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Abstract

Kernel methods are widely utilized in machine learning field to learn, from train-
ing data, a latent function in a reproducing kernel Hilbert space. It is well
known that the approximator thus obtained usually achieves a linear represen-
tation, which brings various computational benefits, while maintaining great rep-
resentation power (i.e., universal approximation). However, when non-negativity
constraints are imposed on the function’s outputs, the literature usually takes the
kernel method-based approximators as offering linear representations at the ex-
pense of limited model flexibility or good representation power by allowing for
their nonlinear forms. The main contribution of this paper is to derive a sufficient
condition for a positive definite kernel so that it may construct flexible and lin-
ear approximators of non-negative functions. We call a kernel function that offers
these attributes an inverse M-kernel; it is a generalization of the inverse M-matrix.
Furthermore, we show that for a one-dimensional input space, universal exponen-
tial/Abel kernels are inverse M-kernels and construct linear universal approxima-
tors of non-negative functions. To the best of our knowledge, it is the first time
that the existence of linear universal approximators of non-negative functions has
been elucidated. We confirm the effectiveness of our results by experiments on the
problems of non-negativity-constrained regression, density estimation, and inten-
sity estimation. Finally, we discuss issues and perspectives on multi-dimensional
input settings.

1 Introduction

Non-parametric estimation of latent functions continues to be of theoretical and practical impor-
tance in a wide spectrum of disciplines such as signal/image processing [13, 32], system control
[12], geostatistics [3], bioinformatics [28], and clinical research [4]. Kernel method, one of the most
established techniques, learns flexible function approximators by embedding data points into higher
dimensional reproducing kernel Hilbert spaces (RKHSs) [26, 29]. For a broad class of learning
problems, kernel methods invoke the representer theorem [27, 35] and recast the infinite-dimensional
functional problems as their finite-dimensional counterparts, where the obtained approximators have
linear representation, i.e., finite linear combinations of kernel functions evaluated on data points.
Significant computational benefits are attained by the linear representation such as convex optimiza-
tion and cheap evaluation/integration of approximators.

In recent years, great attention has been paid to kernel methods with non-negativity constraints
on function outputs [6, 17, 17, 31]; crucial applications include non-negativity-constrained regres-
sion, density estimation, and intensity estimation. Compared to unconstrained alternatives, non-
negativity-constrained kernel methods developed to date are faced with a problematic trade-off be-
tween linearity and flexibility: the obtained approximators either can have linear representations at
the expense of degraded representation power [17], or achieve good representation power (i.e., uni-
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versal approximation) by accepting nonlinear forms [17, 21], which incurs substantial computation
costs. To the best of our knowledge, no non-negativity-constrained kernel method has been proposed
that combines linear representation with good representation power.

In this paper, we propose the first linear universal approximator of non-negative functions for one-
dimensional input spaces. First, we derive a sufficient condition so that the kernel can construct a
linear approximator of a non-negative function. We call a kernel that satisfies this novel condition an
inverse M-kernel; it is a generalization of inverse M-matrix [8]. Next, we show that exponential/Abel
kernels, which have the universal approximating property [19, 30], are inverse M-kernel functions
and can construct linear universal approximators of non-negative functions for one-dimensional in-
put spaces. It is worth noting that the most popular Gaussian kernels do not satisfy the condition de-
manded by the inverse M-kernel. Our results shed light on exponential kernels, which have received
less attention in the literature, as universal kernels for non-negativity-constrained approximators on
one-dimensional input spaces.

In Section 2, we outline related works and introduce some known results on M-matrix theory used
throughout the paper. In Section 3, we introduce the inverse M-kernel and construct linear universal
approximators of non-negative functions. In Section 4, we show some important applications of
our results, which include non-negativity-constrained regression, density estimation, and intensity
estimation, and evaluate the effectiveness of our proposal on synthetic data1. Finally, Section 5 states
our conclusions and discuss future works on multi-dimensional input settings.

2 Background

2.1 Kernel Method-Based Linear Approximator

Let X be a prescribed input space and k : X × X → R be a positive semi-definite kernel. Then
there exists a unique reproducing kernel Hilbert space (RKHS) Hk [26, 29] associated with kernel
k(·, ·). Given a set of N points {xn ∈ X}Nn=1 and a regularized learning problem:

min
f∈Hk

L(f(x1), . . . , f(xN )) + Ω(||f ||2Hk
), (1)

where L : RN → R is a loss function, and Ω is a non-decreasing function of the squared RKHS
norm of f . It is well known that the solution of (1) invokes the representer theorem [27, 35] and has
the representation,

f∗(·) =
N∑

n=1

αnk(xn, ·). (2)

For simplicity, the linear regularizer, Ω(||f ||2Hk
) = r||f ||2Hk

for r ≥ 0, is assumed in this paper. The
infinite-dimensional optimization problem (1) can be reduced to a finite-dimensional one in terms
of coefficients α := (α1, . . . , αN )⊤ ∈ RN as follows:

min
α∈RN

L(Kα) + r α⊤Kα, K := [k(xn, xn′)]nn′ ∈ RN×N . (3)

Under universal kernels [19, 30], where RKHSs are dense in the space of all continuous functions of
X , the linear approximator (2) can approximate any continuous function on X , which is a property
known as the universal approximation. Each evaluation of the objective function (3) and the linear
approximator (2) needs the computation of O(N2) and O(N), respectively.

When non-negativity constraints are imposed on target function f ≥ 0, the literature considers that
the linear approximator (2) cannot be applied directly because it generally has negative values, even
under non-negative kernel k(·, ·) ≥ 0. Conventional approaches to address the problem are listed
below (Section 2.2-2.3).

1Code and data to reproduce the results are available at https://github.com/HidKim/IM-Kernel.
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2.2 Linear Approximators with Non-Negativity Constraints

Non-negative coefficients Model (NCM) [17] enforces the linear approximator (2) to be non-
negative by using non-negative coefficients and kernel functions,

fNCM(·) =
N∑

n=1

αnk(xn, ·), α1, . . . , αN ≥0, k(·, ·) ≥ 0, (4)

where coefficients α ∈ RN are obtained by solving the optimization problem (3) with constraint
αn ≥ 0. Here non-negative kernels include popular kernels such as Gaussian kernels e−||x−x′||2 ,
exponential kernels e−||x−x′||, and Cauchy kernels (1+ ||x−x′||2)−1. Although NCM enjoys great
computational benefits from its linear representation such as the preservation of loss functional’s
convexity and cheap evaluations/integrations, it suffers from low representation power due to the
strong non-negativity constraint on coefficients, αn ≥ 0 (for details, see Appendix B).

Note that linear approaches with partial non-negativity constraints [5, 17, 22], which require non-
negativity only on a finite number of points (the points are not necessarily data points {xn}Nn=1), do
not guarantee the non-negativity at locations other than the points; these approaches are out of scope
of this paper.

2.3 Nonlinear Approximators with Non-Negativity Constraints

An elegant quadratic form of the non-negative model (QNM) [17] has recently been proposed that
exploits the non-negativity inherent in positive semi-definite operators:

fQNM(·) =
N∑

n,n′=1

Bnn′k(xn, ·)k(xn′ , ·), B ∈ RN×N , B ⪰ 0, (5)

where ⪰ 0 represents the positive semi-definite constraint. QNM has the following beneficial prop-
erties: it preserves the convexity of the loss functionals; it can be integrated in a closed form if
we know how to integrate kernel functions; under mild conditions on kernels, it is a universal ap-
proximator for non-negative functions. The coefficient matrix B is obtained efficiently by solving
an N -dimensional optimization problem, which naively costs O(N3) for each evaluation of the
objective function (for details, see Appendix A). An evaluation of the approximator (5) needs the
computation of O(N2).

Generalized linear models (GLMs), another nonlinear approach to constructing a non-negative func-
tion, use nonlinear transformation of a linear model [21]. GLMs are so flexible that they can repre-
sent a wide class of non-negative functions, but they generally do not preserve the convexity of loss
functionals where they are used and cannot be integrated in closed form. However, most recently,
a promising model called squared neural family (SNF) [34], which was specifically designed for
density estimation, has been proposed that uses a quadratic transformation,

fSNF(·)dx =
dµ(·)
z(Θ)

∣∣∣∣g(t(·);Θ)
∣∣∣∣2, g(t;Θ) = V σ(W t+ b), Θ = (V ,W , b), (6)

where dµ(·) is a non-negative measure, g(·|Θ) is a neural network of one hidden layer with ac-
tivation function σ(·) and parameter Θ, t(·) is a sufficient statistic, and z(Θ) is the normalizing
constant, z(Θ) =

∫
X ||g(t(x);Θ)||2dµ(x). Thanks to [[MEANING IS UNCLEAR the theory of

the neural network, -» ?? Gaussian process kernels [20],]] the integrations of SNF (i.e., z(Θ)) can be
executed in a closed form under various dµ(·), t(·), and σ(·). But SNF has some possible drawbacks:
it cannot preserve the convexity of the loss functionals, and so can yield many local optima; it has
many hyper-parameters to be determined such as σ(·) and the size of parameter Θ, on which model
performance largely depends. In this paper, we adopted the same size of Θ as in [34]: V ∈ R1×30,
W ∈ R30×dim(X ), b ∈ R30, and t(x) = x.

2.4 M-Matrix Theory

Here we introduce some existing results on M-matrix theory, which are then used to clarify a suffi-
cient kernel condition so that it may construct a linear approximator of non-negative functions.
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The n-by-n real matrix A ∈ Rn×n is called an M-matrix [23] if it has the form γIn −C, in which
In ∈ Rn×n is the identity matrix of size n, C ∈ Rn×n is an entry-wise non-negative matrix, and
γ > ρ(C), the spectral radius of C; this is equivalent to A with non-positive off-diagonal entries
that is invertible and having an entry-wise non-negative inverse. An entry-wise non-negative matrix
that occurs as the inverse of an M-matrix is called an inverse M-matrix [8]. Note that the inverse
of an M-matrix is always entry-wise non-negative, while the reverse is not always true. We denote
the classes of M-matrices and inverse M-matrices by M and M−1, respectively. Lemma 1 below
shows useful properties on the entry-wise sign patterns of partitioned inverse M-matrices (for the
proof, see Theorem 8 in [8]).
Lemma 1. Suppose that an n-by-n symmetric inverse M-matrix Q ∈ M−1 is partitioned as

Q =

(
Q1 Q⊤

3
Q3 Q2

)
, Q1 ∈ Rn1×n1 , Q2 ∈ Rn2×n2 , Q3 ∈ Rn2×n1 ,

where n1 and n2 are positive integers satisfying n = n1 +n2. Then the following inequalities hold:

0 ⩽ Q⊤
3 Q

−1
2 , 0 ⩽ Q1 −Q⊤

3 Q
−1
2 Q3 ∈ M−1,

where ⩽ (⩾) represents the entry-wise inequality of matrices/vectors.

Proof. Suppose that the inverse of Q, denoted by Q̄ ∈ M, is partitioned as

Q̄ =

(
Q̄1 Q̄⊤

3

Q̄3 Q̄2

)
, Q̄1 ∈ Rn1×n1 , Q̄2 ∈ Rn2×n2 , Q̄3 ∈ Rn2×n1 .

Then Q̄1 and Q̄⊤
3 may be expressed by using Schur’s complements as

Q̄1 = (Q1 −Q⊤
3 Q

−1
2 Q3)

−1, Q̄⊤
3 = −(Q1 −Q⊤

3 Q
−1
2 Q3)

−1Q⊤
3 Q

−1
2 .

Because Q̄1, a principal submatrix of M-matrix Q, is an M-matrix (Corollary 3 in [8]), Q1 −
Q⊤

3 Q
−1
2 Q3 = Q̄−1

1 is an inverse M-matrix and entry-wise positive. Furthermore, Q⊤
3 Q

−1
2 =−(Q1

−Q⊤
3 Q

−1
2 Q3)Q̄

⊤
3 is an entry-wise positive matrix because (Q1 −Q⊤

3 Q
−1
2 Q3) ∈ M−1 and −Q̄⊤

3
are both entry-wise positive matrices. This completes the proof. ■

3 Inverse M-Kernels

In this section, we define a new class of kernels and show that it plays an essential role in constructing
a linear and flexible approximator of non-negative functions.
Definition 1 (Inverse M-kernels). Let k : X × X → R+ be a positive semi-definite kernel that
outputs non-negative values, K := [k(xn, xn′)]nn′ be a gram matrix constructed for any set of N
points (x1, x2, . . . , xN ), and s : N → R+ be a non-negative function of data size N . We call k(·, ·)
an inverse M-kernel if K + s(N)IN ∈ M−1. We denote the class of inverse M-kernels by Fs(N)

M−1 .
Also, if s(N) = 0 or K ∈ M−1, we call the kernel a strict inverse M-kernel, which we denote by
k(·, ·) ∈ FM−1 .

The non-negative function s(N) may generally exhibit various scalings with respect to N , but as
will be discussed later, smaller scalings offer greater advantages. In this paper, we will focus solely
on examples with scalings of O(1) and O(N).

3.1 Inverse M-Kernel Models

We now consider the following linear approximator with an inverse M-kernel:

fIMK(·) =
N∑

n=1

αnk(xn, ·) = k(·)⊤α, (K + s(N + 1)IN )α ⩾ 0, k(·, ·) ∈ Fs(N)
M−1 , (7)

where {xn}Nn=1 is the N data points, α := (α1, . . . , αN )⊤, and k(x) := (k(x1, x), . . . , k(xN , x))⊤.
Coefficients α are obtained by solving the optimization problem (3) with constraint (K + s(N +
1)IN )α ⩾ 0. We call this approximator an inverse M-kernel model (IMK). Then Theorem 1 below
guarantees the non-negativity of the approximator (7).
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Theorem 1 (Non-negativity of inverse M-kernel models). The inverse M-kernel models fIMK(x)
defined by (7) are non-negative for any input point x ∈ X .

Proof. Consider the (N+1)-by-(N+1) gram matrix for the data points {xn}Nn=1 and any point x ∈ X
such that

Q =

(
k(x, x) k(x)⊤

k(x) K

)
+ s(N + 1)IN+1.

Gram matrix Q is an inverse M-matrix because k(·, ·) ∈ Fs(N)
M−1 , and according to the first inequality

in Lemma 1, the following relation holds: k(x)⊤(K + s(N + 1)IN )−1 ⩾ 0. Let β ∈ RN
+ be a

non-negative vector, β ⩾ 0, then the following inner product of non-negative vectors completes the
proof: k(x)⊤(K + s(N + 1)IN )−1β = k(x)⊤α ≥ 0, for β = (K + s(N + 1)IN )α ⩾ 0. ■

It should be emphasized here that the comparison between the two linear models, fIMK in (7) and
fNCM in (4), suggests that our proposed fIMK should have substantially greater representation power
than fNCM: fIMK’s constraint on coefficient, (K+s(N +1)IN )α ⩾ 0, is much weaker than fNCM’s,
α ⩾ 0. Here, the discrepancy between the two models is controlled by s(N + 1), and fIMK reduces
to fNCM for s(N+1) → ∞: (K+s(N+1)IN )α ⩾ 0 ⇔ (s(N+1)−1K+IN )α ⩾ 0

s→∞
= α ⩾ 0.

Clearly, fIMK has greatest representation power when s(N + 1) is equal to zero, and we can derive
a sufficient condition on fIMK so that it may be a universal approximator of non-negative function.
Theorem 2 (Condition for linear universal approximation). The inverse M-kernel model fIMK de-
fined by (7) is a universal approximator of non-negative functions if the kernel is universal and a
strict inverse M-kernel.

Proof. Let k : X × X → R be a universal kernel, and let Z be a compact subset of X . Then the
corresponding RKHS is equal to the space of all continuous functions from Z , denoted by C(Z),
which is equipped with maximum norm || · ||C(Z). Suppose that we have a set of data points,
{(xn, g(xn))}Nn=1, for non-negative target function g : Z → R+ in C(Z), and k(·, ·) is a strict
inverse M-kernel k(·, ·) ∈ FM−1 . Then we can rewrite the inverse M-kernel model (7) in the form
of noise-free kernel ridge regression (KRR) as:

fIMK(x) = k(x)⊤K−1g̃, g̃ := (g(x1), . . . , g(xN ))⊤ ⩾ 0.

Because constraint g̃ ⩾ 0 is satisfied for any {xn}Nn=1 due to the non-negativity of g(·), we can
apply the generalization error bound of a normal KRR (Proposition 1 in [15]) to it:

||fIMK(·)− g(·)||C(Z) < sup
x∈Z

√
k(x, x)− k(x)⊤K−1k(x) · Γ,

where Γ is a constant. The upper bound goes to zero if N → ∞ and {xn}Nn=1 is aligned appropri-
ately, indicating that given ϵ > 0, there exists {xn}Nn=1 such that ||fIMK(·) − g(·)||C(Z) ≤ ϵ, which
completes the proof. ■

3.2 Equivalent Inverse M-Kernels for Permanental Processes

As a by-product of inverse M-kernels, we can address a well-known nodal line problem [7] on Pois-
son intensity estimation with reproducing kernels [6]: Given a set of N points {xn}Nn=1 observed
for compact domain T , intensity function λ(x), an instantaneous probability of events occurring at
each point on T , is estimated by a linear model with the equivalent kernel function h(·, ·) so that

λ(x) = f2(x), f(x) =

N∑
n=1

h(x, xn)v
∗
n, v∗ = arg min

v∈RN
−

N∑
n=1

log f(xn) + r v⊤Hv, (8)

where H := [h(xn, xn′)]nn′ , and h(·, ·) solves an integral equation constructed by kernel function
k(·, ·) as h(x, x′) + 2/r

∫
T k(x, s)h(s, x′)ds = k(x, x′); f(·) generally may have negative values,

which causes many local modes since ±f(·) can lead to similar intensity λ(·) = f2(·), resulting in
artificial zero crossings of f(·), especially on locations where the intensity is low. If h(·, ·) is a strict
inverse M-kernel, then the linear model of f(·) can constitute an inverse M-kernel model (7), which
is non-negative at any x ∈ T under a weak constraint of coefficient, Hv ⩾ 0.
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We now consider solving the integral equation for h(·, ·) with the naive approach [10], which ap-
proximates the integral operator by J-point numerical integration, resulting in

h(x, x′) = k(x, x′)− kJ(x)
⊤(wIJ +KJ

)−1
kJ(x

′), w = rJ/(2|T |), (9)

where kJ(x) := (k(x, q1), . . . , k(x, qJ))
⊤, KJ := [k(qj , qj′)]jj′ , |T | :=

∫
T dx, and (q1, . . . , qJ)

is the regularly aligned evaluation points. Theorem 3 below shows a sufficient condition on the
equivalent kernel such that it may be a strict inverse M-kernel.
Theorem 3 (Equivalent inverse M-kernels). The equivalent kernel h(·, ·) defined by (9) is a strict
inverse M-kernel if the corresponding kernel k(·, ·) is a strict inverse M-kernel.

Proof. Consider the (J+2)-by-(J+2) gram matrix for the points {qj}Jj=1 and any pair of different
points (x, z ̸= x) ∈ T such that

Q = U +E, U =

 k(x, x) k(x, z) kJ(x)
⊤

k(z, x) k(z, z) kJ(z)
⊤

kJ(x) kJ(z) KJ

 , E = diag
(
0, 0, w, . . . , w

)
.

If k(·, ·) ∈ FM−1 , then U ∈ M−1 and Q = U + E ∈ M−1 because of the additive diagonal
closure of inverse M-matrices (Theorem 3 in [8]). Applying the second inequality in Lemma 1 to Q

leads to the relation: 0 ≤ k(x, z) − kJ(x)
⊤(wIJ +KJ

)−1
kJ(z) ∈ FM−1 for any pair of points

(x, z), which completes the proof. ■

Gaussian Cox processes (GCPs) are the gold standard for intensity estimation, and the intensity
estimator (8) is the MAP solution of the permanental process [18], a variant of GCP where the
square root of the intensity function is assumed to be generated from a Gaussian process. In the
literature on GCPs, the advantage of permanental processes over other GCPs has been considered as
the efficient estimation algorithm, and the equivalent kernels constructed by inverse M-kernels may
improve the predictive performance of the fast-to-compute permanental processes by weakening the
coefficient constraints.

3.3 Construction of Inverse M-Kernels

In the former sections, we defined a new class of kernel or inverse M-kernel, and showed some
beneficial results obtained from its unique properties. Now we need to tackle a practical problem
of how to construct the inverse M-kernels. Our conclusion in this paper is that for one-dimensional
input space (X ⊆ R), we can find some strict inverse M-kernels, which include a well-known
universal kernel called exponential/Abel/Laplace kernel; For a multi-dimensional input space, we
can find some inverse M-kernels, but strict ones have yet to be discovered. In the following sections,
we focus on the scenario of a one-dimensional input space, which is followed by discussions of
issues with and perspectives on multi-dimensional input setting.

Corollary 1 (Examples of strict inverse M-kernels). Exponential kernel kexp(x, x
′) = e−|x−x′|/τ

and intersection kernel kint(x, x
′) = min(x, x′) − γ, defined on one-dimensional space x, x′ ∈ R,

are strict inverse M-kernels. Here, τ and γ are the hyperparameters of exponential and intersection
kernels, respectively.

Proof. Given a set of points (x1, . . . , xN ) sorted in ascending order xn < xn′ for n < n′, the inverse
gram matrices of exponential and intersection kernels, denoted by K−1

exp and K−1
int , respectively, are

of tridiagonal form:

(K−1
exp )nn′ =


pnn−1 p

n+1
n /pn+1

n−1 : |n−n′| = 0

−
√
pn′
n (pn′

n −1) : |n−n′| = 1

0 : |n−n′| > 1

, pn
′

n =

{
1

1−e−2|xn−x
n′ |/τ : n, n′ ∈ NN

1 : otherwise
,

(K−1
int )nn′ =


qnn−1 q

n+1
n /qn+1

n−1 : |n−n′| = 0

−qn+1
n : |n−n′| = 1

0 : |n−n′| > 1

, qn
′

n =


1

xn′−xn
: n, n′ ∈ NN

1
xn′−γ : n = 0

1 : n′ = N + 1

,
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Table 1: Results on KdV data across 100 trials with standard errors. l2 is the integrated squared
error between the approximator and the ground truth, and cpu is the CPU time in second.

NCM QNM Our Model
σ l2 cpu(sec) l2 cpu(sec) l2 cpu(sec)

0.1 .078 ± .043 .002 ± .002 .034 ± .011 .634 ± .409 .047 ± .012 .002 ± .001
0.01 .074 ± .044 .001 ± .001 .002 ± .002 3.49 ± 1.04 .011 ± .001 .003 ± .001

NCM QNM Our Model
Ground truth
Estimation

Data points

Figure 1: Estimated non-negative functions on KdV data with small noise, σ = 0.01.

where NN = {1, 2, . . . , N}, τ > 0, and γ < x1. The results show that K−1
exp and K−1

int have
non-positive off-diagonal entries while their inverses are entry-wise non-negative due to the cor-
responding kernels’ properties, indicating that Kexp,Kint ∈ M−1 for any {xn}Nn=1. Therefore,
kexp, kint ∈ FM−1 . ■

Because exponential kernel kexp(·, ·) is a universal kernel as well as a strict inverse M-kernel, Theo-
rem 2 suggests that an inverse M-kernel model with kexp(·, ·) constitutes a linear universal approx-
imator for one-dimensional input spaces. It should be emphasized here that more popular kernels
such as Gaussian and Matérn kernels are not inverse M-kernels, and thus they cannot be used to con-
struct linear universal approximators with non-negativity constraints, which highlights an important
benefit of kexp(·, ·) that has been overlooked in the literature. However, linear models with kexp(·, ·)
are generally not smooth at data points, which is a possible disadvantage given that conventional
nonlinear models can employ smooth kernels. It remains to be clarified whether there exists an
inverse M-kernel that is more smooth than kexp(·, ·).
It is easily verified that linear models with intersection kernels [16] constitute piece-wise linear
splines. By exploiting the fact that piece-wise linear splines, whose finite set of knot values are non-
negative, have non-negative values globally, Maatouk and Bay [14] proposed a Gaussian process (or
equivalently a kernel method) model with non-negativity constraints, which our result re-confirms
from the perspective of (strict) inverse M-kernels.

We derived the tridiagonal formulae in Corollary 1 by using some known properties of symmetric
Toeplitz matrices (e.g., see [33]) as a reference. It is clear that the derived tridiagonal formula is a
straightforward generalization of the inverse of Toeplitz matrices, but we cannot find any references
that explicitly mention the tridiagonal formulae of one-dimensional exponential and intersection
kernels.

4 Experiments

We examined the validity of our proposal by comparing it with conventional linear and nonlinear
models on synthetic data. Here, we considered the three problems of non-negativity-constrained
regression, density estimation, and intensity estimation. As benchmark models, we adopted non-
negative coefficients model (NCM) in (4) and quadratic form of non-negative model (QNM) in
(5) for non-negativity-constrained regression; we adopted NCM, QNM, and squared neural fam-
ily (SNF) in (6) for density estimation; we adopted the intensity estimator with Gaussian kernels
(IEK) [6] and the structured variational Bayesian approach with sigmoidal Gaussian Cox processes
(STVB) [1] for intensity estimation. As our proposal, we adopted inverse M-kernel model (IMK) in
(7) for non-negativity-constrained regression and density estimation, and intensity estimator with in-
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Table 2: Results on density estimation across 100 trials with standard errors. kKL is the Kullback–
Leibler distance between the estimation and the ground truth (the lower, the better); cpu is the CPU
time in seconds.

NCM SNF QNM Our Model
dKL cpu(sec) dKL cpu(sec) dKL cpu(sec) dKL cpu(sec)

.163±.154 .024±.007 .452±.291 2.99±.970 .163±.064 .483±.136 .123±.049 .053±.021

NCM QNM Our ModelSFN
Ground truth

Estimation

Data points

Figure 2: Estimated density functions.

verse M-kernels for intensity estimation. We employed Gaussian kernel k(x, x′) = e−|x−x′|2/τ2

for
NCM and QNM, and exponential kernel k(x, x′) = e−|x−x′|/τ for our IMK. The hyper-parameters
for each model were optimized through three-fold cross validation on a grid: for NCM, QNM,
and IMK, the grid is (τ, r) ∈ C ⊗ C for C = {0.1, 0.2, 0.5, 1, 2, 5, 10}; for SNF, the number of
components for Gaussian mixture measure dµ(·) was selected from {1, 2, 3}. We implemented all
compared models by using Python-3.10.8 (SciPy-1.11, fnnls-1.0 (MIT License))1. A MacBook Pro
with 12-core CPU (Apple M2 Max) was used.

4.1 Non-Negativity-Constrained Regression

We considered a standard regression problem with the squared loss functional, L = 1
σ2

∑N
n=1(yn −

f(xn))
2, which makes the optimization problems in (3 and A1) convex. Here x = (x1, . . . , xN )⊤

and y = (y1, . . . , yN )⊤ are the observed input and target values, respectively, and σ2 is the variance
of observation noise. For NCM and IMK, each of the convex problems of coefficients α can be
recast to non-negative least squares as

NCM : minα≥0 ||Cα− z||2, C = [K/σ;
√
rU⊤], z = [y/σ; 0N ],

IMK : minβ≥0 ||Cβ − z||2, C = [I/σ;
√
rU−1], z = [y/σ; 0N ], α = K−1β,

(10)

where U is the lower triangular matrix of the Cholesky decomposition of the gram matrix, K =
UU⊤, 0N is the N -dimensional vector with zero entries, and [a; b] represents concatenation. We
solved (10) with the fast nonnegative least squares [2]. For QNM, we solved the convex problem of
coefficients B by using the sequential least squares programming (SLSQP) [11].

In accordance with [22], we considered approximating a non-negative 2-soliton solution of the
Korteweg-de Vries (KdV) equation [25], g(x, t = 1) = 12([3+4 cosh(2x−8t)+cosh(4x−64t)])

8[3 cosh(x−28t)+cosh(3x−36t)]2 , where
the posterior means of unconstrained Gaussian process (equivalently, kernel method regressions)
tend to violate non-negativity of the function [22]. We sampled N = 40 data points equidistantly
from the KdV solution with small noise σ = 0.01 and large noise σ = 0.1 scenarios, each of
which was conducted 100 times. Then we measured the predictive performances of the models
based on the integrated squared error between the result f∗(·) and the ground truth g(x), defined as
l2 =

∫ b

a
|f∗(x)− g(x)|2dx for (a, b) = (−20, 5).

Table 1 displays the predictive performances achieved by the compared methods on KdV data. The
comparison between the two linear models shows that our model (IMK) outperformed NCM in both
noise scenarios, which is clearly illustrated by Figure 1: our model succeeded in approximating
the two modes with the different scales appearing in the KdV solution, while NCM failed due to
its limited representation power. See also an additional experiment in Appendix B to illustrate
the difference in representation power between the two linear models. QNM achieved the best
performance among the models, because the underlying function is smooth and consistent with
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Table 3: Results on intensity estimation across 100 trials with standard errors. l2 is the integrated
squared error between the approximator and the ground truth, and cpu is the CPU time in seconds.

IEK STVB Our Model
l2(×103) cpu(sec) l2(×103) cpu(sec) l2(×103) cpu(sec)

7.50 ± 3.06 6.36 ± 3.46 1.74 ± 0.504 1006 ± 54.5 2.01 ± 0.678 4.53 ± 3.15

Our Model

Ground truth

Estimation

Data points

IEK

* * *

STVB

Figure 3: Estimated intensity functions. Asterisks * represent nodal points.

the Gaussian kernel that QNM adopted. The difference in performance between QNM and our
model tends to shrink when observations are noisy. The advantage of our method over QNM is its
computation efficiency: the linearity of the model can be fully exploited to achieve learning that is
hundreds of times faster than QNM.

4.2 Density Estimation

We considered a density estimation problem with the loss functional, L = −
∑N

n=1 log f(xn),
where x = (x1, . . . , xN )⊤ are the observed samples and the optimization problems in (3 and A1)
are convex. Approximators of density functions are required to satisfy the normalization condition,
which can be recast as a linear constraint in the linear models (NCM and IMK): h⊤α = 1 for
(h)n =

∫
X k(x, xn)dx. We trained NCM, SNF, QNM, and IMK by using SLSQP [11].

We created 100 sets of 50 samples generated from a Gaussian mixture model: g(x) = 0.5[N (x|0, 1)
+ N (x|4, 0.3)], where N (·|a, b) represents a normal distribution with mean a and standard
deviation b. The predictive performances were evaluated using the Kullback–Leibler distance
(the lower, the better) between the result f∗(x) and the ground truth g(x), defined as dKL =∫ b

a
g(x) log(g(x)/f∗(x))dx for (a, b) = (−5, 5). Table 2 lists the results, which show that our

IMK achieved better performance than NCM and comparable performance while being substan-
tially faster than QNM. Table 2 also shows that SNF did not perform well, which might be due to
overfitting to the training data, as illustrated by Figure 2. This time we assumed a small training
data set (N = 50), where neural network-based models are likely to overfit. More careful tuning of
the hyperparameters would improve SNF’s performances, while the robustness against data size is
generally a great advantage of kernel methods.

4.3 Intensity Estimation

We considered an intensity estimation problem (8), where SLSQP [11] was used to optimize IEK
and our model. We implemented STVB with the TensorFlow code [1], where the number of inducing
points was set as regularly aligned 100 points within the observation domain. We created 100
sets of event sequences generated from the following intensity function: λ(x) = 50 sin2(x) + 60
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for x ∈ [0, 5], where John and Hensman [7] reported that the nodal line problem was likely to
happen. The predictive performances were evaluated using the integrated squared error between the
result λ∗(x) and the ground truth λ(x), defined as l2 =

∫ b

a
|λ∗(x) − λ(x)|2dx for (a, b) = (0, 5).

Table 3 lists the results which show that our model with an equivalent inverse M-kernel achieved
better performance than the naive intensity estimator with Gaussian kernel (IEK) and comparable
performance to STVB while being substantially faster. Figure 3 illustrates that IEK allowed some
artificial zero crossings of

√
λ∗(x), while our model did not.

5 Discussions

We have proposed a novel class of kernel function, called inverse M-kernel function, with which
we may construct flexible and linear approximators of non-negative functions. We showed that
exponential kernels, which are known as universal kernels, are inverse M-kernel functions, and they
can construct linear universal approximators of non-negative functions for one-dimensional input
settings. We confirmed the potential benefits of our proposal experimentally on three problems:
non-negative function regression, density estimation, and intensity estimation.

Future Work and Limitations To the best of our knowledge, this study is the first to clarify the ex-
istence of linear universal approximators of non-negative functions, although the result is limited to
one-dimensional input spaces. Constructing linear and flexible (or universal, if possible) approxima-
tors with non-negativity constraints for multi-dimensional input space is equivalent to finding inverse
M-kernels for multi-dimensional input spaces, the difficulty of which can be exemplified as follows.
Let k0 : R×R → R be a positive semi-definite kernel, and consider the construction of a kernel for
a two-dimensional input space by a popular multiplicative approach: k(z, z′) = k0(x, x

′)k0(y, y
′)

for z = (x, y). A gram matrix of k(·, ·), denoted by K, evaluated over a Cartesian grid of input loca-
tions, (x1, · · · , xnx

)⊗ (y1, · · · , yny
), will give rise to a matrix that can be written as the Kronecker

product of two smaller gram matrices, each of which are formed by evaluating k0(·, ·) over each
input location [24]: K = Kx ⊗ Ky . If k0(·, ·) is a strict inverse M-kernel function k0 ∈ FM−1 ,
then K−1

x ,K−1
y ∈ M, but K−1 = K−1

x ⊗ K−1
y /∈ M, that is, k(z, z′) /∈ FM−1 : For example,

some off-diagonal entries of K−1 are non-negative, (K−1)1(nx+2) = (K−1
x )12(K

−1
y )12 ≥ 0.

A possible solution to the above difficulty is to select a scalar η large enough to satisfy the condition
of inverse M-kernel (Definition 1): K + ηI ∈ M−1. For general kernel functions, the condition
is not always satisfied even under a very large η. However, if gram matrix K satisfies a specific
condition called strict path product condition [9], then a lower bound of η (i.e., s(N) in Definition
1) that satisfies K + ηI ∈ M−1 can be evaluated as follows.

Theorem (Theorem 4 in [9]). Let A = (aij) be an n-by-n entry-wise non-negative matrix with
normalized unit diagonals, n ≥ 3. Then A + ηI ∈ M−1 for all η ≥ n − 3 if A satisfies the strict
path product condition, aijajk < aik , for all distinct indices i, j, k such that 1 ≤ i, j, k ≤ n.

Actually, it is easily verified that gram matrices of multiplicative exponential kernels, kexp(x, s) =∏
d e

−|xd−sd|/τd , satisfy the strict path product condition regardless of the dimensionality of the
input space. Therefore, the multiplicative exponential kernels are inverse M-kernels with s(N) =

N − 3, that is, kexp(·, ·) ∈ FN−3
M−1 , for multi-dimensional input spaces, which suggests that the

following inverse M-kernel model (IMK) is valid:

fIMK(x) =

N∑
n=1

αnk(xn, x) = k(x)⊤α, (K+(N−2)I)α ⩾ 0, k(x, s)=

D∏
d=1

e−|xd−sd|/τd , (11)

where D ≥ 1 is the input dimensionality. However, as discussed in Section 3.1, the discrepancy
between NCM and IMK becomes small if s(N + 1) for the condition (K+s(N + 1)I)α ⩾ 0 is
large, and thus s(N + 1) = N − 2 implies that improvements of IMK (11) against NCM (4) should
exist but are likely to be marginal for N ≳ 10. Because the lower bound η ≥ N − 3 in the theorem
above is not tight, a pressing need is to develop a method to find a smaller value of η satisfying
(K+ηI) ∈ M−1 given kernel k(·, ·) and input points (x1, . . . , xN ).
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NCM QNM Our Model

Ground truth
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Data points
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Figure B1: Estimation results of regression problem on ground truth g(x) = e−|x|2 by using ref-
erence models (NCM and QNM) with Gaussian kernel e−|x−x′|2/4 and our model with inverse
M-kernel e−|x−x′|/2.

A Details of QNM

Marteau-Ferey et al. [17] considered the following problem of positive semi-definite operator A,

inf
A

L(fA(x1), . . . , fA(xN )) + r||A||∗ + r2||A||2F , (A1)

where || · ||∗ and || · ||2F are the nuclear norm and the squared Frobenius norm, respectively, and fA(·)
is defined as fA(·) = ϕ(·)⊤Aϕ(·) for ϕ(·) the feature map of A. Then they showed that the solution
of (A1) holds for a representer theorem, which leads to the quadratic form of approximator (5). The
coefficient matrix B in (5) is obtained efficiently by solving the N -dimensional dual problem,

α∗ = arg sup
α∈RN

−L∗(α)− 1

2r2
||
[
V diag(α)V ⊤ + rI

]
−||

2
F , (A2)

B = r−1
2 V −1

[
V diag(α∗)V ⊤ + rI

]
−V

−⊤, (A3)

where [A]− represents the negative part of A (for details, see [17]), V is the Cholesky de-
composition of K := [k(xn, xn′)]nn′ , i.e., K = V ⊤V , L∗(α) =

∑N
n=1 l

∗(αn) represents
the Fenchel conjugate of the loss functional L(z1, . . . , zN ) =

∑N
n=1 l(zn). More concretely,

l∗(αn) = ynαn + 1
2σ

2α2
n for l(zn) = 1

2σ2 (zn − yn)
2, and l∗(αn) = −(1 + log(−αn)) for

l(zn) = − log(zn).

B Additional Results

To clearly discern the difference in representation power between the two linear models, NCM and
IMK, we conducted experiments on N = 20 and N = 100 data points sampled equidistantly from
g(x) = e−|x|2 with noise σ = 0.01, where we set the scale parameter τ of kernel function to be twice
as large as the ground truth, τ = 2, for all models. Figure B1 displays the results: NCM failed to
recover the functional form of the ground truth even with a large number of training points, while our
IMK, which invokes the universal approximation under a strict inverse M-kernel function, achieved
good estimation results. As emphasized by Marteau-Ferey et al. [17], NCM cannot approximate a
function with a scale strictly smaller than the used kernel’s scale well, which raises a problematic
trade-off when the underlying function has different scales of components: adjusting τ to the smaller
scale components causes overfitting in the larger scale ones, while adjusting τ to the larger scale ones
fails to recover the smaller scale ones. The experiments in Section 4.1 replicated this problematic
situation.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3 is the main contribution of this paper, which is claimed in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are clearly discussed in Sections 3.3 and 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Guidelines:
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed to reproduce the experimental results are in Sec-
tion 4. Also, we will release the code and synthetic data to reproduce the results at github
page.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the code and synthetic data to reproduce the results at github
page. We submitted the code and synthetic data to reviewers.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so“No”is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details are in Section 4.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All predictive/computational performances in Section 4 are reported with
standard errors.
Guidelines:

• The answer NA means that the paper does not include experiments.
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dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information on the computer resources is stated in the first paragraph of Sec-
tion 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the NeurIPS Code of Ethics, and confirmed that our research conform
with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is not tied to particular applications, and does not present any
foreseeable societal consequence.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Synthetic data used in this paper is not tied to particular applications.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used python package fnnls, of which version and license are mentioned
in Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We will also release code to reproduce the dataset used in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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