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ABSTRACT

In this paper, we study the problem of video-conditioned policy learning. While
previous works mostly focus on learning policies that perform a single skill spec-
ified by the given video, we take a step further and aim to learn a policy that can
perform multiple skills according to the given video, and generalize to unseen
videos by recombining these skills. To solve this problem, we propose our algo-
rithm, Watch-Less-Do-More, an information bottleneck-based imitation learning
framework for implicit skill discovery and video-conditioned policy learning. In
our method, an information bottleneck objective is employed to control the infor-
mation contained in the video representation, ensuring that it only encodes infor-
mation relevant to the current skill (Watch-Less). By discovering potential skills
from training videos, the learned policy is able to recombine them and generalize
to unseen videos to achieve compositional generalization (Do-More). To evalu-
ate our method, we perform extensive experiments in various environments and
show that our algorithm substantially outperforms baselines (up to 2x) in terms of
compositional generalization ability.

1 INTRODUCTION

As large language models (LLMs) have demonstrated remarkable zero-shot and few-shot general-
ization abilities (Brown et al., 2020; Ouyang et al., 2022), the research focus of decision-making
policies has also shifted from addressing a specific task, such as mastering an environment via re-
inforcement learning (Sutton, 2018) or replicating a dataset via imitation learning (Hussein et al.,
2017), to completing diverse tasks based on given instructions. These instructions can be treated
as goals for the decision-making models, and encompass modalities such as text (Nair et al., 2022;
Carta et al., 2023), goal image (Yadav et al., 2023b;a), or future state (Cui et al., 2022; Lee et al.,
2024). To achieve such goal-conditioned policies, a variety of methods have been proposed and
achieved great success across multiple domains (Liu et al., 2022). However, the aforementioned
goal specifications often overlook dynamic information, such as the ordering of task completion or
the method of task completion (if there are many). In contrast, video offers a natural way to represent
these details, thereby leading to a line of research exploring video-conditioned policy learning (Eze
& Crick, 2024b).

Existing methods for video-conditioned policy learning have been applied to various scenarios, in-
cluding robotic manipulation (Chane-Sane et al., 2023; Shin et al., 2023; Jiang et al., 2023), navi-
gation (Zhou et al., 2024), and autonomous driving (Shin et al., 2024). Taking different videos as
input, the learned policy can be deployed to perform different skills to solve corresponding tasks.
However, these methods often consider only the video demonstration of a single task (Chane-Sane
et al., 2023) and only the object-level generalization (Jiang et al., 2023). In real-world applications,
we often want the learned policy to perform a set of different skills to achieve a combination of
multiple tasks.

When the video demonstration of a task combination is given, an ideal policy should directly per-
form skills as demonstrated in the given video. To train such a policy, researchers have explored
skill-based imitation learning methods (Xu et al., 2023; Wang et al., 2023; Shin et al., 2023; 2024).
However, these methods often require explicit video segmentation annotations, or videos of another
embodiment to train a skill-based policy, which greatly increases the difficulty of the data collection
process. Therefore, in this paper, we consider whether it is possible to learn a video-conditioned
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policy that can perform multiple skills without these requirements. Moreover, as we consider videos
of different task combinations, we also expect the learned policy to achieve compositional general-
ization (Lin et al., 2023), that is, it can still perform well on task combinations that have not been
during training.

To fulfill such an expectation, we propose our algorithm, Watch-Less-Do-More (WL-DM), an in-
formation bottleneck-based imitation learning framework for implicit skill discovery and video-
conditioned policy learning. For a video-conditioned policy, the given video can be considered as a
sequence of tasks. As the policy can only work on one task at a time, it should be able to perform
well by focusing only on the current task, instead of the entire task sequence. Based on this intuition,
WL-DM employs the information bottleneck method (Tishby et al., 2000) to control the information
contained in the video representation. This is accomplished by 1) minimizing the mutual informa-
tion (Cover, 1999) between video and its representation to reduce the information contained in the
video representation and 2) maximizing the mutual information between video representation and
the current skill to preserve enough information related to the current task. To better understand
the effect of this information bottleneck method, we further build a theoretical connection between
the proposed method and the intuition behind it. Using this method, WL-DM makes the learned
policy only to consider the current task, which achieves the implicit video segmentation without
requiring explicit video segmentation annotations. The advantage of considering only the current
task can be related to the compositional generalization ability. When an unseen video is given, the
video-conditioned policy learned by WL-DM can implicitly decompose the unseen video into seen
tasks, and perform corresponding skills, thus facilitating the compositional generalization ability
of the learned video-conditioned policy. To further validate our algorithm, we propose a practical
implementation of our method and conduct various empirical evaluations across diverse environ-
ments. The experimental results indicate that WL-DM achieves substantially better compositional
generalization ability than baselines, demonstrating the effectiveness of our method.

Our contributions can be summarized as follows:

• We propose our method, Watch-Less-Do-More (WL-DM), an information bottleneck-
based imitation learning framework for implicit skill discovery and video-conditioned pol-
icy learning, where two different mutual information terms work together to ensure the
video representation contains only information related to the current task.

• The intuition behind WL-DM is that the optimal policy should behave similarly when con-
ditioned on all tasks and when conditioned on only the current task. To better explain our
method, we further build a theoretical connection between WL-DM and this intuition.

• We propose a practical implementation of our algorithm and perform empirical evaluations
in Frank Kitchen (Gupta et al., 2020) and Meta world (Yu et al., 2020) to demonstrate the
effectiveness of WL-DM. The experimental results indicate that WL-DM achieves (up to
2x) better compositional generalization ability compared to baselines.

2 RELATED WORK

2.1 LEARNING FROM VIDEOS

Using massive Internet data to train language models has been proven to be successful and has re-
sulted in a trend of research on large language models (Brown et al., 2020; Touvron et al., 2023).
Inspired by this success, researchers have begun to pay attention to another type of data wildly avail-
able on the Internet, video data, and produced a series of studies on learning from videos (McCarthy
et al., 2024; Eze & Crick, 2024a). For decision-making models, video data can be used in various
ways, such as reward function learning (Escontrela et al., 2023; Sermanet et al., 2018; Chen et al.,
2021a), dynamic model learning (Baker et al., 2022), representation learning (Nair et al., 2023),
and policy learning (Jang et al., 2022; Jiang et al., 2023; Chane-Sane et al., 2023; Shin et al., 2023;
2024). Our paper belongs to the last category, that is, using video demonstrations as instructions to
learn a video-conditioned policy. It is worth noting that previous work in this category often focuses
only on demonstration videos containing a single task (Chane-Sane et al., 2023), or requires aligned
data of other modalities (Jang et al., 2022; Shin et al., 2023; 2024). This can be attributed to the
lack of clear goal labels in demonstration videos (McCarthy et al., 2024). Therefore, when dealing
with videos containing multiple tasks, we often need to introduce information in other modalities
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to provide segmentation annotations for the video, to distinguish the tasks to be completed at each
stage (Shin et al., 2023; 2024). Unlike previous work, in this paper, we attempt to directly learn a
video-conditioned policy capable of handling videos containing multiple tasks, without introducing
additional segmentation annotations.

2.2 ONE-SHOT IMITATION LEARNING

One-shot imitation learning was originally introduced in Duan et al. (2017), where the goal of this
problem is to learn a policy that can quickly adapt to a new task given a single demonstration. For
one-shot imitation learning, we can achieve it through different learning methods such as meta-
learning (Duan et al., 2017; Finn et al., 2017), semi-supervised learning (Wu et al., 2024), and
imitation learning (Jang et al., 2022; Cui et al., 2022; Jiang et al., 2023). Specifically, our method
falls into the last category: we assume the existence of an imitation learning dataset paired with
video demonstrations, such that we can use this dataset to train a video-conditioned policy.

One-shot demonstrations can be presented in various formats, such as trajectories (Cui et al., 2022;
Lee et al., 2024), videos (Dasari & Gupta, 2021; Jain et al., 2024; Wang et al., 2023; Xu et al., 2023;
Chane-Sane et al., 2023), multimodal information (Jiang et al., 2023; Shin et al., 2023; 2024), etc. In
this paper, we consider adapting to new tasks through video demonstrations, that is, one-shot video
imitation learning. In previous work, video demonstrations often only include a single task, and the
adaptation to new tasks mainly focuses on differences at the embodiment and object level (locations,
textures, etc.) (Dasari & Gupta, 2021; Mandi et al., 2022; Chane-Sane et al., 2023). Unlike these
studies, we consider video demonstrations containing multiple tasks and focus on adaptation at the
level of task combination. For this setting, previous work generally assumes the existence of data
corresponding to another embodiment (Wang et al., 2023; Xu et al., 2023) or assumes information
in other modalities to provide video segmentation annotations (Shin et al., 2023; 2024). Unlike
these works, we do not assume additional data and learn a video-conditioned policy that can finish
multiple tasks solely through the information contained in the videos.

2.3 COMPOSITIONAL GENERALIZATION

Due to the compositional nature of natural language, most previous work considers the composi-
tional generalization problem over language instructions. For example, Oh et al. (2017) proposed a
method based on hierarchical reinforcement learning that enables the policy to generalize to unseen
command combinations and longer command sequences at test time. Stengel-Eskin et al. (2022)
combined the transformer model and the masking mechanism to obtain generalization over object
combinations. The attention mechanism for compositional generalization was further investigated
by Spilsbury & Ilin (2022), and a method utilizing sparse factored attention for goal identifica-
tion was proposed. Modular architecture is another way to induce compositional generalization.
Carvalho et al. (2023) proposed modular successor features to enhance the compositional general-
ization ability, and Logeswaran et al. (2023) directly considered an additive decomposition of the
state-action value function to obtain the generalization ability over language instructions.

Unlike these studies, we consider the generalization across different task combinations based on
video demonstrations. During training, we only have access to a subset of task combinations and
their corresponding video demonstrations. Our goal is to enable the policy to decompose different
tasks from the videos and acquire skills to solve these tasks. At test time, the policy is expected to
reproduce an unseen video demonstration by combining a set of skills learned in the training set.
This setting has been studied by Wang et al. (2023); Xu et al. (2023); Shin et al. (2023; 2024). How-
ever, Wang et al. (2023); Xu et al. (2023) focused on the cross-embodiment scenario, thus requiring
video data from another embodiment, and Shin et al. (2023; 2024) required language information to
provide segmentation annotations for videos. Unlike them, our method incorporates an information
bottleneck-based objective to achieve implicit video segmentation and skill discovery, without the
need for other sources of information.

3 PROBLEM FORMULATION

In this paper, we consider the video-conditioned policy learning problem. This problem can be
formulated as a special case of the goal-conditioned Markov Decision Process (MDP) (Nasiriany
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et al., 2019) and defined by a tuple ⟨S,G,A, P,R, ρ0, γ⟩. Similar to the general MDP, S is the set
of states, A is the set of actions, P (st+1|st, at) is the transition probability, ρ0 is the initial state
distribution and γ is the discount factor. Additionally, we have G as the set of goals, which will also
affect the reward function R(st, at, g). For a goal-conditioned policy π(at|st, g) with a given goal
g, we want it to maximize the following objective:

J (π) = Es0∼ρ0,a∼π,s′∼P [
∑
t

γtr(st, at, g)].

As we focus on the video-conditioned policy learning, we assume our goals to be videos G =
V , such that a goal-conditioned policy π(at|st, g) becomes a video-conditioned policy π(at|st, v).
Moreover, we consider the case where each video v = (k0, · · · kN ) contains multiple tasks k ∈ T ,
where N is the number of tasks and T is the set of all possible tasks. To evaluate the compositional
generalization ability of the video-conditioned policy, we assume two video sets Vtrain and Vtest,
such that there is no overlapping between the train video set and test video set Vtrain ∩Vtest = ∅
and both video sets contain all possible tasks

⋃
v∈Vtrain,k∈v k =

⋃
v∈Vtest,k∈v k = T . The video-

conditioned policy will be trained in Vtrain to maximize Ev∼Ptrain
J (π) and will be tested in Vtest

in terms of Ev∼Ptest
J (π), where Ptrain and Ptest are uniform distributions across Vtrain and Vtest

respectively.

4 METHOD

In this section, we introduce our method, Watch-Less-Do-More (WL-DM). The intuition behind our
method is that we want the video-conditioned policy to make decisions relying not on the entire
video, but only on information related to the current task, thereby achieving implicit video segmen-
tation and skill discovery. To achieve this, we propose an information bottleneck-based objective
and theoretically establish the connection between this objective and our intuition. By decomposing
training videos into a combination of different skills, the video-conditioned policy can handle un-
seen videos by recombining these skills to complete the required task combinations demonstrated in
the unseen video.

4.1 INTUITION: FOCUSING ON THE CURRENT TASK

As formulated in Section 3, we assume that each video v contains N tasks [k0, · · · , kN ] that need
to be completed and the completion of these tasks is independent. In this case, we further assume a
training set D = {τi, vi}, where τi = (s0, a

∗
0, · · · , sT , a∗T )i is the expert trajectory corresponding to

the video vi = (f0, · · · , fT ) and fi is the video frame at each timestep. Given such a dataset, we can
easily learn a video-conditioned policy π(at|st, v) through imitation learning (Hussein et al., 2017)
that can complete different task combinations given different videos, at least within the coverage of
the training set. For example, the policy can be trained via the following behavior-cloning loss:

LBC(θ, ϕ) = −Est,a∗t ,v∼D

[
log π(a∗t |st, v)

]
= −Est,a∗t ,v∼D

[
log fθ(a

∗
t |st, gϕ(v))

]
, (1)

where gϕ is the video encoder and fθ is the action decoder.

A potential problem with this training method is that, when the size of our training set is limited,
the learned policy can easily overfit (Ying, 2019) to videos in the training set. This problem causes
the learned policy to focus too much on the details of these videos to distinguish them completely,
while ignoring the fact that these videos are composed through elements of the same task set. In
such a case, when an unseen video is given, i.e., an unseen combination of tasks, the performance of
the learned policy may decrease dramatically due to the overfitting issue. To address this problem,
we need to focus on the fact that all videos are composed through elements of the same task set T .
Even for those unseen videos, although the corresponding task combinations are not included in the
training set, each task that constitutes them has already been covered in the training set. Therefore,
if we can decompose videos into individual tasks and train the policy based on the decomposed
tasks, such that π(at|st, v) = π(at|st, vcur), where vcur is the video segment corresponding to kcur
and v = (vcur, vother), the policy can then handle unseen videos as all the skills demonstrated in the
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videos have been covered and trained in the training set, which is commonly known as compositional
generalization (Lin et al., 2023). However, such a task-level video segmentation annotation could be
inaccessible in many cases. In this paper, we do not assume this kind of annotations as in previous
work (Shin et al., 2023; 2024). To achieve a similar effect, we propose an information bottleneck-
based method, allowing the policy to implicitly decompose demonstration videos, enabling it to rely
only on the information related to the current skill when making decisions, thereby achieving the
compositional generalization ability.

4.2 INFORMATION BOTTLENECK FOR VIDEO-CONDITIONED POLICY LEARNING

As described in Section 4.1, when all tasks can be completed independently, a video-conditioned
policy π(at|st, v) = π(at|st, vcur) can achieve the compositional generalization ability. However,
a video contains information about not only the current task kcur but also other tasks kother. There-
fore, we need an additional objective to train the video encoder gϕ, such that it produces a similar
representation for v and vcur, and we can then ensure π(at|st, v) = π(at|st, vcur). To achieve this,
we need to reduce the mutual information between video representations hv and the video segments
of other tasks vother, and the reason can be seen from the following theorem:
Theorem 1. If we have MI(hv; vother |s, vcur) = 0, then DKL

(
π(a|s, v)||π(a|s, vcur)

)
= 0 for all

state-video pairs (s, v) ∈ S ×V with non-zero probability P (s, v) > 0.

Proof. See Appendix B.

This theorem suggests the necessity of reducing the information of other tasks contained in the
video representation. However, since we do not assume any video segmentation annotation, we
cannot directly obtain segments corresponding to the current task and other tasks from the video, and
therefore cannot directly manipulate the mutual information. Hence, we use a constructive method
to manipulate the information in the video representation indirectly. Specifically, we first minimize
the mutual information between the video representation hv and the entire video v to minimize the
amount of information contained in the video representation. At the same time, we maximize the
mutual information between the video representation and some approximation of the current skill
(which will be discussed later). Since different skills are required for performing different tasks,
we can in this way indirectly ensure that the video representation still retains a certain amount of
information about the current task. Putting these two terms together, we can construct the following
objective, which is often referred to as the information bottleneck (Tishby et al., 2000):

LIB = MI(hv; v|s)− αMI(hv; z|s), (2)

where z is an approximated representation of the current skill, and α is the coefficient for the trade-
off between two mutual information terms. As discussed in Tishby & Zaslavsky (2015), the infor-
mation bottleneck is often used to learn a compact representation, which in our case is to dismiss
the irrelevant part kother and retain the relevant part kcur. In the following two sections, we discuss
how to compute this objective in practice.

4.3 MINIMIZING MUTUAL INFORMATION WITH VIDEO

The first term in Equation (2) is to minimize the mutual information between video representation
hv and the entire video v. By expanding this term, we have:

MI(hv; v|s) = EP (s)EP (v)

[
DKL

(
gϕ(hv|s, v)||P (hv|s)

)]
, (3)

where P (s) and P (v) represent the state and video distribution, respectively. P (hv|s) is a marginal
distribution P (hv|s) = EP (v) gϕ(hv|s, v). As estimating this marginal distribution could be in-
tractable in practice, previous work (Goyal et al., 2018; Eysenbach et al., 2021) commonly ap-
proximates it with some prior g(hv|s). As we can see from Equation (3), the goal of this objec-
tive is to minimize the distance between the video representation produced by the video encoder
hv = gϕ(hv|s, v) and some prior g(hv|s) that does not consider video v at all. As shown later in
the experiment, such a target for distance minimization is undesirable as it induces too much loss of
video information. To solve this problem, we need to find a better alternative for g(hv|s) such that
the loss of video information can be controlled at a proper level.
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Figure 1: Overall Framework of WL-DM. We introduce an information bottleneck-based objective
to achieve implicit video segmentation and skill discovery. Blocks with different colors represent
different tasks. MHA stands for Multi-head Attention.

Recall the intuition in Section 4.1, we want the representation to be only related to the video segment
of the current task vcur. Although we cannot access the precise vcur, we do have access to the
video v = (f0, · · · , fT ), which allows us to approximate vcur using a future video segment ṽcur =
(ft, ft+1, · · · ft+L) for state st, where L is a randomly sampled window size. Therefore, we can use
ṽcur as the input and get a prior video encoder gprior

ϕ̃
(hv|s, ṽcur), which leads to the minimization

of the following equation:

EP (s)EP (v)

[
DKL

(
gϕ(hv|s, v)|| gpriorϕ̃

(hv|s, ṽcur)
)]
. (4)

The relationship between Equation (3) and Equation (4) can be seen from the following inequality:

EP (s)EP (v)

[
DKL

(
gϕ(hv|s, v)|| gpriorϕ̃

(hv|s, ṽcur)
)
−DKL

(
gϕ(hv|s, v)||P (hv|s)

)]
= EP (s)EP (v)Egϕ(hv|s,v)

[
log

P (hv|s)
gprior
ϕ̃

(hv|s, ṽcur)

]
= EP (s)EP (hv|s)

[
log

P (hv|s)
gprior
ϕ̃

(hv|s, ṽcur)

]
= EP (s)

[
DKL

(
P (hv|s)|| gpriorϕ̃

(hv|s, ṽcur)
)]

≥ 0,

which indicates that, using prior encoder gprior
ϕ̃

(hv|s, ṽcur), we construct an upper bound of Equa-
tion (3). With this prior encoder, we can get the final objective for mutual information minimization:

LMI- = Es,v∼D
[
DKL

(
gϕ(hv|s, v)|| gpriorϕ̃

(hv|s, ṽcur)
)]
. (5)

In addition to Equation (5), the prior encoder gprior
ϕ̃

is also trained via behavior cloning similar to
Equation (1) with another action decoder fθ̃ attached after it.

4.4 MAXIMIZING MUTUAL INFORMATION WITH SKILL APPROXIMATION

Another term in Equation (2) is to maximize the mutual information between the video represen-
tation hv and some skill approximation z. We follow Yuan et al. (2024) and use the short-term

6
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behavior z = (at, at+1, · · · , at+M ) as the representation of skills for state st, where M is a ran-
domly sampled window size. To enhance the level of abstraction of the skill representation, we
further propose to first cluster all actions in the training dataset D and then use the cluster id xt of
each action to improve the skill representation, such that z = (xt, xt+1, · · · , xt+M ). As the mutual
information is to measure the dependency between two variables, to maximize MI(hv; z), we can
simply maximize logP (z|hv). As we have z = (xt, xt+1, · · · , xt+M ), similar to Yuan et al. (2024),
we can decompose the above maximization into each timestep and get the final objective for mutual
information maximization:

LMI+ = −Est,xt,v∼D

[
log fskillψ (xt|st, gϕ(v))

]
, (6)

where we introduce the skill decoder fskillψ to enhance the dependency between ht and z.

4.5 SUMMARY

Putting Equations (1), (5) and (6) together, we can now have the total loss for WL-DM:

LWL-DM = LBC +α1 LMI- +α2 LMI+ ,

where we have two coefficients α1 and α2 to balance the scale of these three terms. The overall
framework of our algorithm is illustrated in Figure 1. We use multiple self-attention layers as the
encoder gϕ to process video tokens and state tokens and then use the action decoder fθ to predict
action labels a∗t . The joint optimization of LMI- and LMI+ ensures the video representation contains
only information related to the current task. The pseudocode of our algorithm is summarized in
Algorithm 1. It is worth noting that the skill decoder fskillψ , the prior video encoder gprior

ϕ̃
, and the

prior action decoder fθ̃ will only be used during training, we will keep only the video encoder gϕ
and the action decoder fθ for execution.

Algorithm 1 WL-DM
1: Initialize video encoder gϕ, action decoder fθ and skill decoder fskillψ

2: Initialize prior video encoder gprior
ϕ̃

and prior action decoder fθ̃
3: Initialize training dataset D
4: for i = 1 to I do
5: Sample data (st, a

∗
t , v) from D

6: Construct approximation of current video segment vcur
7: Construct approximation of current skill z
8: Update gϕ and fθ by Equation (1) with (st, a

∗
t , v)

9: Update gprior
ϕ̃

and fθ̃ by Equation (1) with (st, a
∗
t , vcur)

10: Update gϕ and gprior
ϕ̃

by Equation (5) with (st, v, vcur)

11: Update gϕ and fskillψ by Equation (6) with (st, z, v)
12: end for

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

To validate our method, we conduct empirical evaluations on two different robotic environments,
Franka Kitchen (Gupta et al., 2020) and Meta World (Yu et al., 2020). The visualization of these
two environments is presented in Figure 2.

In Franka Kitchen (FK), we control a Franka Panda robot in the kitchen environment to perform
seven possible tasks: microwave (M), kettle (K), bottom burner (B), top burner (T), light switch
(L), slide cabinet (S) and hinge cabinet (H). The dataset from the original paper (Gupta et al.,
2020) contains 566 trajectories corresponding to 24 different task combinations. To enable video-
conditioned policy training, we train expert policy using the original dataset to collect trajectories
and corresponding video demonstrations. To evaluate the one-shot imitation learning ability, we split
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the dataset into a training dataset and a test dataset, where the training dataset contains 17 different
task combinations and the test dataset contains 7 different task combinations, and there is no overlap
of task combinations between the training set and the test set. During testing, we sample 3 different
video demonstrations for each task combination, run the evaluation 10 times, and report the average
performance.

(a) Frank Kitchen (b) Meta World

Figure 2: Visualization of Experiment Environments

In Meta world (MW), we modify the
original environment (Yu et al., 2020) to
perform multiple tasks within a single
episode. In this newly devised environ-
ment, we control a Sawyer robot to per-
form four possible tasks: close drawer (D),
open door (O), push button (B) and open
window (W). We use expert policy to col-
lect the dataset for all 24 different tasks. It
is worth noting that, as the dataset contains
all possible task combinations, the task or-
ders presented in the video demonstration bring additional difficulties for policy learning. To eval-
uate the one-shot imitation learning ability, we split the dataset into a training dataset and a test
dataset, where the training dataset contains 17 different task combinations and the test dataset con-
tains 7 different task combinations, and there is no overlap of task combinations between the training
set and the test set. During testing, we sample 3 different video demonstrations for each task com-
bination, run the evaluation 10 times, and report the average performance.

We include several challenging imitation learning algorithms as our baselines: C-bet (Cui et al.,
2022), decision transformer (Chen et al., 2021b), and VIMA (Jiang et al., 2023). As C-bet and
decision transformer were not proposed for video-conditioned policy learning, we modify them to
additionally take videos as input and get baselines V-BET and V-DT. For VIMA, it was originally
proposed for multimodal prompts. However, as we do not assume data of other modalities, we train
VIMA on our video-only dataset and serve as our baseline VIMA. More details of experiments can
be found in Appendix A.

5.2 EXPERIMENT: MAIN

Table 1: The performance of WL-DM and baselines on all FK and MW tasks.

Env Methods
Tasks

Avg
MBTH MBLS MBTL KBTH MTLH KBLS KBTS

FK

WL-DM 2.30 2.57 2.37 2.10 1.83 1.97 3.17 2.33±0.78

V-BET 1.37 2.47 0.83 2.27 1.73 1.80 3.10 1.94±1.06

V-DT 1.00 2.33 1.70 1.33 1.47 1.70 2.10 1.66±0.79

VIMA 0.77 0.50 0.50 1.27 0.20 1.67 1.70 0.94±0.85

ODWB DOBW DBWO WBOD BDOW BDWO BWDO

MW

WL-DM 3.33 2.00 2.00 2.00 2.67 2.00 4.00 2.57±0.90

V-BET 1.87 2.00 0.73 1.33 0.33 0.00 1.97 1.18±0.85

V-DT 1.33 2.13 1.23 1.93 0.37 0.83 0.83 1.24±0.86

VIMA 1.80 1.00 0.37 0.37 1.17 0.57 0.83 0.87±0.84

As shown in Table 1, our method achieves better average performance in both environments. In
Franka Kitchen, our method achieves an improvement of approximately 20.1% compared to the
best baseline (V-BET). In Meta World, the improvement is even more significant, with our method
achieving a 100.1% improvement compared to the best baseline (V-DT). Although our method con-
sistently outperforms all baselines, we note that there is a large gap in terms of the degree of im-
provement between the two environments. This is because, in Franka Kitchen, task combinations in
the dataset are not diverse enough, and there is no variation in terms of the task orders (A, B vs B,
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A). Therefore, it can be considered to have a strong correlation within the task combinations. There-
fore, even without considering the segmentation of tasks in video demonstrations, we can still utilize
this correlation to achieve a policy that performs well during testing. However, in Meta World, our
dataset includes all task combinations and considers different task orders, making task segmenta-
tion in videos even more critical, which explains the gap in improvement of our algorithm in the
two environments. More specifically, out of a total of 14 test tasks, our method achieves the best
performance in 12 of them. Such overall performance validates the effectiveness of our algorithm.

For the performance of baselines, we found that V-BET and V-DT perform at a similar level. This
is because the main difference between V-BET and V-DT in our implementation is whether or not
action is used as part of the trajectory. For the robotic environments we used, this action information
can often be directly inferred from changes in the state of the robot. Therefore, the advantage of
using action information is not significant. VIMA, on the other hand, does not perform well in
both environments. One potential reason is that VIMA was originally proposed for multimodal
scenarios. Although its training process can be transferred to the pure video scenario, this direct
transfer is clearly not effective. Moreover, in terms of one-shot video imitation, VIMA mainly
considers object-level variations in a single task rather than variations in task combinations, so we
believe its performance decline is acceptable.

5.3 EXPERIMENT: ABLATION

Table 2: The performance of WL-DM and ablation baselines on all MW tasks.

Env Methods
Tasks

Avg
ODWB DOBW DBWO WBOD BDOW BDWO BWDO

MW

WL-DM 3.33 2.00 2.00 2.00 2.67 2.00 4.00 2.57±0.90

WL-DM w/o LMI+ 1.00 2.00 1.83 1.67 1.67 1.67 2.00 1.69±0.46

WL-DM w/o LMI- 2.00 2.00 2.00 2.00 1.67 2.00 3.33 2.14±0.64

WL-DM w ∅ 2.00 2.13 1.93 2.00 2.00 1.33 2.00 1.91±0.37

As our objective function contains two different mutual information terms, we conduct ablation stud-
ies in this section to verify the contribution of these two components to our method. We construct
two ablation baselines, WL-DM w/o LMI+ and WL-DM w/o LMI- . The ablation baselines are iden-
tical to our algorithm in all aspects, except that WL-DM w/o LMI+ does not use Equation (6) and
WL-DM w/o LMI- does not use Equation (5). We validate these two ablation baselines in the Meta
World environment and compare them with our method. As shown in Table 2, both ablation base-
lines achieve worse performance compared to WL-DM, thereby verifying that both Equation (5)
and Equation (6) contribute to our algorithm. Notably, even with only Equation (5), the ablation
baseline still achieves better performance than the baselines in Section 5.2, which further validates
the effectiveness of Theorem 1 in practice.

As mentioned in Section 4.3, directly minimizing the mutual information using prior g(hv|s) can
lead to excessive loss of video information in practice, thereby affecting the performance of the
algorithm. To verify this point, we construct another ablation baseline WL-DM w ∅. This baseline
is again identical to our method in all aspects, except that it does not use gprior

ϕ̃
(hv|s, ṽcur) but

instead uses prior g(hv|s). From Table 2, we can see that using g(hv|s) indeed leads to a decline in
the performance, thus verifying the upper bound we constructed in Section 4.3. Additionally, it is
worth noting that WL-DM w/o LMI- demonstrates that when we do not minimize mutual information
at all, that is, do not control the information provided by the video, the algorithm cannot achieve its
best performance. In contrast, WL-DM w ∅ indicates that excessively reducing the information of
the video also leads to a decline in the final performance. This phenomenon further demonstrates
the importance of a proper approximation for vcur and validates our statements in Section 4.3.
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6 CONCLUSION

In this paper, we investigate the problem of one-shot video imitation for video-conditioned policies.
To enhance the compositional generalization ability of the learned policy, we propose an imita-
tion learning framework, Watch-Less-Do-More (WL-DM). Our method introduces an information
bottleneck-based objective, which leads to implicit skill discovery for video-conditioned policies.
The intuition behind this method is that by segmenting the video into different tasks, the policy
learns diverse skills corresponding to these tasks. When faced with unseen videos, the policy can
also decompose them into combinations of previously encountered tasks, thereby completing these
tasks through the learned skills. To better explain our method, we build a theoretical connection
between our method and this intuition using information theory. We also present a practical imple-
mentation of our algorithm and evaluate it on a variety of tasks across multiple environments. The
experimental results indicate that our algorithm outperforms baselines in terms of the compositional
generalization ability, which verifies the effectiveness of our algorithm.

7 LIMITATIONS AND FUTURE WORK

The limitation of this work is that our approximations of the current task kcur and the current skill z
remain naive, which are just the information from the immediate future. Although similar approx-
imations have been used in many previous studies (Pertsch et al., 2021; Liu et al., 2021; Xie et al.,
2023; Yuan et al., 2024), one issue with this approach is the need for video data to be aligned with
trajectory data in timesteps (for a state st, we can access its corresponding video frame ft), which
can be costly to collect in many cases.

Our future work will primarily focus on extending our algorithm to real-world scenarios, such as
real-world robots, thereby broadening the application scope of our algorithm. Additionally, we
will consider extending our algorithm to multimodal scenarios, utilizing multimodal information to
obtain better approximations of tasks and skills, thereby not only enhancing the performance of the
algorithm but also expanding the range of instruction formats it can process.
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A IMPLEMENTATION DETAILS

We implement our algorithm and all baselines based on the codebase of C-bet (Cui et al., 2022).
For WL-DM and V-BET, we use only consider only observations in the trajectory, and for V-DT and
VIMA, we consider both observations and actions in the trajectory, which aligns with the implemen-
tation stated in the paper of C-bet (Cui et al., 2022), DT Chen et al. (2021b) and VIMA (Jiang et al.,
2023). For WL-DM, V-BET, and V-DT, we use the same transformer model as stated in C-bet, which
contains multiple self-attention layers to process video information and trajectory information at the
same time. For VIMA, we use alternating cross-attention and self-attention layers as described in
its paper (Jiang et al., 2023).

For all experiments, we set the learning rate to be 3×10−4 and set the window size for the trajectory
to be 20 (for V-DT and VIMA, it means 20 observation-action pairs). For WL-DM, the window size
of future video segments is sampled from [20, 40]. As we use the codebase of C-bet, all methods
use the same action decoder, where we set the number of bins for action discretization to 32, and
the id of each cluster will also be used for the representation of skills for WL-DM. For the Franka
Kitchen environment (Gupta et al., 2020), we use decoders with 3 layers, and 3 heads and set the
hidden dimension to be 60 (for VIMA, it means in total 3 self-attention layers and 3 cross-attention
layers). We train all methods for 10 epochs. For WL-DM, α1 is fixed to be 1× 10−2 and α2 is fixed
to be 1 × 10−1 during the training process. For the Meta World environment (Yu et al., 2020), we
use decoders with 6 layers, and 6 heads and set the hidden dimension to be 120 (for VIMA, it means
in total 6 self-attention layers and 6 cross-attention layers). We train all methods for 30 epochs. For
WL-DM, α1 is set to be 0 in the beginning and fixed to be 1× 10−3 after 10 epochs, and α2 is fixed
to be 10 during the training process.

B PROOF OF THEOREM 1

Theorem 1. If we have MI(hv; vother |s, vcur) = 0, then DKL

(
π(a|s, v)||π(a|s, vcur)

)
= 0 for all

state-video pairs (s, v) ∈ S ×V with non-zero probability P (s, v) > 0.

Proof. By expanding the mutual information MI(vother;hv, a|s, vcur), we can have the following
equality:

MI(vother;hv, a|s, vcur)

=EP (s,vcur)EP (vother,hv,a|s,vcur)

[
log

P (vother, hv, a|s, vcur)
P (vother |s, vcur)P (hv, a|s, vcur)

]
=EP (s,vcur)EP (vother,hv,a|s,vcur)

[
logP (hv, a|s, vcur, vother)− logP (hv, a|s, vcur)

]
=EP (s,vcur)EP (vother,hv,a|s,vcur)

[ logP (hv|s, vcur, vother) + P (a|hv, s, vcur, vother)
− logP (hv|s, vcur)− logP (a|hv, s, vcur)

]
=EP (s,vcur,vother)

[
DKL(P (hv|s, vcur, vother)||P (hv|s, vcur))

]
+ EP (hv,s,vcur,vother)

[
DKL(P (a|hv, s, vcur, vother)||P (a|hv, s, vcur))

]
=MI(hv; vother |s, vcur) +MI(a; vother |s, vcur, hv).

Similarly, we can also have:

MI(vother;hv, a|s, vcur) = MI(a; vother |s, vcur) +MI(hv; vother |s, vcur, a).

Combining these two equality, we can have:

MI(hv; vother |s, vcur) +MI(a; vother |s, vcur, hv)
=MI(a; vother |s, vcur) +MI(hv; vother |s, vcur, a).

As a and vother become independent with each other when hv is given, we have
MI(a; vother |s, vcur, hv) = 0. As we also have MI(hv; vother |s, vcur, a) ≥ 0, we can have the

14
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following inequality, which basically gives us the conditional version of data processing inequal-
ity (Cover, 1999):

MI(hv; vother |s, vcur) ≥ MI(a; vother |s, vcur).

Since MI(a; vother |s, vcur) ≥ 0, if we can also have MI(hv; vother |s, vcur) = 0, then we can
conclude that:

MI(a; vother |s, vcur) = 0.

By expanding this mutual information term, we have:
MI(a; vother |s, vcur)

=EP (s,vcur,vother)

[
DKL(π(a|s, vcur, vother)||π(a|s, vcur))

]
=EP (s,v)

[
DKL(π(a|s, v)||π(a|s, vcur))

]
=0.

Since the KL divergence is non-negative, for the above expectation to be zero, there must be for all
state-video pairs (s, v) ∈ S ×V with non-zero probability P (s, v) > 0, we have the KL divergence
to be zero, DKL(π(a|s, v)||π(a|s, vcur)) = 0, and conclude our proof.

C VISUALIZATION
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Figure 3: Visualization of hv over timesteps.

In this section, we present the visualization result of our method. We visualize how hv of WL-DL
changes over timesteps. As shown in Figure 3, we can observe that hv of WL-DM tends to converge
at adjacent timesteps. It is worth noting that since we use a GPT-like transformer architecture as the
encoder, the information of video tokens and obs tokens are mixed together in hv . Furthermore, we
do not introduce any task-level information (such as task-level video segmentation annotations), so
the clustering results of hv do not fully correspond to the task.
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