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ABSTRACT

Accurate forecasting of avian influenza outbreaks within wild bird populations
requires models that account for complex, multi-scale transmission patterns driven
by various factors. Spatio-temporal GNN-based models have recently gained
traction for infection forecasting due to their ability to capture relations and flow
between spatial regions, but most existing frameworks rely solely on spatial re-
gions and their connections. This overlooks valuable genetic information at the
case level, such as cases in one region being genetically descended from strains
in another, which is essential for understanding how infectious diseases spread
through epidemiological linkages beyond geography. We systemically formulate
AIV forecasting problem by proposing a Bi-Layer heterogeneous graph fUsion
pipEline (BLUE). This pipeline integrates genetic, spatial, and ecological data to
achieve highly accurate outbreak forecasting. It 1) defines heterogeneous graphs
from multiple information sources and multiple layers, 2) smooths across relation
types, 3) performs fusion while retaining structural patterns, and 4) predicts future
outbreaks via an autoregressive graph sequence model that captures transmission
dynamics over time. To facilitate further research, we introduce Avian-US dataset,
the dataset for avian influenza outbreak forecasting in the United States, incorporat-
ing genetic, spatial, and ecological data across locations. BLUE achieves superior
performance over existing baselines, highlighting the value of incorporating multi-
layer information into infectious disease forecasting. The code is available at:
https://anonymous.4open.science/r/BLUE-60F8/README.md.

1 INTRODUCTION

Predicting the transmission of Avian Influenza Virus (AIV) remains a critical challenge in epidemio-
logical research, due to the virus’s capacity for widespread dissemination among avian populations.
Increasing cross-species transmission poses serious risks to public health infrastructure and global
biosecurity. Accurately predicting where outbreaks may occur is vital for initiating early interventions
that reduce infection risk. To enable timely intervention and reduce the risk of zoonotic spillover, it is
essential to identify high-risk regions prior to outbreak emergence (Caliendo et al., 2022; Prosser et al.,
2024). Earlier epidemiological models primarily adopt mechanistic strategies based on biological
assumptions, often structured around fixed compartments such as SIR or SEIR (Geng et al., 2021;
Della Marca et al., 2023). While effective in simplified scenarios, they lack network topology and
interaction semantics (Hunter & Kelleher, 2022) as they work under low-dimensional Ordinary Dif-
ferential Equation systems that only track infected counts in discrete disease states, thus falling short
in representing time-sequence reasoning and inter-location impact in real-world disease transmission.

To address the limitations of traditional epidemiological models, recent approaches have incorporated
temporal architectures with Graph Neural Networks (GNNs) to capture spatio-temporal transmission
dynamics from observational data (Liu et al., 2024). These models identify topological patterns both
within and across time steps, enabling the learning of temporal correlations across spatially distributed
locations in graph structures. This formulation offers a flexible and data-driven framework for support-
ing decision-making in disease surveillance and control, representing a significant advancement over
classical forecasting methods (Brüel Gabrielsson, 2020; Liu et al., 2024). For example, Cola-GNN
(Deng et al., 2020) captures the influence between the locations by combining the attention matrix
with the geographical adjacency matrix. MSDNet (Tang et al., 2023) enhances regional epidemic
predictions by integrating large-scale mobility data and fine-grained contact patterns.
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Nevertheless, existing methods fail on two fronts. First, AIV forecasting formulation differs funda-
mentally from Influenza-Like Illness (ILI) forecasting. Conventional influenza-like and COVID-19
forecasting are typically modeled as spatio-temporal processes over locations, with transmission
approximated via inter-location mobility flows and demographic factors. By contrast, AIV spread is
inherently multi-source and multi-level. It spreads through multiple concurrent pathways, including
long-range geographical seeding by migratory wild birds and evolutionary reassortment, operating on
distinct spatial and genetic levels. This makes AIV forecasting a different formulation compared to
ILI forecasting. Second, conventional modeling paradigm is mismatched to AIV dynamics. Previous
models follow a homogeneous setup, where nodes represent locations and are connected with static
adjacencies (Liu et al., 2023b; Yu et al., 2023; Lin et al., 2023) or learned correlations (Nguyen
et al., 2023; Pu et al., 2024). This simplification assumes that geographic proximity implies trans-
mission risk, focusing solely on location-level transmission and treating all infected cases as equally
infectious. This paradigm overlooks subclade-specific transmission patterns and mutation-driven
variation in virulence among cases, ignoring case-to-case interactions and temporal variability that
often drive outbreak dynamics. Consequently, they struggle to capture multi-level transmission
patterns, particularly how individual cases interact both within and across geographic regions.

Although recent efforts bring in meteorological variables (Lim et al., 2021; Papagiannopoulou et al.,
2024) or integrate GNNs with mechanistic components (Cao et al., 2022; Wang et al., 2022a; Sha
et al., 2021), they still operate under a homogeneous graph structure based on spatial locations. This
limits their ability to model fine-grained case-level interactions critical to understanding the spread of
AIV. Differently, genetic correlations can offer an epidemiologically informative view by capturing
infection-driven linkages that are invisible to spatial or ecological proximity alone. By modeling cases
and locations as distinct node types and constructing edges based on both spatial and genetic relations,
the problem transfers from standard homogeneous GNNs to heterogeneous GNNs (HGNNs) (Zhang
et al., 2019). HGNNs support multiple node and edge types, and are better equipped to handle multi-
relational, multi-typed graphs, making them highly suitable for epidemiological modeling. Although
prior works considering combining multi-type information (Hemker et al., 2024; Kim et al., 2023; Yu
et al., 2022; Guo et al., 2023), they typically perform as a static multi-modal disease diagnosis for
cases, ignoring the temporal patterns. These methods are not readily adaptable to the AIV forecasting
context, where cases and locations each possess unique intra-layer connectivity patterns and changes
over time, leading to spatio-temporal multi-layer graphs with changing node sets and distinct inter-
layer semantics. Moreover, most existing fusion techniques do not explicitly preserve structural
information during the fusion process, which can potentially lead to information loss in transmission
structures. A principled information-preserving method is therefore essential to handle multi-layer
heterogeneous graphs while preserving structural integrity and semantic distinctions across layers.

To this end, we systematically formulate AIV forecasting problem and design BLUE, a bi-layer het-
erogeneous graph fusion pipeline with dual layers that defines infectious cases and related locations
as heterogeneous nodes within graphs, and integrates three types of information, e.g., spatial, genetic,
and ecological information, into a unified framework for forecasting AIV outbreaks. The process be-
gins by building a bi-layer heterogeneous graph that identifies diverse nodes and constructs multi-type
edges. It then applies a cross-layer smoothing block inspired by Markov Random Fields (Dobruschin,
1968) to smooth heterogeneous connections. Trainable fusion nodes and fusion edges are formed
to produce the fusion graph using a locality-sensitive hashing (LSH)-based sampler (Datar et al.,
2004; Jafari et al., 2021) for efficient information integration. To preserve fine-grained structural
semantics, we design a spectral regularizer that constrains the learned fusion graph to approximate
that of the bi-layer structures, thereby maintaining its global diffusion geometry. Temporal dynamics
are captured by an autoregressive framework, learning both spatial and temporal trends. To support
evaluation and motivate further research, we publicly release a new avian influenza dataset, named
Avian-US dataset1. Our main contributions are:

1. New pipeline design: We systematically define the AIV forecasting problem and propose BLUE , a
pipeline that models heterogeneous nodes with multi-type information within a unified framework,
establishing a principle formulation beyond prior work.

2. Theoretical guarantees: We design an information-preserving graph fusion to simplify the het-
erogeneous graphs without discarding the epidemiologically crucial structure, guaranteed with a
theoretical bound from the spectral perspective.

1https://figshare.com/s/b369cd3447dd312ecd94, detailed in Appendix D.
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MRF-based message passing

Figure 1: BLUE consists of 4 components: Bi-layer Heterogeneous Graph Construction models AIV
spread using a bi-layer heterogeneous graph with two types of nodes (location and case) and three
types of edges (spatial, genetic, and assignment). Then, the MRF-inspired Cross-layer Smoothing
block aggregates neighbor information to create coherent representations for heterogeneous nodes and
their connections. Graphs are then fused into Information-Preserving Fusion Graphs that preserve the
original transmission structure using a spectral regularizer. Finally, Autoregressive Encoder–Decoder
Forecasting encodes node interactions over time to generate multi-step forecasts.

3. Empirical gains: We publicly release and empirically validate BLUE on the avian influenza
surveillance data in the United States, named Avian-US, demonstrating its superior performance.

2 RELATED WORKS

Based on the types of graph structures used, we summarize previous epidemiological methods into
two categories: Static Graph-based (SG) approaches and Dynamic Graph-based (DG) approaches
(refers to Appendix C for details). The topology of SG methods is fixed during training and inference,
commonly specified by geographic adjacency or mobility priors (Xie et al., 2022; Yu et al., 2023;
Lin et al., 2023; Liu et al., 2023b; Tang et al., 2023). Representative examples include EpiGNN (Xie
et al., 2022), STEP (Yu et al., 2023), SMPNN (Lin et al., 2023), MSDNet (Tang et al., 2023),
STSGT (Banerjee et al., 2022), and DGDI (Liu et al., 2023b). While these designs incorporate strong
spatial priors, they cannot adjust the topology to reflect evolving or heterogeneous factors, such as
case-to-case genetic relationships or changes, limiting expressiveness in AIV spread forecasting.
For DG approaches, the topology evolves or is learned from data, allowing time-aware transmission
patterns. Cola-GNN (Deng et al., 2020) implements a distance-based graph with attention to infer
hidden cross-location dependencies. Epi-Cola-GNN (Liu et al., 2023a) couples SIR dynamics with
a learnable, time-varying transmission matrix. CausalGNN (Wang et al., 2022a) introduces causal
components to mitigate confounding and account for policy interventions. Despite flexibility, most
DG models remain homogeneous and operate on a single location-view, overlooking heterogeneous
relations that are central to characterizing multi-pathway transmission in AIV.

3 METHODOLOGY

Problem Definition. We formally define AIV forecasting as predicting future outbreaks by lever-
aging historical multi-source observations, structured as a sequence of heterogeneous graphs with
multi-type relations. Let Gt = (TV , TE) denote a heterogeneous graph snapshot at week t, where
TV = {V(c),V(p)

t } consists of location nodes V(c) and case nodes V(p)
t . TE = {E(sp), E(ge), E(as)}

denotes Spatial edges (red lines), Genetic edges (purple lines), and Assignment edges (purple and
red dash lines), respectively. Spatial edges E(sp) = {e(sp)<i,j>}(i ∈ V(c), j ∈ V(c)) connects spatially

neighboring locations from geographical modality. Each edge ⟨v(c)i , v
(c)
j ⟩ is weighted by a geographic

similarity score ωsp
ij derived from inter-location distances. Genetic edges E(ge) ⊂ V(p)

t ×V(p)
t connect

genetically similar cases from biological modality, where each edge ⟨v(p)k , v
(p)
l ⟩ carries a similarity
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weight w(ge)
kl between case k and case l. Assignment edges E(as) ⊂ V(p)

t × V(t)
t link each case to the

location in which it was reported. Given a sequence of dynamic heterogeneous graphs over the past
T weeks, i.e., {G1,G2, · · · ,GT }, AIV forecasting is to predict the number of new infections in each
location for the subsequent H weeks {yT+1, · · · ,yT+H} = fθ(G1, · · · ,GT ), and our pipeline aims
to learn the function fθ that maps the historical graph sequence to future case counts accordingly.

Bi-layer Heterogeneous Graph Construction. Conventional GNN-based forecasting models
for infectious diseases typically rely on a single-view representation of static spatial and temporal
correlations among locations. These models assume that all infected cases contribute equally to
transmission intensity, failing to distinguish between cases with high or low transmission potential.
To overcome this limitation, we propose a bi-layer heterogeneous graph that simultaneously captures
case-level infection intensity and location-level spatial connectivity within a single unified structure.

As shown in Fig.1, the bi-layer graph comprises two types of nodes, location nodes (red nodes) and
case nodes (purple nodes), connected by three types of edges, Assignment edges (purple and red
dash lines), Genetic edges (purple lines), and Spatial edges (red lines). A fixed set of location nodes
V(c) = {v(c)1 , · · · , v(c)N } represents N distinct locations. Each location node v

(c)
i is associated with a

feature vector x(c)
i (t) = [infectedi(t), populationi(t)], where infectedi(t) is the number of newly

reported infection cases and populationi(t) represents the bird abundance in location i at week t.
Consistent with empirical studies showing localized avian influenza transmission (Bonney et al.,
2018), we define spatial edges (red lines) between locations using a kernel-based weighting scheme
rather than a rigid distance cutoff. For each undirected spatial edge e

(sp)
<i,j> connecting locations i

and j, we assign a weight using a Gaussian kernel ωsp
ij = K(Dij) = exp

(
−D2

ij

2σ2

)
, where Dij is the

geographic distance and σ = τd/3 is the predefined connection range.

A time-varying set of case nodes V(p)
t = {v(p)1 , · · · , v(p)M } represents individual infected samples

reported at time t. The feature vector x(p)
m (t) encodes the genetic profile of case m at timestep

t, computed as the average of its pairwise genetic distances to other cases using the Kimura 2-
parameter (K80) model on aligned hemagglutinin (HA) segment sequences (Kimura, 1980). Genetic
edges {e(ge)<m,n>} connect cases n and m based on their genetic similarity, forming the case layer
(see Appendix A for details). The final bi-layer heterogeneous graph is constructed by connecting
each case node v

(p)
m to its reported location node v

(c)
i through an assignment edge e

(as)
<i,m>, thereby

integrating the case and location layers.

3.1 CROSS-LAYER SMOOTHING BLOCK

Avian influenza transmission involves complex interactions across the case layer and location layer.
We introduce the MRF-inspired cross-layer connection smoothing block to address the discrepancy
of heterogeneous edges and nodes by explicitly leveraging local dependencies across heterogeneous
graph neighborhoods, encouraging coherent representations within epidemiologically linked groups
of nodes while preserving type-specific semantics.

The smoothing module leverages a mean-field approach that iteratively refines node embeddings on
each heterogeneous graph. Formally, given an initial node embedding x

(0)
v and three distinct edge

types (spatial, genetic, and assignment edges), we perform K-time relation-specific message passing

m(k)
r (v) =

1

|Nr(v)|
∑

u∈Nr(v)

Wrx
(k−1)
u (1)

where Nr(v) denotes immediate neighbors of node v. Wr is a trainable parameter matrix representing
the strength of interactions between connected nodes under relation r, adhering to the local Markov
property. These messages, reflecting smoothed neighbor information, are aggregated across relations
and combined with a node type-specific bias bτ(v):

x(k)
v = ReLU(

∑
r

m(k)
r (v) + bτ(v)) (2)

Here, we employ a ReLU activation, ensuring each node embedding is influenced by its neighbors’
semantics. Iteratively applying this update K times mimics multiple rounds of belief propagation,
spreading information across the graph structure while explicitly considering different relational

4
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contexts. Thus, by restricting propagation to immediate neighbors, applying learnable, relation-
specific transformations, and iteratively refining node representations, this approach effectively
integrates key aspects of MRF inference into a differentiable graph-based learning framework.

3.2 INFORMATION-PRESERVING FUSION GRAPHS

Heterogeneous graphs contain different types of nodes and relationships, making their structures
inherently complex. This complexity arises from the simultaneous presence of diverse local and
global relational dependencies. Converting heterogeneous graphs into a homogeneous form can
significantly simplify representation; however, doing so typically risks losing valuable relational
information from multiple sources. To overcome this limitation, we propose the Fusion Graph to
transform the original heterogeneous structure, comprising location and case nodes connected by
multiple relational types, into a unified one under spectral alignment (refers to Sec. 3.4 for details).
Consequently, the Fusion Graph effectively captures the original heterogeneous complexity while
providing a simpler and more interpretable structure (timestep t is omitted for clarity).
Fusion Nodes. Implementationally, we define fusion nodes as aggregated representations of loca-
tions, constructed by systematically integrating neighbor information from the original heterogeneous
graph. Given an initial heterogeneous graph Gt, fusion node embedding xi corresponding to the
location node v

(c)
i ∈ V(c) at timestep t is generated by

z
(c)
i = f1

(
x
(c)
i ∥x(spatial)

i

)
, z

(p)
i = f2

(
x
(genetic)
i

)
, xi = fm

(
[z

(c)
i ∥ z(p)i ]

)
, (3)

where x_i(c) denotes the intrinsic features of location node i, and ∥∥ represents the concatenation
operation. The aggregation functions f_1, f_2, and f_m are implemented as MLPs with nonlinear
activation functions. x(spatial)

i are the spatial context vector for location i, calculated by averaging
over connected nodes of the same type x

(spatial)
i = 1

|N (sp)
i |

∑
j∈N (sp)

i
x
(c)
j . x(genetic)

i is the genetic
context vector for location i, computed by applying mean pooling to the feature vectors of all
case nodes associated with location i. x(cspatial)

i aggregates information from neighboring locations
connected by spatial relationships, while x

(pgenetic)
i summarizes genetic information derived from

cases within location i. The specific aggregation functions, f1 and f2, and the subsequent fusion
function f(m) employ Multi-Layer Perceptrons (MLPs) with nonlinear activation functions, effectively
integrating diverse nodes into coherent fusion node embeddings.
Fusion Edges. Once fusion node embeddings are obtained, we construct edges to induce a coherent
relational topology. Instead of forcing every possible pair or using a hard cut-off, we employ a
learnable link prediction network augmented with Locality-Sensitive Hashing (LSH) to select edges
and ensure computational tractability. Specifically, for any pair of fusion nodes vi and vj (generated
from location nodes v(c)i and v

(c)
j ), we define the link probability pij as pij = σ(Wl[xi∥xj ] + bl),

with σ(·) is Sigmoid activation for normalization probabilities. ∥ indicate vector concatenatnion,
and Wl, bj are learnable parameters. To avoid O(N2) enumeration over all node pairs, we generate
a reduced candidate set via LSH: node embeddings are projected onto K random hyperplanes to
produce binary codes, which approximate cosine similarity in the embedding space (Charikar, 2002).
Specifically, each fusion node embedding x

(f)
i is converted into a B-bit binary code

hi = [sign(r⊤1 xi), · · · , sign(r⊤Hxi)] ∈ {0, 1}B (4)

where rh are independent random projection vectors sampled from a spherical distribution and B
is the length of binary codes. Nodes with identical hash codes are placed into the same group, and
within-bucket pairs (i, j) are considered candidate edges, leveraging the high collision probability
of similar vectors. If the number of exact-match candidates is below a predefined maximum Mmax,
the candidate set is supplemented by selecting node pairs whose Hamming distance between codes
does not exceed a threshold τh=1. By grouping nodes via code matches, we avoid the cost of
exhaustive pairwise comparison and reduce to approximately O(N + Mmax) operations, where
N = |V(c)|+ |V(p)

t | denotes the total number of location and case nodes at time t.

To integrate original heterogeneous relations into the fusion graph, BLUE further employs a gate
network that dynamically weights spatial and genetic edges based on node-pair interactions. Formally,
for each pair of fusion nodes vi and vj , the relation-specific embedding e

(r)
ij = er +Wedgex

(r)
ij +

bedge, where r ∈ {spatial, genetic}, er is a learnable vector encoding relation type, and x
(r)
ij =

5
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{x(c)
i ,x

(p)
j } contains the corresponding edge features. These embeddings are then fed into a multi-

head self-attention network (Vaswani et al., 2017) to produce normalized scores across relations

α
(r)
ij = Attn(xi,xj , e

(r)
ij ), e

(r)
ij =

∑
r

exp(α(r)
ij )∑

r′ α
(r′)
ij

e
(r)
ij (5)

The fusion-edge embedding is obtained as a weighted sum eij =
∑

r α
(r)
ij e

(r)
ij . Thus, we obtain the

unified fusion graphs with updated fusion node embeddings Xt and edge embeddings E(f)
t . This

process enables our model to emphasize the most informative relationships for each node pair while
preserving spatial and genetic interpretability and maintaining end-to-end differentiability. To ensure
the maximum information preservation during the fusion process, we employ a spectral regularizer∥∥Lhetero − Lf

∥∥2
F

to ensure the diffusion modes consistency (detailed in Sec. 3.4).

3.3 AUTOREGRESSIVE ENCODER-DECODER FORECASTING

To model temporal dynamics over compressed fusion graphs, we use the sequence-to-sequence
architecture. For each time step t ∈ {T − w + 1, . . . , T}, node embeddings Xt are processed by L
GraphSAGE layers Gl (Hamilton et al., 2017)

H
(l+1)
t = σ

(
Gl(H

(l)
t ,E

(f)
t )

)
, l = 0, . . . , L− 1, (6)

where the initial layer input is the node embedding with an added positional encoding H
(0)
t = Xt+pt.

Here, pt is a learnable positional encoding. The outputs from the final GraphSAGE layer for each
time step are stacked to form the overall representation H = [H

(L)
T−w+1, . . . ,H

(L)
T ] ∈ Rw×N×d. This

tensor is then processed by a multi-head attention mechanism (Vaswani et al., 2017) to produce a
context vector H(c) = Attn(H), capturing the temporal dependencies. The decoder then forecasts
for a horizon H , in an autoregressive manner. Final predictions are ŷh = Woutd̃h, where d̃h is the
decoder output. Further implementation and complexity details are in Appendix. A.

3.4 OPTIMIZATION

During training, BLUE minimizes the objective that couples (i) multi-step forecasting term, (ii)
spectral alignment of the learned fusion graph, and (iii) standard parameter regularization. Forecasting
term measures the differences between the forecast ŷi,h and the ground-truth infection count yi,h.
Since epidemiological data requires more critical predictions of higher infection cases than zero
infection cases, we introduce a hierarchical weighting scheme that assigns different importance to
prediction errors based on the magnitude of actual infection counts

Lpred =
1

N

T+H∑
h=T+1

N∑
i=1

wi · (ŷi,h − yi,h)
2, (7)

with three distinct infection severities τi (i ∈ {low,med, high}) with corresponding weight coeffi-
cients wi. By emphasizing importance of higher infection cases with higher wi, BLUE concentrates
on non-zero infections through progressive weighting and learns to predict critical outbreak scenarios.

Compressing bi-layer graphs into fusion grpahs is a spectral low-pass filter: high-frequency com-
ponents on the fine, case-level sub-graph are discarded. Consequently, operating only on the fused
graph risks under-representing subtle transmission channels driven by a few genetically distinctive
samples. To best preserve useful information, we employ a spectral regularizer to force the spectral
alignment between the original bi-layer heterogeneous graphs and fusion graphs.

Let P ∈ {0, 1}(N+Mmax)×N be the projection that maps case nodes into their home locations.
Ahetero and Lhetero be the layer-adjacency and Laplacian of the heterogeneous graph, and let Af

and Lf be the adjacency and Laplacian of the learned fusion graph. Define the fusion Laplacian
L̃f := PLfP

⊤ and the corresponding normalized adjacencies Mhetero = I−Lhetero, M̃f = I−L̃f .

Theorem 3.1. Assume spectral approximation under ∥Lhetero − L̃f∥ ≤ ε(0 < ε ≪ 1). For any
polynomial filter p(·) and content vector H, we have ∥p(Mhetero)H− p(M̃f )H∥F ≤ O(ε)∥H∥F .

Proof. Consider a GraphSAGE layer Φ(H) = σ(WsH + Wnp(M)H), where weight norms
∥Ws∥ ≤ βs, ∥Wn∥ ≤ βn. Define Z := βs + βn∥p(Mhetero)∥2. Under ∥Lhetero − L̃f∥,

∥Φhetero(H)− Φf (P
⊤H)∥F ≤ O(βnε)∥H∥F + βs∥H− PP⊤H∥F︸ ︷︷ ︸

fusion mismatch term

. (8)
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Table 1: Performance on Avian-US dataset. Experiments are run under T=4 and H=4, with 5-fold
validation. * denote statistically significant improvements, validated by a paired t-test at a significance
level of p < 0.05 against the runner-up model. Best results are bolded.

model STGCN SelfAttnRNN ST-Net EAST-Net DRCNN EpiGNN Cola-GNN STSGT Epi-Cola-GNN HGT BLUE
RMSE(↓) 0.874±0.143 0.896±0.175 0.902±0.160 0.897±0.177 0.797±0.131 0.783±0.120 0.712±0.100 0.826±0.125 0.691±0.114 0.652±0.083 0.611±0.072

MAE(↓) 0.420±0.091 0.372±0.057 0.457±0.084 0.556±0.063 0.612±0.040 0.263±0.044 0.178±0.022 0.169±0.031 0.097±0.017 0.090±0.016 0.085±0.018

PCC(↑) 0.048±0.002 0.052±0.005 0.058±0.003 0.065±0.004 0.059±0.005 0.072±0.005 0.077±0.004 0.040±0.008 0.078±0.004 0.077±0.005 0.087±0.013

SCC(↑) 0.077±0.009 0.080±0.011 0.087±0.013 0.084±0.013 0.087±0.012 0.082±0.011 0.085±0.010 0.108±0.020 0.083±0.011 0.097±0.017 0.122±0.014

F1(↑) 0.064±0.004 0.070±0.004 0.075±0.017 0.078±0.008 0.067±0.008 0.067±0.005 0.065±0.010 0.073±0.018 0.082±0.020 0.080±0.008 0.100±0.019

Since heterogeneous nodes are fused at location level (H = PP⊤H), it simplifies to ∥Φ(H) −
Φ(P⊤H)∥ ≤ βnε∥H∥ without mismatch. BLUE are implemented with L GraphSAGE layers,

∥Fhetero(H)−Ff (P
⊤H)∥F ≤ O(

ZL − 1

Z − 1
ε)∥H∥F . (9)

For a tighter upper bound, we apply the weight normalization on GraphSAGE layers to ensure
Z ≈ 1, reducing to an O(Lε) bound. Hence, the fusion graph retains the effective information of the
heterogeneous process up to a controllable, linear-in-depth spectral error.

With λ1, λ2 controlling the weights of spectral alignment and regularization, the final objective is

Ltot =
1

N

T+H∑
h=T+1

N∑
i=1

wi · (ŷi,h − yi,h)
2

︸ ︷︷ ︸
Lpred

+ λ1 ·
∥∥Lhetero − L̃f

∥∥2
F︸ ︷︷ ︸

Lspec

+ λ2

∑
w∈Θ

∥w∥22︸ ︷︷ ︸
Lr

. (10)

4 EXPERIMENTS

We evaluate BLUE on two datasets: (1) Flu-Japan dataset, introduced by (Deng et al., 2020), com-
prises weekly influenza-like illness counts from 47 prefectures in Japan over the period 2012–2019.
(2) Our proposed Avian-US dataset, constructed as described in Appendix D, covers 3,227 counties
and integrates genetic, spatial, and ecological modalities. Combining two datasets, we aim to demon-
strate BLUE’s capacity to leverage both homogeneous and heterogeneous relational information2.

Baselines. We compare BLUE against following GNN-based models: 1) homogeneous spatio-
temporal forecasting models (ST-GCN (Yu et al., 2018), SelfAttnRNN (Cheng et al., 2016),
DCRNN (Li et al., 2018), and EAST-Net (with a simplify version ST-Net) (Wang et al., 2022b)),
2) influenza-like epidemic prediction models (Cola-GNN (Deng et al., 2020), EpiGNN (Xie et al.,
2022), Epi-cola-GNN (Liu et al., 2023a), STSGT (Banerjee et al., 2022)), and 3) heterogeneous-
based model (HGT (Hu et al., 2020)). We adopt 5 complementary metrics: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC), Spearman
Correlation Coefficient (SCC), and Threshold F1 Score (F1, only detected when prediction exceeds
threshold t = 0.3). Please refer to Appendix E for implementation details and experimental settings.

4.1 OVERALL PERFORMANCE

In the Avian-US dataset, BLUE achieves the highest PCC. However, as PCC is sensitive to small
fluctuations and can be skewed in sparse datasets like Avian-US, we also incorporate SCC, a rank-
based metric better suited for sparse, non-linear epidemic signals. As shown in Table.1, HGT is the
runner-up in regression-based metrics (RMSE/MAE) owing to its capacity to model heterogeneous
nodes. Epi-cola-GNN excels at capturing linear correlations, while STSGT demonstrates superior
performance in outbreak detection, achieving the runner-up F1 score. Notably, BLUE achieves the
highest PCC and SCC, confirming its strong capacity to capture both linear and non-linear correlations.
Across all metrics, BLUE exhibits a clear advantage: it reduces the RMSE by 0.041 and the MSE by
0.005 compared to the runner-up, HGT. Furthermore, BLUE achieves the highest F1 score, which
highlights its superior ability to detect outbreak occurrences rather than merely predicting precise
case counts (comprehensive performance shown in Appendix. F).
4.2 PER-STEP PERFORMANCE

To provide finer-grained insights into forecasting performance, we conducted a temporal analysis of
per-step results on the Avian-US dataset under T = 4 and H ∈ {4, 8}. As shown in Fig. 2, nearly

2Flu-Japan does not include genomic information for case–case correlations. Its graph structure reduces to
only 47 prefecture-level homogeneous nodes connected by spatial edges. We include it as a fair comparison with
previous baselines on homogeneous settings and move the detailed experiments on Flu-Japan to Appendix. F.
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Figure 2: Per-step performance on Avian-US with H = 4 (left) and H = 8 (right).

all evaluation metrics decrease as the prediction horizon H increases, which is consistent with the
inherent difficulty of long-range forecasting. For per-step performance, BLUE performs optimally
at step 1 under both horizon settings, achieving its highest F1 score, PCC, and SCC. Performance
consistently declines as the predicted step increases, resulting in the lowest outbreak detection ability
and largest prediction errors at the final step. Specifically, BLUE’s capacity to detect outbreaks
decreases, with the F1 score falling from 0.1380 to 0.0933 for H = 4 and from 0.1133 to 0.0724
for H = 8. SCC, indicating the capacity for capturing spread trends, also decreases. Despite slight
fluctuations, MAE of predicted infection counts increases with each successive step, rising from
0.0867 to 0.1120 for H = 4 and from 0.1082 to 0.1759 for H = 8.
4.3 ABLATION STUDY

Table 2: Ablation study on Avian-US.
Variants RMSE MAE F1 PCC SCC
w/o gen 0.8093 0.1667 0.0721 0.0686 0.0946
w/o CS 0.7824 0.1828 0.0692 0.0677 0.0911
w/o Spec 0.8504 0.2310 0.0839 0.0729 0.1035
w/o CS+Spec 0.9020 0.2002 0.0605 0.0543 0.0869
w/ LSH 0.6141 0.1007 0.0994 0.0855 0.1105
w/ attn 0.6157 0.0945 0.0901 0.0755 0.1114
w/o eco 0.6772 0.1373 0.0978 0.0771 0.1093
w/ drop 0.6713 0.1254 0.0944 0.0801 0.1153
BLUE 0.6106 0.0848 0.1020 0.0871 0.1218

Ablation studies are conducted to evaluate the
contributions of each part in BLUE . We intro-
duce following variants: 1) w/o gen only utilizes
the spatial distances and assignment relation-
ships; 2) w/o CS+Spec only implement the auto-
regressive encoder-decoder framework; 3) w/o
CS excludes the cross-layer smoothing block; 4)
w/o Spec excludes the spectral regularizer from
the objective function; 5) w/ LSH removes atten-
tion gate with simple averaging; 6) w/ attn only
use attention gate for fusion edge calculation; 7)
w/o eco removes location ecological features (bird abundance); 8) w/ drop randomly drop 20% of
edges from bi-layer heterogeneous graphs. The results are shown in Table. 2.

The CS block and the Spectral Regularizer function work collaboratively. Disabling CS (w/o CS)
allows noise from the initial sparse graph construction to propagate, harming ranking metrics.
Similarly, removing the spectral constraint (w/o Spec) decouples the learned graph structure from
the true epidemiological diffusion process, leading to overfitting. The combined removal of these
components (w/o CS+Spec) yields the poorest performance, demonstrating that raw auto-regressive
encoding is insufficient without structurally guided regularization. Removing genetic edges (w/o gen)
causes a sharp increase in MAE, confirming that AIV outbreaks follow complex biological pathways
that spatial proximity cannot fully explain. This is further supported by the w/ drop experiment, where
randomly severing 20% of edges degrades performance, showing that AIV spread forecasting relies on
a reliable, complete connectivity structure for aggregation. Moreover, two key observations arise from
the attention experiments. First, replacing the dynamic gate with simple averaging (w/ LSH) increases
MAE, proving that the model must learn to weigh spatial versus genetic risks adaptively. Second,
using full dense attention (w/ attn) underperforms compared to the LSH-based approach (reducing
F1 to 0.0901). This suggests that LSH acts as a beneficial constraint—limiting aggregation to
high-probability neighborhoods prevents the model from overfitting to noisy, long-range interactions
common in sparse data. Overall, BLUE achieves the best performance across all metrics, confirming
that each component contributes distinctly to capturing the spatiotemporal dynamics of AIV spread.

4.4 SPECTRAL ALIGNMENT Lspec

The spectral regularizer, Lspec, ensures the alignment of transmission information between the
original bi-layer heterogeneous graphs and the fused graphs. As demonstrated in Fig. 3, increasing
the weight λ1 steadily enhances the model’s ability to capture trends, detect events, and reduce
forecasting error. Specifically, as λ1 increases across the tested range, RMSE shows a fluctuating
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Figure 3: Impact of spectral alignment weight λ1.

Table 3: Different predicted horizon H under window size T = 4 (up) and T = 8 (down).
T 4
H 1 2 4 8
RMSE 0.6018 ± 0.0730 0.6098 ± 0.0653 0.6106 ± 0.0719 0.6174 ± 0.0319
MAE 0.0955 ± 0.0217 0.0924 ± 0.0198 0.0848 ± 0.0182 0.0961 ± 0.0358
F1 0.1271 ± 0.0166 0.1109 ± 0.0273 0.1001 ± 0.0193 0.0949 ± 0.0113
PCC 0.1195 ± 0.0339 0.0976 ± 0.0188 0.0871 ± 0.0132 0.0683 ± 0.0074
SCC 0.1489 ± 0.0148 0.1345 ± 0.0230 0.1217 ± 0.0140 0.1029 ± 0.0066

T 8
H 1 2 4 8
RMSE 0.6337 ± 0.0394 0.6112 ± 0.0411 0.6268 ± 0.0292 0.6178 ± 0.0434
MAE 0.1151 ± 0.0200 0.0952 ± 0.0245 0.1061 ± 0.0383 0.1065 ± 0.0212
F1 0.1226 ± 0.0169 0.1269 ± 0.0175 0.1030 ± 0.0074 0.0950 ± 0.0069
PCC 0.1225 ± 0.0237 0.1084 ± 0.0151 0.0828 ± 0.0208 0.0788 ± 0.0088
SCC 0.1587 ± 0.0158 0.1472 ± 0.0085 0.1208 ± 0.0161 0.1172 ± 0.0127

yet decreasing trend, from 0.6211 to 0.6112. The F1 Score rises from 0.0913 at λ1 = 0 and peaks
at λ1 = 0.9, marking a 17.1% improvement over the baseline. Similarly, SCC steadily improves
with the weight and reaches its maximum value at λ1 = 0.9. Although a slight drop is observed at
λ1 = 1, the narrow error bars at this point suggest a more robust performance. Therefore, using an
excessively large value for λ1 could cause the model to over-prioritize spectral alignment, potentially
leading to the neglect of the primary forecasting task.

4.5 IMPACTS OF WINDOW SIZE T AND PREDICTED HORIZON H

Impact of Prediction Horizon H . When the observation window is short (T = 4), the lowest
RMSE and MSE are achieved at the shortest prediction horizon. This suggests that one-week patterns
in the Avian-US dataset are more stable and predictable than dynamics over longer horizons. As the
prediction horizon H increases, F1, PCC, and SCC tend to decline. This decline is attributed to the
high variability of temporal patterns and the sparse ground-truth infection counts. The irregularity
in avian influenza outbreaks, potentially due to variations in viral infectivity across different strains,
makes long-term forecasting challenging. The worst results for all metrics are observed at the longest
horizon (H = 8), a common outcome due to error accumulation in the autoregressive decoding
process, indicating a loss of predictive accuracy when the forecast horizon is too long.

Impact of Observation Window T . Considering a fixed prediction horizon H , increasing the
observation window T (from T = 4 to T = 8) shows a consistent positive trend: (i) Enhanced
Pattern Capture: There is a consistent decrease in RMSE and MAE, along with an upward trend in
F1/PCC/SCC. This indicates that longer historical observations enhance BLUE’s ability to capture
underlying patterns in the Avian-US dataset. (ii) Increased Variability: the performance variances
of nearly all metrics increase with larger T . This is likely because longer observation windows,
especially with sparse data, introduce a higher proportion of zero-valued regions across counties,
which enlarges variability across validation folds and leads to greater fold-to-fold variability in results.

5 CONCLUSION AND DISCUSSION

We present BLUE , a bi-layer heterogeneous graph fusion network that integrates genetic and spatial
data to improve epidemic forecasting. BLUE uses cross-layer smoothing and information-preserving
graph fusion to learn coherent representations of disease spread through an autoregressive en-
coder–decoder architecture. We evaluate BLUE on two datasets: the newly constructed Avian-US
dataset and the publicly available Flu-Japan dataset. In both settings, BLUE outperforms strong
spatio-temporal and epidemic forecasting baselines, demonstrating its effectiveness across different
spatial and epidemiological contexts. The spectral fusion mechanism within BLUE is generalizable
and can be extended to maintain structural alignment in more complex, multi-layer graph settings.
While the current version of the Avian-US dataset does not include environmental variables, the
architecture of BLUE is inherently modular and extensible. Additional information, such as location-
level temperature, humidity, or other ecological indicators, can be incorporated as new features with
corresponding cross-layer connections. In future work, we plan to expand the dataset with richer
environmental attributes and biological categories, such as mammals and humans, to better support
realistic forecasting, extending BLUE ’s applicability to more comprehensive, real-world scenarios.
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and discussion. Our study uses public, non-human data only; no human subjects or personally
identifiable information are involved, and no animal experimentation is conducted. We follow the
Code’s principles to uphold scientific excellence with honest, transparent, and reproducible reporting;
to respect privacy and confidentiality and comply with data licences; and to avoid harm and consider
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7 REPRODUCIBILITY STATEMENT

An anonymous code repository with training/inference scripts and configuration files is linked in
the Abstract. Model architecture, forecasting procedure, and optimization objectives are specified in
Section 3, including the autoregressive encoder–decoder framework (detailed in Appendix A.4) and
loss/regularization details (in Section 3.4). Computational complexity and implementation notes are
provided in Appendix A. Dataset sources, processing/alignment steps, and statistics are documented
in Section 4 and Appendix D. The experimental setup, baseline implementations, evaluation metrics,
and other practical details are summarized in Section 4 and Appendix E.
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A COMPUTATIONAL COMPLEXITY

Although BLUE introduces multiple components, each is carefully designed to ensure both scalability
and practical implementability.

A.1 BI-LAYER HETEROGENEOUS GRAPH CONSTRUCTION

At any given timestep t, the bi-layer heterogeneous graph contains |V | = N + Mt nodes, where
N is the number of location nodes and Mt is the number of infected case nodes at timestep t.
When δ additional genetic samples are introduced, the node set grows to |V | = N +Mt + δ. The
corresponding edge sets expand: 1) Assignment edges: E(as): O(Mt) → O(Mt + δ); 2) Genetic
edges: E(ge): O(kMt) → O(k(Mt + δ)) (assume a k-Nearest Neighbor connectivity). They result
in a linear increase in graph construction complexity relative to the number of genetic samples.

A.2 CROSS-LAYER SMOOTHING BLOCK

Given K-round smoothing, for all the relations r ∈ {sp, ge, as}, the cross-layer smoothing block
calculates a relation-specific message passing process by averaging over the immediate neighbors
Nr(v) and applying a learnable map Wr ∈ Rd×d, then aggregates messages across relations with a
type-specific bias and ReLU activation.

Let |V | = N + Mt be the total number of nodes and |Er| the number of edges of type r (spatial,
genetic, assignment). Each relation’s neighbor aggregation corresponds to a sparse–dense product
D−1ArX

k−1, requiring O(|Er| · d). The subsequent relation-specific transform M
(k)
r Wr costs

O(|V | · d2) per relation r, and the element-wise nonlinearity is O(|V | · d), which can be omitted.

Summing over the three relations and iterating K times yields O(K[d · (|Esp| + |Ege| + |Eas|) +
3|V | · d2]). Since assignment edges link each infected case to its report location node and are binary,
|Eas| = M in our setting.

A.3 INFORMATION-PRESERVING FUSION GRAPHS

A.3.1 FUSION NODES.

Fusion node embeddings are constructed by first aggregating neighboring locations (spatial) and
within-location genetic information, and then employing MLPs f1, f2, fm to obtain the fused repre-
sentations, which costs O(|Esp|·d) for spatial neighbors and O(M ·d) for case-to-location assignment.
The subsequent per-node MLP transforms cost O(N · d).

A.3.2 LOCAL SENSITIVE HASHING-BASED EDGE SELECTION.

Code Construction. For each bi-layer heterogeneous graph, the total number of location nodes
is N . The length of each binary code for the Local Sensitive Hashing sampler is denoted as B.
To generate LSH codes, we take B dot products between node embeddings (with dimension d)
and independently sampled random hyperplanes rb, retaining only the sign of each projection and
resulting in a per-node cost of O(Nd) for computing projections and O(B) for extracting sign bits.
Across all N nodes, the overall cost is O(NBd), primarily from matrix-vector multiplications. Once
the LSH codes are computed, each node is inserted into a hash map using its binary signal as the key,
adding a total O(N) time cost for the hash table construction. The complete time complexity for
code generation and hashing is thus O(NBd+N).

Bucket Matching. Each bucket with k nodes encodes k(k−1)
2 potential node pairs. The LSH-based

sampler terminates when the number of collected fusion-edge pairs reaches the limit of Mmax,
ensuring this step remains within O(Mmax) time.

If additional pairs are needed, we perform the following strategy: With randomly selected nodes, we
search their neighbors within the Hamming distance threshold τh = 1. Since the number of selected
nodes and their neighbors are constants, the computation takes O(B) in total.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Combining all terms gives:
Ttotal = O(NBd+N +Mmax +B) (11)

Since the embedding size d and code length B are fixed constants in implementation, the complexity
simplifies to O(N +Mmax), highlighting the scalability of our LSH-based sampler compared to
naive pairwise similarity joins, which require O(N2) pairwise operations.

In practice, we replace the hash table implementation with a sorting-based alternative. Specifically,
each node’s B-bit binary code is converted into a single integer representation in O(NB) time. The
resulting integer codes are then sorted in O(N logN) time. Although the total time complexity of
this sorting-based LSH variant becomes O(N logN +Mmax), which is asymptotically higher than
the hash map-based approach, it is empirically faster on GPU architectures due to the inefficiency of
hash table operations in parallel settings.

A.3.3 FUSION EDGES.

Given a candidate set Mmax of fusion-edge pairs produced by LSH, fusion edges are then scored
by the learnable link prediction network pij , requiring up to O(Mmax · d). The gate network then
defines the relation-specific embeddings and computes normalized scores across relations. With a
constant number of heads and relations, the complexity is mainly determined by per-pair projections,
resulting in O(Mmax · d2).

A.4 ENCODER-DECODER FORECASTING

To model temporal dynamics, we adopt a sequence-to-sequence architecture over the compressed
fusion graphs. At each time step t of the window size T , the fusion node embeddings Xt are
propagated through L GraphSAGE layers Gl (Hamilton et al., 2017) 3:

H
(l+1)
t = σ(Gl(H

(l)
t ,E

(f)
t )), for l = 0, 1, · · · , L− 1 (12)

where H
(0)
t = [Xt + pt], pt denotes learnable positional encoding. E

(f)
t = {eij} is the edge

embeddings of the fusion graph at timestep t. Over T observations, we collect the final-layer outputs
of each timestep {H(L)

t , · · · ,H(L)
t+w−1} and stack them into H ∈ Rw×N×d. This tensor is fed into a

temporal-aware fusion module, implemented by the multi-head attention network (Vaswani et al.,
2017), to enforce features mutually concern across steps, capturing temporal dependence and yielding
a context vector H(c). Following, the decoder operates in an autoregressive manner over a forecasting
horizon of length H . At each step h ∈ {1, · · · ,H}, it applies a GraphSAGE-based architecture
composed of L layers that mirror the encoder structure:

dh = Decoder(Z(L)
h−1,E

(f)
T , fh−1, th) (13)

fh−1 = Wfeat · (yh−1) + bfeat (14)

Here, Z(L)
h−1 denotes the hidden state from the previous decoding step, and E

(f)
T represents the fusion

edge embeddings at the final observation time T , and th encodes temporal information. Z(L)
0 = H(c).

The decoded features dh are then smoothly integrated with the previous step’s decoded output fh−1

and the encoder’s global context representation H(c) through a weighted combination:

d̃h = (1− λo − λp)dh + λofh−1 + λpH
(c) (15)

where λo, λp ∈ [0, 1] control the reliance on current decoding, prior predictions, and global context,
respectively, enhancing forecast stability across longer horizons. Finally, the prediction for step h,
denoted as ŷh, is generated via a nonlinear projection ŷh = Woutd̃h. The hidden state for the current
step is updated by a linear combination of d̃h and the prior hidden states, enabling information flow
across steps during sequential prediction.

BLUE performs forecasting over fusion nodes by aggregating representations from associated case
nodes. While an increase of δ genetic samples adds more case nodes per location, BLUE utilizes
pooling operations. These operations maintain a fixed dimensionality for node representations and do
not expand the computational graph. Thus, the forecasting complexity depends solely on the number
of location nodes N , remaining independent of δ.

3We selected GraphSAGE as the backbone due to its balance between theoretical compatibility with the
spectral regularization and empirical performance across datasets, detailed in Appendix B.
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A.5 SPECTRAL REGULARIZER

The spectral regularizer in BLUE preserves the diffusion geometry between the heterogeneous and
fusion graphs by minimizing Lspec = ∥Lhetero − L̃f∥2F , adding only a lightweight Frobenius-norm
term between Laplacians. Importantly, we regularize only the top-k eigenvalues, which capture the
global diffusion modes. Computing these top-k eigenpairs takes O(k|V |2) in theory but in practice
is implemented with efficient iterative solvers that converge quickly due to the sparse structure of
Lhetero. Thus, the spectral regularizer adds negligible overhead relative to the main encoder–decoder
forecasting.
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B BACKBONE CHOICE

We selected GraphSAGE as the encoder-decoder in BLUE because it provides the best balance between
theoretical compatibility with our spectral regularization framework and empirical performance across
datasets.

Theoretical justification. Our framework relies on a spectral regularizer to ensure that the fusion
graph preserves the diffusion geometry of the original heterogeneous graph.

• GCN: The repeated application of symmetric normalized Laplacians in GCN accumulates
spectral deviation linearly with depth, yielding an error up to Lε after L layers.

• GraphSAGE: Its inductive neighborhood aggregation achieves a tighter error bound,
O
(

ZL−1
Z−1

)
· ε, with Z as the Lipschitz constant. Since we explicitly regularize Z < 1, the

cumulative error remains controlled, making GraphSAGE theoretically well-aligned with
our spectral regularization design.

• GAT: GAT redefines adjacency dynamically via feature-dependent attention. The resulting
operator is not governed by the regularized Laplacian, and its evolving topology makes
spectral consistency guarantees inapplicable.

Empirical support. To validate our choice, we replaced GraphSAGE with GCN and GAT under
identical settings (L = 2, spectral regularizer weight = 0.2, excluded for GAT). Results averaged over
5-fold validation and 5 random seeds are summarized below. GraphSAGE consistently outperforms
alternatives on RMSE, MAE, and F1, while PCC differences are minor and consistent with PCC’s
fragility on sparse datasets (see Section 4.1).

Table 4: Performance comparison on Flu-Japan dataset.

BLUE w/GCN w/GAT

RMSE 1458 1463 1595
MAE 520 732 675
F1 0.8170 0.7908 0.7978
PCC 0.7659 0.6733 0.6891
SCC 0.5440 0.5022 0.5287

Table 5: Performance comparison on Avian-US dataset.

BLUE w/GCN w/GAT

RMSE 0.6106 0.6678 0.6791
MAE 0.0848 0.0970 0.0942
F1 0.1001 0.0967 0.0893
PCC 0.0871 0.0664 0.0696
SCC 0.1217 0.0931 0.1089

Both theoretically and empirically, GraphSAGE proves most compatible with BLUE ’s information-
preserving design. While PCC values remain low on Avian-US due to extreme sparsity, GraphSAGE
yields clear improvements on RMSE, MAE, and F1, demonstrating superior suitability over GCN
and GAT within our framework.

C RELATED WORKS

Based on the types of graph structures used, we summarize previous epidemiological methods into
two categories: Static Graph-based (SG) approaches and Dynamic Graph-based (DG) approaches.
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C.1 STATIC GRAPH-BASED APPROACHES

SG methods rely on fixed graph structures throughout both training and prediction, typically incorpo-
rating predefined spatial or mobility-based priors such as geographic adjacency matrices (Xie et al.,
2022; Yu et al., 2023; Lin et al., 2023) or static population flow matrices (Liu et al., 2023b; Tang et al.,
2023). For example, EpiGNN (Xie et al., 2022) combines a static region-level graph with temporal
modeling via spatio-temporal graph learning. STEP (Yu et al., 2023) and SMPNN (Lin et al., 2023)
leverage graph neural networks to perform spatio-temporal forecasting on predefined location-level
graphs constructed from geographic distances. MSDNet (Tang et al., 2023) defines the graph struc-
ture based on coarse-grained population migration trajectories and employs spatio-temporal graph
learning to enhance prediction. Similarly, DGDI (Liu et al., 2023b) constructs geometric graphs
derived from the location histories of infected individuals, implicitly modeling transmission potential
via movement patterns. While effective for incorporating static spatial priors, they lack the flexibility
to adapt to dynamic or heterogeneous factors, such as evolving case-to-case genetic relationships or
ecological context, which limits their expressiveness in real-world epidemic spread.

C.2 DYNAMIC GRAPH-BASED APPROACHES

DG approaches allow the graph’s structure—either its edges, nodes, or both—to evolve over time or
be updated through model-driven learning. This enables time-aware adaptation and more flexible
representations of temporal transmission dynamics. For instance, Cola-GNN (Deng et al., 2020)
begins with a static binary graph based on geographic distances but enhances it with a cross-location
attention mechanism that learns hidden dependencies across regions. Epi-Cola-GNN (Liu et al.,
2023a) builds on this by incorporating SIS dynamics and using a learnable transmission matrix to form
time-varying graphs, better reflecting real-world epidemic progression. MepoGNN (Cao et al., 2022),
on the other hand, explicitly integrates SIR dynamics into the graph learning process, allowing it to
model evolving infectious connections more directly. CausalGNN (Wang et al., 2022a) introduces
causal inference components to handle confounding effects and policy interventions, improving
the reliability of predictions under complex real-world conditions. Despite their flexibility, these
models still operate within a homogeneous framework, focusing on a single relational view. They
overlook heterogeneous factors, such as genetic relationships, which are critical for understanding
the multifaceted nature of real-world disease transmission.
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Table 6: Dataset statistics.

dataset size (# locations × # week) Min Max zeros (%)
FLU-Japan 47 × 348 0 26635 15.8
Avian-US 3227 × 104 0 92 98.4

D DATASET

The dataset statistics are shown in Table. D. The selection of the Flu-Japan and Avian-US datasets is
strategic: they represent two complementary epidemiological scenarios, providing a rigorous test of
BLUE under both moderate and extreme conditions.

Flu-Japan (homogeneous baseline). Flu-Japan4 is a well-established homogeneous benchmark
dataset covering 47 prefectures. Its key strengths are:

• Moderate spatial scale: The relatively compact size enables interpretable analysis and
clear visualization of epidemic dynamics.

• Relatively continuous outbreaks: Compared to Avian-US, Flu-Japan exhibits smoother
temporal variation and less sparsity, making it well-suited to validate whether BLUE can
capture epidemic trends and temporal dynamics.

Its main limitations are:

• Limited spatial granularity: Only 47 nodes, insufficient to stress-test scalability.

• Single modality: No genetic or environmental features, restricting evaluation of BLUE ’s
multi-modal integration capabilities.

Avian-US (new large-scale dataset). To address these limitations, we introduce Avian-US, a new
multimodal dataset covering 3,227 U.S. counties. It provides a far more challenging and realistic
evaluation due to:

• High spatial resolution: Orders of magnitude more nodes than Flu-Japan, directly testing
BLUE ’s scalability.

• Extreme sparsity: Nearly 99% of weekly county-level series remain zero (Appendix C,
Table 1), requiring robust handling of rare-event signals.

• Multi-modal heterogeneity: Incorporates spatial, genetic, and ecological data, capturing
the complex drivers of avian influenza transmission in the U.S.

The main challenge is that sparsity and discontinuous transmission patterns make predictive correla-
tion metrics fragile.

Taken together, Flu-Japan tests BLUE ’s ability to learn epidemic trends under moderate scale and
continuous outbreaks, while Avian-US stress-tests scalability, robustness, and multi-modal integration
under sparse and heterogeneous conditions. This complementary pairing ensures that BLUE is
validated under both interpretable benchmark settings and real-world large-scale challenges.

D.1 AVIAN-US DATASET SETUP

The Avian-US dataset is a spatiotemporal, multi-modal dataset designed to support forecasting and
modeling of avian influenza outbreaks across the United States. It integrates epidemiological records,
viral genomic sequences, and host population data across 3,227 U.S. counties from 2021–2024. Each
modality is spatially and temporally aligned at the county-week level, enabling multi-layered graph
construction for downstream forecasting tasks.

4https://github.com/amy-deng/colagnn
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D.2 DATA COLLECTION

This dataset integrates spatiotemporal outbreak data, genomic sequences, and species-level abundance
observations into a structured multilayer representation for disease forecasting. Each stream was
independently collected but programmatically harmonized for modeling integration.

Infected case data were sourced from federal surveillance systems and include time-stamped infection
reports for host data recorded at the county level across the continental United States from 2021 to
2024. Each record includes a free-text host descriptor, location metadata, and a collection date. To
standardize taxonomic information, host descriptors were programmatically mapped to a reference
taxonomy using a hierarchical classification schema derived from the International Ornithological
Congress (IOC) avian taxonomy. This resolved inconsistencies such as overlapping or ambiguous
common names by aligning to stable scientific identifiers.

Genomic data consist of hemagglutinin (HA) segment sequences found in publicly available viral
genome repositories for Biotechnology Information (NCBI). Sequences with sufficient metadata
were retained and filtered to include only wild bird hosts. A probabilistic record linkage model was
used to associate sequences with case records. This model was trained on labelled match/non-match
examples and used gradient-boosted decision trees to compute a match score based on taxonomic
agreement, spatial proximity, and temporal overlap (within a ±14-day window). High-confidence
matches were retained for downstream analysis.

Host population data were drawn from the eBird Status and Trends product, which provides weekly
abundance estimates at 3 km resolution for North American bird species eBird (2022). Raster values
were extracted for each species and week, then aggregated at the county level to align with the spatial
granularity of case data. Only wild bird species were retained, and abundance vectors were indexed
by county and week.

All records were assigned stable identifiers and organized into structured, timestamped tables. The
pipeline ensures consistency across modalities while maintaining temporal fidelity and species-level
resolution.

D.3 DATA DESCRIPTION

The dataset comprises real-world, multi-source data documenting avian influenza outbreaks in the
United States from January 2021 to December 2024. It includes temporally aligned information on
confirmed infection cases, viral genome sequences, and wild bird abundance estimates, collected and
harmonized at a weekly resolution.

The epidemiological component consists of over 12,000 reported H5-positive wild bird cases, span-
ning all 48 contiguous U.S. states. Each record includes collection date, geographic location (mapped
to U.S. counties), and host classification. Taxonomic labels were normalised using a hierarchical map-
ping system that resolves ambiguous or underspecified entries to consistent species-level identifiers,
informed by IOC naming conventions.

A subset of 8,000 cases was associated with full or partial HA segment sequences retrieved from
public repositories. Genomic data were filtered to retain wild bird hosts only, and sequence metadata
(host, date, location) were cleaned and harmonised to match epidemiological records. Genomic
divergence between HA segment sequences was computed using the K80 model, which accounts
for substitution asymmetry between transitions (A↔G, C↔T) and transversions. For each aligned
sequence pair, we calculate the observed proportions of transitions (P ) and transversions (Q), and
estimate the evolutionary distance d as:

d = − 1
2 log(1− 2P −Q)− 1

4 log(1− 2Q)

where P = #transitions
L and Q = #transversions

L , with L denoting the aligned sequence length. This evo-
lutionary distance matrix encodes biologically grounded measures of divergence under a continuous-
time Markov model and is well-suited for comparing within-clade avian influenza sequences. It is
used as an input feature for constructing genomic similarity edges in the downstream heterogeneous
graph.

Host population context was derived from over 630 weekly avian abundance layers produced by the
eBird Status and Trends project eBird (2022). These layers estimate the relative abundance of bird
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species at 3 km resolution across North America. Raster values were extracted and aggregated at
the county level for all species matching wild bird families in the outbreak dataset. The resulting
abundance vectors were aligned weekly to match case timelines and stored in compressed array
format.

All data layers were temporally aligned by epidemiological week. Metadata were standardised across
data types, with fields for date, location, taxonomic label, and abundance scores. Unique identifiers
were assigned to all records to enable traceability across modalities. The dataset is designed to support
temporal, ecological, and genetic analysis of avian influenza dynamics in wild bird populations using
real-world observations, without reliance on synthetic or simulated data.
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E IMPLEMENTATION DETAILS

In our empirical evaluations, we implement ST-GCN, SelfAttnRNN, DCRNN, and Cola-GNN using
the open-source Cola-GNN repository 5. ST-Net and EAST-Net are built upon the official EAST-Net
implementation 6. Implementation of Epi-GNN 7 and Epi-Cola-GNN 8 are based on their respective
publicly available source code.

To enable evaluation of the proposed BLUE framework on the Flu-Japan dataset, we first construct the
location layer based on the provided adjacency matrix. Each location node is assigned features based
on the reported infection counts across prefectures. To represent case-level information, we simulate
case nodes and associate them with their respective infected locations. Unlike the Avian-US setting,
we assume uniform infectivity and assign an equal importance feature (value = 1) to each case node.
This simplifies the transmission model by treating all cases as equally influential. With this setup,
we construct the heterogeneous graphs for the Flu-Japan dataset and feed them into BLUE under the
same modeling assumptions used in the Avian-US dataset.

E.1 BASELINES.

We compare BLUE against following GNN-based models: 1) general spatio-temporal forecasting
models (ST-GCN (Yu et al., 2018), SelfAttnRNN (Cheng et al., 2016), DCRNN (Li et al., 2018),
and EAST-Net (with a simplify version ST-Net) (Wang et al., 2022b)), 2) homogeneous epidemic
prediction models (Cola-GNN (Deng et al., 2020), EpiGNN (Xie et al., 2022), Epi-cola-GNN (Liu
et al., 2023a), STSGT (Banerjee et al., 2022)), and 3) heterogeneous-based model (HGT (Hu et al.,
2020)). Except HGT, all baselines are primarily designed for single-layer spatio-temporal forecasting
and assume either a fixed or learnable graph structure. As such, they are not directly compatible
with the multi-layer architecture of the Avian-US dataset. To make them applicable, we adapt each
model by building homogeneous graphs tailored to its design. The adjacency matrix of STSGT is
defined based on the geographical distance between locations. For ST-GCN, SelfAttnRNN, Cola-
GNN, EpiGNN, EpiCola-GNN, and DCRNN, we define a binary adjacency matrix based on spatial
proximity between counties. This setup mirrors their original use cases, allowing these models to
learn spatio-temporal patterns over a fixed location-level graph. For ST-Net and EAST-Net, which
support adaptive graph learning, we initialize homogeneous graphs with no predefined edges. These
models learn the graph structure dynamically, allowing them to infer inter-location dependencies
during training without relying on geographic priors.

E.2 EXPERIMENTAL SETTINGS

To comprehensively evaluate the performance of the proposed method and baseline models, we adopt
four complementary metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SCC)and F1 Score (F1).
RMSE and MAE quantify the absolute and squared deviations between predicted and ground-truth
counts. PCC measures the linear correlation between predicted and observed infection trends across
spatial and temporal dimensions. F1 Score evaluates binary outbreak detection performance. To reflect
this, We set a short observation window of T=4 steps and forecast the next H=4 steps (all experiments
are conducted under this setting unless specified), and report the averaged evaluation metrics of H
steps. Experiments of all baselines and BLUE are conducted under a 5-fold cross-validation with
the same random seed to ensure consistency. In addition to fixed embedding size d=8 and weight
regularization λ2 = 5e − 4, all baseline models are re-trained and tuned for optimal performance
using their official open-source code. For BLUE , we search λ1 ∈ {0.01, 0.05, 0.1, 0.5, 1}, and
choose λ1 = 0.1 for final evaluations. All experiments are run on either a single NVIDIA V100,
DGX A100, or NVIDIA RTX A5000 GPU.

To ensure comparability in overall performance, we unify the embedding size and hidden dimensions
across all models. We further apply the stratified weighting infection loss in Section 3.4 to all baselines

5https://github.com/amy-deng/colagnn
6https://github.com/underdoc-wang/EAST-Net/tree/main
7https://github.com/Xiefeng69/EpiGNN
8https://github.com/gigg1/CIKM2023EpiDL/tree/main
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and re-run each baseline on the Avian-US dataset for fair comparison. The key hyperparameters used
for all baseline models are listed below:

ST-GCN: embedding size=8, hidden dim=16, number of layers=3, epoch=100, learning rate=1e-5,
dropout=0.3, window size=4, predicted horizon=4, weight of regularization term=5e-4.

SelfAttnRNN: embedding size=8, hidden dim=16, number of layers=2, epoch=100, learning rate=1e-
5, dropout=0.3, window size=4, predicted horizon=4, weight of regularization term=5e-4.

DCRNN: embedding size=8, hidden dim=16, number of layers=2, max step of random walk=3,
epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4, weight of regular-
ization term=5e-4.

Cola-GNN: embedding size=8, hidden dim=16, number of filter=10, dilated rate for short term=1,
dilated rate for long term=2, epoch=100, learning rate=1e-5, dropout=0.3, number of RNN layers=1,
number of GNN layers=2, window size=4, predicted horizon=4, weight of regularization term=5e-4.

ST-Net: embedding size=8 (data) and 8 (time), Chebyshev layers=3, encoder layer=2, decoder
layer=2, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4, weight
of regularization term=5e-4.

EAST-Net: spatial embedding size=8, modality embedding size =4, time embedding size=8, mobility
prototype number = 8, memory dimension = 16, Chebyshev layers=3, encoder layer=2, decoder
layer=2, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4, weight
of regularization term=5e-4.

Epi-GNN: embedding size=8, hidden dim=16, hidden dim of attention layer=64, pooling layer=2,
patience=100, GNN layers=2, filer size=f1×5,1 and f1×3,1, window size=4, predicted horizon=4,
epoch=100, learning rate=1e-5, dropout=0.3, weight of regularization term=5e-4.

Epi-Cola-GNN: embedding size=8, hidden dim=16, weight of epidemiological loss=0.5, pa-
tience=150, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4,
weight of regularization term=5e-4.

STSGT: embedding size=8, hidden dim=16, number of STSGT layers= 2, number of head= 2,
dropout rate= 0.3, sampling number n = 128, sampling depth L = 2, learning rate=0.001, window
size=4, predicted horizon=4, weight of regularization term=1e-4.

HGT: embedding size=8, hidden dim=16, number of layers= 2, dropout rate= 0.3, sampling number
n = 128, sampling depth L = 2, learning rate=0.001, window size=4, predicted horizon=4, weight
of regularization term=1e-4.

BLUE: embedding size=8, construction smoothing layer K=2, B=10, GraphSAGE layers L=2,
λ1=0.9, λ2=5e-4, epoch=100, learning rate=1e-5, dropout=0.3, window size=4, predicted horizon=4.
The infection severities are set as τlow = 1, τmed = 5, τhigh = 25, the corresponding weight are
wlow = 1.0, wmed = 8.0, whigh = 15.0. For the Avian-US dataset, we set λo=0.3 and λp=0.3. For
the Flu-Japan dataset, we set λo=0.2, λp=0.3.

To manage data sparsity and numerical variation, we use four normalization techniques for prepro-
cessing all feature data:

1. Min-Max Normalization: xnormalized = (x − min)/(max − min). This method preserves
value relationships but is sensitive to outliers.

2. Z-Score Normalization: xnormalized = (x−mean)/std. Suitable for approximately normally
distributed features, it offers improved robustness to outliers compared to Min-Max scaling.

3. Log-MinMax Normalization: Applies a log transformation log(x+ δ) followed by Min-Max
scaling. This is effective for highly skewed positive-valued features with wide dynamic ranges.

4. Log-Plus-One Normalization: log(x+1). This transformation is appropriate for heavily skewed
count data with many zeros, as it maintains the presence of zero values.

Log-based normalization is particularly effective for exponentially distributed features or datasets
with a high proportion of zeros. Accordingly, we apply Log-Plus-One Normalization to the Avian-US
dataset, which is highly skewed and sparsely populated. For the Flu-Japan dataset, which has more
continuous variation and less sparsity, we apply Log-MinMax Normalization in the implementation.
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E.3 SPECTRAL REGULARIZER IMPLEMENTATION

In our implementation, rather than enforcing strict equality between the Laplacians of the fusion
graph and the original heterogeneous graph, we focus on preserving the most structurally informative
components of the spectrum. Specifically, we constrain the largest k eigenvalues of two graphs,
which capture the global structures of the graph. By aligning the leading eigenvalues, we ensure that
the fusion graph retains the essential global topology of the original heterogeneous graph and reduces
sensitivity to discrepancies in the high-frequency components, which are often associated with local
noise or unstable high-resolution variations. Consequently, the spectral loss remains robust and less
prone to overfitting to noisy graph details.
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Table 7: Overall performance on Flu-Japan dataset (H = 4, T = 4).

Model RMSE(↓) MAE(↓) PCC(↑) SCC(↑) F1(↑)
STGCN 1763±764 995±726 0.7316±0.0794 0.4549±0.1345 0.6551±0.2437
SelfAttnRNN 1730±782 876±760 0.7850±0.0562 0.4138±0.0843 0.7040±0.2840
ST-Net 1761±727 1083±893 0.7898±0.0923 0.4193±0.1211 0.7171±0.2563
EAST-Net 1723±790 1038±848 0.7352±0.0573 0.4694±0.1185 0.6398±0.6637
DRCNN 1789±788 1216±1084 0.7674±0.0582 0.4104±0.0934 0.6663±0.2491
EpiGNN 1742±707 896±721 0.7401±0.0778 0.5029±0.1283 0.6699±0.2388
Cola-GNN 1600±765 886±758 0.7135±0.1054 0.4873±0.1632 0.6747±0.2472
Epi-Cola-GNN 1631±787 1368±1124 0.7486±0.0784 0.4908±0.1237 0.6831±0.2793
STSGT 1616±441 657±183 0.7493±0.1405 0.4281±0.0842 0.6782±0.2045
HGT 1527±476 565±193 0.5438±0.0725 0.3984±0.0914 0.6559±0.2757
BLUE 1511±331 553±150 0.7954±0.0328 0.5440±0.0586 0.7234±0.2420

F EXPERIMENTAL RESULTS

F.1 OVERALL PERFORMANCE

Prior methods are evaluated using long-term prior knowledge with T = 20 historical observations.
However, such extended observation windows are impractical for real-world outbreak forecasting,
where timely alerts are essential for intervention. To better reflect realistic forecasting constraints,
we evaluate all baselines and BLUE using a shorter window of T = 4 (approximately one month)
and forecast infection counts for future horizons H = 4 weeks, simulating rapid-response scenarios
typical in epidemic modeling.

F.1.1 FLU-JAPAN DATASET

As shown in Table 7, BLUE consistently outperforms all baselines in 5 evaluation metrics. It
achieves the highest PCC and SCC, with notably stable performance compared to the greater fluc-
tuations observed in baselines. This indicates that BLUE can capture the temporal dynamics of
influenza outbreaks while reducing prediction errors simultaneously. In terms of outbreak detection,
BLUE achieves the best F1 score. In all evaluation metrics, BLUE maintains competitive or lower
standard deviations relative to baselines, indicating that its performance gains are consistent in
short-term outbreak detection and prediction.

F.1.2 AVIAN-US DATASET

In the Avian-US dataset, as shown in Table. 8, BLUE consistently achieves superior performance
across error and correlation metrics. BLUE provides the highest F1 and lowest RMSE/MAE across
all horizons, demonstrating its reliability in early-stage outbreak detection and accurate infectious
number prediction. Different from results in Flu-Japan, BLUE shows lower PCC compared to SCC.
As PCC captures linear correlation between predicted and ground-truth values, it is highly sensitive
to such extreme values. This discrepancy can be attributed to the characteristical differences of two
datasets, since Avian-US is highly sparse and contains several outliers while Flu-Japan is relatively
continuous.

F.2 IMPACTS OF WINDOW SIZE T AND PREDICTED HORIZON H ON FLU-JAPAN DATASET.

We evaluated BLUE under different observation sizes T ∈ {4, 8} and predicted horizons H ∈
{1, 2, 4, 8}.

For each window size T , we compare the impact of the prediction horizon H on the experimental
results, shown in the Table.9. Notably, the F1 score improves from 53.73% to 72.34% when T = 4.
The improvement indicates that multi-step decoding suppresses false alarms yet still captures infection
patterns during several weeks. Single-week outbreak patterns are hard to predict accurately, while
multi-week patterns are more likely to overlap with the actual disease outbreak’s periodicity. However,
the standard deviation of F1 increases with larger prediction horizon H , suggesting that outbreak
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Table 8: Overall performance on Avian-US dataset (H = 4, T = 4).

Model RMSE(↓) MAE(↓) PCC(↑) SCC(↑) F1(↑)
STGCN 0.8741±0.1428 0.4198±0.0911 0.0481±0.0024 0.0773±0.0087 0.0637±0.0043
SelfAttnRNN 0.8962±0.1752 0.3722±0.0566 0.0523±0.0052 0.0800±0.0111 0.0698±0.0038
ST-Net 0.9020±0.1603 0.4572±0.0840 0.0584±0.0034 0.0865±0.0128 0.0751±0.0167
EAST-Net 0.8973±0.1772 0.5556±0.0626 0.0647±0.0037 0.0839±0.0134 0.0779±0.0083
DRCNN 0.7965±0.1314 0.6123±0.0395 0.0588±0.0053 0.0871±0.0117 0.0665±0.0078
EpiGNN 0.7834±0.1200 0.2627±0.0440 0.0719±0.0049 0.0816±0.0112 0.0672±0.0053
Cola-GNN 0.7118±0.1001 0.1777±0.0223 0.0770±0.0042 0.0846±0.0102 0.0653±0.0096
Epi-Cola-GNN 0.8264±0.1246 0.0967±0.0172 0.0780±0.0042 0.0825±0.0112 0.0816±0.0197
STSGT 0.6907±0.1143 0.1690±0.0312 0.0403±0.0080 0.1082±0.0201 0.0725±0.0183
HGT 0.6523±0.0828 0.0902±0.0163 0.0772±0.0054 0.0966±0.0165 0.0801±0.0077
BLUE 0.6106 ± 0.0719 0.0848 ± 0.0182 0.0871 ± 0.0132 0.1217 ± 0.0140 0.1001 ± 0.0193

Table 9: Different predicted horizon H under window size T = 4 (up) and T = 8 (down) on the
Flu-Japan dataset. We report the experimental results with λp = 0.3 and λo = 0.2.

T 4
H 1 2 4
RMSE 1486.3070 ± 457.1804 1485.2236 ± 443.3038 1511.3080 ± 331.2720
MAE 556.4849 ± 236.3284 555.2262 ± 222.3261 553.1024 ± 150.2401
F1 0.5373 ± 0.0397 0.6763 ± 0.0114 0.7234±0.2420
PCC 0.6301 ± 0.0221 0.6317 ± 0.0927 0.7954±0.0328

T 8
H 1 2 4 8
RMSE 1528.6636 ± 335.5966 1529.5472 ± 362.8420 1524.5787 ± 359.4490 1523.6165 ± 382.6201
MAE 564.5333 ± 176.0671 569.2224 ± 186.9960 565.1868 ± 184.9081 572.1089 ± 207.6871
F1 0.6471 ± 0.3699 0.7353 ± 0.3678 0.7568 ± 0.3547 0.7321 ± 0.3662
PCC 0.6710 ± 0.0252 0.5732 ± 0.0930 0.5536 ± 0.1643 0.5233 ± 0.2590

detection becomes more variable and challenging across validation folds as the forecasting window
extends. In contrast, RMSE and MAE gradually decrease as H increases, implying that the Flu-Japan
dataset exhibits more consistent multi-week outbreak patterns, making longer-horizon forecasts easier
to stabilize. In comparison, short-term trends may exhibit higher fluctuations, which may be less
structured. When T = 8, RMSE varies ≤ 0.35% and MAE remains within 1% across all horizons,
illustrating that the model has sufficient context to predict each county’s epidemic with 8-week
observations. F1 peaks at 75.68% for a four-week horizon, further proving our finding of multi-week
patterns under the T = 4 setting and highlighting the effectiveness of BLUE in outbreak detection
when sufficient prior context is available.

For a fixed prediction horizon H , we observe that F1 consistently improves as the observation
window T increases. This indicates that a longer historical context enhances the model’s ability to
distinguish outbreak weeks from background fluctuations, thereby improving the confidence and
precision of binary outbreak detection. Conversely, we find that RMSE and MAE increase with larger
T , although their error bars become tighter. This indicates that longer observation windows enhance
the consistency of predictions, but may come at the cost of reduced alignment with recent temporal
patterns.

F.3 PER-STEP RESULTS

To provide finer-grained insight into forecasting performance over time, we conducted a temporal
analysis of per-step results for both Flu-Japan and Avian-US, under the setting T = 4, H = 4,
comparing BLUE against Epi-Cola-GNN. SCC (Spearman correlation coefficient) is also reported to
capture rank-based trend consistency.

Per-step performance. Tables 10 and 11 show detailed metrics at each forecast horizon. Generally,
all models exhibit gradual performance decline with increasing horizon, consistent with the inherent
difficulty of long-horizon forecasting.
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Table 10: Per-step results on Flu-Japan.

BLUE RMSE MAE F1 PCC SCC
Step 1 1170.0736 379.1464 0.7998 0.7819 0.5389
Step 2 1360.5968 431.5831 0.8069 0.7789 0.4440
Step 3 1601.2518 511.6768 0.8132 0.6966 0.3286
Step 4 1562.1200 517.4587 0.8186 0.6217 0.2231
Horizon avg. 1423.5106 459.9625 0.8096 0.7197 0.3836
Epi-Cola-GNN RMSE MAE F1 PCC SCC
Step 1 573.1535 352.1775 0.7959 0.7138 0.4620
Step 2 1415.7948 842.4990 0.7811 0.7965 0.3413
Step 3 1914.2330 1171.5552 0.7141 0.6239 0.1458
Step 4 2508.5769 1707.4314 0.4093 0.6589 0.2321
Horizon avg. 1602.9395 1018.4157 0.6751 0.6982 0.2953

Table 11: Per-step results on Avian-US.

BLUE RMSE MAE F1 PCC SCC
Step 1 0.6154 0.1120 0.1380 0.1636 0.1676
Step 2 0.6467 0.0878 0.1157 0.0894 0.1428
Step 3 0.4691 0.0791 0.1031 0.0872 0.1252
Step 4 0.7521 0.0867 0.0933 0.0700 0.1054
horizon avg. 0.6208 0.0914 0.1125 0.1025 0.1352
Epi-Cola-GNN RMSE MAE F1 PCC SCC
Step 1 0.6826 0.0877 0.0846 0.0792 0.1086
Step 2 0.7544 0.1294 0.0827 0.0754 0.0823
Step 3 0.5765 0.0953 0.0832 0.0756 0.0735
Step 4 0.6733 0.1042 0.0881 0.0724 0.0569
Horizon avg. 0.6716 0.1042 0.0845 0.0757 0.0803

Findings. On Flu-Japan, BLUE shows consistently robust performance across all forecast steps.
While Epi-Cola-GNN performs marginally better at Step 1, its F1 score declines thereafter. In contrast,
BLUE degrades more gracefully, achieving higher average F1, PCC, and SCC, demonstrating stable
trend capture over time.

On Avian-US, despite extreme sparsity, BLUE attains lower horizon-averaged RMSE and MAE and
consistently higher F1 than Epi-Cola-GNN. While PCC remains marginally lower (a metric noted for
its fragility under sparsity), BLUE achieves substantially higher SCC, confirming its superior ability
to preserve nonlinear temporal ranking patterns critical for outbreak detection.

These per-step analyses demonstrate that BLUE not only improves average error metrics but also
captures temporal patterns more reliably, degrading gracefully over longer horizons. We will include
comprehensive per-step results for all baselines (including SCC) in the final version for completeness.

F.4 IMPACT OF λo

In the decoder process, λo controls the influence of the previous step’s decoded output fh−1. To
investigate its effect, we fix T = 4, H = 4, λp = 0.3 (the weight of the encoder’s hidden state H(c))
and only vary λo in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Lower values of λo emphasize the decoded feature
of the current step, while higher values increase the model’s reliance on earlier decoder outputs. The
results are summarized in Table.12.

On the Flu-Japan dataset, we observe that setting λo = 0.5 achieves the lowest RMSE and MAE,
while λo = 0.2 achieves the highest PCC. PCC initially increases with rising λo before declining,
which shows an opposite trend compared to F1 score, suggesting a trade-off between temporal
consistency and outbreak detection accuracy. A similar pattern appears in RMSE and MAE, which
first worsen and then improve as λo increases. indicating that a balanced amount of information from
previous decoding steps helps the model better forecast the temporal progression of disease, while
too little or too much may constrain its ability to generalize effectively.
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Table 12: impact of λo on the Flu-Japan dataset (up) and the Avian-US dataset (down).

λo RMSE MAE F1 PCC SCC
0.1 1488.3113 537.1610 0.9174 0.6742 0.5218
0.2 1511.708 553.9024 0.7234 0.7954 0.5440
0.3 1494.3136 540.6177 0.7310 0.6303 0.5010
0.4 1476.6810 528.6474 0.7959 0.6285 0.5392
0.5 1472.6313 526.4264 0.9172 0.6630 0.4938
0.6 1478.7874 528.7906 0.9165 0.6566 0.4211

λo RMSE MAE F1 PCC SCC
0.1 0.6255 0.0549 0.0268 0.0074 0.6742
0.2 0.6288 0.0653 0.0221 0.0179 0.6742
0.3 0.6178 0.0665 0.0265 0.0241 0.6742
0.4 0.5295 0.0678 0.0222 0.0122 0.6742
0.5 0.6181 0.1068 0.0213 0.0313 0.6742
0.6 0.6264 0.1776 0.0213 0.0480 0.6742

Figure 4: Heatmap of ground truth (left) and prediction (right) on Flu-Japan dataset.

In the Avian-US dataset, the F1 score and MAE peak at λo = 0.1, suggesting that leveraging current-
step signals is more effective for identifying sparse outbreaks. With the increase of λo, MAE and
F1 score gradually decrease with PCC significantly increase, suggesting that emphasizing previous
predictions may reduce the sensitivity to sudden outbreak events and accurate infectious forecasting,
but can enhance trend alignment by capturing long-horizon patterns.

F.5 CASE STUDY ON FLU-JAPAN DATASET

We provide the heatmap of experimental results on the Flu-Japan dataset, shown in Fig. 4. Both the
ground truth and predicted heatmaps exhibit a distinct peak in activity during the 8th batch. BLUE not
only identifies this peak at the correct temporal position but also accurately reproduces its spatial
distribution across multiple prefectures, demonstrating that the model has effectively learned both the
timing and spatial structure of the outbreak. In the ground truth heatmap, bright horizontal bands
correspond to a small subset of highly infected prefectures. BLUE ’s predictions highlight these
same regions while maintaining low activity for the remaining prefectures, indicating that the model
captures the dominant transmission pathways without overpredicting infection spread.

G THE USE OF LARGE LANGUAGE MODELS

LLMs were used exclusively for the editorial refinement of the manuscript text, focusing on gram-
mar, wording, and overall clarity. They were not employed to generate scientific content, design
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experiments, write code, or produce research results. All authors have reviewed the final content and
assume full responsibility for it, in alignment with the ICLR’s LLM usage guidance and Code of
Ethics.
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