
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE INTERPLAY BETWEEN LEARNING AND MEM-
ORY IN DEEP STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep state-space models (SSMs) have emerged as a powerful deep learning archi-
tecture for sequence modeling, but the theory of how these models learn long-term
dependencies lags the practice. To explain how parameterization and the number
of layers affect a model’s expressiveness, we study the properties of deep linear
SSMs, i.e., linearly coupled stacks of linear time-invariant systems. We show that
such systems share timescales across layers, and we provide novel analysis on the
role of linear feedforward connections in regularizing these temporal dependen-
cies. In practice, SSMs can struggle with an explosion of the hidden state variance
when learning long-term dependencies. We expand our theoretical understanding
of this problem for deep SSMs and provide new intuitions on how this problem
may be resolved by increasing the number of layers. Finally, we confirm our
theoretical results in a teacher-student framework and show the effects of model
parameterization on learning convergence.

1 INTRODUCTION

Deep state space models (SSMs) have achieved impressive performance on a variety of long-range
sequence modeling tasks. They are competitive with state-of-the-art models for natural language (Fu
et al., 2023; Gu & Dao, 2023), image tasks (Nguyen et al., 2022; Zhu et al., 2024), audio process-
ing (Goel et al., 2022), video forecasting (Smith et al., 2024), reinforcement learning (Lu et al.,
2024), genetic sequence prediction (Schiff et al., 2024), and other time-series data (Zhou et al.,
2023; Patro & Agneeswaran, 2024). At their core, deep SSMs are remarkably simple — each layer
applies a linear filter to its inputs, then the outputs are nonlinearly transformed and passed to the
next layer. The simplicity of the architecture suggests these models may be amenable to theoreti-
cal treatment, and recent work has taken steps in this direction (Wang et al., 2023; Orvieto et al.,
2024; Cirone et al., 2024). However, the mechanisms explaining how deep SSMs learn long-range
dependencies is still not well understood.

One key question is how the number of layers (depth) and latent state size (width) affect a model’s
ability to learn long-range dependencies in sequential data. Learning such dependencies is challeng-
ing due to issues of vanishing and exploding gradients (Bengio et al., 1994) and increased sensitivity
to parameter changes as the model encodes long timescale dependencies (Zucchet & Orvieto, 2024).

We address this question by considering the simplified setting of deep linear SSMs. Inspired by
prior theoretical analyses of deep linear feedforward networks (Baldi & Hornik, 1989; Saxe et al.,
2014; 2019), we consider deep SSMs where the nonlinearities between layers are removed. Recent
work has studied the learning dynamics of single layer linear SSMs and shown that the analytical
solutions derived from such models can provide intuition for their nonlinear counterparts (Zucchet
& Orvieto, 2024; Smékal et al., 2024). While a deep linear SSM can also be cast as a single layer
model, we show that the learning dynamics of deep linear models vary with memory expressivity.

Specifically, we study how the memory of a deep linear SSM, as measured by properties of its
impulse response, autocorrelation, and transfer functions, vary with the depth and width of the
model. These properties lead to predictions of how learning dynamics will vary across architectures,
which we test empirically in a teacher-student setting (Hardt et al., 2019; Zucchet & Orvieto, 2024).
We find regimes in which increasing depth may lead to faster convergence than increasing width,
and discuss practical extensions of our theory to deep SSMs with nonlinear transformations between
layers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUND AND RELATED WORK

Deep SSMs consist of stacks of state space layers with nonlinear coupling in between. Each state
space layer maps an input sequence u1:T to an output sequence y1:T via a linear filter,

xt = Atxt−1 +Btut, yt = Ctxt, (1)

where xt ∈ RN are the latent states. The outputs yt are passed through a nonlinearity before
becoming the inputs to the next layer. We consider the special case of linear time-invariant (LTI)
systems in which At ≡ A, Bt ≡ B, and Ct ≡ C, as in several deep SSMs (Gu et al., 2022a;
Smith et al., 2023). Furthermore, we focus on single-input (ut ∈ R), single-output (yt ∈ R) SSMs
parameterized by a real-valued, diagonal state-transition matrix A ∈ RN×N , input vector B ∈
RN×1, and output vector C ∈ R1×N , as in S4D (Gu et al., 2022b).

Following the empirical success of deep SSMs, many questions have emerged about their temporal
expressivity and how they compare to other sequence modeling architectures. A growing body of
theoretical work has elucidated their expressive power and potential limitations. Orvieto et al. (2024)
and Wang & Xue (2023) have shown that state space layers with nonlinear coupling in between
are sufficiently expressive to approximate any sequence-to-sequence map, and Cirone et al. (2024)
provided an extended analysis on the expressivity benefits of input-controlled state space dynamics.

Recent work has made theoretical progress toward analyzing the learning dynamics of single-layer
SSMs. In this case, the problem reduces to learning the parameters of a linear dynamical system
with gradient descent, as studied by Hardt et al. (2019). While the linear recurrences of deep SSMs
make it easier to control the issue of vanishing and exploding gradients (Bengio et al., 1994), Zuc-
chet & Orvieto (2024) showed that even outside the exploding regime, the latent states xt become
increasingly sensitive to parameter changes as the magnitude of the eigenvalues λ of the dynamics
matrix A approach one. They refer to this problem as the curse of memory. It leads to sharp loss
landscapes which make gradient-based optimization particularly challenging. In practice, this chal-
lenge has been addressed at the layer level with careful discretization techniques, like those used in
the S4 and S5 architectures (Gu et al., 2022a; Smith et al., 2023), or explicit input regularization
such as that used in the LRU (Orvieto et al., 2023).

However, the curse of memory has not been studied for deep SSMs. The nonlinearities between
layers render such models analytically intractable. Here, we follow previous work on analyzing deep
linear feedforward networks (Baldi & Hornik, 1989; Saxe et al., 2014; 2019) and study deep linear
SSMs. With the nonlinearity between layers removed, we can characterize the effective memory of
these models and its effects on learning dynamics. We show that these considerations have practical
impact on parameterization choices of depth and width in deep SSMs.

3 THEORETICAL RESULTS

We consider three ways of formalizing the memory of a deep linear SSM: in terms of the autocorre-
lation of successive layers’ outputs; in terms of the group delay, which is derived from the frequency
response function; and in terms of the eigendecomposition of an equivalent 1-layer linear SSM. We
use these formalisms to study how depth and width affect learning and memory in deep SSMs.

3.1 MEMORY AND THE AUTOCORRELATION FUNCTION

One way to characterize the memory of a state space layer is in terms of the autocorrelation func-
tion (ACF) of its outputs. The ACF has historically been applied to time-series data to identify an
appropriate statistical model for forecasting (Shumway & Stoffer, 2017). Here, we are take a dif-
ferent approach and apply the ACF to interpret the outputs of a given model. Intuitively, the ACF
depends on two factors: the autocorrelation of the layer’s inputs and the eigenvalues of its dynam-
ics matrix. When the eigenvalues are close to one, the layer will exhibit long-timescale dynamics,
and its outputs will have strong autocorrelations. When the inputs are autocorrelated, we expect the
outputs to be as well. Moreover, as Zucchet & Orvieto (2024) showed, the variance of a layer’s
latent states and gradients scales with the autocorrelation of the inputs. Thus, understanding how
autocorrelation varies across layers of a deep SSM is paramount to understanding its memory and
learning dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 100 200 300 400
Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Input
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10

0 100 200 300 400
Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Input
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10

0 2 4 6 8 10
Number of layers

102

106

1010

1014

1018

1022

1026

H
id

de
n

st
at

e
va

ria
nc

e

= 0
= 0.1
= 0.5
= 0.9
= 0.99

= 0.95

= 0.4

A. B. C.

Figure 1: Inputs across layers of a deep linear SSM become more correlated, leading to an explosion
of latent state variance called the curse of memory. The plot shows the evolution of the normalized
autocorrelation function and hidden state variance across layers for different initial inputs, ρ = 0
corresponds to uncorrelated inputs, ρ = 1 corresponds to fully correlated inputs. A. Normalized
auto-correlation function (ACF) of white-noise inputs ut and of the outputs of a stack of linear state
space layers with λ = 0.9 at each layer. B. ACF across the outputs of 10 layers with the initial
inputs following Ru(∆) = ρ|∆|, with ρ = 0.95. C. Latent state variance grows exponentially
with the number of layers in a deep linear SSM for different correlations of the input and two
fixed timescales of the layers in the model (λ = 0.95 and λ = 0.4). Long-term dependencies
corresponding to larger timescales result in greater explosion of latent state variance across layers.
Hidden state variance eventually evolves as if ρ = 1 regardless of the initial ACF of the inputs,
shedding light on the limitations of the analysis obtained from considering layer-wise latent state
variance without accounting for how the ACF changes across layers.

Let R(k)(∆) denote the autocorrelation function of the outputs of layer k, or equivalently as the
autocorrelation function of the inputs to layer k + 1, with Rx(∆) = E[xt+∆xt]. We generally
omit the subscript x. As in previous work (Zucchet & Orvieto, 2024), we consider the N = 1
dimensional case of scalar latent states with dynamics A(k) = λ(k) at layer k. Furthermore, we
assume B(k) = C(k) = 1 (we will consider the importance of these parameters in section 3.3).
Proposition 1 expresses R(k)(∆) as a function of R(k−1)(∆).
Proposition 1. Assuming the inputs to layer k are wide-sense stationary with auto-correlation func-
tion R(k−1)(∆), the auto-correlation function of the layer’s output is,

R(k)(∆) =
1

1− (λ(k))2

R(k−1)(∆) +
∑
∆′≥1

(λ(k))∆
′
(
R(k−1)(∆ +∆′) +R(k−1)(∆−∆′)

) .

(2)

The proof of proposition 1 is in Appendix A. Applying this proposition recursively with the initial
condition R(0)(∆) = Ru(∆) yields the ACF of the inputs to each layer of a deep SSM.

Figure 1A-B shows the evolution of the autocorrelation function across a stack of 10 linear recur-
rent layers for two different initial inputs, with autocorrelation function given by Ru(∆) = ρ|∆|.
Figure 1C shows that regardless of the initial autocorrelation of the inputs, which is determined by
ρ, the outputs of the network become more correlated with each successive layer. In this example,
after only a few layers, the hidden state variance grows at the same exponential rate for all ρ.

Note that R(k)(∆) contains a factor
∏k

j=1

[
1

1−(λ(j))2

]
. The ACF, and hence the latent state variance

of layer k, depend not only on the parameters of that layer but of all its preceding layers as well.
When all layers encodes long-term dependencies corresponding to λ(k) → 1, the hidden state vari-
ance grows exponentially with depth. This theoretical observation suggests that if any layer learns
a long term dependency by setting λ(k) ≈ 1, it will lead the latent state and gradient variance to
diverge. To compensate, the deep SSM may set other λ(j) for j ̸= k to close to zero in order to con-
trol the latent state variance and mitigate the exponential growth in fig. 1C. We test this prediction
in Section 4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 100 200 300 400

0.6

0.4

0.2

0.0

0.2

0.4

0 100 200 300 400

10 18

10 15

10 12

10 9

10 6

10 3

0 100 200 300 400

10 16

10 12

10 8

10 4

100

104

108

t ime

si
gn

al
 m

ag
ni

tu
de

t ime

si
gn

al
 m

ag
ni

tu
de

t ime

si
gn

al
 m

ag
ni

tu
de

A. Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10

B. C.

Figure 2: Adding layers to a stack of linear SSMs increases the effective memory of the system and
the correlation of outputs, suggesting existing theory describing the memory of deep SSMs and the
evolution of hidden state variance is incomplete. The plot shows signal propagation across a scalar
deep linear SSM with λ = 0.9 at each layer. A. Adding successive LTI subsystems amplifies the
original impulse signal and elongates the output decay. B. Same as A but with input normalization
between layers, showing the maximum impulse response shifts forward in time with the addition
of more layers. C. Effect of cascaded LTI systems on the propagation of white-noise input. Each
successive layer introduces a time-delay and acts as a smoothing filter.

3.2 MEMORY AND THE GROUP DELAY

The autocorrelation function offers a useful measure of the memory of a state space layer, but it
conflates the effect of the latent state dynamics with the autocorrelation of the inputs. Another
way to characterize the memory of a linear system is in terms of the group delay, which intuitively
captures the time it takes an input to percolate to the output of a system. The group delay is defined
as a function of the frequency response of the system, which is given below for deep linear SSMs.

Proposition 2. Following Smékal et al. (2024), let Ul ∈ C and Yl ∈ C for l = 1, . . . , L denote the
discrete Fourier transform (DFT) of the inputs u1:T and outputs y1:T , respectively. For diagonal
dynamics matrices A = diag(λ1, . . . , λN) with |λn| < 1 for all n = 1, . . . , N to ensure stability,
the SSM outputs from equation 1 are transformed from a recurrence in the time domain to a multi-
plication by the system’s frequency response in the frequency domain, Yl = HlUl, where Hl ∈ C is
given by,

Hl = CGlB, Gl = (I −Ae−jωl)−1. (3)

The frequency response of a deep linear SSM is the product of frequency responses for each layer,

Hl =

K∏
k=1

C(k)G
(k)
l B(k). (4)

The proof of Proposition 2 is in Appendix B.

The group delay, also known as the average time delay or mean delay in continuous-time LTI sys-
tems, represents the average time it takes for a change in the input to propagate through all the layers
and affect the output. Alternatively, it can be interpreted as the time during which an input can pro-
duce a change in latent state and affect the output. Both perspectives suggest that group delay is a
reasonable proxy for a system’s memory.

Technically, the group delay, τd, is defined as the negative of the derivative of the phase of the trans-
fer function with respect to frequency, evaluated at zero. For simplicity, consider the 1-dimensional
case with C(k) = B(k) = 1 for all k, and let A(k) = λ(k). Under these assumptions, the group delay
is,

τd =

K∑
k=1

λ(k)

1− λ(k)
. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We see that the group delay scales linearly with the delay of each layer. The full derivation of the
group delay can be found in Appendix B.

Figure 2A and B show the increasing delay across layers for an impulse signal propagating through
a stack of ten linear 1-dimensional layers, each with a fixed eigenvalue λ = 0.9. The delay corre-
sponds to the signal moving to the right along the time axis. Figure 2C shows this effect for white
noise input. In practice, this means that by adding more layers to a deep SSM, the model should be
able to capture longer-term dependencies.

3.3 MEMORY AND THE EIGENDECOMPOSITION OF AN EQUIVALENT ONE-LAYER MODEL

Ultimately, the eigenvalues of the dynamics matrices determine the memory of the system, as mea-
sured by both the autocorrelation function and the group delay. For a deep linear SSM, the entire
stack of layers can be cast as a single, linear state space layer (Oppenheim, 1999). A third way to
characterize the memory of a deep linear SSM is in terms of the eigenvalues of the dynamics matrix
of the equivalent one-layer system, as described below.

Consider a deep linear SSM with K layers and N = 1 dimensional states with B(k) = C(k) = 1
for all k,

x
(1)
t+1 = λ(1)x

(1)
t + ut+1 y

(1)
t = x

(1)
t

x
(2)
t+1 = λ(2)x

(2)
t + y

(1)
t+1 y

(2)
t = x

(2)
t

...
...

x
(K)
t+1 = λ(K)x

(K)
t + y

(K−1)
t+1 y

(K)
t = x

(K)
t (6)

This model can be expressed as a single-layer model with K-dimensional states,

xt+1 = Axt +But+1, y
(K)
t = Cxt, (7)

A =


λ(1) 0 0 · · · 0
λ(1) λ(2) 0 · · · 0
λ(1) λ(2) λ(3) · · · 0

...
...

...
. . .

...
λ(1) λ(2) λ(3) · · · λ(K)

 , B =


1
1
1
...
1

 , C = [0 0 0 · · · 1] , (8)

where we use the bold notation {A,B,C,xt} to explicitly distinguish this representation from the
parameters of preceding sections.

Importantly, the resulting system matrix is lower triangular, not diagonal. However, when the {λ(k)}
are distinct, the dynamics matrix can be diagonalized as A = PΛP−1, where P is the matrix of
eigenvectors of A and Λ = diag(λ(1), . . . , λ(K)) is the diagonal matrix of eigenvalues of A. We
diagonalize the linear system in eq. (7) by introducing a new latent variable zt = P−1xt so that,

zt+1 = Λzt + B̃ut+1, y
(K)
t = C̃zt. (9)

where B̃ = P−1B and C̃ = CP.

Previous sections argued that the memory of deep linear SSMs, as measured by the ACF and group
delay, grows with depth. Here, we constructed an equivalent single-layer model, but we found that
the eigenvalues of the diagonalized system eq. (9) are exactly the same as those of the constituent
layers. How can the system exhibit longer memory if the eigenvalues do not become closer to one?
The answer is that the expressions for the ACF and group delay hid an implicit dependence on B̃

and C̃ by considering the special case where both are one. In this diagonalized, single-layer system,
however, we have to consider how B̃ and C̃ are influenced by the eigenvectors P.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Examining P and P−1 more closely, we see that they are highly structured, thanks to the lower-
triangular structure of A. In the K = 4 case, for example,

P =


(λ1−λ2)λ3(λ4−λ1)

λ3
1

− λ2
1−λ1λ2−λ1λ4+λ2λ4

λ2
1

0 0 0
−(λ2

1−λ1λ3−λ1λ4+λ3λ4)

λ2
1

−(λ2
2−λ2λ3−λ2λ4+λ3λ4)

λ2
2

0 0
−(λ4−λ1)

λ1

−(λ4−λ2)
λ2

−(λ4−λ3)
λ3

0
1 1 1 1


(10)

P−1 =


λ3
1

(λ1−λ2)(λ1−λ3)(λ1−λ4)
0 0 0

−λ1λ
2
2

(λ1−λ2)(λ2−λ3)(λ2−λ4)
−λ2

2

(λ2−λ3)(λ2−λ4)
0 0

−λ1λ
2
3

(λ1−λ3)(λ3−λ2)(λ3−λ4)
λ2λ3

(λ2−λ3)(λ3−λ4)
λ3

λ3−λ4
0

−λ1λ
2
4

(λ1−λ4)(λ4−λ2)(λ4−λ3)
λ2λ4

(λ2−λ4)(λ4−λ3)
−λ3

λ3−λ4
1

 . (11)

The form of P−1 shows that the inputs are projected onto all of the eigenmodes of the diagonal-
ized system in proportion to the eigenvalues of the system and inversely proportional to the gaps
between them. Likewise, the outputs are read out from all modes equally, since C̃ = 1K . The pro-
jections onto and out from these eigenmodes, together with the associated eigenvalues, determine
the memory of the deep linear SSM.

4 EMPIRICAL RESULTS IN THE TEACHER-STUDENT SETTING

We used simple simulations to test the effects of depth and width on the memory of deep SSMs. To
have full control over the types of long-term dependencies, we train our deep SSMs in a teacher-
student setting (Hardt et al., 2019; Zucchet & Orvieto, 2024). This approach also allows us to
compare the results of learning when the student and teacher differ in number of layers, latent state
size, ablations on which components of the model are learnable, etc. The inputs to each model
are sampled from uncorrelated white noise, ut ∼ N (0, 1). The student is trained with the Adam
optimizer on the mean-squared error loss between the teacher’s outputs and its outputs.

4.1 MEMORY OF DEEP SSMS AND THE ROLE OF B AND C

In the analysis of Section 3.1, we hypothesized that long-term dependencies would likely be con-
centrated to only one layer in a deep SSM to prevent the explosion of latent and gradient variances.
In Section 3.2, we found that stacking multiple linear state space models increases the group de-
lay of the full system. To study these effects in the teacher-student task, we first consider a setting
where only the dynamics matrices A(k) are trainable across layers and B and C are fixed, as in the
corresponding theoretical results.

We trained a 2-layer, 2-dimensional student to match the outputs of a 1-layer, 2-dimensional teacher.
In this experiment, we chose a 1-layer teacher to precisely specify the timescale of the task given
by the eigenvalues of the teacher λ∗ = {0.9, 0.99} (for a multi-layer teacher, we would need to
resort to calculating its group delay to fully understand the nature of the long-term dependency).
The left-most panel in fig. 3A shows the learning trajectories of the eigenvalues of the diagonal A
matrices of the student, the trajectories for B and C are constant because they were fixed. The small
horizontal bars in all subplots show the parameters of the teacher. We can therefore compare the
learned parameters of the student at each layer with those of the 1-layer teacher. In this fixed B,
C experiment, the learned eigenvalues across the two layers of the student are distributed as our
theoretical results would predict for this simplified case. The first layer, A(0), learned two non-zero
eigenvalues with either one smaller than the corresponding teacher eigenvalue ({λ(0)

1 = 0.98, λ
(0)
2 =

0.61}). The second layer, as expected given the first layer, learned comparably small eigenvalues
({λ(1)

1 = −0.33, λ
(1)
2 = −0.33}), consistent with our prediction. Taken together as a single 2-layer

system, the student has converged to a stable set of parameters approximating the teacher’s outputs.

Next, we analyzed the role of the feed-forward projections B and C, and posited that they play a
role in the memory of deep SSMs. We confirm this effect in the same experiment from fig. 3A, now

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 2

10 1

100

1-
A

0.75
1.00

B

101 103

training steps

0.75
1.00

C
10 2

10 1

100

101 103

training steps

0.75

1.00

0.75
1.00

101 103

training steps

10 2

10 1

100

0.75

1.00

0.75
1.00

10 2

10 1

100 A (0)

A (1)

B (0)

B (1)

C(0)

C(1)

0.75

1.00

101 103

training steps

0.75

1.00

{A} {A, B} {A, C} {A, B, C}

1-layer representation multi-layer representation

teacher:

convergednot converged

10 2

1-
A

A (0)

A (1)

B (0)

B (1)

C(0)

C(1)

1

2
B

101 103

training steps

0

2

C

A.

B.

C.

10 3
10 2
10 1

1-
A

2.5

5.0

B

101 103

training steps

2.5

5.0

C

A(0)
* = 0.9 0

0 0.99 A(1)
* = [A(2) [0.9 0[0.9 0

0 0.7]]]* = 0 0.9

B(0)⊤ = B(1)⊤ = B(2)⊤ = C(0)
* * * * = C(1)

* = C(2)
* = [1 1]

10 2

10 1

100

0

50

102 105

training steps

0

50

101 103

training steps

10 2

1-
A

A (0)

A (1)
B (0)

B (1)
C(0)

C(1)

101 103

training steps

1

2

B

101 103

training steps

0

2

C

10 2

10 1

100

1-
A

A (0)

A (1)
B (0)

B (1)
C(0)

C(1)

0.8

1.0

B

0.8

1.0

C

Figure 3: Teacher-student experiments. The inputs are uncorrelated white noise. Each student was
trained with the Adam optimizer to match the teacher’s outputs. The colored horizontal bars at the
end of each subplot represent the teacher’s parameters. Differently colored bars indicate different
layers. A. Ablation experiments showing timescale learning across parameters of a deep SSM. A
2-layer student is trained to reproduce the outputs of a 1-layer teacher. Each column corresponds
to an experiment where we train the parameter in {·} and keep the other parameters fixed. Each
row illustrates how the student parameters evolve during learning. The teacher parameters are A∗ =
diag(0.9, 0.99) with B = C⊤ = 12. B. Comparison between training an over-parameterized student
model on a 3-layer teacher on two equivalent model representations derived in Section 3.3, the 1-
layer vs multi-layer. Despite equivalent temporal expressivity, the 1-layer student is more sensitive
to the initialization of B and C, requiring large initial values to converge to a solution. In contrast,
the 2-layer student learns within standard initialization range of B and C and consistently converges
to a solution. The learning rate was initialized to 5× 10−5 in each case. C. Same experiments as in
A and B but adding a ReLU activation after each layer of the student.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 0.9 0.99

10 3

10 2

Lo
ss

1 layer LRU
2 layer LRU
3 layer LRU

Figure 4: Depth improves the performance of the LRU trained on the teacher-student task with a
fixed number of parameters. The horizontal axis shows the timescale parameter ν of the teacher
(used as in (Orvieto et al., 2023)) to be learned by the student, each ν parameterized a new teacher
dataset. Across sweeps of 1, 2, and 3 stacked LRU layers with a comparable number of parameters,
the multi-layer representations outperformed the 1-layer model across all timescales of the teacher.

shown in the remaining panels. We observe the effects of B and C taken separately to be roughly
equivalent in this setting, enabling the model to learn the exact eigenvalues of the teacher model at
one layer without suffering the curse of memory, by regulating the latent signal in the feed-forward
projections ({B(0)

1 = 0.70, B
(0)
2 = 0.70, B

(1)
1 = 0.57, B

(1)
2 = 0.84} for the experiment with C

fixed).

4.2 DEPTH VS WIDTH IN LEARNING CONVERGENCE

Section 3.3 discussed the equivalence between K-layer, N -dimensional state space models and a
single layer, KN -dimensional system. When both B and C are learned, these two representations
should be able to express the same temporal dependencies. Here we studied if this is true in practice
using the experimental teacher-student paradigm.

We trained a student model with K = 2, N = 4, as well as a student with one layer and N = 8
dimensional states. The teacher was a K = 3-layer deep linear SSM with latent state size of
N = 2. The two student models were overparameterized with respect to the teacher, rendering
the task solvable. Figure 3B shows the exact parameterization of the teacher model and the results
of the training runs. Both students were able to learn this task, as expected given their equivalent
representational capacity.

However, the empirical results also suggested that two students learn differently. The left panel in
Figure 3B shows two training runs of the single-layer student, a failed run and a successful run. The
result appeared to be influenced by the initialization of the feed-forward projections B and C. In
the failed run, these parameters were initialized with values of O(1) for both students, following
standard practice Gu et al. (2022c). In that regime, however, the eigenvalues of A diverged to
regions outside the edge of stability. By sufficiently amplifying the initialization of B and C (to
O(50), found empirically), we found that the eigenvalues of A remained stable throughout learning.
Generally, we found that the single-layer student’s learning convergence was more sensitive to the
initial values of the feed-forward projections than the multi-layer parameterization.

4.3 TEACHER-STUDENT EXPERIMENTS WITH NONLINEARITIES

So far, we have focused on the learning dynamics of deep stacks of linear SSMs without position-
wise nonlinear connections. To test whether these theoretical predictions generalize to deep non-
linear SSMs, we included a ReLU activation between each student layer. Figure 3C shows two
examples replicating the experiments from earlier panels. Specifically, the first row of Figure 3C
shows the effects of learning B(k) and C(k) on learning the particular timescales in the hidden state
transition matrices A(k) across layers. Similarly, the addition of a nonlinearity did not affect the
learning outcomes or convergence time of the student model from Figure 3B, shown in the second
row of Figure 3C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Finally, we tested whether these predictions generalize to models used in practice by training an
LRU (Orvieto et al., 2023) on the teacher-student task. In this setting, we found that the benefits of
depth over width in improving training convergence continued to apply, as shown in Figure 4. The
details of the experimental setup are in Appendix C.1.

5 DISCUSSION

We analyzed the role of depth and width in learning long-term dependencies with deep state space
models. By considering three measures of memory, we developed a new theoretical understanding
of how deep SSMs encode long timescales and how parameterization in latent state size and the
number of layers can affect learning. We showed that across the layers of a deep linear state space
model, the autocorrelation function diverges as the eigenvalues of a latent dynamics matrix A go
to one, which in turn causes the variance of the latent states to diverge. These findings extend our
understanding of the challenge of learning long-term dependencies with recurrent models, known as
the curse of memory (Zucchet & Orvieto, 2024).

On the other hand, we found that depth might help to alleviate the curse of memory by allowing
diagonal state space models to share timescales across layers. This allows deep SSMs to capture
global long-term dependencies with small eigenvalues of the dynamics matrices A(l) at each layer
l. This analysis used the notion of group delay as a proxy for memory in deep SSMs. Using
the same theoretical framework, we analyzed the role of width in diagonal state space models in
capturing temporal dependencies. This revealed the role of feedforward projections B and C in
the group delay of the system and suggested how these parameters may regularize the eigenvalues
of A in practice. We validated our theoretical results in a synthetic teacher-student setting. Our
empirical study of this task revealed regimes in which depth may reduce the model’s sensitivity to
parameter initialization and improve learning of long-range dependencies. This suggests there is still
a theoretical gap to be filled in fully explaining the role of depth and width in learning convergence
and initialization sensitivity. We plan to address these open questions in future work.

REFERENCES

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theo-
retical foundations of deep selective state-space models. arXiv [cs.LG], February 2024.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2023.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2022a.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. arXiv preprint arXiv:2206.11893, 2022b.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. arXiv [cs.LG], June 2022c.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
arXiv preprint arXiv:1609.05191, 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
Advances in Neural Information Processing Systems, 35:2846–2861, 2022.

Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality
of linear recurrences followed by non-linear projections: Finite-width guarantees and benefits of
complex eigenvalues. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=47ahBl70xb.

Badri N. Patro and Vijay S. Agneeswaran. Simba: Simplified mamba-based architecture for vision
and multivariate time series. arXiv preprint arXiv:2403.15360, 2024.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. In Proceedings of the International Conference
on Learning Representations 2014. International Conference on Learning Represenatations 2014,
2014.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. arXiv preprint
arXiv:2403.03234, 2024.

Robert H Shumway and David S Stoffer. Time series analysis and its applications: With R examples.
Springer texts in statistics. Springer International Publishing, Cham, Switzerland, 4 edition, April
2017.

Jakub Smékal, Jimmy TH Smith, Michael Kleinman, Dan Biderman, and Scott W Linderman. To-
wards a theory of learning dynamics in deep state space models. arXiv preprint arXiv:2407.07279,
2024.

Jimmy T. H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.

Jimmy T. H. Smith, Shalini De Mello, Jan Kautz, Scott Linderman, and Wonmin Byeon. Convolu-
tional state space models for long-range spatiotemporal modeling. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal ap-
proximators with exponential decaying memory. arXiv [cs.LG], September 2023.

Shida Wang, Zhong Li, and Qianxiao Li. Inverse approximation theory for nonlinear recurrent
neural networks. arXiv [cs.LG], May 2023.

Linqi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent state
space models for time-series generation. In International Conference on Machine Learning, pp.
42625–42643. PMLR, 2023.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

Nicolas Zucchet and Antonio Orvieto. Recurrent neural networks: vanishing and exploding gradi-
ents are not the end of the story. arXiv [cs.LG], May 2024.

10

https://openreview.net/forum?id=47ahBl70xb

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A PROOFS

Lemma 1. Adapted from Zucchet & Orvieto (2024). For α, β ∈ C satisfying |α| < 1 and |β| < 1,
and (un)n∈Z a bounded sequence , we have

∑
n,m≥0

αnβnun−m =
1

1− αβ

u0 +
∑
∆≥1

(α∆u∆ + β∆u−∆)

 (12)

Lemma 1. We split the summation over indices n and m considering the cases where n = m,
n > m, and n < m.

∑
n,m≥0

αnβmun−m =
∑
n=m

αnβmu0 +
∑
n>m

αnβmun−m +
∑
n<m

αnβmum−n (13)

=
∑
n

αnβnu0 +

∞∑
m=0

αmβm
∑
∆≥1

α∆u∆ +

∞∑
n=0

αnβn
∑
∆≥1

β∆u−∆ (14)

=
∑
n

αnβn

u0 +
∑
∆≥1

α∆u∆ +
∑
∆≥1

β∆u−∆

 (15)

=
1

1− αβ

u0 +
∑
∆≥1

(α∆u∆ + β∆u−∆)

 (16)

Proposition 1. Given

xt+1 = λxt + ut+1 (17)

with ut satisfying wide-sense stationarity (WSS), we want to find a form for the auto-correlation
function Rx(∆) = E[xtxt+∆]. Due to the linearity of the system, the output is also WSS, which
justifies considering Rx(∆). We have that

xt+∆ =

∞∑
n=0

λnut+∆−n (18)

then

E[xt+∆xt] = E

[(∞∑
n=0

λnut+∆−n

)(∞∑
m=0

λmut−m

)]
(19)

=

∞∑
n=0

∞∑
m=0

λnλmE[ut+∆−nut−m] (20)

=

∞∑
n=0

∞∑
m=0

λnλmRu(∆− n+m) (21)

Using Lemma 1 on the sequence (Ru(∆− n))n∈Z with α = β = λ, we obtain

Rx(∆) =
1

1− λ2

Ru(∆) +
∑
∆′≥1

λ∆′
(Ru(∆ +∆′) +Ru(∆−∆′))

 (22)

This gives the formula from the position, as Rx = R(k) and Ru = R(k−1).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Proposition 2. Unrolling yt in equation 1 for all points in the sequence with x0 = 0, the SSM can
be represented by a convolution, given by the impulse response of the linear time-invariant system,

yt = (h ∗ u)t =
t∑

i=1

CAt−iBui. (23)

To efficiently compute the outputs of the convolution, Gu et al. (2022a) made use of the discrete
Fourier transform to compute the outputs in the frequency domain before projecting back to the
desired state-space. The mapping between the outputs in the time and frequency domains is afforded
by the discrete convolution theorem. Let Yk = F(yt), Uk = F(ut), where F is the discrete Fourier
transform. Then

Yk = F

(
t∑

i=1

CAt−iBui

)
(24)

=
∞∑

t=−∞

(
t∑

i=1

CAt−iBui

)
e−j 2πk

L t (25)

=

∞∑
t=i

∞∑
i=1

CAt−iBuie
−j 2πk

L t (26)

=

∞∑
m=0

∞∑
i=1

CAmBuie
−j 2πk

L (m+i) (27)

where we applied the transformation m = t− i and noted that ut is defined for t ≥ 1. Rearranging
terms and using the definition of the DFT, Uk =

∑∞
i=1 uie

−j 2πk
L i, we obtain,

Yk =

∞∑
m=0

CAmBe−j 2πk
L m

∞∑
i=1

uie
−j 2πk

L i (28)

= C

(∞∑
m=0

Ame−j 2πk
L m

)
BUk (29)

Assuming |Ae−j 2πk
L | < 1, which is a necessary condition for the stability of linear time-invariant

systems, we can use the geometric series formula,

∞∑
m=0

(
Ae−j 2πk

L

)m
=
(
I −Ae−j 2πk

L

)−1

. (30)

Substituting this into the expression for Yk,

Yk = C(I −Ae−j 2πk
L)−1BUk = HkUk (31)

where we have defined Hk = C(I −Ae−j 2πk
L)−1B as in Proposition 2.

B GROUP DELAY OF THE SYSTEM

Here we provide a detailed derivation of the group delay. Consider the frequency response of a
scalar cascaded LTI system with B = C = 1,

H(z) =

K∏
l=1

1

1− λ(l)z−1
(32)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 1: Comparison of depth and width on LRU performance in the teacher-student task. Each
student was a model containing an LRU component with feedforward encoder and decoder. The
students were trained using the Adam optimizer with learning rate 1e− 3.

Learnable Params Learn {B,C} # of layers Final Test Loss
201 No 1 0.01006
196 No 2 0.00722
2374 Yes 1 0.00709
2597 Yes 1 0.00729
2446 Yes 2 0.00034

where z = ejωk . The group delay τd is defined as the negative of the derivative of the phase of the
transfer function with respect to frequency, evaluated at ωk = 0.

logH(z) = −
K∑
l=1

log (1− λ(l)z−1) (33)

φ(ω) = −
K∑
l=1

Im[(1− λ(l)e−jω)] (34)

= −
K∑
l=1

arg(1− λ(l)e−jω) (35)

= −
K∑
l=1

arctan
−λ(l) sinω

1− λ(l) cosω
(36)

τd = −dφ(ω)

dω
|ω=0 =

K∑
l=1

λ(l)

1− λ(l)
(37)

It follows that the group delay is related to the sum of the time constants of the subsystems. It is
however important to note that we get this intuitive result by looking at the group delay and not the
characteristic time constant of the system, which is equal to the largest recurrent parameter λ of the
system.

C FURTHER RESULTS FROM TEACHER-STUDENT TASK

C.1 LRU EXPERIMENTAL DETAILS

We train stacks of Linear Recurrent Units (LRU, (Orvieto et al., 2023)) on the teacher-student task
described in Section 4. We sample random teachers with temporal dependencies controlled by the ν
parameter and we train on LRU students of varying depth and width while keeping the total number
of learnable parameters within the same order of magnitude. Table 1 shows the results from one of
these experiments, showing that a 2-layer LRU model outperforms the 1-layer models in learning
to reproduce the teacher’s outputs. A more comprehensive result is shown in Figure 4, where we
show the mean loss obtained from 5 experiments with different random seeds across a sweep of
timescales of the teacher. Unsurprisingly, all models gradually perform worse as ν → 1, however,
the multi-layer models consistently outperform the 1-layer model, even though all three models are
in the same parameter regime of roughly 2400 learnable parameters.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

101 103

training steps

10 1

100

1-
A

A (0)

A (1)

A (2)

A (3)

A (4)

A (5)

101 103

training steps

10 1

100

1-
A

A (0)

A (1)

A (2)

A (3)

A (4)

101 103

training steps

10 1

100

1-
A

A (0)

A (1)

A (2)

A (3)

101 103

training steps

10 1

100

1-
A

A (0)

A (1)

A (2)

101 103

training steps

10 1

100

1-
A

A (0)

A (1)

101 103

training steps

10 1

1-
A

A (0)

101 103

training steps

10 1

100

1-
A

A (0)

A (1)

A (2)

A (3)

A (4)

A (5)

A (6)

A (7)

A (8)

A (9)

A (10)

A (11)

Figure 5: Adding depth allows a deep SSMs to capture long-term dependencies with smaller eigen-
values across layers. Successive experiments with the same teacher but different number of layers
and latent state sizes for the student. The teacher’s eigenvalues are A = diag(0.9, 0.4, 0.9, 0.3, 0.2)
with B = C = 1. Colored bars at the right-end of each subplot show the target eigenvalues of the
teacher.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

102 105

training steps

10 2

1-
A

102 105

training steps

0

1B

102 105

training steps

0

1

C

A (0)

A (1)

A (2)

A (3)

A (4)

A (5)

A (6)

A (7)

A (8)

A (9)

A (10)

A (11)

B (0)

B (1)

B (2)

B (3)

B (4)

B (5)

B (6)

B (7)

B (8)

B (9)

B (10)

B (11)

C (0)

C (1)

C (2)

C (3)

C (4)

C (5)

C (6)

C (7)

C (8)

C (9)

C (10)

C (11)

102 105

training steps

10 3

1-
A

A (0)

102 105

training steps

0

250

B

250

102 105

training steps

0

C

C(0)

B(0)

102 105

training steps

10 3

1-
A

A (0)

102 105

training steps

100
0

100

B

B (0)

102 105

training steps

0

100C

C(0)

1-layer representation 12-layer representation

not converged converged

Figure 6: The teacher-student experiments shown in Figure 3 extended to deep SSMs with 12 layers.
The task is defined by a 5-layer teacher SSM with a 2-dimensional latent state at each layer. The
12-layer, 1-dimensional student converges to a learned solution within O(105) training steps and all
parameters remain in the vicinity of their initial values. To contrast, a 1-layer student SSM with the
same number of parameters requires careful initialization of the B and C components to stabilize
the eigenvalues of the dynamics matrix A during training. The initial values for B and C were set
to O(100) (middle panel). Initializing B and C within the standard initial value regime (left panel),
O(1), results in most of the dynamics eigenvalues diverging outside the range of stability and the
model does not converge in the given number of training steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ImA

1.0

A(0)
Initial Value
Final Value
A(1)
Target 1

1.0 0.5 0.0 0.5
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ImB

1.0 0.5 0.0 0.5
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ImC

B(0)
Initial Value
Final Value
B(1)
Target 1

C(0)
Initial Value
Final Value
C(1)
Target 1

1.0

1.0

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

A(0)
Initial Value
Final Value
A(1)
Target 1

1.0 0.5 0.0 0.5 1.0
Re

1.5

0.5

1.0

1.5

0.5

0.0

1.0

Im

B(0)
Initial Value
Final Value
B(1)
Target 1

1.0 0.5 0.0 0.5
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

C(0)
Initial Value
Final Value
C(1)
Target 1

1.0

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

A(0)
Initial Value
Final Value
A(1)
Target 1

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

C(0)
Initial Value
Final Value
C(1)
Target 1

B(0)
Initial Value
Final Value
B(1)
Target 1

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

A(0)
Initial Value
Final Value
A(1)
Target 1

B(0)
Initial Value
Final Value
B(1)
Target 1

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

C(0)
Initial Value
Final Value
C(1)
Target 1

1.0 0.5 0.0 0.5 1.0
Re

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im

{A, B} {A, C} {A, B, C}{A}

Figure 7: Teacher-student experiments with complex-valued state space models exhibit similar be-
haviors to their real-valued counterparts. The plots show ablation experiments similar to those shown
in Figure 3A. The student model values were initialized in the complex plane within the unit circle.
Trajectories show the evolution of parameters during training. Column headers indicate which pa-
rameters were trained.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

101 103

10 2

10 1

100

1-
A

A (0)

A (1)

B

training steps

C

0.7

0.8

0.9

1.0

1.1

1.2

101 103

B (0)

B (1)

C (0)

C (1)

101 103

0.7

0.8

0.9

1.0

1.1

1.2

101 103

10 2

10 1

100 A (0)

A (1)

101 103

0.7

0.8

0.9

1.0

1.1

1.2 B (0)

B (1)

C (0)

C (1)

0.7

0.8

0.9

1.0

1.1

1.2

101 103

101 103

10 2

10 1

100 A (0)

A (1)

101 103

0.7

0.8

0.9

1.0

1.1

1.2 C(0)

C(1)

B (0)

B (1)

101 103

0.7

0.8

0.9

1.0

1.1

1.2
101 103

10 2

10 1

100 A (0)

A (1)

101 103

0.80

0.85

0.90

0.95

1.00

1.05

1.10
B (0)

B (1)

101 103

0.80

0.85

0.90

0.95

1.00

1.05

1.10
C(0)

C(1)

training steps training steps training steps

{A} {A, B} {A, C} {A, B, C}

Figure 8: A projection of teacher-student experiments described in Figure 7 to real values shows the
effects of learning B and C on eigenvalues of the A matrices across layers. The projected real-valued
trajectories are comparable to those observed in the real-valued SSM experiments from Figure 3.

17

	Introduction
	Background and Related Work
	Theoretical Results
	Memory and the Autocorrelation Function
	Memory and the Group Delay
	Memory and the Eigendecomposition of an Equivalent One-Layer Model

	Empirical Results in the Teacher-Student Setting
	Memory of deep SSMs and the role of B and C
	Depth vs width in learning convergence
	Teacher-student experiments with nonlinearities

	Discussion
	Proofs
	Group delay of the system
	Further results from teacher-student task
	LRU experimental details

