 781 embeddings of the fusion graph at timestep t . Over T observations, we collect the final-layer outputs
 782 of each timestep $\{\mathbf{H}_t^{(L)}, \dots, \mathbf{H}_{t+w-1}^{(L)}\}$ and stack them into $\mathcal{H} \in \mathbb{R}^{w \times N \times d}$. This tensor is fed into a
 783 temporal-aware fusion module, implemented by the multi-head attention network (Vaswani et al.,
 784 2017), to enforce features mutually concern across steps, capturing temporal dependence and yielding
 785 a context vector $\mathbf{H}^{(c)}$. Following, the decoder operates in an autoregressive manner over a forecasting
 786 horizon of length H . At each step $h \in \{1, \dots, H\}$, it applies a GraphSAGE-based architecture
 787 composed of L layers that mirror the encoder structure:
 788

$$789 \quad \mathbf{d}_h = \text{Decoder}(\mathbf{Z}_{h-1}^{(L)}, \mathbf{E}_T^{(f)}, \mathbf{f}_{h-1}, \mathbf{t}_h) \quad (13)$$

$$790 \quad \mathbf{f}_{h-1} = W_{feat} \cdot (\mathbf{y}_{h-1}) + b_{feat} \quad (14)$$

791 Here, $\mathbf{Z}_{h-1}^{(L)}$ denotes the hidden state from the previous decoding step, and $\mathbf{E}_T^{(f)}$ represents the fusion
 792 edge embeddings at the final observation time T , and \mathbf{t}_h encodes temporal information. $\mathbf{Z}_0^{(L)} = \mathbf{H}^{(c)}$.
 793 The decoded features \mathbf{d}_h are then smoothly integrated with the previous step's decoded output \mathbf{f}_{h-1}
 794 and the encoder's global context representation $\mathbf{H}^{(c)}$ through a weighted combination:
 795

$$796 \quad \tilde{\mathbf{d}}_h = (1 - \lambda_o - \lambda_p)\mathbf{d}_h + \lambda_o \mathbf{f}_{h-1} + \lambda_p \mathbf{H}^{(c)} \quad (15)$$

797 where $\lambda_o, \lambda_p \in [0, 1]$ control the reliance on current decoding, prior predictions, and global context,
 798 respectively, enhancing forecast stability across longer horizons. Finally, the prediction for step h ,
 799 denoted as $\hat{\mathbf{y}}_h$, is generated via a nonlinear projection $\hat{\mathbf{y}}_h = \mathbf{W}_{out} \tilde{\mathbf{d}}_h$. The hidden state for the current
 800 step is updated by a linear combination of $\tilde{\mathbf{d}}_h$ and the prior hidden states, enabling information flow
 801 across steps during sequential prediction.
 802

803 **BLUE** performs forecasting over fusion nodes by aggregating representations from associated case
 804 nodes. While an increase of δ genetic samples adds more case nodes per location, **BLUE** utilizes
 805 pooling operations. These operations maintain a fixed dimensionality for node representations and do
 806 not expand the computational graph. Thus, the forecasting complexity depends solely on the number
 807 of location nodes N , remaining independent of δ .
 808

809 ³We selected GraphSAGE as the backbone due to its balance between *theoretical compatibility* with the
 810 spectral regularization and *empirical performance* across datasets, detailed in Appendix B.

810
811
A.5 SPECTRAL REGULARIZER812
813
814
815
816
817
The spectral regularizer in **BLUE** preserves the diffusion geometry between the heterogeneous and
fusion graphs by minimizing $\mathcal{L}_{\text{spec}} = \|\mathbf{L}_{\text{hetero}} - \tilde{\mathbf{L}}_f\|_F^2$, adding only a lightweight Frobenius-norm
term between Laplacians. Importantly, we regularize only the top- k eigenvalues, which capture the
global diffusion modes. Computing these top- k eigenpairs takes $O(k|V|^2)$ in theory but in practice
is implemented with efficient iterative solvers that converge quickly due to the sparse structure of
 $\mathbf{L}_{\text{hetero}}$. Thus, the spectral regularizer adds negligible overhead relative to the main encoder-decoder
forecasting.818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B BACKBONE CHOICE**
865866 We selected GraphSAGE as the encoder-decoder in **BLUE** because it provides the best balance between
867 *theoretical compatibility* with our spectral regularization framework and *empirical performance* across
868 datasets.
869870 **Theoretical justification.** Our framework relies on a spectral regularizer to ensure that the fusion
871 graph preserves the diffusion geometry of the original heterogeneous graph.
872873

- 874 • **GCN:** The repeated application of symmetric normalized Laplacians in GCN accumulates
875 spectral deviation linearly with depth, yielding an error up to $L\varepsilon$ after L layers.

876 • **GraphSAGE:** Its inductive neighborhood aggregation achieves a tighter error bound,
877 $\mathcal{O}\left(\frac{Z^L-1}{Z-1}\right) \cdot \varepsilon$, with Z as the Lipschitz constant. Since we explicitly regularize $Z < 1$, the
878 cumulative error remains controlled, making GraphSAGE theoretically well-aligned with
879 our spectral regularization design.
880 • **GAT:** GAT redefines adjacency dynamically via feature-dependent attention. The resulting
881 operator is **not governed by the regularized Laplacian**, and its evolving topology makes
882 spectral consistency guarantees inapplicable.

883884 **Empirical support.** To validate our choice, we replaced GraphSAGE with GCN and GAT under
885 identical settings ($L = 2$, spectral regularizer weight = 0.2, excluded for GAT). Results averaged over
886 5-fold validation and 5 random seeds are summarized below. GraphSAGE consistently outperforms
887 alternatives on RMSE, MAE, and F1, while PCC differences are minor and consistent with PCC’s
888 fragility on sparse datasets (see Section 4.1).
889890 Table 4: Performance comparison on Flu-Japan dataset.
891892

	BLUE	w/GCN	w/GAT
RMSE	1458	1463	1595
MAE	520	732	675
F1	0.8170	0.7908	0.7978
PCC	0.7659	0.6733	0.6891
SCC	0.5440	0.5022	0.5287

893900 Table 5: Performance comparison on Avian-US dataset.
901902

	BLUE	w/GCN	w/GAT
RMSE	0.6106	0.6678	0.6791
MAE	0.0848	0.0970	0.0942
F1	0.1001	0.0967	0.0893
PCC	0.0871	0.0664	0.0696
SCC	0.1217	0.0931	0.1089

903909 Both theoretically and empirically, GraphSAGE proves most compatible with **BLUE**’s information-
910 preserving design. While PCC values remain low on Avian-US due to extreme sparsity, GraphSAGE
911 yields clear improvements on RMSE, MAE, and F1, demonstrating superior suitability over GCN
912 and GAT within our framework.
913914 **C RELATED WORKS**
915916 Based on the types of graph structures used, we summarize previous epidemiological methods into
917 two categories: Static Graph-based (SG) approaches and Dynamic Graph-based (DG) approaches.
918

918
919

C.1 STATIC GRAPH-BASED APPROACHES

920
921
922
923
924
925
926
927
928
929
930
931
932

SG methods rely on fixed graph structures throughout both training and prediction, typically incorporating predefined spatial or mobility-based priors such as geographic adjacency matrices (Xie et al., 2022; Yu et al., 2023; Lin et al., 2023) or static population flow matrices (Liu et al., 2023b; Tang et al., 2023). For example, EpiGNN (Xie et al., 2022) combines a static region-level graph with temporal modeling via spatio-temporal graph learning. STEP (Yu et al., 2023) and SMPNN (Lin et al., 2023) leverage graph neural networks to perform spatio-temporal forecasting on predefined location-level graphs constructed from geographic distances. MSDNet (Tang et al., 2023) defines the graph structure based on coarse-grained population migration trajectories and employs spatio-temporal graph learning to enhance prediction. Similarly, DGDI (Liu et al., 2023b) constructs geometric graphs derived from the location histories of infected individuals, implicitly modeling transmission potential via movement patterns. While effective for incorporating static spatial priors, they lack the flexibility to adapt to dynamic or heterogeneous factors, such as evolving case-to-case genetic relationships or ecological context, which limits their expressiveness in real-world epidemic spread.

933

C.2 DYNAMIC GRAPH-BASED APPROACHES

934

935
936
937
938
939
940
941
942
943
944
945
946
947

DG approaches allow the graph’s structure—either its edges, nodes, or both—to evolve over time or be updated through model-driven learning. This enables time-aware adaptation and more flexible representations of temporal transmission dynamics. For instance, Cola-GNN (Deng et al., 2020) begins with a static binary graph based on geographic distances but enhances it with a cross-location attention mechanism that learns hidden dependencies across regions. Epi-Cola-GNN (Liu et al., 2023a) builds on this by incorporating SIS dynamics and using a learnable transmission matrix to form time-varying graphs, better reflecting real-world epidemic progression. MepoGNN (Cao et al., 2022), on the other hand, explicitly integrates SIR dynamics into the graph learning process, allowing it to model evolving infectious connections more directly. CausalGNN (Wang et al., 2022a) introduces causal inference components to handle confounding effects and policy interventions, improving the reliability of predictions under complex real-world conditions. Despite their flexibility, these models still operate within a homogeneous framework, focusing on a single relational view. They overlook heterogeneous factors, such as genetic relationships, which are critical for understanding the multifaceted nature of real-world disease transmission.

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972
973
974 Table 6: Dataset statistics.
975
976
977

dataset	size (# locations \times # week)	Min	Max	zeros (%)
FLU-Japan	47 \times 348	0	26635	15.8
Avian-US	3227 \times 104	0	92	98.4

978
979

D DATASET

980981 The dataset statistics are shown in Table. D. The selection of the Flu-Japan and Avian-US datasets is
982 strategic: they represent *two complementary epidemiological scenarios*, providing a rigorous test of
983 **BLUE** under both moderate and extreme conditions.
984985 **Flu-Japan (homogeneous baseline).** Flu-Japan⁴ is a well-established homogeneous benchmark
986 dataset covering 47 prefectures. Its key strengths are:
987988

- **Moderate spatial scale:** The relatively compact size enables interpretable analysis and
989 clear visualization of epidemic dynamics.
- **Relatively continuous outbreaks:** Compared to Avian-US, Flu-Japan exhibits smoother
990 temporal variation and less sparsity, making it well-suited to validate whether **BLUE** can
991 capture epidemic *trends and temporal dynamics*.

992 Its main limitations are:
993994

- **Limited spatial granularity:** Only 47 nodes, insufficient to stress-test scalability.
- **Single modality:** No genetic or environmental features, restricting evaluation of **BLUE** 's
995 multi-modal integration capabilities.

1000 **Avian-US (new large-scale dataset).** To address these limitations, we introduce Avian-US, a new
1001 multimodal dataset covering 3,227 U.S. counties. It provides a far more challenging and realistic
1002 evaluation due to:
10031004

- **High spatial resolution:** Orders of magnitude more nodes than Flu-Japan, directly testing
1005 **BLUE** 's scalability.
- **Extreme sparsity:** Nearly 99% of weekly county-level series remain zero (Appendix C,
1006 Table 1), requiring robust handling of rare-event signals.
- **Multi-modal heterogeneity:** Incorporates spatial, genetic, and ecological data, capturing
1007 the complex drivers of avian influenza transmission in the U.S.

1008 The main challenge is that sparsity and discontinuous transmission patterns make predictive correlation
1009 metrics fragile.
10101011 Taken together, Flu-Japan tests **BLUE** 's ability to learn epidemic trends under moderate scale and
1012 continuous outbreaks, while Avian-US stress-tests scalability, robustness, and multi-modal integration
1013 under sparse and heterogeneous conditions. This complementary pairing ensures that **BLUE** is
1014 validated under both interpretable benchmark settings and real-world large-scale challenges.
10151016

D.1 AVIAN-US DATASET SETUP

10171018 The Avian-US dataset is a spatiotemporal, multi-modal dataset designed to support forecasting and
1019 modeling of avian influenza outbreaks across the United States. It integrates epidemiological records,
1020 viral genomic sequences, and host population data across 3,227 U.S. counties from 2021–2024. Each
1021 modality is spatially and temporally aligned at the county-week level, enabling multi-layered graph
1022 construction for downstream forecasting tasks.
10231024
1025 ⁴<https://github.com/amy-deng/colagnn>

1026
1027

D.2 DATA COLLECTION

1028
1029
1030

This dataset integrates spatiotemporal outbreak data, genomic sequences, and species-level abundance observations into a structured multilayer representation for disease forecasting. Each stream was independently collected but programmatically harmonized for modeling integration.

1031
1032
1033
1034
1035
1036
1037

Infected case data were sourced from federal surveillance systems and include time-stamped infection reports for host data recorded at the county level across the continental United States from 2021 to 2024. Each record includes a free-text host descriptor, location metadata, and a collection date. To standardize taxonomic information, host descriptors were programmatically mapped to a reference taxonomy using a hierarchical classification schema derived from the International Ornithological Congress (IOC) avian taxonomy. This resolved inconsistencies such as overlapping or ambiguous common names by aligning to stable scientific identifiers.

1038
1039
1040
1041
1042
1043
1044

Genomic data consist of hemagglutinin (HA) segment sequences found in publicly available viral genome repositories for Biotechnology Information (NCBI). Sequences with sufficient metadata were retained and filtered to include only wild bird hosts. A probabilistic record linkage model was used to associate sequences with case records. This model was trained on labelled match/non-match examples and used gradient-boosted decision trees to compute a match score based on taxonomic agreement, spatial proximity, and temporal overlap (within a ± 14 -day window). High-confidence matches were retained for downstream analysis.

1045
1046
1047
1048
1049

Host population data were drawn from the eBird Status and Trends product, which provides weekly abundance estimates at 3 km resolution for North American bird species eBird (2022). Raster values were extracted for each species and week, then aggregated at the county level to align with the spatial granularity of case data. Only wild bird species were retained, and abundance vectors were indexed by county and week.

1050
1051
1052

All records were assigned stable identifiers and organized into structured, timestamped tables. The pipeline ensures consistency across modalities while maintaining temporal fidelity and species-level resolution.

1053

D.3 DATA DESCRIPTION

1054
1055
1056
1057
1058
1059

The dataset comprises real-world, multi-source data documenting avian influenza outbreaks in the United States from January 2021 to December 2024. It includes temporally aligned information on confirmed infection cases, viral genome sequences, and wild bird abundance estimates, collected and harmonized at a weekly resolution.

1060
1061
1062
1063
1064

The epidemiological component consists of over 12,000 reported H5-positive wild bird cases, spanning all 48 contiguous U.S. states. Each record includes collection date, geographic location (mapped to U.S. counties), and host classification. Taxonomic labels were normalised using a hierarchical mapping system that resolves ambiguous or underspecified entries to consistent species-level identifiers, informed by IOC naming conventions.

1065
1066
1067
1068
1069
1070
1071

A subset of 8,000 cases was associated with full or partial HA segment sequences retrieved from public repositories. Genomic data were filtered to retain wild bird hosts only, and sequence metadata (host, date, location) were cleaned and harmonised to match epidemiological records. Genomic divergence between HA segment sequences was computed using the K80 model, which accounts for substitution asymmetry between transitions ($A \leftrightarrow G$, $C \leftrightarrow T$) and transversions. For each aligned sequence pair, we calculate the observed proportions of transitions (P) and transversions (Q), and estimate the evolutionary distance d as:

$$d = -\frac{1}{2} \log(1 - 2P - Q) - \frac{1}{4} \log(1 - 2Q)$$

1072
1073
1074
1075
1076
1077
1078

where $P = \frac{\# \text{transitions}}{L}$ and $Q = \frac{\# \text{transversions}}{L}$, with L denoting the aligned sequence length. This evolutionary distance matrix encodes biologically grounded measures of divergence under a continuous-time Markov model and is well-suited for comparing within-clade avian influenza sequences. It is used as an input feature for constructing genomic similarity edges in the downstream heterogeneous graph.

1079

Host population context was derived from over 630 weekly avian abundance layers produced by the eBird Status and Trends project eBird (2022). These layers estimate the relative abundance of bird

1080 species at 3 km resolution across North America. Raster values were extracted and aggregated at
1081 the county level for all species matching wild bird families in the outbreak dataset. The resulting
1082 abundance vectors were aligned weekly to match case timelines and stored in compressed array
1083 format.

1084 All data layers were temporally aligned by epidemiological week. Metadata were standardised across
1085 data types, with fields for date, location, taxonomic label, and abundance scores. Unique identifiers
1086 were assigned to all records to enable traceability across modalities. The dataset is designed to support
1087 temporal, ecological, and genetic analysis of avian influenza dynamics in wild bird populations using
1088 real-world observations, without reliance on synthetic or simulated data.

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 **E IMPLEMENTATION DETAILS**
11351136 In our empirical evaluations, we implement ST-GCN, SelfAttnRNN, DCRNN, and Cola-GNN using
1137 the open-source Cola-GNN repository⁵. ST-Net and EAST-Net are built upon the official EAST-Net
1138 implementation⁶. Implementation of Epi-GNN⁷ and Epi-Cola-GNN⁸ are based on their respective
1139 publicly available source code.1140 To enable evaluation of the proposed **BLUE** framework on the Flu-Japan dataset, we first construct the
1141 location layer based on the provided adjacency matrix. Each location node is assigned features based
1142 on the reported infection counts across prefectures. To represent case-level information, we simulate
1143 case nodes and associate them with their respective infected locations. Unlike the Avian-US setting,
1144 we assume uniform infectivity and assign an equal importance feature (value = 1) to each case node.
1145 This simplifies the transmission model by treating all cases as equally influential. With this setup,
1146 we construct the heterogeneous graphs for the Flu-Japan dataset and feed them into **BLUE** under the
1147 same modeling assumptions used in the Avian-US dataset.1148
1149 **E.1 BASELINES.**
11501151 We compare **BLUE** against following GNN-based models: 1) general spatio-temporal forecasting
1152 models (**ST-GCN** (Yu et al., 2018), **SelfAttnRNN** (Cheng et al., 2016), **DCRNN** (Li et al., 2018),
1153 and **EAST-Net** (with a simplify version **ST-Net**) (Wang et al., 2022b)), 2) homogeneous epidemic
1154 prediction models (**Cola-GNN** (Deng et al., 2020), **EpiGNN** (Xie et al., 2022), **Epi-cola-GNN** (Liu
1155 et al., 2023a), **STSGT** (Banerjee et al., 2022)), and 3) heterogeneous-based model (**HGT** (Hu et al.,
1156 2020)). Except HGT, all baselines are primarily designed for single-layer spatio-temporal forecasting
1157 and assume either a fixed or learnable graph structure. As such, they are not directly compatible
1158 with the multi-layer architecture of the Avian-US dataset. To make them applicable, we adapt each
1159 model by building homogeneous graphs tailored to its design. The adjacency matrix of STSGT is
1160 defined based on the geographical distance between locations. For ST-GCN, SelfAttnRNN, Cola-
1161 GNN, EpiGNN, EpiCola-GNN, and DCRNN, we define a binary adjacency matrix based on spatial
1162 proximity between counties. This setup mirrors their original use cases, allowing these models to
1163 learn spatio-temporal patterns over a fixed location-level graph. For ST-Net and EAST-Net, which
1164 support adaptive graph learning, we initialize homogeneous graphs with no predefined edges. These
1165 models learn the graph structure dynamically, allowing them to infer inter-location dependencies
1166 during training without relying on geographic priors.1167 **E.2 EXPERIMENTAL SETTINGS**
11681169 To comprehensively evaluate the performance of the proposed method and baseline models, we adopt
1170 four complementary metrics: Root Mean Squared Error (**RMSE**), Mean Absolute Error (**MAE**),
1171 Pearson Correlation Coefficient (**PCC**), Spearman Correlation Coefficient (**SCC**) and F1 Score (**F1**).
1172 RMSE and MAE quantify the absolute and squared deviations between predicted and ground-truth
1173 counts. PCC measures the linear correlation between predicted and observed infection trends across
1174 spatial and temporal dimensions. F1 Score evaluates binary outbreak detection performance. To reflect
1175 this, We set a short observation window of $T=4$ steps and forecast the next $H=4$ steps (all experiments
1176 are conducted under this setting unless specified), and report the averaged evaluation metrics of H
1177 steps. Experiments of all baselines and **BLUE** are conducted under a 5-fold cross-validation with
1178 the same random seed to ensure consistency. In addition to fixed embedding size $d=8$ and weight
1179 regularization $\lambda_2 = 5e-4$, all baseline models are re-trained and tuned for optimal performance
1180 using their official open-source code. For **BLUE**, we search $\lambda_1 \in \{0.01, 0.05, 0.1, 0.5, 1\}$, and
1181 choose $\lambda_1 = 0.1$ for final evaluations. All experiments are run on either a single NVIDIA V100,
1182 DGX A100, or NVIDIA RTX A5000 GPU.1183 To ensure comparability in overall performance, we unify the embedding size and hidden dimensions
1184 across all models. We further apply the stratified weighting infection loss in Section 3.4 to all baselines1185 ⁵<https://github.com/amy-deng/colagnn>1186 ⁶<https://github.com/underdoc-wang/EAST-Net/tree/main>1187 ⁷<https://github.com/Xiefeng69/EpiGNN>1188 ⁸<https://github.com/gigg1/CIKM2023EpiDL/tree/main>

1188 and re-run each baseline on the Avian-US dataset for fair comparison. The key hyperparameters used
 1189 for all baseline models are listed below:
 1190

1191 **ST-GCN**: embedding size=8, hidden dim=16, number of layers=3, epoch=100, learning rate=1e-5,
 1192 dropout=0.3, window size=4, predicted horizon=4, weight of regularization term=5e-4.
 1193

1194 **SelfAttnRNN**: embedding size=8, hidden dim=16, number of layers=2, epoch=100, learning rate=1e-5,
 1195 dropout=0.3, window size=4, predicted horizon=4, weight of regularization term=5e-4.
 1196

1197 **DCRNN**: embedding size=8, hidden dim=16, number of layers=2, max step of random walk=3,
 1198 epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4, weight of regular-
 1199 ization term=5e-4.
 1200

1201 **Cola-GNN**: embedding size=8, hidden dim=16, number of filter=10, dilated rate for short term=1,
 1202 dilated rate for long term=2, epoch=100, learning rate=1e-5, dropout=0.3, number of RNN layers=1,
 1203 number of GNN layers=2, window size=4, predicted horizon=4, weight of regularization term=5e-4.
 1204

1205 **ST-Net**: embedding size=8 (data) and 8 (time), Chebyshev layers=3, encoder layer=2, decoder
 1206 layer=2, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4, weight
 1207 of regularization term=5e-4.
 1208

1209 **EAST-Net**: spatial embedding size=8, modality embedding size =4, time embedding size=8, mobility
 1210 prototype number = 8, memory dimension = 16, Chebyshev layers=3, encoder layer=2, decoder
 1211 layer=2, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4, weight
 1212 of regularization term=5e-4.
 1213

1214 **Epi-GNN**: embedding size=8, hidden dim=16, hidden dim of attention layer=64, pooling layer=2,
 1215 patience=100, GNN layers=2, filer size= $f_{1 \times 5,1}$ and $f_{1 \times 3,1}$, window size=4, predicted horizon=4,
 1216 epoch=100, learning rate=1e-5, dropout=0.3, weight of regularization term=5e-4.
 1217

1218 **Epi-Cola-GNN**: embedding size=8, hidden dim=16, weight of epidemiological loss=0.5, pa-
 1219 tience=150, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4,
 1220 weight of regularization term=5e-4.
 1221

1222 **STSGT**: embedding size=8, hidden dim=16, number of STSGT layers= 2, number of head= 2,
 1223 dropout rate= 0.3, sampling number $n = 128$, sampling depth $L = 2$, learning rate=0.001, window
 1224 size=4, predicted horizon=4, weight of regularization term=1e-4.
 1225

1226 **HGT**: embedding size=8, hidden dim=16, number of layers= 2, dropout rate= 0.3, sampling number
 1227 $n = 128$, sampling depth $L = 2$, learning rate=0.001, window size=4, predicted horizon=4, weight
 1228 of regularization term=1e-4.
 1229

1230 **BLUE**: embedding size=8, construction smoothing layer $K=2$, $B=10$, GraphSAGE layers $L=2$,
 1231 $\lambda_1=0.9$, $\lambda_2=5e-4$, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4.
 1232 The infection severities are set as $\tau_{low} = 1$, $\tau_{med} = 5$, $\tau_{high} = 25$, the corresponding weight are
 1233 $w_{low} = 1.0$, $w_{med} = 8.0$, $w_{high} = 15.0$. For the Avian-US dataset, we set $\lambda_o=0.3$ and $\lambda_p=0.3$. For
 1234 the Flu-Japan dataset, we set $\lambda_o=0.2$, $\lambda_p=0.3$.
 1235

1236 To manage data sparsity and numerical variation, we use four normalization techniques for prepro-
 1237 cessing all feature data:
 1238

- 1239 **1. Min-Max Normalization**: $x_{normalized} = (x - min)/(max - min)$. This method preserves
 1240 value relationships but is sensitive to outliers.
- 1241 **2. Z-Score Normalization**: $x_{normalized} = (x - mean)/std$. Suitable for approximately normally
 1242 distributed features, it offers improved robustness to outliers compared to Min-Max scaling.
- 1243 **3. Log-MinMax Normalization**: Applies a log transformation $log(x + \delta)$ followed by Min-Max
 1244 scaling. This is effective for highly skewed positive-valued features with wide dynamic ranges.
- 1245 **4. Log-Plus-One Normalization**: $log(x + 1)$. This transformation is appropriate for heavily skewed
 1246 count data with many zeros, as it maintains the presence of zero values.

1247 Log-based normalization is particularly effective for exponentially distributed features or datasets
 1248 with a high proportion of zeros. Accordingly, we apply Log-Plus-One Normalization to the Avian-US
 1249 dataset, which is highly skewed and sparsely populated. For the Flu-Japan dataset, which has more
 1250 continuous variation and less sparsity, we apply Log-MinMax Normalization in the implementation.

1242 E.3 SPECTRAL REGULARIZER IMPLEMENTATION
1243

1244 In our implementation, rather than enforcing strict equality between the Laplacians of the fusion
1245 graph and the original heterogeneous graph, we focus on preserving the most structurally informative
1246 components of the spectrum. Specifically, we constrain the largest k eigenvalues of two graphs,
1247 which capture the global structures of the graph. By aligning the leading eigenvalues, we ensure that
1248 the fusion graph retains the essential global topology of the original heterogeneous graph and reduces
1249 sensitivity to discrepancies in the high-frequency components, which are often associated with local
1250 noise or unstable high-resolution variations. Consequently, the spectral loss remains robust and less
1251 prone to overfitting to noisy graph details.
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297
1298 Table 7: Overall performance on Flu-Japan dataset ($H = 4, T = 4$).
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

Model	RMSE(\downarrow)	MAE(\downarrow)	PCC(\uparrow)	SCC(\uparrow)	F1(\uparrow)
STGCN	1763 \pm 764	995 \pm 726	0.7316 \pm 0.0794	0.4549 \pm 0.1345	0.6551 \pm 0.2437
SelfAttnRNN	1730 \pm 782	876 \pm 760	0.7850 \pm 0.0562	0.4138 \pm 0.0843	0.7040 \pm 0.2840
ST-Net	1761 \pm 727	1083 \pm 893	0.7898 \pm 0.0923	0.4193 \pm 0.1211	0.7171 \pm 0.2563
EAST-Net	1723 \pm 790	1038 \pm 848	0.7352 \pm 0.0573	0.4694 \pm 0.1185	0.6398 \pm 0.6637
DRCNN	1789 \pm 788	1216 \pm 1084	0.7674 \pm 0.0582	0.4104 \pm 0.0934	0.6663 \pm 0.2491
EpiGNN	1742 \pm 707	896 \pm 721	0.7401 \pm 0.0778	0.5029 \pm 0.1283	0.6699 \pm 0.2388
Cola-GNN	1600 \pm 765	886 \pm 758	0.7135 \pm 0.1054	0.4873 \pm 0.1632	0.6747 \pm 0.2472
Epi-Cola-GNN	1631 \pm 787	1368 \pm 1124	0.7486 \pm 0.0784	0.4908 \pm 0.1237	0.6831 \pm 0.2793
STSGT	1616 \pm 441	657 \pm 183	0.7493 \pm 0.1405	0.4281 \pm 0.0842	0.6782 \pm 0.2045
HGT	1527 \pm 476	565 \pm 193	0.5438 \pm 0.0725	0.3984 \pm 0.0914	0.6559 \pm 0.2757
BLUE	1511\pm331	553\pm150	0.7954\pm0.0328	0.5440\pm0.0586	0.7234\pm0.2420

F EXPERIMENTAL RESULTS

F.1 OVERALL PERFORMANCE

Prior methods are evaluated using long-term prior knowledge with $T = 20$ historical observations. However, such extended observation windows are impractical for real-world outbreak forecasting, where timely alerts are essential for intervention. To better reflect realistic forecasting constraints, we evaluate all baselines and **BLUE** using a shorter window of $T = 4$ (approximately one month) and forecast infection counts for future horizons $H = 4$ weeks, simulating rapid-response scenarios typical in epidemic modeling.

F.1.1 FLU-JAPAN DATASET

As shown in Table 7, **BLUE** consistently outperforms all baselines in 5 evaluation metrics. It achieves the highest PCC and SCC, with notably stable performance compared to the greater fluctuations observed in baselines. This indicates that **BLUE** can capture the temporal dynamics of influenza outbreaks while reducing prediction errors simultaneously. In terms of outbreak detection, **BLUE** achieves the best F1 score. In all evaluation metrics, **BLUE** maintains competitive or lower standard deviations relative to baselines, indicating that its performance gains are consistent in short-term outbreak detection and prediction.

F.1.2 AVIAN-US DATASET

In the Avian-US dataset, as shown in Table. 8, **BLUE** consistently achieves superior performance across error and correlation metrics. **BLUE** provides the highest F1 and lowest RMSE/MAE across all horizons, demonstrating its reliability in early-stage outbreak detection and accurate infectious number prediction. Different from results in Flu-Japan, **BLUE** shows lower PCC compared to SCC. As PCC captures linear correlation between predicted and ground-truth values, it is highly sensitive to such extreme values. This discrepancy can be attributed to the characteristical differences of two datasets, since Avian-US is highly sparse and contains several outliers while Flu-Japan is relatively continuous.

F.2 IMPACTS OF WINDOW SIZE T AND PREDICTED HORIZON H ON FLU-JAPAN DATASET.

We evaluated **BLUE** under different observation sizes $T \in \{4, 8\}$ and predicted horizons $H \in \{1, 2, 4, 8\}$.

For each window size T , we compare the impact of the prediction horizon H on the experimental results, shown in the Table.9. Notably, the F1 score improves from 53.73% to 72.34% when $T = 4$. The improvement indicates that multi-step decoding suppresses false alarms yet still captures infection patterns during several weeks. Single-week outbreak patterns are hard to predict accurately, while multi-week patterns are more likely to overlap with the actual disease outbreak's periodicity. However, the standard deviation of F1 increases with larger prediction horizon H , suggesting that outbreak

Table 8: Overall performance on Avian-US dataset ($H = 4, T = 4$).

Model	RMSE(\downarrow)	MAE(\downarrow)	PCC(\uparrow)	SCC(\uparrow)	F1(\uparrow)
STGCN	0.8741 \pm 0.1428	0.4198 \pm 0.0911	0.0481 \pm 0.0024	0.0773 \pm 0.0087	0.0637 \pm 0.0043
SelfAttnRNN	0.8962 \pm 0.1752	0.3722 \pm 0.0566	0.0523 \pm 0.0052	0.0800 \pm 0.0111	0.0698 \pm 0.0038
ST-Net	0.9020 \pm 0.1603	0.4572 \pm 0.0840	0.0584 \pm 0.0034	0.0865 \pm 0.0128	0.0751 \pm 0.0167
EAST-Net	0.8973 \pm 0.1772	0.5556 \pm 0.0626	0.0647 \pm 0.0037	0.0839 \pm 0.0134	0.0779 \pm 0.0083
DRCNN	0.7965 \pm 0.1314	0.6123 \pm 0.0395	0.0588 \pm 0.0053	0.0871 \pm 0.0117	0.0665 \pm 0.0078
EpiGNN	0.7834 \pm 0.1200	0.2627 \pm 0.0440	0.0719 \pm 0.0049	0.0816 \pm 0.0112	0.0672 \pm 0.0053
Cola-GNN	0.7118 \pm 0.1001	0.1777 \pm 0.0223	0.0770 \pm 0.0042	0.0846 \pm 0.0102	0.0653 \pm 0.0096
Epi-Cola-GNN	0.8264 \pm 0.1246	0.0967 \pm 0.0172	0.0780 \pm 0.0042	0.0825 \pm 0.0112	0.0816 \pm 0.0197
STSGT	0.6907 \pm 0.1143	0.1690 \pm 0.0312	0.0403 \pm 0.0080	0.1082 \pm 0.0201	0.0725 \pm 0.0183
HGT	0.6523 \pm 0.0828	0.0902 \pm 0.0163	0.0772 \pm 0.0054	0.0966 \pm 0.0165	0.0801 \pm 0.0077
BLUE	0.6106 \pm 0.0719	0.0848 \pm 0.0182	0.0871 \pm 0.0132	0.1217 \pm 0.0140	0.1001 \pm 0.0193

Table 9: Different predicted horizon H under window size $T = 4$ (up) and $T = 8$ (down) on the Flu-Japan dataset. We report the experimental results with $\lambda_p = 0.3$ and $\lambda_o = 0.2$.

H	T	4		
	1	2	4	
RMSE	1486.3070 \pm 457.1804	1485.2236 \pm 443.3038	1511.3080 \pm 331.2720	
MAE	556.4849 \pm 236.3284	555.2262 \pm 222.3261	553.1024 \pm 150.2401	
F1	0.5373 \pm 0.0397	0.6763 \pm 0.0114	0.7234 \pm 0.2420	
PCC	0.6301 \pm 0.0221	0.6317 \pm 0.0927	0.7954 \pm 0.0328	

H	T	8		
	1	2	4	8
RMSE	1528.6636 \pm 335.5966	1529.5472 \pm 362.8420	1524.5787 \pm 359.4490	1523.6165 \pm 382.6201
MAE	564.5333 \pm 176.0671	569.2224 \pm 186.9960	565.1868 \pm 184.9081	572.1089 \pm 207.6871
F1	0.6471 \pm 0.3699	0.7353 \pm 0.3678	0.7568 \pm 0.3547	0.7321 \pm 0.3662
PCC	0.6710 \pm 0.0252	0.5732 \pm 0.0930	0.5536 \pm 0.1643	0.5233 \pm 0.2590

detection becomes more variable and challenging across validation folds as the forecasting window extends. In contrast, RMSE and MAE gradually decrease as H increases, implying that the Flu-Japan dataset exhibits more consistent multi-week outbreak patterns, making longer-horizon forecasts easier to stabilize. In comparison, short-term trends may exhibit higher fluctuations, which may be less structured. When $T = 8$, RMSE varies $\leq 0.35\%$ and MAE remains within 1% across all horizons, illustrating that the model has sufficient context to predict each county’s epidemic with 8-week observations. F1 peaks at 75.68% for a four-week horizon, further proving our finding of multi-week patterns under the $T = 4$ setting and highlighting the effectiveness of **BLUE** in outbreak detection when sufficient prior context is available.

For a fixed prediction horizon H , we observe that F1 consistently improves as the observation window T increases. This indicates that a longer historical context enhances the model’s ability to distinguish outbreak weeks from background fluctuations, thereby improving the confidence and precision of binary outbreak detection. Conversely, we find that RMSE and MAE increase with larger T , although their error bars become tighter. This indicates that longer observation windows enhance the consistency of predictions, but may come at the cost of reduced alignment with recent temporal patterns.

F.3 PER-STEP RESULTS

To provide finer-grained insight into forecasting performance over time, we conducted a temporal analysis of per-step results for both Flu-Japan and Avian-US, under the setting $T = 4, H = 4$, comparing **BLUE** against Epi-Cola-GNN. SCC (Spearman correlation coefficient) is also reported to capture rank-based trend consistency.

Per-step performance. Tables 10 and 11 show detailed metrics at each forecast horizon. Generally, all models exhibit gradual performance decline with increasing horizon, consistent with the inherent difficulty of long-horizon forecasting.

Table 10: Per-step results on Flu-Japan.

BLUE	RMSE	MAE	F1	PCC	SCC
Step 1	1170.0736	379.1464	0.7998	0.7819	0.5389
Step 2	1360.5968	431.5831	0.8069	0.7789	0.4440
Step 3	1601.2518	511.6768	0.8132	0.6966	0.3286
Step 4	1562.1200	517.4587	0.8186	0.6217	0.2231
Horizon avg.	1423.5106	459.9625	0.8096	0.7197	0.3836
Epi-Cola-GNN	RMSE	MAE	F1	PCC	SCC
Step 1	573.1535	352.1775	0.7959	0.7138	0.4620
Step 2	1415.7948	842.4990	0.7811	0.7965	0.3413
Step 3	1914.2330	1171.5552	0.7141	0.6239	0.1458
Step 4	2508.5769	1707.4314	0.4093	0.6589	0.2321
Horizon avg.	1602.9395	1018.4157	0.6751	0.6982	0.2953

Table 11: Per-step results on Avian-US.

BLUE	RMSE	MAE	F1	PCC	SCC
Step 1	0.6154	0.1120	0.1380	0.1636	0.1676
Step 2	0.6467	0.0878	0.1157	0.0894	0.1428
Step 3	0.4691	0.0791	0.1031	0.0872	0.1252
Step 4	0.7521	0.0867	0.0933	0.0700	0.1054
horizon avg.	0.6208	0.0914	0.1125	0.1025	0.1352
Epi-Cola-GNN	RMSE	MAE	F1	PCC	SCC
Step 1	0.6826	0.0877	0.0846	0.0792	0.1086
Step 2	0.7544	0.1294	0.0827	0.0754	0.0823
Step 3	0.5765	0.0953	0.0832	0.0756	0.0735
Step 4	0.6733	0.1042	0.0881	0.0724	0.0569
Horizon avg.	0.6716	0.1042	0.0845	0.0757	0.0803

Findings. On Flu-Japan, **BLUE** shows consistently robust performance across all forecast steps. While Epi-Cola-GNN performs marginally better at Step 1, its F1 score declines thereafter. In contrast, **BLUE** degrades more gracefully, achieving higher average F1, PCC, and SCC, demonstrating stable trend capture over time.

On Avian-US, despite extreme sparsity, **BLUE** attains lower horizon-averaged RMSE and MAE and consistently higher F1 than Epi-Cola-GNN. While PCC remains marginally lower (a metric noted for its fragility under sparsity), **BLUE** achieves substantially higher SCC, confirming its superior ability to preserve nonlinear temporal ranking patterns critical for outbreak detection.

These per-step analyses demonstrate that **BLUE** not only improves average error metrics but also captures temporal patterns more reliably, degrading gracefully over longer horizons. We will include comprehensive per-step results for all baselines (including SCC) in the final version for completeness.

F.4 IMPACT OF λ_o

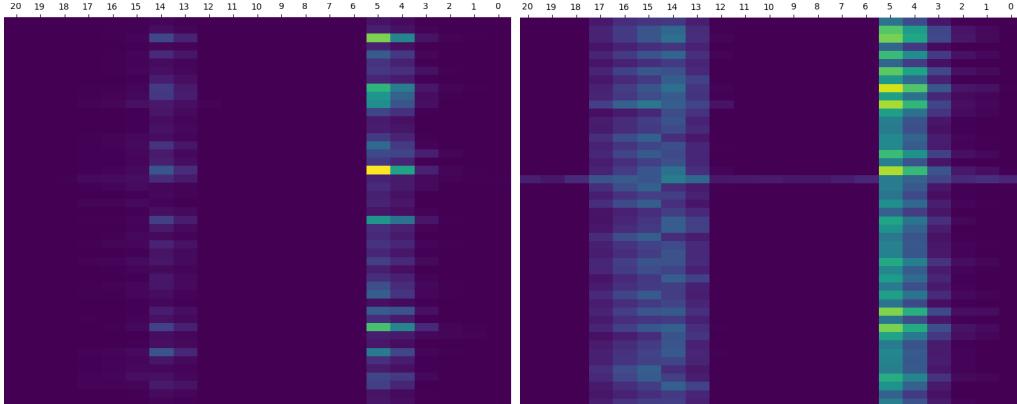
In the decoder process, λ_o controls the influence of the previous step’s decoded output \mathbf{f}_{h-1} . To investigate its effect, we fix $T = 4$, $H = 4$, $\lambda_p = 0.3$ (the weight of the encoder’s hidden state $\mathbf{H}^{(c)}$) and only vary λ_o in $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6\}$. Lower values of λ_o emphasize the decoded feature of the current step, while higher values increase the model’s reliance on earlier decoder outputs. The results are summarized in Table 12.

On the Flu-Japan dataset, we observe that setting $\lambda_o = 0.5$ achieves the lowest RMSE and MAE, while $\lambda_o = 0.2$ achieves the highest PCC. PCC initially increases with rising λ_o before declining, which shows an opposite trend compared to F1 score, suggesting a trade-off between temporal consistency and outbreak detection accuracy. A similar pattern appears in RMSE and MAE, which first worsen and then improve as λ_o increases, indicating that a balanced amount of information from previous decoding steps helps the model better forecast the temporal progression of disease, while too little or too much may constrain its ability to generalize effectively.

1458 Table 12: impact of λ_o on the Flu-Japan dataset (up) and the Avian-US dataset (down).

λ_o	RMSE	MAE	F1	PCC	SCC
0.1	1488.3113	537.1610	0.9174	0.6742	0.5218
0.2	1511.708	553.9024	0.7234	0.7954	0.5440
0.3	1494.3136	540.6177	0.7310	0.6303	0.5010
0.4	1476.6810	528.6474	0.7959	0.6285	0.5392
0.5	1472.6313	526.4264	0.9172	0.6630	0.4938
0.6	1478.7874	528.7906	0.9165	0.6566	0.4211

λ_o	RMSE	MAE	F1	PCC	SCC
0.1	0.6255	0.0549	0.0268	0.0074	0.6742
0.2	0.6288	0.0653	0.0221	0.0179	0.6742
0.3	0.6178	0.0665	0.0265	0.0241	0.6742
0.4	0.5295	0.0678	0.0222	0.0122	0.6742
0.5	0.6181	0.1068	0.0213	0.0313	0.6742
0.6	0.6264	0.1776	0.0213	0.0480	0.6742



1489 Figure 4: Heatmap of ground truth (left) and prediction (right) on Flu-Japan dataset.

1492 In the Avian-US dataset, the F1 score and MAE peak at $\lambda_o = 0.1$, suggesting that leveraging current-
 1493 step signals is more effective for identifying sparse outbreaks. With the increase of λ_o , MAE and
 1494 F1 score gradually decrease with PCC significantly increase, suggesting that emphasizing previous
 1495 predictions may reduce the sensitivity to sudden outbreak events and accurate infectious forecasting,
 1496 but can enhance trend alignment by capturing long-horizon patterns.

1498 F.5 CASE STUDY ON FLU-JAPAN DATASET

1500 We provide the heatmap of experimental results on the Flu-Japan dataset, shown in Fig. 4. Both the
 1501 ground truth and predicted heatmaps exhibit a distinct peak in activity during the 8th batch. **BLUE** not
 1502 only identifies this peak at the correct temporal position but also accurately reproduces its spatial
 1503 distribution across multiple prefectures, demonstrating that the model has effectively learned both the
 1504 timing and spatial structure of the outbreak. In the ground truth heatmap, bright horizontal bands
 1505 correspond to a small subset of highly infected prefectures. **BLUE**’s predictions highlight these
 1506 same regions while maintaining low activity for the remaining prefectures, indicating that the model
 1507 captures the dominant transmission pathways without overpredicting infection spread.

1508 G THE USE OF LARGE LANGUAGE MODELS

1509 LLMs were used exclusively for the editorial refinement of the manuscript text, focusing on grammar,
 1510 wording, and overall clarity. They were not employed to generate scientific content, design

1512 experiments, write code, or produce research results. All authors have reviewed the final content and
1513 assume full responsibility for it, in alignment with the ICLR's LLM usage guidance and Code of
1514 Ethics.

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565