
Published as a conference paper at ICLR 2025

EFFICIENT EXPLORATION AND DISCRIMINATIVE
WORLD MODEL LEARNING WITH AN OBJECT-
CENTRIC ABSTRACTION

Anthony GX-Chen
Center for Data Science
New York University
anthony.gx.chen@nyu.edu

Kenneth Marino
Google DeepMind
The University of Utah

Rob Fergus
Dept. of Computer Science
New York University

ABSTRACT

In the face of difficult exploration problems in reinforcement learning, we study
whether giving an agent an object-centric mapping (describing a set of items and
their attributes) allow for more efficient learning. We found this problem is best
solved hierarchically by modelling items at a higher level of state abstraction to
pixels, and attribute change at a higher level of temporal abstraction to primitive
actions. This abstraction simplifies the transition dynamic by making specific
future states easier to predict. We make use of this to propose a fully model-based
algorithm that learns a discriminative world model, plans to explore efficiently
with only a count-based intrinsic reward, and can subsequently plan to reach any
discovered (abstract) states.
We demonstrate the model’s ability to (i) efficiently solve single tasks, (ii) transfer
zero-shot and few-shot across item types and environments, and (iii) plan across
long horizons. Across a suite of 2D crafting and MiniHack environments, we
empirically show our model significantly out-performs state-of-the-art low-level
methods (without abstraction), as well as performant model-free and model-based
methods using the same abstraction. Finally, we show how to learn low level
object-perturbing policies via reinforcement learning, and the object mapping it-
self by supervised learning.

1 INTRODUCTION

Since the inception of reinforcement learning (RL), the problems of exploration and world model
learning have been active, open questions. RL requires an agent to learn both basic motor abilities,
and explore long sequences of interactions in the environment. Currently, we have made tremendous
progress on problems of low-level control for short-horizon problems. With well defined single
tasks, given enough samples (or demonstrations), there are well-developed ways of training low
level policies reliably (Schulman et al., 2017; Hafner et al., 2023).

Perhaps a better way to explore complex environments is to treat the high-level exploration problem
separately. We increasingly have the ability to get semantically rich abstractions: via representation
learning (Locatello et al., 2020), object segmentation (Kirillov et al., 2023), and visual-language
models (Alayrac et al., 2022); even in difficult control settings such as robotics (Liu et al., 2024).
In addition, with the recent explosion in the field of natural language processing, people are in-
creasingly interested in addressing RL environments on a semantic level (Andreas et al., 2017; Jiang
et al., 2019; Chen et al., 2021). Thus, we ask a timely question: if the agent has a good ability
to perceive objects, what more can we do other than tabula rasa learning at the level of pixels and
primitive motor actions?

In this work, we focus on exploration and world modelling at a semantic level. We explore a simple
yet flexible abstraction: in addition to the agent’s raw observations (e.g. pixels), it sees an abstract
representation of a set of items and their attributes (i.e. object states). We find that to navigate
these two levels effectively, it is best to construct a proxy decision process (Ab-MDP) with state
and temporal abstractions at the level of objects, with a handful of competent object-perturbing
low level policies. By construction, dynamics on this semantic level becomes structured, and we

1



Published as a conference paper at ICLR 2025

make use of this to design a discriminative model-based RL method that learns to predicts if a
specific object perturbation will be successful. Our method, Model-based Exploration of abstracted
Attribute Dynamics (MEAD), is fit with a simple objective to model semantic level transitions,
resulting in stable model improvements with no need for auxiliary objectives. It is fully online: the
agent plans to explore without an extrinsic reward to learn about the world it inhabits using a count-
based objective. The same model can be used at any point to plan to solve downstream tasks when
given a goal function, without the need to train policy or value functions.

The main results of this work investigates decision making at the semantic level as defined by the
Ab-MDP, assuming access to an object centric map and object perturbing policies. We empirically
evaluate our method in a set of 2D crafting games, and MiniHack environments that are known to
be very difficult to explore (Henaff et al., 2022). We then show how to learn components of the Ab-
MDP when it is not given: by reinforcement learning object perturbation policies given an object
mapping, and supervised learning of the object centric mapping itself. We leave the unsupervised
discovery of the object centric mapping as complementary and future work.

The main contributions of this work are:

• We define the Ab-MDP: a simple human-understandable hierarchical MDP. The structure
of this abstraction allows for pre-trained or from-scratch visual encoders to be used. It also
allows our method (MEAD) to use a discriminative objective for world-model learning.

• We introduce our model-learning method (MEAD). MEAD uses a stable discriminative ob-
jective to model item attribute changes, which is more efficient at learning than generative-
based baselines and also allows for efficient inference-time planning.

• We empirically show MEAD extracts an interpretable world model, accurately plans over
long horizons, reaches competitive final performance on all levels with greater sample effi-
ciency to strong baselines, and transfers well to new environments.

• We demonstrate how to learn parts of the Ab-MDP when it is not given: by reinforcement
learning object-perturbing policies, and supervised learning the object-centric mapping.

2 PROBLEM SETTING

We begin by considering a (reward free) “base” Markov Decision Process (MDP) as the tu-
ple ⟨S,A, P ⟩, with state space S, primitive action space A, and transition probability function
P : S ×A× S → [0, 1] (Puterman, 1994). Below we construct the “abstracted” space.

2.1 ABSTRACT STATES AND BEHAVIOURS

We give the agent a deterministic object-centric mapping M: S → X from low level observations
to an abstract state X ∈ X . The abstract state is a discrete set of items, each having form (item
identity, item attribute). Denote the i-th item in this (ordered) set as x(i), each x(i) = (α(i), ξ(i))
consists of an item’s identity α(i) (e.g. “potion”), and attribute ξ(i) (e.g. “in inventory”). In practice,
each X is represented as a N × (diden + dattr) matrix containing N items (including empty items)
each having a diden dimensional identity embedding and dattr dimensional attribute embedding.

Denote a space B of object perturbation policies which we call behaviours. Each behaviour has an
associated πb : S → A. A behaviour b = (α(i), ξ′) describes a single item id α(i) and a desired
new attribute. For N objects and m attributes, there are N × m single item behaviours.1 Not all
behaviours changes α(i) to have ξ′ (due to the change being impossible from current X , or having
a bad πb). A behaviour is competent if executing behaviour policy πb from state S, M(S) = X ,
result in arriving at state S′, M(S′) = X ′, (α(i), ξ′) ∈ X ′, within k steps with high probability. See
Appendix B.1 for more details. Executing competent behaviours lead to predictable changes.

For the main experiments we assume access to (learned or given) abstract states and behaviours and
build on top. We address learning both in Section 4.3.

2.2 ABSTRACTED ITEM-ATTRIBUTE MDP
We now define an Abstracted Item-Attribute MDP using the abstract state X and behaviour B spaces,
which we refer to in brief as Ab-MDP. The abstract mapping M provides an state abstraction. We

1Here we define single item behaviours. Behaviours can also be multi items, see Appendix B.1.5.

2



Published as a conference paper at ICLR 2025

further define the Ab-MDP to have a coarser temporal resolution than the low level MDP: an abstract
transition only occurs when an abstract state changes, or if the state stays the same but k low level
steps elapses (see Definition B.1 for more details).

Specifically, the Ab-MDP is the tuple ⟨X ,B,T⟩, with abstract states X , abstract behaviours B, and
transition probability function T : X × B × X → [0, 1]. T(X ′|X, b) describes the probability of
being in next abstract state X ′, when starting from X , executing behaviour b, and waiting until an
abstract transition occurs. Figure 1 provides an example of an abstract transition and associated low
level steps. The Ab-MDP can be interpreted via the Options Framework (Sutton et al., 1999; Precup,
2000), which we discuss in Appendix B.1.1.

There is an intuitive relationship between the competence of a behaviour and the transition prob-
ability function T. For instance, executing an incompetent behaviour b from abstract state X will
likely lead to the next abstract state being itself, Xt+1 = Xt, or some hard-to-predict distribution
over next states. Executing a competent behaviour b lead to a predictable next state that contains the
proposed attribute change with high probability.

In any case, we can treat the Ab-MDP as a regular MDP use standard RL algorithms to solve it. This
can be viewed as solving a proxy problem of the low level base MDP. For the remainder of this
paper, all methods are trained exclusively within the Ab-MDP unless stated otherwise.

"Welcome to 
NetHack"

player

potion

stairs

Item Ids 

Map

"You see here
a potion"

ABSTRACTED MDP

LOW LEVEL MDP

id attr id attr

in world

Item Attributes 

standing on

in inventory

Map Map Map

primitive
action

abstract 
behavi-
our

policy 

Symbols

Figure 1: An example state transition in an Ab-MDP (here defined in MiniHack). Abstract states
are sets of (item identity, item attribute), and behaviour b1 have structure (item, new attribute). An
abstract state can correspond to multiple low level states, and an abstract behaviour multiple primi-
tive actions. We provide legends for the item identities and attributes illustrated (left rectangles).

3 METHODS

While any standard RL methods can be used to solve the Ab-MDP, we develop a method to make
better use of the item-attribute structure and item-perturbing behaviours. Specifically, we design a
model-based method that efficiently explores and learn an accurate full world model. Our method,
Model-based Exploration of abstracted Attribute Dynamics (MEAD) can be broken down into three
components: (i) A forward model fθ(X, b), (ii) A reward function r(X, b), (iii) A planner which
maximizes the reward function.

Our forward model takes in the current abstract state X and behaviour b, and predicts the probability
of success of the change proposed by the abstract behaviour. We describe the procedure for training
the forward model in Section 3.1.

We use a different reward function and planner at training versus inference time. During training,
the agent learns an accurate (abstract) world model without rewards. We use an intrinsic reward
function rintr(X, b) that encourages infrequently visited states, and plan using Monte-Carlo Tree
Search (MCTS) toward these states. Section 3.2 describes the exploration phase in detail.

At inference time, our aim is to reach a particular abstract state. We define our reward function rgoal
as 1 for the goal abstract states and 0 for all others. Because our forward model has been trained
to accurately estimate state transitions, we simply run Dijkstra’s algorithm using fθ and rgoal to
maximize expected reward. Section 3.3 describes this.

3



Published as a conference paper at ICLR 2025

3.1 FORWARD MODEL

A forward model takes in a current abstract state and behaviour to model the distribution over next
states, Xt+1 ∼ p(Xt+1|Xt, bt). Typically, this distribution has support over the full state space
X . We observe that by construction, Ab-MDP considers competent policies as ones that change
single item-attributes. Thus, we assume after an abstract transition, either (i) a single item’s attribute
changes according to bt, or (ii) the abstract state is unchanged. It is of course possible for multiple
items’ attributes to change at once, or for an unexpected item’s attribute to change—we show with a
competent set of policies and re-planning our model is robust to this in practice in Appendix B.2.2.

id attr

...

...

...

1

.5

0

ne
xt

 s
ta

te
pr

ob
ab

ili
ty

Figure 2: The forward model fθ predicts the prob-
ability p that the behaviour bt is successful from
state Xt. The next state distribution is modelled
as a binary distribution (Equation 3).

Discriminative modelling Given an abstract
transition (Xt, bt, Xt+1), we consider this tran-
sition successful if the next abstract state con-
tains the attribute change proposed by the be-
haviour: (α(i), ξ′) ∈ Xt+1 for bt = (α(i), ξ′).
Executing a competent policy has a high prob-
ability of leading to a successful transition.

We model this success probability directly,
q(Xt,bt) = Pr(x′ ∈ Xt+1|Xt, bt) , (1)

where x′ = bt = (α(i), ξ′) .

We refer to this way of modelling as discrimi-
native world modelling, which models the probability that the state change specified by a behaviour
is successful. As behaviours are by construction item perturbations, we can view this as asking a
question about allowable item changes (“can I change this item to have this attribute?”). This is
different from generative world modelling which models Pr(Xt+1|Xt, bt) without any restrictions
on possible future states (i.e. “what are all possible outcomes of my action in this state”). We find
this inductive bias leads to more data efficient learning and multi-step planning (Section 4.4.1).

Forward Prediction We can model the next state after a successful transition as,2

X ′ = ∆(X, b) = X \ x(i) ∪ (α(i), ξ′) , for any b = (α(i), ξ′) . (2)
Then, given success probability function q (Equation 1), we model the next state distribution as:

Pr(Xt+1|Xt, bt) =

{
∆(Xt, bt) with probability q(Xt, bt) ,

Xt with probability 1− q(Xt, bt) .
(3)

See Figure 2 for an example. As mentioned above, our model is robust to cases where multiple items
change through re-planning (Appendix B.2.2).

Model Learning We use model function class fθ : X × B → [0, 1] with trainable parameters θ,
and fit it to approximate success probability (Equation 1). We can estimate the empirical success
probability from a dataset of trajectories simply by counting, and fit a binary cross entropy loss. We
found this to be a stable, simple-to-optimize objective. More details in Appendix C.1.

3.2 PLANNING FOR EXPLORATION

We want the agent to explore indefinitely to discover how the world works and represent it in its
model fθ. We use a count-based intrinsic reward introduced in Zhang et al. (2018) which encourages
the agent to uniformly cover all state-behaviours (details in Appendix C.3):

rintr(X, b) =
√
T/ (N(X, b) + ϵT ) , (4)

where N(X, b) is a count of the number of times (X, b) is visited, T is the total number of (abstract)
time-steps, and ϵ = 0.001 a smoothing constant.

We use Monte-Carlo Tree Search (MCTS) to find behaviours to reach states that maximizes Equa-
tion 4. This is done within the partially learned model’s imagination and allow the agent to plan
toward novel states multiple steps in the future. The agent takes the first behaviour proposed. Fur-
ther, since behaviours do not always succeed, one needs multiple state-visitations to estimate q(X, b)
well. We found MCTS exploration discovers more novel transition than exploring randomly (Sec-
tion 4.4.2).

2We use set notations to denote removal of the item x(i) = (α(i), ξ(i)) from the set X , and replacing it with
new item (α(i), ξ′).

4



Published as a conference paper at ICLR 2025

Model 
Prediction

successful 
transition

un-successful 
transition

(a) Task agnostic training using MCTS and a count
based reward to explore and learn the world model

0.002

0.99

0.997

0.001

0.992

0.982

0.988

0.01

(b) Dijkstra planning at eval time to maximize
success probability of reaching any goal state

Figure 3: Planning within model’s imagination to both explore, and to reach any goal state.

3.3 PLANNING FOR GOAL

Once the agent has sufficiently explored the environment and is well-fitted, the model fθ usually con-
tains a small set of high success probability edges between abstract states (see Figure 3b; most item-
attribute changes are generally impossible). We can use this model fθ to plan to reach any desired
(abstract) world state. As our model is not trained to maximize external rewards, we simply give it a
function that tells it when it is in a desired state: rgoal(X) = 1 if X is a goal state, and 0 otherwise.

We use Dijkstra’s algorithm which finds the shortest path in a weighted graph. We turn our world
model into a graph weighted by success probabilities, using a negative log transform:

d(X,∆(X, b)) = − log fθ(X, b) , with ∆(X, b) defined in Equation 2. (5)

Thus, finding the shortest path between current and goal state returns an abstract behaviour se-
quences that maximizes the probability of successfully reaching the goal.

4 RESULTS

We use two sets of of environment. One is 2D crafting, which requires agent to craft objects follow-
ing a Minecraft-like crafting tree with each crafting stage requiring multiple low level actions (Chen
et al., 2020). Second is MiniHack (Samvelyan et al., 2021), which contains a series of extremely
difficult exploration games (Henaff et al., 2022). We detail the environments further in Appendix D.

For baselines, we use strong model-free (asynch PPO, (Schulman et al., 2017; Petrenko et al., 2020))
and model-based (Dreamer-v3 (Hafner et al., 2023; Sekar et al., 2020) and MuZero (Schrittwieser
et al., 2020; Werner Duvaud, 2019)) baselines. Dreamer-v3 learns a generative world model and
plans using model-free method in imagination, while MuZero learns a generative world model and
plans using MCTS. We outline different baseline methods in greater details and do additional com-
parisons in Appendix E. All the methods are trained in the Ab-MDP. We report low level steps and
plot the 95% confidence interval. See Appendix G for other experimental details.

4.1 LEARNING FROM SCRATCH IN SINGLE ENVIRONMENTS

Figure 4 shows the from-scratch Ab-MDP training results for strong baselines and our method. We
see that Dreamer-v3, a state-of-the-art model-based method, is highly sample efficient. MuZero,
another model-based method utilizing online planning, is less efficient. PPO, a model-free method,
stably optimizes the reward, but at a data budget of an additional ∼ two orders of magnitude (hun-
dreds of thousands versus 10 million). Our method learns the Ab-MDP with an additional order of
magnitude sample efficiency improvement compared to the already efficient Dreamer. We also refer
the reader to Figure 3b (which is a clean illustration of the same data presented in Appendix F.6) for
an example of the interpretable world model we can extract from MEAD.

For reference, we plot the performance for SOTA algorithms in the low level MDP (without Ab-
MDP) as triangles and stars. In particular in MiniHack tasks (Fig.4b), model-free methods with
random and global exploration bonuses (IMPALA, RND, ICM) perform poorly even after 50 million
steps, and methods using episodic exploration bonus perform better (E3B). Nonetheless, all of them
are less efficient than the least efficient method trained on the Ab-MDP.

These results show that Ab-MDP helps simplify the problem, with all methods reaching reasonable
performances—a feat not achievable by most methods trained in the low level MiniHack MDP

5



Published as a conference paper at ICLR 2025

103 105 107

0.00

0.25

0.50

0.75

1.00

M
ea

n 
Ep

iso
de

 R
et

ur
n 2 Steps

103 105 107

0.00

0.25

0.50

0.75

1.00
3 Steps

103 105 107

Env Frames (Log Scale)

0.00

0.25

0.50

0.75

1.00

M
ea

n 
Ep

iso
de

 R
et

ur
n

1e820k 500k

4 Steps
Model-Based 
(ours)
Model-Based
(Dreamer-v3)
Model-Free (PPO)
Model Free, 
Low level (PPO)

(a) 2D crafting games

104 105 106 107

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n Levitate-Boots

104 105 106 107

0.5

0.0

0.5

1.0
Levitate-Potion

104 105 106 107

0.5

0.0

0.5

1.0
Freeze-Horn

104 105 106 107

Env Frames (Log Scale)

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

50150k 10mil

Freeze-Wand

104 105 106 107

Env Frames (Log Scale)

0.5

0.0

0.5

1.0
Freeze-Random

Model-Based (ours)
Model-Based
(Dreamer-v3)
Model-Based
(MuZero)
Model-Free (PPO)
E3B (low level)
IMPALA (low level)
RND (low level)
ICM (low level)

(b) MiniHack skill games

Figure 4: Results in games trained from scratch in Ab-MDP. Triangles and stars denote low-level
only methods. For MiniHack, we also show the final performance of state-of-the-art exploration
methods in the low level MDP (star/triangle), from Henaff et al. (2022). X-axis on log scale.

(Henaff et al., 2022). However, we also see that the problem is still non-trivial, with the model-free
baseline still requiring millions of frames to achieve success. Our method reaches the same peak
performance as the model-free method while using fewer samples than the model-based baseline.

4.2 TRANSFER AND COMPOSITIONS

0 20000 40000
Env Frames

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

(a) Sandbox

0 20000 40000
Env Frames

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0 Model based (ours,
no pretraining)
Model based (ours,
count-based pretrain)
Dreamer-v3 
(no pretrain)
Dreamer-v3 
(count-based pretrain)
Dreamer-v3 
(disagreement pretrain)
Dreamer-v3 
(reward-based pretrain)

(b) Freeze-Random transfer

0 50000 100000 150000 200000
Env Frames

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

PPO at 20mil

Model based (ours, no pretrain)
Model based (ours, 200k 
pretraining in Freeze-Random)

Dreamer-v3 (no pretraining)
Dreamer-v3 (200k 
pretraining in Freeze-Random)

(c) Compositional environment.

Figure 5: Transfer experiments and a difficult compositional environment. Dotted lines in 5a and 5b
are the same curves from Figure 4b, with just the means shown for clarity.

Next, since the Ab-MDP abstraction models object identities and shared attributes, we evaluate if
the abstract level models can transfer object knowledge to new settings. Here we exclusively use the
MiniHack environments due to their rich repertoire of object types and higher difficulty. Note we
run each transfer experiments in multiple environments; as the result is similar, we report a single
illustrative environment in Figure 5 for brevity and provide full results in the Appendix Figure 16.

Sandbox transfer We first place the agent in a “sandbox” environment where all objects are
spawned with some probability (Appendix D.2.1). The agent is allowed to interact with the en-
vironment with only an exploration reward (no task-specific reward) for 200k frames. We then
fine-tune the agent in each of the environments. For our model, we continue to train fθ within the
new environment. For Dreamer-v3, we transfer only the world model (encoder, decoder and dynam-
ics function) and re-initialize the policy and reward functions.3 Results for all five environments
follow similar trends; we show a representative example in Figure 5a, with full results in Figure 16a.

Surprisingly, Dreamer-v3 trained with both count- and disagreement-based intrinsic rewards fails to
get any meaningful rewards in the allocated fine-tuning budget (Figure 5a, red & orange curves),
although training for longer seems to show a some reward—indicating negative transfer (see Ap-
pendix F.1.2). Similarly, the model-free PPO policy shows negative transfer—reaching lower per-
formance with the same data budget as compared to training from scratch (results in Appendix F.1.1
since x-axis in different order of magnitude). A possible explanation is while the agent observes all
object types, the data distribution is dominated by seeing more objects on average in the training

3The point of this experiment is to evaluate world knowledge transfer. Nevertheless, fine-tuning the ex-
ploratory reward function and policy also achieves no better performance.

6



Published as a conference paper at ICLR 2025

environment than in the evaluation environments, thus presenting a distribution shift. In contrast,
our model exhibits good zero-shot performance, and reaches optimal performance efficiently.

To help the Dreamer-v3 baseline further, we give it a reward function to “use” the items seen in the
pre-training sandbox environment. This is a kind of privileged information which biases the model
representation to better model the evaluation-time task. We observe that this variant of Dreamer-
v3 exhibits positive transfer, hinting at Dreamer’s representation reliance on the reward function.
Nevertheless, it does not exhibit the same degree of zero-shot or fine-tuning capability as our model.

Transfer across object classes We further evaluate the ability of the models to transfer to new
object types. For example, would a model learn to use a potion better, after it has learned to use a
freeze wand, since the abstract level interactions of these objects are similar (the agent can stand on
top of these objects, pick it up, and use them)? We take 200k frame checkpoints in the Freeze
Random environment and train them in the other 4 environments for an additional 50k frames.

We again show one representative comparison in Figure 5b and present the full 4-environments
result in Figure 16b. We see our model exhibits reasonable zero-shot performance and improves
further through fine-tuning. Similar to the sandbox environment, we observe that exploration-based
training of both PPO (results plotted in Appendix F.1.1 due to x-axis being in different order of
magnitude) and Dreamer-v3 exhibits negative transfer in our setting, with both methods eventually
achieving better rewards but slower than training from scratch.4 We again pre-train Dreamer-v3 with
privileged reward information that matches the downstream task, but still requires generalization to
novel objects. We see that in general this way of training dreamer resulted in positive transfer – it
learns to reach a higher reward with fewer samples compared to training from scratch.

It is somewhat surprising that our model transfer so well zero-shot to completely new objects in
Levitate-Boots and Levitate-Potion. We analyze this further in Appendix F.5: for (item id, item
attribute) vectors with unseen ids, we find the model internally cluster them by object attributes,
which generalizes from Freeze objects to Levitate objects.

Compositional planning environment Finally, we designed an environment similar to the 5 dif-
ficult Minihack exploration levels, but with the required planning depth twice as long.5 This is an
even more challenging task where the agent needs to pick up both a freeze and a levitate object,
make itself levitate (using the levitate object), then cast a freezing spell to terminate the episode.
Further, the levitate spell must be cast after all the objects have been picked up (since the agent
cannot pickup objects while levitating), but before the freeze spell is cast. This is a challenging
environment requiring precise sequences of abstract behaviours.

We observe in Figure 5c that when pre-trained on Freeze objects, our model trains more stably in
this environment (but no longer shows good zero-shot results), succeeding majority of times. Our
from scratch model solves this task with better rewards. Our method also learns a highly complex
yet still interpretable world graph, with a simplified version shown in Figure 34. In contrast, all
other methods, with and without pre-training, do not find the correct solution at all, but instead are
stuck at a 0 reward local minima.

4.3 LEARNING OBJECT PERTURBING POLICIES AND OBJECT-CENTRIC MAP

0 1 2
Low Lvl Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

Su
cc

es
s P

ro
b

Behaviour Success

(a) Learning B

0 20000 40000 60000
Low Level Frames

1.0

0.5

0.0

0.5

Episode Reward

Crafted 
 Policies
Learned 
 Policies

(b) Perf. with learned B

Model
0.0

0.2

0.4

0.6

0.8

1.0
Encoder Accuracy

0 20000 40000 60000
Low Level Frames

0.50

0.25

0.00

0.25

0.50

0.75

Episode Reward

Learned Neural 
 Encoder
Ground Truth 
 Encoder

(c) Performance with learned object mapping

Figure 6: Performance using learned Ab-MDP components. All error bars denote 95 confidence
interval of mean with exception of encoder accuracy which shows 1 standard deviation.

4PPO and extended Dreamer-v3 curves in Appendix F.1.
5Previous environments need a minimum of three abstract transitions to complete; this one at least six.

7



Published as a conference paper at ICLR 2025

Up to this point we have assumed the existence of an object-centric mapping and competent be-
haviours (Sec. 2.1), which can be combined with our method for efficient exploration and world
model learning. We now demonstrate how one might learn both components.

4.3.1 LEARNING LOW LEVEL POLICIES

We observe low level policies can be learned with RL if an object-centric map exists. Specifi-
cally, we reward the agent for achieving an abstract transition successfully: from Xt, if executing
behaviour b = (α(i), ξ′) until an abstract transition results in Xt+1 containing item (α(i), ξ′), the as-
sociated policy πb gets a reward of +1 (else -1). We train low level policies to replace all behaviours
in the MiniHack single task environments, and observe the success probability can be stably opti-
mized with PPO (Fig.6a; note it does not reach 1 as it is averaged over all attempted behaviours,
some are for impossible transitions). Solving Ab-MDP with learned behaviours perform similarly
(Fig.6b). The reported 2D Crafting results (Section 4.1) already use learned behaviours. Details in
Appendix F.2.

4.3.2 LEARNING OBJECT-CENTRIC MAP

If we wish to also learn the object-centric mapping, we can do so using supervised learning. We
generate a dataset of 100k transitions using a random policy in MiniHack’s Freeze-Horn envi-
ronment, and use the hand-crafted mapping to provide ground truth abstract state labels. We train
a neural net to produce the abstract state X from S. We compare planning performance using
the learned object-centric mapping in Figure 6c and observe it reaches similar performance as the
ground truth mapping, even though the encoder is not perfect in predicting the abstract states. We
discuss alternative way of getting this mapping in Section 6.

4.4 ABLATIONS

100 1000 5000 10000
Dataset Size (Transitions)

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Ep

iso
de

 R
ew

ar
d

Discrimin-
 ative
Generative

Figure 7: Planning performance with
discriminative vs. generative models

We ablate major design choices below, with additional ab-
lations in Appendix F.3.

4.4.1 GENERATIVE VS. DISCRIMINATIVE MODELS

A common way of learning a forward model is to model
the next state generative-ly, i.e. X̂t+1 ∼ f(Xt, bt), with
support over the entire state space X . In MEAD, we opted
to constrain the possible future to either be the same as the
current time-step, or one where there is a single item change
(Fig. 2). This has the disadvantage of being less flexible, but
the advantage of being easier to model. To isolate only the
effect of discriminative modelling, we design an experiment
where we fit models to the same expert dataset, with the
only difference being the model type (fit to either predict success probability in the discriminative
case, or to predict the distribution over next item-attribute sets), while keeping all other variables
constant. Indeed, given the same (expert) data budget, a discriminative model learns a better model
for Ab-MDP planning in the lower data regime (Figure 7, experimental details in Appendix F.3.1).

4.4.2 COUNT-BASED EXPLORATION

0 30000 60000 90000 120000
Env Frames

0

20

40

60

80

100

Number of Discovered
Object-Attribute Transitions

MCTS (depth=1)
MCTS (depth=4)
Random Exploration

Figure 8: Effect of count-based ex-
ploration in the Freeze-Wand en-
vironment. MCTS discovers more
unique valid (item identity, item at-
tribute, new attribute) transitions.

We observe using the count-based intrinsic reward (Equa-
tion 4) with MCTS was important for exploration. Figure 8
shows count-based exploration discovering many more valid
object attribute transitions compared to a randomly exploring
agent. Correspondingly, this leads to a model fθ that is better
at achieving goals.

4.4.3 PARAMETRIC VS. NON-PARAMETRIC MODELS

Instead of fitting a discriminative model to success probability,
we can directly use the empirical count-based estimate from a
dataset (a non parametric model). This is done to learn the
model in Zhang et al. (2018). We compare this choice in Ap-
pendix F.1.3 and show our parametric model has better sam-
ple efficiency, demonstrating the generalization benefits of our
parametric forward model.

8



Published as a conference paper at ICLR 2025

5 RELATED WORK

Hierarchical RL Our Ab-MDP is a hierarchical state and temporal abstraction formalism and can
be interpreted under the Options Framework (Appendix B.1). Within the Options Framework (Sut-
ton et al., 1999; Precup, 2000), Option discovery remains an open and important question. Existing
methods typically do option discovery in a “bottom-up” fashion by learning structures from their
training environments (Bacon et al., 2016; Machado et al., 2017; Ramesh et al., 2019; Machado
et al., 2021). In contrast, our Ab-MDP uses “top-down” prior knowledge in the form of object-
perception, and define options that perturb objects’ attributes.

Planning with abstract representations Abstraction is a fundamental concept (Abel, 2022) and
we select a subset of most relevant works. The Ab-MDP can be viewed as a more structured
MDP formulation in which learning and planning is simplified. This relates to the Factored MDP
(Boutilier et al., 1995; 1999; Guestrin et al., 2003; Degris & Sigaud, 2013), which models the con-
ditional independence structure between factors in a factorized state space as Bayesian Networks.
It also relates to OO-MDP (Diuk et al., 2008; Keramati et al., 2018), which describes state as a set
of object and object states which interact through relations. We discuss their mathematical relation-
ships in Appendix B.1.3. Also related is MaxQ and AMDP (Dietterich, 1998; Gopalan et al., 2017),
which provides a decomposition of a base MDP into multi-level sub-MDP hierarchies to plan more
efficiently. Transition dynamics can also be defined as symbolic domain specific language (Mao
et al., 2023). Above works require pre-specifying additional interaction rules, functions, and object
relations to simplify planning, whereas we only assume the ability to see objects and their attributes,
and learn the forward model as a neural network. The CEE-US model of Sancaktar et al. (2022) use
ensembles of graph neural networks to exploit an object-centric state representation which factorizes
into entity and agent information, and show strong model learning and zero-shot generalization ca-
pabilities in a robot manipulation domain. DAC-MDP (Shrestha et al., 2020) clusters low level states
into “core states” to solve by value iteration, with a focus on getting good policies in an offline RL
setting rather than abstract world model learning. More distantly related is Veerapaneni et al. (2019)
which focus more on learning good object-centric representations rather than effective usage of an
abstract level. Nasiriany et al. (2019) tackles sub-policy learning and planning with abstraction,
focusing on implicitly representing abstractions rather than using semantically meaningful ones.

Zhou et al. (2022); Haramati et al. (2024); Chang et al. (2023) are works that leverage object-centric
representations with a set of discrete, factorized descriptions—a beneficial inductive bias Ab-MDP
shares (i.e. item identities and attributes). In particular, Chang et al. (2023) uses slot attention to
learn factorized “entity types” and “entity states”, albeit relying on more restrictive assumptions
about entity dynamics. Haramati et al. (2024) extracts an object-centric representation using Deep
Latent Particles, which extracts latent “particles” describing pixel-based objects in terms of their
pixel location, size, etc. Both works offer potential ways of learning the object-centric map M. We
discuss their relationship with Ab-MDP further in Appendix B.1.3 and compare against the model-
learning method from Chang et al. (2023) in Appendix F.1.3.

Most similar is Zhang et al. (2018), which does model-based planning over abstract attributes. We
differ in having a more expressive abstraction framework: modelling a flexible set of objects and
shareable attributes, rather than a fixed, binary set of attributes only. We also use a parametric model
to more efficiently learn and is able to transfer object information to new environments. We compare
against their non-parametric approach and show better sample efficiency in Section 4.4.3.

RL in semantic spaces As language models have grown in interest and sophistication, there has
been an increasing interest in semantic and linguistic abstractions in RL. Early works such as An-
dreas et al. (2017) looked at handcrafted abstract spaces such as we do here to show that creating
abstractions allows for better learning and exploration. Other works such as Jiang et al. (2019); Chen
et al. (2021) specifically use natural language as the abstract space. In others, the language space
abstraction is used as a way of guiding exploration (Tam et al., 2022; Guo et al., 2023).

Model-based RL Our work is related to other work in Model-based Reinforcement Learning (Sut-
ton, 1990; Kaiser et al., 2019; Doya et al., 2002). In particular we compare to the Dreamer line of
work (Hafner et al., 2019; 2023; Sekar et al., 2020; Mendonca et al., 2021; Hafner et al., 2022).
These methods were developed for a pixels setting and employ a two step learning strategy: learn-
ing a generative forward model to predicts the next states X ′, then learning a policy in imagination.
We compare directly to this in our experiments, where we show that our method (which employs a
discriminative forward model) learns more quickly and transfers better in our setting.

9



Published as a conference paper at ICLR 2025

Exploration in RL Exploration is a well-studied problem in RL. For a more extensive literature
review, Amin et al. (2021) gives a comprehensive picture. Most relevant to here are count-based
methods such as Raileanu & Rocktäschel (2020); Zhang et al. (2021). Our work takes inspiration
from the hard exploration problems from Henaff et al. (2022). There are also many disagreement-
based methods including Sekar et al. (2020) and Mendonca et al. (2021); we compare directly to the
former for our Dreamer benchmarks with pre-training.

6 DISCUSSION

In this work we introduce the Ab-MDP, which uses human understandable object-attribute relations
to build an abstract MDP. This enables us to learn a discriminitive model-based planning method
(MEAD) which explores and learns this semantic world model without extrinsic rewards.

Limitations The major limitation of the work is that the construction of Ab-MDP requires the ex-
istence of an object-centric mapping. While we show how these components can be learned in
Section 4.3, learning the object mapping still requires a labelled dataset, and a method to automat-
ically discover object-centric representations in the form of items and attributes remains an open
question. Promisingly, the field as a whole is moving in a direction where abstractions are becoming
more easily obtainable. For instance, object-centric abstract maps can be acquired using segmenta-
tion models (Kirillov et al., 2023) and visual language models (Alayrac et al., 2022). Similarly, the
short-horizon (low-level) manipulation policies can be acquired more efficiently through imitation
learning. For example, it has been found in robotics that simply using off-the-shelf models for per-
ception and skill policies is possible (Liu et al., 2024). Finally, we currently focus only on discrete
attributes, meaning the Ab-MDP cannot precisely capture continuously varying quantities (e.g. po-
sition and velocity). However, this is only a restriction in the abstract level, and does not impose any
fundamental restriction on the kind of learnable policies in the base MDP. In other words, Ab-MDP
models discrete, abstract relationships present in the base MDP, while low-level policies remain free
to utilize continuous features and output continuous actions in the base MDP to drive item-attribute
changes for the Ab-MDP.

Overall, as foundational models advance, the field is progressively moving toward working with dis-
crete, semantically meaningful representations. Concurrently, reinforcement learning provides rig-
orous and principled frameworks for designing intelligent agents, encompassing exploration, plan-
ning, and hierarchical behaviours. We hope this work demonstrates a productive synthesis of these
perspectives, and takes a step forward in the development of more intelligent autonomous systems.

ACKNOWLEDGMENTS

This work is supported by ONR MURI #N00014-22-1-2773, ONR #N00014-21-1-2758, and the
National Science Foundation under NSF Award 1922658. AGC is supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), PGSD3-559278-2021. Cette recherche a
été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG),
PGSD3-559278-2021. We are grateful for insightful discussions with Rajesh Ranganath. We thank
Doina Precup, Arun Ahuja, Ben Evans, Siddhant Haldar, Nikhil Bhattasali, Ulyana Piterbarg, Nikhil
Dongyan Lin, and Mandana Samiei for their helpful feedback on earlier drafts of this paper. Finally,
we thank the anonymous reviewers for making this work stronger in many ways.

REFERENCES

David Abel. A theory of abstraction in reinforcement learning. ArXiv, abs/2203.00397, 2022. URL
https://api.semanticscholar.org/CorpusID:229232139.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Se-
bastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a vi-
sual language model for few-shot learning. ArXiv, abs/2204.14198, 2022. URL https:
//api.semanticscholar.org/CorpusID:248476411.

10

https://api.semanticscholar.org/CorpusID:229232139
https://api.semanticscholar.org/CorpusID:248476411
https://api.semanticscholar.org/CorpusID:248476411


Published as a conference paper at ICLR 2025

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. ArXiv, abs/2109.00157, 2021. URL https:
//api.semanticscholar.org/CorpusID:237372527.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In ICML, pp. 166–175. JMLR. org, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. ArXiv,
abs/1609.05140, 2016. URL https://api.semanticscholar.org/CorpusID:
6627476.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13:41–77, 2003. URL https://api.
semanticscholar.org/CorpusID:386824.

Craig Boutilier, Richard Dearden, Moisés Goldszmidt, et al. Exploiting structure in policy construc-
tion. In IJCAI, volume 14, pp. 1104–1113, 1995.

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, 11:1–94, 1999.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Michael Chang, Alyssa L Dayan, Franziska Meier, Thomas L Griffiths, Sergey Levine, and Amy
Zhang. Neural constraint satisfaction: Hierarchical abstraction for combinatorial generalization
in object rearrangement. arXiv preprint arXiv:2303.11373, 2023.

Valerie Chen, Abhinav Kumar Gupta, and Kenneth Marino. Ask your humans: Using human in-
structions to improve generalization in reinforcement learning. ArXiv, abs/2011.00517, 2020.
URL https://api.semanticscholar.org/CorpusID:226226934.

Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask your humans: Using human instructions
to improve generalization in reinforcement learning. In ICLR, 2021.

Thomas Degris and Olivier Sigaud. Factored markov decision processes. Markov Decision Pro-
cesses in Artificial Intelligence, pp. 99–126, 2013.

Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In International
Conference on Machine Learning, 1998. URL https://api.semanticscholar.org/
CorpusID:10568560.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. In International Conference on Machine Learning, 2008. URL https:
//api.semanticscholar.org/CorpusID:207168200.

Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mitsuo Kawato. Multiple model-based
reinforcement learning. Neural Computation, 14:1347–1369, 2002. URL https://api.
semanticscholar.org/CorpusID:14458943.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Nakul Gopalan, Marie desJardins, Michael L. Littman, James MacGlashan, S. Squire, Stefanie
Tellex, John Winder, and Lawson L. S. Wong. Planning with abstract markov decision pro-
cesses. In International Conference on Automated Planning and Scheduling, 2017. URL
https://api.semanticscholar.org/CorpusID:250130.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algo-
rithms for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.

11

https://api.semanticscholar.org/CorpusID:237372527
https://api.semanticscholar.org/CorpusID:237372527
https://api.semanticscholar.org/CorpusID:6627476
https://api.semanticscholar.org/CorpusID:6627476
https://api.semanticscholar.org/CorpusID:386824
https://api.semanticscholar.org/CorpusID:386824
https://api.semanticscholar.org/CorpusID:226226934
https://api.semanticscholar.org/CorpusID:10568560
https://api.semanticscholar.org/CorpusID:10568560
https://api.semanticscholar.org/CorpusID:207168200
https://api.semanticscholar.org/CorpusID:207168200
https://api.semanticscholar.org/CorpusID:14458943
https://api.semanticscholar.org/CorpusID:14458943
https://api.semanticscholar.org/CorpusID:250130


Published as a conference paper at ICLR 2025

Zhourui Guo, Meng Yao, Yang Yu, and Qiyue Yin. Improve the efficiency of deep reinforcement
learning through semantic exploration guided by natural language. ArXiv, abs/2309.11753, 2023.
URL https://api.semanticscholar.org/CorpusID:262084426.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to con-
trol: Learning behaviors by latent imagination. ArXiv, abs/1912.01603, 2019. URL https:
//api.semanticscholar.org/CorpusID:208547755.

Danijar Hafner, Kuang-Huei Lee, Ian S. Fischer, and P. Abbeel. Deep hierarchical planning from
pixels. ArXiv, abs/2206.04114, 2022. URL https://api.semanticscholar.org/
CorpusID:249538516.

Danijar Hafner, J. Pašukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering diverse do-
mains through world models. ArXiv, abs/2301.04104, 2023. URL https://api.
semanticscholar.org/CorpusID:255569874.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
ulation from pixels. arXiv preprint arXiv:2404.01220, 2024.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. Advances in Neural Information Processing Systems, 35:37631–37646, 2022.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction
for hierarchical deep reinforcement learning. In NeurIPS, pp. 9414–9426, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiud-
din, Ryan Sepassi, G. Tucker, and Henryk Michalewski. Model-based reinforcement learning
for atari. ArXiv, abs/1903.00374, 2019. URL https://api.semanticscholar.org/
CorpusID:67856232.

Ramtin Keramati, Jay Whang, Patrick Cho, and Emma Brunskill. Fast exploration with simplified
models and approximately optimistic planning in model based reinforcement learning. arXiv:
Artificial Intelligence, 2018. URL https://api.semanticscholar.org/CorpusID:
53781531.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B.
Girshick. Segment anything. 2023 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pp. 3992–4003, 2023. URL https://api.semanticscholar.org/
CorpusID:257952310.

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar,
Tim Rocktäschel, and Edward Grefenstette. TorchBeast: A PyTorch Platform for Dis-
tributed RL. arXiv preprint arXiv:1910.03552, 2019. URL https://github.com/
facebookresearch/torchbeast.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. arXiv preprint arXiv:2403.03181, 2024.

Peiqi Liu, Yaswanth Orru, Chris Paxton, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. Ok-
robot: What really matters in integrating open-knowledge models for robotics. arXiv preprint
arXiv:2401.12202, 2024.

12

https://api.semanticscholar.org/CorpusID:262084426
https://api.semanticscholar.org/CorpusID:208547755
https://api.semanticscholar.org/CorpusID:208547755
https://api.semanticscholar.org/CorpusID:249538516
https://api.semanticscholar.org/CorpusID:249538516
https://api.semanticscholar.org/CorpusID:255569874
https://api.semanticscholar.org/CorpusID:255569874
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:53781531
https://api.semanticscholar.org/CorpusID:53781531
https://api.semanticscholar.org/CorpusID:257952310
https://api.semanticscholar.org/CorpusID:257952310
https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast


Published as a conference paper at ICLR 2025

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. Advances in neural information processing systems, 33:11525–11538, 2020.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. In International Conference on Machine Learning, 2017.
URL https://api.semanticscholar.org/CorpusID:7795421.

Marlos C. Machado, André Barreto, and Doina Precup. Temporal abstraction in reinforcement
learning with the successor representation. J. Mach. Learn. Res., 24:80:1–80:69, 2021. URL
https://api.semanticscholar.org/CorpusID:238634579.

Jiayuan Mao, Tomas Lozano-Perez, Joshua B. Tenenbaum, and Leslie Pack Kaelbling. Pdsketch:
Integrated planning domain programming and learning. In NeurIPS, volume abs/2303.05501,
2023. URL https://api.semanticscholar.org/CorpusID:257427056.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-
covering and achieving goals via world models. ArXiv, abs/2110.09514, 2021. URL https:
//api.semanticscholar.org/CorpusID:239016146.

Soroush Nasiriany, Vitchyr H. Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. ArXiv, abs/1911.08453, 2019. URL https://api.semanticscholar.org/
CorpusID:202779996.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for word
representation. In EMNLP, 2014.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sam-
ple factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/
petrenko20a.html.

Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts
Amherst, 2000.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. ArXiv, abs/2002.12292, 2020. URL https://api.
semanticscholar.org/CorpusID:211532691.

Rahul Ramesh, Manan Tomar, and Balaraman Ravindran. Successor options: An option discovery
framework for reinforcement learning. ArXiv, abs/1905.05731, 2019. URL https://api.
semanticscholar.org/CorpusID:153312771.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL https:
//openreview.net/forum?id=skFwlyefkWJ.

Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured world
models yields zero-shot object manipulation. Advances in Neural Information Processing Sys-
tems, 35:24170–24183, 2022.

13

https://api.semanticscholar.org/CorpusID:7795421
https://api.semanticscholar.org/CorpusID:238634579
https://api.semanticscholar.org/CorpusID:257427056
https://api.semanticscholar.org/CorpusID:239016146
https://api.semanticscholar.org/CorpusID:239016146
https://api.semanticscholar.org/CorpusID:202779996
https://api.semanticscholar.org/CorpusID:202779996
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
https://api.semanticscholar.org/CorpusID:211532691
https://api.semanticscholar.org/CorpusID:211532691
https://api.semanticscholar.org/CorpusID:153312771
https://api.semanticscholar.org/CorpusID:153312771
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ


Published as a conference paper at ICLR 2025

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, P. Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference
on Machine Learning, 2020. URL https://api.semanticscholar.org/CorpusID:
216559511.

Aayam Shrestha, Stefan Lee, Prasad Tadepalli, and Alan Fern. Deepaveragers: Offline reinforce-
ment learning by solving derived non-parametric mdps. ArXiv, abs/2010.08891, 2020. URL
https://api.semanticscholar.org/CorpusID:224703455.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2:160–163, 1990. URL https://api.semanticscholar.org/CorpusID:
207162288.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artif. Intell., 112:181–211, 1999. URL
https://api.semanticscholar.org/CorpusID:76564.

Allison C. Tam, Neil C. Rabinowitz, Andrew Kyle Lampinen, Nicholas A. Roy, Stephanie C. Y.
Chan, DJ Strouse, Jane X. Wang, Andrea Banino, and Felix Hill. Semantic exploration from
language abstractions and pretrained representations. ArXiv, abs/2204.05080, 2022. URL
https://api.semanticscholar.org/CorpusID:248085427.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Rishi Veerapaneni, John D. Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,
Joshua B. Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
learning. ArXiv, abs/1910.12827, 2019. URL https://api.semanticscholar.org/
CorpusID:204904886.

Aurèle Hainaut Werner Duvaud. Muzero general: Open reimplementation of muzero. https:
//github.com/werner-duvaud/muzero-general, 2019.

Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Composable
planning with attributes. In International Conference on Machine Learning, pp. 5842–5851.
PMLR, 2018.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and Yuan-
dong Tian. Noveld: A simple yet effective exploration criterion. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:245877021.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
positional generalization in control. arXiv preprint arXiv:2203.05960, 2022.

14

https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:216559511
https://api.semanticscholar.org/CorpusID:216559511
https://api.semanticscholar.org/CorpusID:224703455
https://api.semanticscholar.org/CorpusID:207162288
https://api.semanticscholar.org/CorpusID:207162288
https://api.semanticscholar.org/CorpusID:76564
https://api.semanticscholar.org/CorpusID:248085427
https://api.semanticscholar.org/CorpusID:204904886
https://api.semanticscholar.org/CorpusID:204904886
https://github.com/werner-duvaud/muzero-general
https://github.com/werner-duvaud/muzero-general
https://api.semanticscholar.org/CorpusID:245877021


Published as a conference paper at ICLR 2025

A BROADER IMPACT

Our contributions are fundamental reinforcement learning algorithms, and we hope our work will
contribute to the goal of developing generally intelligent systems. However, we do not focus on
applications in this work, and substantial additional work will be required to apply our methods to
real-world settings.

Regarding compute resources, we use an internal clusters with Nvidia A100 and H100 GPUs. All
experiments use at most one GPU and are run for no more than two days. Running baselines along
with randomization of seeds requires multiple GPUs at once.

B PROBLEM SETTING DETAILS

B.1 ABSTRACTED MDP

Here we re-iterate our framework and discuss it in greater details. We first define a low level (reward-
free) Markov Decision Process (MDP, Puterman (1994)) as the tuple ⟨S,A, P ⟩, with (low level)
state space S, primitive action space A, and transition probability function P : S × A × S →
[0, 1]. Suppose the agent interacts with the environments at discrete time-steps u = 0, 1, 2, ..., then
P (su+1|su, au) describes the probability of transitioning to state su+1 ∈ S after one time-step when
choosing action au ∈ A in the current low level state su.

To construct an Ab-MDP, we start with a surjective deterministic mapping M from low to abstract
level: M : S → X . That is, any low level state S ∈ S maps onto some abstract state X ∈ X
(multiple S can and do map to the same X).

Define behaviours B. Each b = (α(i), ξ′) ∈ B describes a single item id α(i) and a desired new
attribute, along with an associated low level policy πb : S → A which tries to set the specified
item to have the new attribute. A behaviour can be competent or incompetent. Executing competent
behaviours lead to the specified item-attribute changes with high probability.

A behaviour may be incompetent because (i) the proposed attribute change is impossible within the
rules of the world (e.g. item is not a craft-able object) (ii) the attribute change is not possible from
the current state (e.g. do not have the correct raw ingredients in inventory), or (iii) the behaviour is
not sufficiently trained to perform the specified change.

We build a simple abstraction that allow us to learn purely at the abstract level while still being able
to influence actions at the low level. Notice the surjective map M give us state abstraction. We build
temporal abstraction by defining abstract state transitions as happening at a slower time-scale than
the low level time-step u.
Definition B.1. An abstract state transition has occurred at (low level) time-step u if: (i) the
abstract state has changed, M(su) ̸= M(su−1); or (ii) the abstract state has not changed in the past
k steps, M(su) = M(su−1) = ... = M(su−k).
Definition B.2. An (max-k) Ab-MDP is defined as the tuple ⟨X ,B,Tk⟩, with abstract states X ,
abstract behaviours B, and transition probability function Tk : X × B × X → [0, 1]. Tk(X

′|X, b)
describes the probability of being in abstract state X ′ when starting from X and executing behaviour
b until an abstract state transition occurs (Definition B.1).

In the main text, we write Ab-MDP and denote the transition function as T for brevity (instead of
writing max-k Ab-MDP and transition function Tk). k = 8 was chosen for baseline methods as it
worked slightly better. MEAD works just as well with k = 8 and k = 16.

B.1.1 INTERPRETATION VIA OPTIONS FRAMEWORK

It is natural to interpret our hierarchical framework within the Options framework (Sutton et al.,
1999). An option consists of a policy π : Ω × A → [0, 1], a termination function β : Ω → [0, 1],
and an initiation set of states I ⊆ S . Ω is used to denote the set of all possible historical states.

Our set of behaviour b ∈ B is a set of options. Each behaviour specifies a behaviour policy πb,
which deterministically terminate when an abstract state transition occurs (Definition B.1), and they
can be initiated from all states (I = S).

15



Published as a conference paper at ICLR 2025

The point of the Options Framework and temporal abstraction generally is to break up a monolithic
problem into re-usable sub-problems. How one breaks up a problem is an open question. Some
popular previous approaches include finding bottleneck states and using the successor representation
to discover well-connected states. We can view our approach as another way of breaking up the
problem when prior knowledge in the form of objects is available: we break up the problem at the
level of single item-attribute changes (with options defined as policies that can change a single item’s
attribute).

B.1.2 A NOTE ON SEMI-MDP

The decision process that selects amongst options is a semi-MDP (Theorem 1, (Sutton et al.,
1999)). The general way to model semi-MDP dynamic requires considering the amount of low
level timesteps that passes between each abstract level decision as a random variable (Sutton et al.,
1999; Barto & Mahadevan, 2003). Instead, we chose to simply treat the abstracted level as having
a fixed time interval in between steps. This is chosen for simplicity as our focus is with learning
efficiency on the abstract level, and this formulation allow us to directly apply efficient algorithms
developed to solve MDPs. We also see empirically that given our M and B this choice does not lead
to a less optimal policy compared to algorithms that directly solve the low level MDP.

B.1.3 RELATIONSHIP TO OTHER MDP FORMALISM

Our Ab-MDP is related to Factored MDPs (Boutilier et al., 1995; 1999; Degris & Sigaud, 2013).
Factored MDPs model states as decomposable into a set of factors Xt = {x(1), x(2), ...}, with each
factor having domain Dom(x(i)). This allows the transition probability function to be decomposed
into Dynamic Bayesian Networks (DBNs) between the factors at two successive time-steps t−1 and
t, with the factors as the nodes of the DBN. Concretely, this decomposes the transition probability
function for each action into a product of conditional probabilities,

Pa(Xt|Xt−1) =
∏
i

Pa(x
(i)
t |Parent(x(i)

t )) , (6)

where Parent(x(i))) denotes the factors in Xt−1 which are the parent of x(i)
t . In the most generic

form, each action a ∈ A induces a different DBN. If the DBN is known or well-approximated, the
Factored MDP can be efficiently solved (Guestrin et al., 2003).

Similarly, the Ab-MDP considers a decomposition of state into items (analogous to factors), and
our method MEAD shares the philosophy of efficient utilization of a factorized state space. While
one could interpret Ab-MDP as a kind of Factored MDP with discrete domains, the two differs in
their emphasis on transition vs. actions. Factored MDPs defines arbitrary actions, each inducing a
potentially different conditional independence structure in the transition dynamics. The Ab-MDP
instead defines a set of next state changes as the actions, without explicitly specifying any inde-
pendence structures in its transitions dynamics. Our method MEAD then makes use of this action
representation to directly model the probability of item-attribute changes, while implicitly learning
the transition dynamics in the weights of the neural network.

Our Ab-MDP is also related to the Object-oriented MDP (OO-MDP) of Diuk et al. (2008), and
shares a similar structure of describing a set of “objects” and their attributes separately. In OO-
MDP, an environment consists of a set of objects O = {o1, ..., oo}, each belonging to one of c
classes {C1, ..., Cc}, and each having a set of (class) attributes Att(C) = {C.a1, ..., C.aa}. An
OO-MDP “object state”—o.state—is a value assignment to all of its attributes ({a1, ..., aa}), and
the OO-MDP “state” is the union of all of its object states: s = ∪o

i=1oi.state.

Our Ab-MDP similarly contains a set of items, X = {x(1), ..., x(N)}, with each item consisting of an
item identity and an attribute, x(i) = (α(i), ξ(i)). We can view our Ab-MDP as a soft generalization
of OO-MDP by modelling:

• The OO-MDP object (and its associated class) as an Ab-MDP item identity: α(i) = oi,
• The OO-MDP attribute as the Ab-MDP item attribute: ξ(i) = {C.a1, ..., C.aa}, oi ∈ C.

To model state transitions, OO-MDP makes additional assumptions that objects interact through
their class identities. Specifically, a set of relations determine if two objects interact, with resulting

16



Published as a conference paper at ICLR 2025

effects that is used to update the object state. This requires the designer to additionally provide a set
of accurate relations functions and effects, with the benefit of facilitating within-class generalization.
In contrast, Ab-MDP makes no additional assumption about object class, relations, or interactions
between objects. We instead directly models (probabilistically) whether an effect is possible. This
is done in a fully data-driven way through a neural function f : X × B → [0, 1] and empirically is
shown to generalize well across item-attribute variations. Item interactions are implicitly represented
by the attention mechanism over the set of input items.

The neural constraint satisfaction (NCS) approach of Chang et al. (2023) introduces an entity-
set state representation, where each entity h(i) is decomposable into type z(i) and entity state s(i).
Our Ab-MDP can naturally be mapped onto their entity-state abstraction by setting an Ab-MDP
item identity as the NCS type (α(i) = z(i)) and the Ab-MDP item attribute as the NCS entity state
(ξ(i) = s(i)). Note the Ab-MDP “behaviour” (i.e. abstract action) is equivalent to the NCS “action”.

NCS makes additional assumptions that attribute change is dependent only the behaviour:
ξ
(i)
t+1 = f(ξ

(i)
t , bt). On the other hand, Ab-MDP models more general relationships ξ

(i)
t+1 =

f(α
(1)
t , ξ

(1)
t , ..., α

(N)
t , ξ

(N)
t , bt) (e.g. Equation 1). The NCS assumption is restrictive in that it would

fail to capture cases where an item’s attribute change depends on what the item’s identity is, and/or
the attributes of other items.

The Deep Latent Particles (DLP) approach used in Haramati et al. (2024) learns a latent space
containing a set of K particles: z = {(zp, zs, zd, zt, zf )i}K−1

i=1 . zp ∈ R2 describes the particle’s
(x,y) position on an image, zs ∈ R2 describes its (x,y) scale, zd ∈ R describe its “depth”, zt ∈ R its
transparency, and zf ∈ Rl the visual features around the particle. We can cast this into the Ab-MDP
by having K items whose item identities is the particle’s index, α(i) = i, and item attribute is a 6+ l-
dimensional vector describing the particle features; ξ(i) = (zp, zs, zd, zt, zf )i. DLP can be one way
of getting abstraction from pixels, albeit it is restricted to settings where the state is image-based.

B.1.4 EXAMPLE APPLICATIONS

We provide further examples of possible Ab-MDP constructions for a few common settings. Note
we provide one example abstraction per domain, though multiple types of Ab-MDP abstractions can
in theory be constructed depending on the choice of the item set and attribute set.

Environment Description Example abstract states How to get abstract
behaviours

Kitchen
(Gupta
et al., 2019)

A robot arm is in a
MuJoCo kitchen with
multiple things to do
such as turning on
lights, turning on ket-
tle, opening oven / mi-
crowave / cabinet, etc.

Item set: {light, oven, mi-
crowave, cabinet}. At-
tribute set: {open, closed}

Imitating expert play
data in Gupta et al.
(2019) which already
produce trajectories
that lead to abstract
state changes

Cube
pushing
(Haramati
et al., 2024)

A robot arm pushes
cubes on a table to
their desired positions

Item set: {red cube, blue
cube, green cube, . . . }. At-
tribute set: {at goal posi-
tion, not at goal position}

RL to push a single
block to goal at a time

Real world
robot (Lee
et al., 2024)

A Stretch robot in a
kitchen, moving ob-
jects in and out of con-
tainers

Item set: {drawer, bag,
oven, box, bread, can}. At-
tribute set: {open, closed,
on table, in bag, in drawer,
in oven}

Human imitation
learning data con-
taining trajectories
between abstract state
changes

Table 1: Example Ab-MDP’s applied to various domains

17



Published as a conference paper at ICLR 2025

B.1.5 MULTI-ITEM BEHAVIOURS

In the Ab-MDP, we consider abstract states as an (ordered) set of items X = {x(1), x(2), ...}, where
each item consist of an identity and attribute x(i) = (α(i), ξ(i)). A behaviour is a description of
which item(s) to change (Section 2.1). For instance, the single-item behaviour b = {(α(i), ξ′)}
specifies a change of the i-th item to a new attribute ξ′. We can similarly specify multi-item be-
haviours, such as a two-item behaviour b = {(α(i), ξ′), (α(j), ξ′′)}. This behaviour is competent if
after an abstract state change, the i-th item takes on attribute ξ′ and the j-th item takes on attribute
ξ′′ with high probability.

For N objects, m attributes, and I items changes to consider in behaviours,

Number of behaviours =
(
N

I

)
×mI . (7)

For instance, for single item change behaviours (I = 1), there are
(
N
1

)
×m1 = N ×m behaviours.

For two-item change behaviours (I = 2), there are
(
N
2

)
× m2 behaviours, and so on. In the ex-

treme, one can choose to model a all possible item attribute changes (I = N ), which results in mN

behaviours that is exponential in the number of items considered.

B.2 ANALYSIS OF ASSUMPTIONS

B.2.1 THE GENERALITY OF AB-MDP

We make the observation that any sparse reward RL task can be described by a Ab-MDP with a
single item,
Remark B.3. For any MDP with a reward function R : S → R, where,

R(S) = 1 if S ∈ G and 0 otherwise ,
for S ∈ G terminal goal state(s), we can describe this as an Ab-MDP with a single item α and binary
attributes {ξ1, ξ2}. The abstract map M : S → X can be constructed in the following way,

M(S) =

{
{(α, ξ2)} if S ∈ G ,

{(α, ξ1)} otherwise .
(8)

The proxy problem of transition from X = {(α, ξ1)} to X = {(α, ξ2)} solves the sparse reward
task in the base MDP and a competent behaviour for this transition is a good policy is the base task.

The point of this is merely to say that Ab-MDP does not restrict the RL problem in a particular way.
Of course, such a construction of an Ab-MDP is not interesting and learning a competent behaviour
for this Ab-MDP is no easier than learning a behaviour that maximizes the reward function in the
base MDP.

The point of Ab-MDP, however, is that a task can be broken-up in a more interesting way, e.g. in our
case through a richer set of items and attributes. We demonstrate in this work that an object-centric
item-attribute set encoding result in a set of intuitively base behaviours and a world model that is
interesting.

B.2.2 DISCRIMINATIVE MODELLING WITH SINGLE ITEM CHANGE

In our forward model, we made the assumption to only model single item’s attribute change (Sec-
tion 3.1 and Equation 3), and that if the attribute does not change then the abstract state Xt+1 stays
the same as Xt. We analyze this assumption more deeply in this section.

Robustness through re-planning We first note that in practice, it is often the case that multiple
item’s attribute changes. For instance, in the 2D Crafting environments, crafting an item often con-
sumes the raw ingredient used to craft it. Thus, a plan that considers multiple items being crafted
(attribute change from absent to in inventory) will inaccurately predict that the raw ingredi-
ent stays in the inventory (attribute of raw ingredient stays the same, staying as in inventory)
rather than changing to absent. We illustrate the plan generate at each abstract step in Figure 9,
and show that despite this being the case, the plan still generates an optimal action sequence; and that
at each time-step, re-planning with the newly obserbved abstract state updates the incorrect abstract
prediction to be more accurate.

18



Published as a conference paper at ICLR 2025

t = 0

t = 1

t = 2

True States Plan at t = 0

Plan at t = 1

Plan at t = 2

Figure 9: An illustrative example following the logic of the 2D Crafting game. The objective of the
game is to get planks by chopping trees (which changes the plank’s attribute from absent to in
inventory, and the tree’s attribute to from in world to absent as the resource is depleted),
then craft wooden stairs using the plank (which depletes the plank resources to absent and creates
wooden stairs in inventory). Comparing the true state trajectory with the imagined plan at
t=0, we notice that the imagined future is incorrect: modelling only single item changes do not
capture the fact that resources are depleted, but only new resources are created. Nevertheless, at
t=1, the model observes the new abstract state and can therefore re-plan with the most up-to-date
information which corrects for previously incorrect predictions. A case like this happens in practice
within the 2D Crafting games.

An adversarial failure case Here we artificially design an adversarial setting which is not en-
countered in our evaluation environments, but would in theory result in sub-optimal plans. With
reference to Figure 10a, we construct an environment whose goal is to construct both a wooden stair
and a wooden door. Both require a single unit of wooden plank to craft. The attribute here is the
quantity of the item in the inventory. Suppose further that once we start crafting, we can no longer
collect additional wooden planks.

The correct sequence of behaviour would be to first collect another unit of wood, before crafting a
wooden stairs and a wooden door. Planning with a discriminative single item change model would
result in a sub-optimal plan, as it fails to consider that crafting a wooden stair result in the wooden
plank being consumed, and therefore cannot subsequently craft the wooden door (Fig.10a, plan at
t=0).

Note that this failure case is a limitation of doing discriminative modelling with single item changes
(Section 3.1), not the Ab-MDP framework. Doing generative modelling (considering all possible
Xt+1 ∈ X given Xt, bt) would be able to learn the correct relationship—at the cost of data ineffi-
ciency (Section 4.4.1). Nevertheless, we discuss how to fix it below with discriminative modelling.

Discriminative modelling of multi-object changes One simple way of generating plans with
multi-item dependencies over time is to consider multi-item behaviours (Section B.1.5). With ref-
erence to Figure 10b, we notice that simply modelling two item changes can perfectly capture the
dynamics within this task and generate the optimal plan. This comes at a cost of a greater number
of behaviours to consider at each step of planning (E.g. for N = 3 items, m = 3 attributes, there
are 9 behaviours to consider for single-item changes, and 27 behaviours to consider for two-items
changes).

Generally speaking, with a small change in the representation of the problem, we can plan to gener-
ate the optimal sequence of abstract behaviours. This can also happen through changing the abstract
mapping—e.g. by modelling items along with the resources needed to create them. Overall, we view

19



Published as a conference paper at ICLR 2025

Goal 

Real transition 
(success)

Real transition 
(failed)

Imagine transition 
(success)

Imagine transition 
(failed)

Taken 
Trajectory

Plan 
(t=0)

Plan 
(t=1)

Correct 
Trajectory

(a) Planning with single item-attribute changes fails in this adversarial task.

Taken 
Trajectory

Plan 
(t=0)

Plan 
(t=1)

Plan 
(t=2)

Goal 

Real transition 
(success)

Imagine transition 
(success)

(b) Planning with double item-attribute changes models attribute dynamics perfectly.

Figure 10: Single and double item-attribute change planning

this as a problem of constructing the right abstraction for the problem which, although important, is
not the main focus of this work and nor a fundamental issue with our modelling choice.

C MEAD: EXTENDED METHODS

Here we provide more details about our methods

C.1 MODEL FITTING

Given a dataset of (abstract) trajectories collected via the exploration strategy outlined in Section 3.2,
D = {(X1, b1, X2, b2, ...)i}i=1,...,n, we can estimate the empirical success probability q of all ob-
served item-attribute pairs by counting their occurrences:

q(X, b) ≈ ρ(X, b) =
Number of (Xt, bt, Xt+1) transitions where (α(i), ξ′) ∈ Xt+1 + ϵ

Number of (Xt, bt) + 2ϵ
, (9)

20



Published as a conference paper at ICLR 2025

where ϵ is a small smoothing constant (usually 1e-3). This can be efficiently implemented as a hash
map, via hashing (Xt, bt) as keys, and the number of successful and total transitions (starting from
(Xt, bt)) as values.

To train our discriminative model fθ : X × B → [0, 1], we minimize binary cross entropy loss with
ρ as the target,

θ∗ = argmin
θ

E [ρ(X, b) · log (fθ(X, b)) + (1− ρ(X, b)) · log (1− fθ(x, b))] , (10)

where the expectation is estimated by uniformly sampling unique (X, b) pairs from dataset.

Appendix C.2 contains architectural details for fθ. All in all, we found that our sampling method
and loss function lead to a stable, simple-to-optimize objective. Moreover, it is possible to directly
use ρ to do planning, as is done in Zhang et al. (2018). However, we show in Section F.1.3 that it is
more efficient to use our parametric modelling approach as it generalizes better to new objects.

Algorithm 1 Example Data Collection and Training loop for MEAD

Require: Model fθ
repeat

Collect n frames of data in environment using model fθ to plan to explore
Add data to dataset D
Reset model weights θ
while accuracy requirement not met do

if local minima then
Reset model weights θ

end if
Sample from D and minimize Equation 10, for m optimizer steps

end while
until time runs out

We provide the pseudocode for training MEAD in Algorithm 1. The accuracy requirement is a
running average binary classification accuracy (typically set to 0.95). The local minima is evaluated
by checking if the difference is accuracy is close to zero (taken as a exponentially smoothed average
to be insensitive to stochasticity). We find in Figure 28 that the most important setting is to run
enough gradient updates between data collection steps—the precise setting of checking for accuracy
and local minima does not matter as much.

C.2 MODEL ARCHITECTURE

m

m

linear

1

m

key-query-value
projections (linear)

1

1

m

1

(logits)

fully connected
layer applied
element-wise

dot prod
+

layer norm

Figure 11: Model Architecture

We use a small key-query attention architecture that takes in sets of vectors to produce a binary
prediction (Figure 11). Each item x(i) = (α(i), ξ(i)) is represented by its item identity and item
attribute embeddings. An Ab-MDP state containing a set of m items is represented as a m× (diden +
dattr) matrix. The behaviour b = (α(i), ξ′) describes an item identity and the new attribute to try to
change it to, and is a diden + dattr dimensional vector. The set of items and the behaviour is passed

21



Published as a conference paper at ICLR 2025

element-wise through a small MLP (specifically a 2 layer ReLU network with 128 units in its hidden
layer) to produce a set of m× demb item embeddings, and a demb-dimensional behaviour embedding
(demb = 128). The item embeddings are linearly projected into key and value matrices K and V
both with shape m × dk, and the behaviour embedding is linearly projected into a 1 × dk query
vector Q (dk = 256). We compute the scaled dot product attention (Vaswani, 2017):

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

V

)
. (11)

The output of the attention operation is an 1× dk vector. Finally, it is linearly projected to a scalar,
representing the un-normalized logit for binary prediction.

C.3 EXPLORATION

We use a reward function that encourages indefinitely exploring all states and behaviours,

rintr(X, b) =

√
T

N(X, b) + ϵT
, (12)

where N(X, b) is a count of the number of times (X, b) is visited, T is the total number of abstract
time-steps, and ϵ = 0.001 is a smoothing constant.

Intuitively, a state with many visits (large N(X, b)) will have lower reward, while T prevents the
intrinsic reward from shrinking to zero (so the agent explores indefinitely). Indeed, in the bandits
setting, this reward function is maximized when all states are visited uniformly (Zhang et al., 2018).
We emphasize that all of our model training is done with this intrinsic reward, with no task-specific
information injected at training time.

We use MCTS to find high (intrinsic) reward states. MCTS iteratively expands a search tree and bal-
ances between exploring less-visited states (using an upper confidence tree) and exploiting reward-
ing states.6 In our case, MCTS generates child nodes of abstract state X by proposing behaviours b
and checking if fθ(X, b) > 0.5 (Figure 3a). We also introduce a small degree of randomness so all
behaviours have a small chance of being selected.

We modify the MCTS algorithm to return the the maximum rintr(X, b) encountered along each path
during the back-propagation stage and set a fix expansion depth without a simulation stage from the
leaf node. This is done to prevent loops and encourage the agent to go toward frontier states with
the least amount of visitations.

D ENVIRONMENTS

D.1 2D CRAFTING

We adopt three crafting environments proposed in Chen et al. (2020), which contain Minecraft-like
crafting logic. The agent needs to traverse a grid world, collect resources, and build increasingly
more complex items by collecting and crafting ingredients (e.g. getting an axe, chopping tree to get
wood, before being able to make wooden planks and furniture that depend on planks). Primitive ac-
tions consist of movement in the four cardinal directions (N,E,S,W), toggle (of a switch to open
doors), grab (e.g. pickaxe), mine (e.g. ores), craft (at crafting bench of specific items). The
low level observation space consist of a dictionary containing: (i) an (5, 5, 300) matrix describing a
5× 5 world with each state being described by an 300-dim word embedding, (ii) an 300-dim inven-
tory embedding describing things in the inventory, and (iii) a 300-dim goal embedding describing in
words the task to complete. We describe each environment’s crafting sequences required to finish
each task in Table 2.

6This exploration is purely within the model’s imagination, rather than the real environment. Balancing
exploration and exploitation is still necessary as exhaustive search in the abstract space is highly inefficient /
intractable.

22



Published as a conference paper at ICLR 2025
Published as a conference paper at ICLR 2021

Figure 6: Generated language at test time for a 2-step craft. We only display key frames of the
trajectory which led to changes in the language. These key frames match changes in the inventory
to the object mentioned in the generated instruction. Qualitatively, the generated instructions are
consistent during what we would describe as a sub-task. Quantitatively, the network will spend on
average 4.8 steps in the environment for the same generated language output.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 3674–3683, 2018.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 166–175. JMLR. org, 2017.

Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2166–2179, 2018.

SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in a monte-
carlo framework. Journal of Artificial Intelligence Research, 43:661–704, 2012.

Tianshi Cao, Jingkang Wang, Yining Zhang, and Sivabalan Manivasagam. Babyai++: Towards
grounded-language learning beyond memorization. arXiv preprint arXiv:2004.07200, 2020.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Ra-
jagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

David L Chen and Raymond J Mooney. Learning to interpret natural language navigation instruc-
tions from observations. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019a. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019b. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Geoffrey Cideron, Mathieu Seurin, Florian Strub, and Olivier Pietquin. Self-educated lan-
guage agent with hindsight experience replay for instruction following. arXiv preprint
arXiv:1910.09451, 2019.

John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas, John DeNero,
Pieter Abbeel, and Sergey Levine. Guiding policies with language via meta-learning. In Interna-
tional Conference on Learning Representations, 2018.

9

Figure 12: Example episode in an example 2D Crafting environment, figure taken from Chen et al.
(2020). To solve this task, the agent needs to pickup the pickaxe, mine the cobblestone stash to
get cobblestone, then use the acquired cobblestone to craft cobblestone stairs. The items must be
acquired in that order as each step requires having the item from the previous step (with an additional
obstacle of being able to cross the door only if it has a key).

Environment Name Crafting Task Description
2 Steps Pickup pickaxe, mine gold ore
3 Steps Pickup pickaxe, mine diamond ore, craft diamond boots
4 Steps Pickup axe, chop tree to get wood, craft wooden plank from wood,

then craft either wooden stairs or wooden door from plank

Table 2: 2D Crafting environments.

Abstraction States We build a simple abstraction to map from the low level observation to an
abstract representation. We take as items all objects in the world, in the inventory, and potentially
craft-able objects. We assign each item one of the the attributes in Table 3.

We take each item identity as its 300-dim word embedding provided from the environment, and each
attribute as a one-hot embedding, repeated to also be 300-dim. Each item in the item set is described
as a 600-dim vector.

Attribute Description
IN WORLD An item is in the world but not in the inventory.

IN INVENTORY An item is in the player’s inventory.
ABSENT An item is neither in the inventory or in the world.

Table 3: 2D Crafting attributes.

D.2 MINIHACK

We also use the MiniHack environment (Samvelyan et al., 2021), which is built on the Nethack
Learning Environment (Küttler et al., 2020). We use five hard-exploration games from Henaff et al.
(2022) requiring interaction with different types of objects. The base game has a multi-modal ob-
servation space involving image, text, inventory, etc. Solving the game from the base observation is
extremely difficult since each environment has multiple variants of an object (e.g. Freeze-Wand has
27 different types of wands), and randomly generated object locations. Indeed, Henaff et al. (2022)
found that performant RL methods such as IMPALA (Espeholt et al., 2018; Küttler et al., 2019) and
all tested global exploration methods (ICM (Pathak et al., 2017) and RND (Burda et al., 2019)) fail
to solve these environments.

The base environment contains an dictionary observation space, containing a 21× 79 grid of glyphs
(integer denoting one of 5976 nethack glyph types), an 27-dimensional vector denoting agent’s stats,
a 256 dim vector for message, and another vector denoting agent’s inventory. The environments are:

• "MiniHack-Levitate-Boots-Restricted-v0"

• "MiniHack-Levitate-Potion-Restricted-v0"

• "MiniHack-Freeze-Horn-Restricted-v0"

23



Published as a conference paper at ICLR 2025

• "MiniHack-Freeze-Wand-Restricted-v0"

• "MiniHack-Freeze-Random-Restricted-v0"

Generically, the Nethack Learning Environment contains over 100 actions; whereas the “restricted”
set of games reduce this space. The possible primitive actions include the 8 cardinal actions (N, E,
S, W, NE, SE, SW, NW), PICKUP, ZAP, WEAR, APPLY, QUAFF, PUTON, FIRE, READ, and
RUSH. It may be even less dependeing on the specific environment.

Abstract States We hand-construct a map that maps from the multi-modal observations to a set
of (object identities, object attribute) vectors. We do this by taking the glyph and inventory
observation modalities and filtering out all glyphs containing blank spaces, floor, and walls. To get
the object attributes, We take the remaining glyphs and mark them as being “in world” if they are
in glyph, and “in inventory” if they were from the inventory modality. Then, if the agent object
was beside an object and took a primitive action to move towards it, we mark the object as “standing
on”. If we observe a levitating message (e.g. “up, up and away” from the message modality, we
set the agent object to have “levitate” attribute. Alternatively, if the low level episode terminates
along with the last observation being either a levitate message or a “freeze spell” message (e.g. “the
frozen bolt bounces”), then we set the corresponding levitate or freeze object to have “used” status.
Finally, if an object disappears from the low level observation that is not being stood on, we set it to
have “removed” attribute. We summarize this in Table 4.

Attribute Name Meaning How to Infer
in world The object is in the world Object is in the glyph observation

standing on Object in world, and the Object was in the glyph observation
player is standing on it and message says “you see here...”

in inventory Object in inventory Object in the inventory observation
levitating Agent is levitating Message says a levitate message

used An object is used A freeze or levitate message appears,
and episode terminates

removed Object disappears from world The object is not longer present

Table 4: Object Attributes and how to infer them.

As for object identities, they are simply the glyph number given to them in MiniHack (e.g. 329 for
the player agent).

Embeddings We then embed the object identities and attributes before providing them to the
agents. For object identities, we take each object’s glyph number, and map it to the NetHack text de-
scription for that glyph (which we can extract from the screen descriptions modality in the
low level observation). For each glyph’s text description (which is a short sentence), we pre-process
the sentence to remove stop words, then take each word’s GloVe (Pennington et al., 2014) embed-
ding and averaging over the sentence. We use the 300-dimensional Wikipedia 2014 + Gigaword
5 GloVe word vector embeddings from https://nlp.stanford.edu/projects/glove/
(6B tokens, 400k vocab, uncased). The 300-dim vectors were chosen as we found them to have
naturally good separation between object types in preliminary analysis.

We embed the object attributes as 300-dimensional one-hot vectors (i.e. one-hot between six cat-
egories and repeated to fill 300 dimension). This is done to make sure the input space is equally
represented by the identity and attribute embeddings.

D.2.1 SANDBOX ENVIRONMENT

We design a sandbox environment where the agent can observe and interact with all items it may
encounter in one of the five evaluation environments. In the sandbox, each of these objects has an
0.5 chance (independently) of spawning at a random location: levitate boots, levitate rings, levitate
potions, freeze horn, freeze wands. Further there is a 0.5 change that a second of the same object
type will spawn. The agent can interact with any of the objects for up to 250 low level frames, or
the episode terminates once the agent sets any of the object’s attribute to “used”. Figure 14c shows
an instantiation of an episode.

24

https://nlp.stanford.edu/projects/glove/


Published as a conference paper at ICLR 2025

 attr
embeds

 id
embeds

600

600

m

1

id attr

Figure 13: Embedding

(a) Levitate-Potion (b) Freeze-Random (c) Sandbox

Figure 14: Example Minihack environments. Only a cropped version of the screen is rendered for
presentation clarity. The full observation space contains a larger screen, agent’s inventory, in-game
stats, and in-game messages (not shown here).

D.2.2 LOW LEVEL POLICY ERRORS

The learned and hand-defined low level policies are not perfect. We see that depending on the initial
abstract state, the low level policy succeeds on average around 90% of the time, but can be as low
as 10% for particular states (Figure 15).

Figure 15: Low-Level policy success rates for an environment

Some common failure cases for these low-level policies are:

1. To use an item in the inventory, the policy needs to select which item to use (e.g. to drink a
potion the policy needs to first do primitive action ”quaff”, then primitive action that selects
the inventory object to drink, etc.). When there are multiple objects in the inventory it just
picks a random object, meaning it might not pick the object specified by the behaviour

2. The “go stand on” policy is coded to move in a straight line towards an object. Since we
measure a policy ”success” whenever the abstract state changes, if the agent walks over

25



Published as a conference paper at ICLR 2025

another object en route, the Ab-MDP will register an abstract state change and deem the
transition unsuccessful

3. To successfully cast a freeze spell, the NetHack game needs to return a message saying the
spell has bounced off a wall. To our knowledge, this is stochastic—we got as far as figuring
out that the spell needs to travel sufficient distance to bounce, but even so we were unable
to produce a low level policy that results in spell bounce 100% of the time. This succeeds
∼ 80% of the time

E BASELINE METHODS

For baselines, we use an environment wrapper which abstracts away the low level observations into
only the abstract level observations and behaviours (as described in Section 2.1). We similarly equip
the baseline policies with transformer-based encoders, with input masking in places where the input
sequence is longer than the number of objects in the set as well as positional embedding, which
we found in preliminary experiments helped with training. For action spaces, the agent generates a
discrete integer action which maps onto an object index in the observation set as well as the object
attribute to change to.

Specifically, we use Dreamer-v3 as a performant model-based baseline (Hafner et al., 2023), MuZero
as another model-based baseline (Schrittwieser et al., 2020; Werner Duvaud, 2019), and PPO as a
model free baseline (Schulman et al., 2017; Petrenko et al., 2020). For exploration-reward transfer
experiments, we use a disagreement-based model for Dreamer intrinsic reward (Sekar et al., 2020),
as well as using the same count-based reward to train all models.

Finally, we also compare against other methods that uses a structured MDP, such as the attribute
planner in Zhang et al. (2018), and NCS in Chang et al. (2023). These results can be found in
Section F.1.3.

We outline the main differences between the different model-learning methods in Table 5.

State Repre-
sentation

Function Approx Planning

Dreamer-V3 (Hafner
et al., 2023)

Feature vector
ϕ

Neural Net (genera-
tive)

Model free (in imag-
ination)

MuZero (Schrit-
twieser et al., 2020)

Feature vector
ϕ

Neural Net (genera-
tive)

MCTS

DAC-MDP (Shrestha
et al., 2020)

Feature vector
ϕ

k-NN Value iteration (on k-
NN “cores”)

Attribute Planner
(Zhang et al., 2018)

Tabular No approximation Dijkstra

DLP-EIT (Haramati
et al., 2024)

Sets of vec-
tors

Neural Net (genera-
tive)

Model free

NCS (Chang et al.,
2023)

Sets of (α, ξ)
vectors

K-means (on just at-
tribute vectors ξ)

Greedy

MEAD Sets of (α, ξ)
vectors

Neural net (discrimi-
native)

Dijkstra

Ablation Sets of (α, ξ)
vectors

K-means (on just at-
tribute vectors ξ)

Dijkstras

Table 5: Model-based methods

F EXTENDED RESULTS

F.1 EXTENDED MAIN RESULTS

All runs, extended and main, are run with a minimum of 3 independent seeds. We outline the specific
number of seeds for each method and each main experiment in Table 6.

26



Published as a conference paper at ICLR 2025

Experiment Group Method N Seeds

Learning from scratch, 2D
crafting games (Figure 4a)

MEAD 4
Dreamer-V3 3
PPO 3

Learning from scratch,
Minihack skill games
(Figure 4b)

MEAD 5
MuZero 3
Dreamer-V3 4
PPO 3

Transfer from Sandbox
pre-training (Figure 5a)

MEAD 3
Dreamer-V3 (count / disagreement
/ reward)

3 / 3 / 3

Transfer from
Freeze-Random pretraining
(Figure 5b)

MEAD 3
Dreamer-V3 (count / disagreement
/ reward)

3 / 3 / 3

Compositional Environment
(Figure 5c)

MEAD (from scratch / pretrained) 3 / 3
Dreamer-V3 (from scratch / pre-
trained)

3 / 3

Table 6: Number of seeds used in our main results.

To get the performance of the various algorithms in the low level MDP as we plotted them in Fig-
ure 4b, we extracted them from Figure 13 in Henaff et al. (2022), using the WebPlotDigitizer app
(https://apps.automeris.io/wpd/).

0 10000 20000 30000 40000 50000
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

0 10000 20000 30000 40000 50000
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Levitate-Potion

0 10000 20000 30000 40000 50000
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

n 
Ep

iso
de

 R
et

ur
n

Freeze-Horn

0 10000 20000 30000 40000 50000
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Freeze-Wand

0 10000 20000 30000 40000 50000
Env Frames (Linear Scale)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

n 
Ep

iso
de

 R
et

ur
n

Freeze-Random
Model based 
(ours, no pretrain)
Model based (ours,
count-based pretraining)
Dreamer-v3 (no pretrain)
Dreamer-v3 
(count-based pretraining)
Dreamer-v3 
(disagreement pretraining)
Dreamer-v3 
(reward-based pretraining)

(a) Sandbox transfer performance. Episode return
from fine-tuning model weights from pre-training
in a sandbox environment containing multiple ob-
jects instances and types.

0 10000 20000 30000 40000 50000

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

0 10000 20000 30000 40000 50000

0.5

0.0

0.5

1.0
Levitate-Potion

0 10000 20000 30000 40000 50000
Env Frames (Linear Scale)

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

Freeze-Horn

0 10000 20000 30000 40000 50000
Env Frames (Linear Scale)

0.5

0.0

0.5

1.0
Freeze-Wand

Model based (ours,
no pretraining)
Model based (ours,
count-based pretraining)
Dreamer-v3 
(no pretraining)

Dreamer-v3 
(count-based pretraining)
Dreamer-v3 
(disagreement pretraining)
Dreamer-v3 
(reward-based pretraining)

(b) Transfer to new object types. Pretrained in Freeze
Random environment where Freeze Horn and
Freeze Wand objects appear with 0.5 probabilities,
fine-tuning on remaining 4 environments. (Top row):
fine-tuning performance where new object type is fully
unseen, (bottom row): fine-tuning performance for seen
objects but appearing in different frequencies.

Figure 16: Full transfer experiments

F.1.1 PPO ALL RUNS

We plot all PPO runs with different pre-training settings in Figure 18. Pre-training resulted in only
negative transfer as compared to no pre-training.

27

https://apps.automeris.io/wpd/


Published as a conference paper at ICLR 2025

0 50000 100000 150000 200000 250000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

MiniHack-Levitate-Boots-Restricted-v0

0 50000 100000 150000 200000 250000
Env Frames

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
MiniHack-Levitate-Potion-Restricted-v0

0 50000 100000 150000 200000 250000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

MiniHack-Freeze-Horn-Restricted-v0

0 50000 100000 150000 200000 250000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

MiniHack-Freeze-Wand-Restricted-v0

0 50000 100000 150000 200000 250000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

MiniHack-Freeze-Random-Restricted-v0

Parametric model, count-based exploration with MCTS Non parametric model, count-based exploration with MCTS Non parametric model, random exploration

Figure 17: Training from scratch with different model types

0 3 6 9
Env Frames 1e6

0.4

0.0

0.4

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

0 3 6 9
Env Frames 1e6

0.4

0.0

0.4

0.8

Levitate-Potion

0 3 6 9
Env Frames 1e6

0.4

0.0

0.4

0.8

Freeze-Horn

0 3 6 9
Env Frames 1e6

0.4

0.0

0.4

0.8

Freeze-Wand

0 3 6 9
Env Frames 1e6

0.4

0.0

0.4

0.8

Freeze-Random

Count-based Pretraining in Freeze-Random Count-based Pretraining in Playground No Pretraining

Figure 18: PPO all runs.

F.1.2 DREAMER

We show extended transfer results for Dreamer. We see in Figures 19 and 20 that when trained
for much longer, Dreamer with both disagreement-based and count-based pre-training does start to
get more rewards. However, we also observe the reward curves with pre-training is much worse
than the reward curves without pre-training (black dotted lines), indicating negative transfer across
environment and object types for these methods.

0 100000 200000 300000
Env Frames (Linear Scale)

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

0 100000 200000 300000

0.5

0.0

0.5

1.0
Levitate-Potion

0 100000 200000 300000

0.5

0.0

0.5

1.0
Freeze-Horn

0 100000 200000 300000

0.5

0.0

0.5

1.0
Freeze-Wand

0 100000 200000 300000

0.5

0.0

0.5

1.0
Freeze-Random

Dreamer-v3 (no pretraining) Dreamer-v3 (count-based pretraining) Dreamer-v3 (disagreement pretraining)

Figure 19: Longer Dreamer pretraining runs in the sandbox environment to show eval reward does
increase with more samples, albeit pretraining seems to result in negative transfer.

F.1.3 OTHER MODEL LEARNING APPROACHES

We plot comprehensively the non-parametric model results in Figure 21. This model uses a table
to keep track of transition successful probabilities between abstract states, as used by the attribute
planner in Zhang et al. (2018). We show direct comparison between methods in Figure 17.

We further compare against an approach using K-means clustering on the attributes, and labeling
edges (between the k-means “cores”) with the last observed action that successfully led to a tran-
sition. This way of model-learning along with greedy planning was used by the NCS (neural con-
straint satisfaction) method of Chang et al. (2023). Specifically NCS uses k-means clustering with
greedy planning, which we found to not work for any of our environments. A hybrid variant using
k-means clustering with Dijkstra planning works in MiniHack (albeit less well than MEAD), and
fails completely in 2D crafting.

28



Published as a conference paper at ICLR 2025

0 50000 100000 150000 200000 250000 300000
Env Frames (Linear Scale)

0.5

0.0

0.5

1.0
M

ea
n 

Ep
iso

de
 R

et
ur

n

Levitate-Boots

0 50000 100000 150000 200000 250000 300000

0.5

0.0

0.5

1.0
Levitate-Potion

0 25000 50000 75000100000125000150000175000

0.5

0.0

0.5

1.0
Freeze-Horn

0 50000 100000 150000 200000

0.5

0.0

0.5

1.0
Freeze-Wand

Dreamer-v3 (no pretraining) Dreamer-v3 (count-based pretraining) Dreamer-v3 (disagreement pretraining)

Figure 20: Longer Dreamer pretraining runs in the Freeze Random environment to show eval
reward does increase with more samples, ableit pretraining seems to result in negative transfer.

80000 160000 240000
Env Frames

0.3

0.0

0.3

0.6

0.9

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

80000 160000 240000
Env Frames

0.3

0.0

0.3

0.6

0.9

Levitate-Potion

80000 160000 240000
Env Frames

0.3

0.0

0.3

0.6

0.9

Freeze-Horn

0 300000 600000 900000
Env Frames

0.3

0.0

0.3

0.6

0.9

Freeze-Wand

0 300000 600000 900000
Env Frames

0.3

0.0

0.3

0.6

0.9

Freeze-Random

Non-Param, MCTS Exploration Non-Param, Random Exploration

(a) Mean episode return

0 80000 160000 240000
Env Frames

10

15

20

25

30

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

0 80000 160000 240000
Env Frames

25

50

75

100
Levitate-Potion

0 80000 160000 240000
Env Frames

4

6

8

10
Freeze-Horn

0 300000 600000 900000
Env Frames

25

50

75

100

Freeze-Wand

0 300000 600000 900000
Env Frames

25

50

75

100

Freeze-Random

Non-Param, MCTS Exploration Non-Param, Random Exploration

(b) Number of unique (Object, Attribute, New Attribute) transitions discovered

Figure 21: Non-parametric agent. Notice the difference in X-axis scale for Freeze-Wand and Freeze-
Random environments.

F.2 LOW LEVEL LEARNING

F.2.1 LEARNING LOW LEVEL POLICIES

We can reinforcement learn low level behaviours. From some Xt, we propose behaviour b =
(α(i), ξ′) and execute πb until an abstract transition. If the resulting Xt+1 contains item (α(i), ξ′),
we reward πb with a reward of +1 (else -1).

While this can be implemented in many ways, in practice we use a goal conditioned RL set-up, where
a single model free policy network takes in both the low level state and the behaviour embedding
to produce a primitive action: π : S × B → A. The low level state is the environment’s raw
observations while the behaviour embedding is the same as the one given to the abstract level model.
This is implemented as a wrapper over the original environment which provides the policy with a +1
reward if (α(i), ξ′) ∈ Xt+1, and -1 otherwise. We use APPO as the policy optimization algorithm
(Petrenko et al., 2020). The point of this is merely to show that we can learn the set of behaviours
neurally and building an Ab-MDP with them still works.

The full MiniHack low level policy learning result is shown in Figure 24a. The performance of
MEAD in an Ab-MDP with learned behaviours is shown in Figure 24b. Note that the reported 2D
Crafting results in main text Section 4.1 already use neurally learned behaviours.

F.2.2 LEARNING OBJECT-CENTRIC MAP

We train an object centric map which takes the low level observation and predict the abstract state:
X̂t = Mθ(St−1, At, St). The encoder map Mθ uses a convolutional encoder for MiniHack low level
observations (specifically, the low level encoder from Henaff et al. (2022)), and learned embeddings

29



Published as a conference paper at ICLR 2025

0 100000 200000 300000
Env Frames

0.3

0.0

0.3

0.6

0.9
Mean Episode Return

0 100000 200000 300000
Env Frames

0

20

40

60

80

100

Number of Discovered
Object-Attribute Transitions

Non-Param, MCTS Exploration
Non-Param, Random Exploration

Parametric, MCTS Exploration

(a) Training from scratch with parametric (ours) and
non-parametric model types in the Freeze-Wand en-
vironment. (Left) Episode return. (Right) Number
of unique valid (item identity, item attribute, new at-
tribute) transitions discovered.

0 30000 60000 90000 120000
Env Frames

0.4

0.0

0.4

0.8

Mean Episode Return

0 30000 60000 90000 120000
Env Frames

0

20

40

60

80

100

Number of Discovered
Object-Attribute Transitions

Counts + MCTS (depth=1)
Counts + MCTS (depth=2)

Counts + MCTS (depth=4)
Random Exploration

(b) Effect of count-based intrinsic reward and
MCTS in the Freeze-Wand environment. (Left)
Episode return. (Right) Number of unique valid
(item identity, item attribute, new attribute) transi-
tions discovered by the agent.

Figure 22: Model ablations

0 20000 40000 60000 80000 100000
Environment steps

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
ep

iso
de

 re
wa

rd

Env: 2D Crafting, 4 steps

MEAD (parametric 
model, Dijkstra)
K-means with Dijkstra

(a) Training from scratch in 2D crafting env.

0 10000 20000 30000 40000 50000
Environment steps

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

M
ea

n 
ep

iso
de

 re
wa

rd

Env: Minihack Freeze-Wand

K-means with Dijkstra
MEAD (parametric 
model, Dijkstra)
NCS model (K-means, 
greedy planning)

(b) Training from scratch in MiniHack.

Figure 23: Performance of the k-means clustering on attributes method as used in NCS (Chang et al.,
2023). NCS specifically uses k-means clustering with greedy planning, although we also test a vari-
ant using k-means clustering with Dijkstra planning. Legends specify the function approximation
and planning methods used.

for each discrete actions. After concatenating all encoded inputs, the latent is projected through two
2-layer feedforward nets, one producing a categorical distribution over item identities, and another a
categorical distribution over item attributes. The output of this map are two tensors each with shape
(item set size × num categories). We can train this via a categorical cross-entropy loss to predict the
correct identity and attribute categories for all items.

We collect a dataset of 100k transitions using a random policy in the MiniHack Freeze-Horn envi-
ronment, and use the hand-crafted mapping to provide ground truth abstract state labels. We train
using Adams optimizer with batch size 4096 and learning rate 3e-4.

We investigate the effect of training with different sub-sets of the data on both the encoder accuracy
and the subsequent planning performance in Figure 25.

F.3 EXTENDED ABLATION RESULTS

F.3.1 GENERATIVE AND DISCRIMINATIVE MODELLING

We design an experiment where we isolate the difference made by the generative vs. discriminative
modelling, which we can view as a constraint over the support of the predicted distribution for Xt+1.

We collect a dataset using a hand-crafted expert policy in MiniHack’s Freeze-Horn environment,
with a degree of action noise added to increase coverage. This is done to remove the exploration
problem: the model only needs to learn to fit the trajectories well and it should contain within its
world model the correct transitions required to solve the task. We fit two models:

• A discriminative model, which learns to predict success probability (Equation 1) as de-
scribed by the main text.

30



Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Env Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g 

Su
cc

es
s P

ro
b

Freeze-Horn

0.0 0.5 1.0 1.5
Env Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Freeze-Random

0.0 0.5 1.0 1.5 2.0
Env Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Freeze-Wand

0.0 0.5 1.0 1.5 2.0
Env Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Levitate-Boots

0.0 0.5 1.0 1.5 2.0
Env Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Levitate-Potion

(a) Low level model free RL to optimize behaviour success probabilities

0 80000 160000
Env Frames

2

1

0

1

Av
g 

Su
cc

es
s P

ro
b

Freeze-Horn

0 80000 160000
Env Frames

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Freeze-Random

0 80000 160000
Env Frames

1.0

0.5

0.0

0.5

Freeze-Wand

0 80000 160000
Env Frames

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Levitate-Boots

0 80000 160000
Env Frames

2

1

0

1
Levitate-Potion

Crafted
Learned

(b) MEAD performance in Ab-MDP with learned vs. crafted behaviours

Figure 24: Learning low level behaviours within MiniHack

0.01 0.05 0.1 0.5 0.9
Proportion of data trained on

0.0

0.2

0.4

0.6

0.8

Ev
al

 a
cc

ur
ac

y

Encoder Accuracies

0 10000 20000 30000 40000 50000
Environment Steps

0.50

0.25

0.00

0.25

0.50

0.75

M
ea

n 
ep

iso
de

 re
wa

rd

Performance with Different Encoders

Prop data
0.01
0.05
0.1
0.5
0.9

Figure 25: Effect of training on different proportions of the 100k dataset on encoder accuracy (left)
and MEAD performance (right) in Minihack-Freeze-Horn.

• A generative model, which learns to predict the distribution over X .

The two models use the same architecture to encode the previous abstract state and behaviours.
It differs only in its output head: the discriminative model outputs a binary prediction, while the
generative model outputs a categorical prediction for each item. We observe in Figure 26 that both
model classes optimize the loss.

0 100 200 300 400 500
Optimization steps

0.1

0.2

0.3

0.4

Bi
n 

Cr
os

s E
nt

ro
py

 L
os

s

Discriminative
100
1000

5000
10000

0 100 200 300 400 500
Optimization steps

10 1

100

Cr
os

s E
nt

ro
py

 L
os

s

Generative
100
1000

5000
10000

Figure 26: Loss curves for training generative and discriminative mdoels on a fixed expert dataset.
Colors denote different number of dataset transition size.

To do planning, we run Dijkstra, with the edge weight as the negative log of Pr(X ′|X, b, θ)
(where θ denotes the generative or discriminative model). There are two ways we can gen-
erate the neighbours for the generative model: either by proposing the modal next state, i.e.
X ′ = argmaxX′ Pr(X ′|X, b, θ), or by expected behaviour change X ′ = ∆(X, b). Using ex-

31



Published as a conference paper at ICLR 2025

pected behaviour change does not work in planning (the model never proposes behaviour sequences
that lead to solving the task), thus we report results by using the modal next state. The results are
reported in main text Figure 7, noting the error bars denote standard error of mean.

F.3.2 MODEL FITTING

We found that running sufficient number of model fitting steps in between data collection steps was
important. Fully re-setting the weights before data fitting is also helpful.

F.3.3 GLOVE SEMANTIC EMBEDDING

10000 20000 30000 40000 50000
Env Frames

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots (7 types)

10000 20000 30000 40000 50000
Env Frames

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Levitate-Potion (25 types)

10000 20000 30000 40000 50000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Freeze-Horn (1 type)

10000 20000 30000 40000 50000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Freeze-Wand (27 types)

10000 20000 30000 40000 50000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Freeze-Random (28 types)

GloVe embedding of object name (frozen weights) Random object embedding (trainable weights)

Figure 27: Training from scratch with frozen GloVe embeddings, or trainable randomly initialized
weights.

We investigate the impact of having the object identity embeddings be semantically meaningful
versus random one-hot embedding in MiniHack. By default, all experiments in the main text take
as input object identity embedding using GloVe Pennington et al. (2014) embedding, which are kept
frozen throughout training. We ablate this by initializing the object identity embedding matrix to be
randomly initialized from a standard Gaussian, N (0, 1), and allow them to be updated by gradients.

Figure 27 shows the results in all five games. We observe that having word embedding helps a bit in
environment where there are many types of the same objects (i.e. Levitate-Potion and Freeze-Wand).
This is unsurprising as the text embedding between objects would be rather similar (e.g. “wooden
wand” and “metal wand” would have similar averaged embedding). Abeit they still performant
overall. This hints at the abstraction being useful mainly due to its (object identity, object attribute)
structure.

F.4 MODEL UPDATES

We show effects of number of model update steps during data collection in Figure 28, 29,&31.

0 10000 20000 30000 40000 50000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Model update steps
500
2500
10000

(a) Effect of model update steps
between data collection steps.

0 10000 20000 30000 40000 50000 60000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Thresholds to collect more data
accuracy diff threshold only
accuracy threshold only
both thresholds
no thresholds

(b) Effect of model threshold logic
prior to being allowed to collect
more data

0 20000 40000 60000 80000 100000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Weight reset
all weights
no weights

(c) Weight reset strategies before
fitting on new data

Figure 28: Model training hyperparameters training in Freeze Wand environment.

32



Published as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000 120000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Exploration setting
mcts exploration (depth=1)
mcts exploration (depth=2)
mcts exploration (depth=4)
random exploration

(a) MCTS hyperparameter ef-
fects, planning to find the max re-
warding state using current para-
metric model.

0 20000 40000 60000 80000 100000 120000
Env Frames

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Transition estimate for MCTS
current parametric model
dataset empirical probabilities

(b) Using the empirical dataset
probability for MCTS planning
(i.e., a non-parametric estimate)

Figure 29: MCTS exploration hyperparameters in the Freeze Wand environment.

20000 40000
Environment steps

0.7

0.8

0.9

1.0

Tr
ai

n 
ac

cu
ra

cy

Model Binary Accuracy

Optim steps
100
500
1000
2500

10000 20000 30000 40000
Environment steps

0.5

0.0

0.5
M

ea
n 

ep
iso

de
 re

wa
rd

Mean Episode Reward

100
500
1000
2500

Figure 30: Ablating just the effect of model optimization steps in MiniHack-Freeze-Wand env.
Model weights are reset after each data collection step (of 2.5k frames), then trained for the specified
number of steps before the next data collection step. With sufficient optimization steps, high model
accuracy and planning performance is achieved.

F.5 MODEL EMBEDDING

We investigate the vector representation of different (object identity, object attribute) pairs in our
model at the start of training and in the end. Results are shown in Figure 32. We observe vector
cluster mainly along object attributes in the start of training (due to the orthogonal object embed-
ding initialization). After training, vectors cluster by object attributes in an identity-dependent way.
For instance, the STAIRS UP object in Figure 32a are not clustered by attributes along the first
two principle components in the Freeze Random environment, likely due to their usage being very
different as compared to the other usable objects. We also observe separation by object-identities
inside each of the object attribute clusters after training, but not before.

Again referring to Figure 32 (a), we notice that unseen objects (not seen in the Freeze Random
environment—here it is the “levitate” objects) largely fall into clusters by attributes.

F.6 INTERNAL WORLD GRAPHS

We can also show the model’s internal world model in a highly interpretable way: through running
a graph search algorithm (e.g. breadth first search) along transitions the model predicts is high
probability, and reconstructing the model’s internal graph.

We do this for two environments, showing only high probability transitions, and disallow visualiza-
tion of loops in the graphs. The world model graph for Freeze-Random is in Figure 33. Note this
is the same model which we illustrated in brief in main text Figure 3b. The world model graph for
a 200k frames checkpoint in the Levitate-then-Freeze environment is in Figure 34, which is much
more complex even with only the high probability edges.

33



Published as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000
Env Frames

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Ep

iso
de

 R
et

ur
n

Data collection frequency
250 2500

(a) Eval performance as function
of data collection

2000 4000 6000 8000 10000 12000 14000
Env Frames

0

10000

20000

30000

40000

50000

W
al

lcl
oc

k 
Ti

m
e 

(s
)

Data collection frequency
250 2500

(b) Wallclock time for different
data collection frequencies

Figure 31: Data collection frequency in the Freeze Wand environment.

G TRAINING DETAILS AND HYPERPARAMETERS

G.1 OUR MODEL

We describe our default parameters in Table 7.

Hyperparameter Value

Optimization

Optimizer Adam
Learning rate 1e-4
Adam betas (0.9, 0.999)
Adam eps 1e-8

Max batch size 2048

Data Collection
Additional frames before training 2500

Weight reset before training reset all weights
Minimum optimizer steps before data collection 2500

MCTS Exploration

Random goal selection probability 0.2
Num simulations 16
Max search depth 4

Probability for valid edge 0.5

Eval Planning Dijkstra max iters 100
Dijkstra low probability cut-off 0.1

Table 7: Default training parameters for our model

G.2 DREAMER-V3

We describe the default parameter used to run the Dreamer-v3 baseline. We use a PyTorch im-
plementation of Dreamer: https://github.com/NM512/dreamerv3-torch, which has
similar training curves as reported initially in Dreamer-v3. Unless otherwise mentioned, we use the
“XL” world model setting with the highest amount of training iteration, which had the best reported
sample efficiency in Hafner et al. (2023), and was confirmed by our preliminary experiments (Fig-
ure 35). We start with parameters as faithful to the reported ones in Hafner et al. (2023) as possible
as it was found to work across a wide range of settings, then sweep over a subset of hyperparameters
and report the best ones (which we use) in Table 8.

We perform parameter sweep over a subset and report the best ones (which we use) in Otherwise
we keep the parameters as faithful to the reported ones in Hafner et al. (2023) as possible as it was
found to work across a wide range of settings.

G.3 MUZERO

We use the MuZero code base from Werner Duvaud (2019). We sweep over learning rates {1×10−5,
1 × 10−4, 1 × 10−3}, encoding size {32, 64, 128, 256, 512}, number of simulations {30, 90, 100,

34

https://github.com/NM512/dreamerv3-torch


Published as a conference paper at ICLR 2025

0.5 0.0 0.5 1.0

0.5

0.0

0.5

PC
 2

Env Frames: 0

5 0 5 10

0

5

10
Env Frames: 200000

By Object Identities
LEVITATE_BOOTS
LEVITATE_RINGS
LEVITATE_POTIONS
FREEZE_HORNS
FREEZE_WANDS
AGENTS
STAIRS_UP

0.5 0.0 0.5 1.0
PC 1

0.5

0.0

0.5

PC
 2

5 0 5 10
PC 1

0

5

10
By Object Attributes

in_world
in_inventory
standing_on_top
no_exist
levitating
used

(a) Training in Freeze Random environment. Per dimension
variance ratio explained at 0 frame: (0.24735658, 0.22067907); at
200k frames: (0.49951893, 0.35679522)

0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

PC
 2

Env Frames: 0

5 0 5 10

5.0

2.5

0.0

2.5

5.0

Env Frames: 200000

By Object Identities
LEVITATE_BOOTS
LEVITATE_RINGS
LEVITATE_POTIONS
FREEZE_HORNS
FREEZE_WANDS
AGENTS
STAIRS_UP

0.5 0.0 0.5 1.0
PC 1

0.5

0.0

0.5

1.0

PC
 2

5 0 5 10
PC 1

5.0

2.5

0.0

2.5

5.0 By Object Attributes
in_world
in_inventory
standing_on_top
no_exist
levitating
used

(b) Training in the Sandbox Playground environment. Per
dimension variance ratio explained at 0 frame: (0.3139481,
0.23430094); at 200k frames: (0.5275301, 0.23016657)

Figure 32: Principle components analysis (PCA) of the (object identity, object attribute) vector
representation in the model right before the key-query-value projection layer. PCA projects from
128 dimensions to 2 orthogonal dimensions of maximum variance. We show the representation at
two points in training: 0 frames and 200k frames (columns). We label each (object identity, object
attribute) vector by its identity (top row) and by its attribute (bottom row) separately.

180}, using prioritized experience replay (or not), batch size {128, 2048}, TD steps {4, 10, 20,
50, 100}, and the delay in self-play simulations (allowing for more training steps in between data
collections) of {0, 2, 8}. We use the best hyperparameters and report them in Table 9.

We observe a small effect of different self play delay lengths performing better in different games.
We choose a delay of 0 as it performed the best in most games. Nevertheless, we report the perfor-
mance of different self play delay lengths in Figure 36 for completeness.

G.4 PPO

We use the Sample-Factory implementation of PPO (Petrenko et al., 2020). We run a parameter
sweep over a subset and report the best parameters which we use in Table 10.

35



Published as a conference paper at ICLR 2025

STAIRS_UP - in_world, 
AGENTS - in_world, 

FREEZE_WANDS - in_world, 

STAIRS_UP - in_world, 
AGENTS - in_world, 

FREEZE_WANDS - standing_on_top, 

FREEZE_WANDS: 
in_world -> standing_on_top: 0.99

AGENTS - in_world, 
FREEZE_WANDS - in_world, 

STAIRS_UP - standing_on_top, 

STAIRS_UP: 
in_world -> standing_on_top: 0.992

FREEZE_WANDS - in_inventory, 
STAIRS_UP - in_world, 

AGENTS - in_world, 

FREEZE_WANDS: 
standing_on_top -> in_inventory: 0.997

FREEZE_WANDS - in_inventory, 
AGENTS - in_world, 

STAIRS_UP - standing_on_top, 

STAIRS_UP: 
in_world -> standing_on_top: 0.982

STAIRS_UP - in_world, 
AGENTS - in_world, 

FREEZE_WANDS - used, 

FREEZE_WANDS: 
in_inventory -> used: 0.988

Figure 33: Extracted internal world model with a particular starting state in Freeze-Random by
starting traversal from a given initial state. Only the most relevant objects are included for clarity
and only transitions with success probability above 0.1 are included. Note that each node has 40-50
edges, although we only visualize the high probability ones.

Hyperparameter Value

Optimization

Optimizer Adam
Model lr 1e-4
Actor lr 3e-5
Critic lr 3e-5

Batch size 32
Batch length 64
Train ratio 1024

Replay capacity 106

Model Units
GRU recurrent units 4096
Dense hidden units 1024

MLP layers 5
Planning Imagination horizon 15

Exploration (disagreement) Ensemble size 10

Table 8: Dreamer parameters

Hyperparameter Value
Learning rate init 1× 10−4

Encoding size 512
Batch size 2048

Num simulations 100
TD steps 20

Prioritized experience replay False

Table 9: MuZero parameters

36



Published as a conference paper at ICLR 2025

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_w
o
rl

d
, 

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_w
o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

L
E

V
IT

A
T

E
_B

O
O

T
S

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
2

8

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 s
ta

n
d

in
g

_o
n

_t
o
p

, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

in
_w

o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
1

1

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
4

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_w
o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

: 
st

a
n

d
in

g
_o

n
_t

o
p

 -
>

 i
n

_i
n

v
e
n

to
ry

: 
0

.9
8

4

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 s
ta

n
d

in
g

_o
n

_t
o
p

, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

in
_w

o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
S

T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_w
o
rl

d
, 

A
G

E
N

T
S

 -
 l

e
v
it

a
ti

n
g

, 

A
G

E
N

T
S

: 
in

_w
o
rl

d
 -

>
 l

e
v
it

a
ti

n
g

: 
0

.8
5

7

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
3

7

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

st
a
n

d
in

g
_o

n
_t

o
p

 -
>

 i
n

_i
n

v
e
n

to
ry

: 
0

.9
7

3

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 u
se

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

in
_i

n
v
e
n

to
ry

 -
>

 u
se

d
: 

0
.3

0
5

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

L
E

V
IT

A
T

E
_B

O
O

T
S

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.8
9

9

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
3

5

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
L

E
V

IT
A

T
E

_B
O

O
T

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

st
a
n

d
in

g
_o

n
_t

o
p

 -
>

 i
n

_i
n

v
e
n

to
ry

: 
0

.9
8

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
L

E
V

IT
A

T
E

_B
O

O
T

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
S

T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

A
G

E
N

T
S

 -
 l

e
v
it

a
ti

n
g

, 

A
G

E
N

T
S

: 
in

_w
o
rl

d
 -

>
 l

e
v
it

a
ti

n
g

: 
0

.8
9

1

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
 -

 u
se

d
, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

in
_i

n
v
e
n

to
ry

 -
>

 u
se

d
: 

0
.3

2
7

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
L

E
V

IT
A

T
E

_B
O

O
T

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
3

2

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 i

n
_w

o
rl

d
, 

A
G

E
N

T
S

 -
 l

e
v
it

a
ti

n
g

, 
S

T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
3

8 L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
S

T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

A
G

E
N

T
S

 -
 l

e
v
it

a
ti

n
g

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

in
_w

o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
1

4

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
S

T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

A
G

E
N

T
S

 -
 l

e
v
it

a
ti

n
g

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 u

se
d

, 

F
R

E
E

Z
E

_W
A

N
D

S
: 

in
_i

n
v
e
n

to
ry

 -
>

 u
se

d
: 

0
.9

2

F
R

E
E

Z
E

_W
A

N
D

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
L

E
V

IT
A

T
E

_B
O

O
T

S
 -

 i
n

_i
n

v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 l
e
v
it

a
ti

n
g

, 
S

T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
3

3

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 l
e
v
it

a
ti

n
g

, 
S

T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 u

se
d

, S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
2

7

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 u

se
d

, 

L
E

V
IT

A
T

E
_B

O
O

T
S

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
1

3

A
G

E
N

T
S

 -
 i

n
_w

o
rl

d
, 

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_w

o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 u

se
d

, 

S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
3

L
E

V
IT

A
T

E
_B

O
O

T
S

 -
 i

n
_i

n
v
e
n

to
ry

, 
A

G
E

N
T

S
 -

 i
n

_w
o
rl

d
, 

S
T
A

IR
S

_U
P

 -
 s

ta
n

d
in

g
_o

n
_t

o
p

, 
F

R
E

E
Z

E
_W

A
N

D
S

 -
 u

se
d

, S
T
A

IR
S

_U
P

: 
in

_w
o
rl

d
 -

>
 s

ta
n

d
in

g
_o

n
_t

o
p

: 
0

.9
2

5

Figure 34: Extracted internal world model by starting traversal from a given initial state. Only the
most relevant objects are included for clarity. The plan required to solve the Levitate-then-Freeze
task involves going from the top (root) state to the bottom left state.

37



Published as a conference paper at ICLR 2025

0 40000 80000 120000160000
Environment steps

0.50

0.25

0.00

0.25

0.50

0.75

M
ea

n 
ep

iso
de

 re
wa

rd
Train ratio

256
512
1024
2048

(a) Training from scratch (no pre-
training)

0 15000 30000 45000
Environment steps

0.5

0.0

0.5

1.0

M
ea

n 
ep

iso
de

 re
wa

rd

Train ratio
512
1024
2048
4096

(b) Fine-tuning after reward-based pre-
training

Figure 35: Effect of Dreamer-v3 training ratio (amount of training to data collec-
tion) on performance, for training from scratch in MiniHack-Freeze-Wand (left),
and for fine-tuning in MiniHack-Levitate-Boots from reward-based pretraining in
MiniHack-Freeze-Random.

0 200000 400000
Env Frames

0.5

0.0

0.5

1.0

M
ea

n 
Ep

iso
de

 R
et

ur
n

Levitate-Boots

0 200000 400000
Env Frames

0.5

0.0

0.5

Levitate-Potion

0 200000 400000
Env Frames

0.5

0.0

0.5

Freeze-Horn

0 200000 400000
Env Frames

0.4

0.2

0.0

0.2

Freeze-Wand

0 200000 400000
Env Frames

0.50

0.25

0.00

0.25

0.50

0.75
Freeze-Random

Self play delay
0 2 8

Figure 36: Muzero runs in the Minihack environments, with different self-play delay lengths

Hyperparameter Value

Data Collection

Number of workers 2
Number of env per worker 10

Rollout length 128
Recurrence length 2

Optimization

Optimizer Adam
Model lr 1e-4

Reward scale 1.0
Batch size 4096

Shuffle minibatches False

Table 10: PPO Parameters

38


	Introduction
	Problem Setting
	Abstract states and behaviours
	Abstracted Item-Attribute MDP

	Methods
	Forward model
	Planning for exploration
	Planning for goal

	Results
	Learning from scratch in single environments
	Transfer and Compositions
	Learning object perturbing policies and object-centric map
	Learning low level policies
	Learning object-centric map

	Ablations
	Generative vs. Discriminative Models
	Count-based exploration
	Parametric vs. Non-Parametric Models


	Related Work
	Discussion
	Broader Impact
	Problem Setting Details
	Abstracted MDP
	Interpretation via Options Framework
	A note on semi-MDP
	Relationship to other MDP formalism
	Example applications
	Multi-Item Behaviours

	Analysis of Assumptions
	The generality of Ab-MDP
	Discriminative modelling with single item change


	MEAD: Extended Methods
	Model Fitting
	Model Architecture
	Exploration

	Environments
	2D Crafting
	MiniHack
	Sandbox Environment
	Low Level Policy Errors


	Baseline Methods
	Extended Results
	Extended Main Results
	PPO All Runs
	Dreamer
	Other Model Learning Approaches

	Low Level Learning
	Learning Low Level Policies
	Learning Object-Centric Map

	Extended Ablation Results
	Generative and Discriminative Modelling
	Model fitting
	GloVe Semantic Embedding

	Model Updates
	Model Embedding
	Internal World Graphs

	Training Details and Hyperparameters
	Our model
	Dreamer-v3
	MuZero
	PPO


