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Abstract

Multi-label code annotation in competitive pro-
gramming is challenging due to the integra-
tion of diverse algorithmic paradigms within a
single program. We propose L-CPC, a frame-
work that leverages NLP and large language
models to annotate competitive programming
code from the Codeforces dataset. Through a
parallel architecture with modules like Code-
BERT/UniXcoder, retrieval-based methods and
state-of-art large language models’ (LLMs’) an-
notation, L-CPC shows improved performance,
achieving a higher Jaccard Score and F1-score
compared to traditional methods such as SVM
and Random Forest. These natural language
based methods better fit the code settings, and
some parts are easy to adapt to other settings
besides programming contest. While L-CPC
effectively captures semantic relationships in
code, certain challenges remain in handling
complex cases and need future work.

1 Introduction

Automatic identification of algorithms in source
code is crucial for advancing software develop-
ment and educational platforms. Traditional man-
ual code analysis is time-intensive and struggles
with the complexity of modern programs integrat-
ing multiple algorithms (Shalaby et al., 2017).

In educational settings, code-algorithm retrieval
supports personalized learning by enabling stu-
dents to access relevant code snippets via natural
language queries (Lin et al., 2021). This aligns
with vibe coding, fostering intuitive, feedback-
driven code exploration and reducing cognitive bar-
riers for novice programmers (Good and Howland,
2015). In industry, these technologies enhance de-
veloper productivity by providing rapid access to
reusable, contextually relevant code (Chinthapatla,
2024). They streamline workflows, reduce redun-
dancy, and promote adherence to coding standards,
fostering knowledge sharing across teams (Santos

etal.,2015). As programming shifts toward interac-
tive and intelligent environments, code-algorithm
retrieval is poised to improve software engineering
efficiency and quality.

Recent advances in algorithm recondition in-
cluding rule-based methods, which lack scala-
bility, and traditional machine learning classifier
(e.g., Support Vector Machine, Random Forests
and K-nearest-neighbors), which excel in single-
label tasks but struggle in multi-label scenar-
ios(Bogatinovski et al., 2022). Unlike simple
feature vectors, source code represents a high-
dimensional, language-like structure with intricate
semantic nuances. Traditional methods, reliant on
fixed feature representations, fail to capture the
full complexity of code, leading to reduced perfor-
mance in multi-label tasks, this semantic complex-
ity demands model capable of understanding code
as a structure , context-rich entity.

Our work introduces Language-represented
Competitive Programming Contest (L-CPC) an-
notation, a novel framework leveraging natural
language processing (NLP) methods for multi-
algorithmic-methods annotation. By modeling
code as a language-like structure, L-CPC captures
semantic relationships and contextual dependen-
cies, enabling more accurate identification of com-
posite algorithms in ICPC solutions. Our study
serves as a start for further exploration in generaliz-
ing to diverse programming languages, improving
scalability for larger codebases, and integrating
richer contextual cues from problem descriptions.
These advancements will further enhance the ro-
bustness and applicability of multi-label code an-
notation in competitive programming and beyond
in industrial and educational fields.

2 Related Work

Algorithm identification in source code has been
extensively studied, with early approaches relying
on rule-based methods that match syntactic patterns



to detect specific algorithms (Alnusair et al., 2014).
While interpretable, these methods lack scalability
and struggle with the syntactic diversity of mod-
ern codebases, particularly in multi-label scenar-
i0s where algorithms combine multiple paradigms
(e.g., A* search integrating breadth-first search and
greedy strategies).

Traditional machine learning classifiers, such
as Support Vector Machines, Random Forests,
and K-Nearest Neighbors, have improved detec-
tion accuracy for single-label tasks by leveraging
handcrafted features like control flow graphs or
token frequencies (Shalaby et al., 2017). How-
ever, these methods falter in multi-label compet-
itive programming contexts, where code exhibits
high-dimensional, language-like structures. Fixed
feature representations fail to capture semantic nu-
ances, leading to poor performance when annotat-
ing complex ICPC solutions that blend multiple
algorithmic strategies (Iancu et al., 2019).

Competitive programming contests, such as
the International Collegiate Programming Contest
(ICPC), provide an ideal context for studying these
challenges, where problems are inherently com-
plex, often requiring solutions that naturally in-
tegrate multiple algorithmic paradigms (e.g., dy-
namic programming, graph traversal, and greedy
strategies) within a single program. These solu-
tions, typically longer and more intricate than stan-
dard code snippets, pose significant challenges for
traditional machine learning methods when trans-
formed into machine-processable representations.

Recent advances in NLP have shifted focus to-
ward modeling code as a natural language-like
structure. Techniques such as code embeddings,
transformer-based models have shown promise in
capturing semantic relationships in code (Min et al.,
2021). For instance, pre-trained code models like
CodeBERT (Feng et al., 2020) have been applied
to tasks like code summarization and defect detec-
tion, demonstrating robustness in understanding
code context (Devlin et al., 2019). However, these
models are primarily designed for single-task ob-
jectives and struggle with multi-label algorithm
annotation, especially in competitive programming,
where solutions are longer, more intricate, and re-
quire joint inference of multiple algorithmic labels
(Tancu et al., 2019).

Our work, L-CPC, builds on these advances by
leveraging NLP methods to address multi-label
competitive code annotation in multi-module. Un-

like prior approaches, L-CPC models code as a
language-like structure, enabling robust identifica-
tion of composite algorithms in ICPC solutions.
L-CPC lays the groundwork for scalable and accu-
rate multi-label annotation in competitive program-
ming.

3 Language-represented Competitive
Programming Code annotation
(L-CPCO)

We propose Language-represented Competitive
Programming Code Annotation (L-CPC), a novel
framework for multi-label annotation of compet-
itive programming code. L-CPC leverages the
power of natural language processing (NLP) and
large language models (LLMs) to automatically
annotate code from competitive programming con-
tests, capturing more key features. This approach
addresses the challenges of manual annotation by
providing a scalable and consistent solution for
labeling complex codebases.

3.1 Dataset

Competitive programming code often integrates
multiple algorithmic paradigms (e.g., dynamic pro-
gramming, graph traversal, and greedy strategies),
making manual annotation both time-consuming
and prone to inconsistency. Furthermore, solution
codebases are typically complex, with varied imple-
mentations and structures across different program-
ming languages. To train and evaluate L-CPC, we
construct a dataset by collecting anonymous user-
submitted, accepted solutions from Codeforces, a
globally recognized competitive programming plat-
form (Codeforces, 2025) (6614 solutions in our
dataset).

3.2 Workflow

The L-CPC framework operates in a streamlined
two-step process, as illustrated in Figure 1, fol-
lowed by a final label aggregation step to produce
the output labels. The process begins with code
parsing and representation. In this first step, L-
CPC processes input code snippets written in lan-
guages such as C++, Java, and Python. The code is
parsed into an Abstract Syntax Tree (AST) (Tree-
sitter, 2025) to represent its structure in a language-
agnostic. This representation preserves key syn-
tactic and semantic features, enabling subsequent
modules to analyze the code effectively without los-
ing critical information. The second step involves
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Figure 1: Workflow for traditional machine learning methods and L-CPC

parallel label prediction, where L-CPC employs
four distinct modules to generate candidate labels,
as depicted in the branching structure of Figure 1.
These modules operate concurrently to enhance
robustness and accuracy. The first module uses a
fine-tuned CodeBERT or UniXcoder (Feng et al.,
2020) model, trained on the Codeforces dataset,
to perform direct classification and generate can-
didate labels along with confidence scores. The
second module adopts an LLM-based approach, ex-
tracting key features from the parsed AST—such
as function names, loop structures, and estimated
time/space complexity—and mapping them to a
predefined set of labels to produce candidate labels
with confidence scores. The third module employs
a retrieval-based method, identifying similar code
snippets from a large corpus of competitive pro-
gramming solutions and using LLMs to predict
labels by analyzing the retrieved code and its asso-
ciated metadata. Finally, if a problem description
is available, the fourth module utilizes a trained
Text-to-Text model (T5) (Raffel et al., 2020) to pro-
cess the description and generate label predictions,
complementing the code-based approaches with
contextual insights from the problem statement.
Following the parallel label prediction, L-CPC con-
cludes with a final aggregation step. In this phase,
the framework combines the candidate labels gen-
erated by the four modules, using their confidence
scores to resolve conflicts and produce the final
set of multi-label annotations. This step ensures
that the output is both comprehensive and consis-
tent, effectively capturing the diverse algorithmic
paradigms present in the code.

4 Results and Analysis

4.1 Evaluation Metrics

We evaluate L-CPC using multi-label classifica-
tion metrics. Precision, recall, and F1-score mea-
sure prediction accuracy, defined as: precision
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computed as

4.2 Performance Evaluation

To evaluate the performance of traditional ma-
chine learning methods and the L-CPC framework,
we conducted experiments on the Codeforces test
dataset described in section 3.1. The dataset was
split into training, validation, and test sets, with
80% of the data used for training, 10% for valida-
tion, and 10% for testing.

Table 1 illustrates the performance comparison
using multi-label classification metrics: precision,
recall, F1-score, Hamming Loss, and Jaccard Score.
L-CPC achieved a precision of 0.82, recall of 0.78,
Fl1-score of 0.80, Hamming Loss of 0.12, and
Jaccard Score of 0.90, outperforming traditional
methods like SVM (Fl-score: 0.65, Hamming
Loss: 0.20, Jaccard Score: 0.62), Random For-
est (Fl-score: 0.68, Hamming Loss: 0.18, Jaccard
Score: 0.65), and Logistic Regression (F1-score:
0.62, Hamming Loss: 0.22, Jaccard Score: 0.59).



Method Precision Recall F1l-score Hamming Loss Jaccard Score
SVM 0.67 0.63 0.65 0.20 0.62
Random Forest 0.70 0.66 0.68 0.18 0.51
Logistic Regression 0.64 0.60 0.62 0.22 0.45
L-CPC: CodeBERT/UniXcoder 0.78 0.74 0.76 0.14 0.85
L-CPC: LLM-based 0.75 0.71 0.73 0.15 0.82
L-CPC: Retrieval-based 0.72 0.68 0.70 0.16 0.79
L-CPC (Overall) 0.82 0.78 0.80 0.12 0.90

Table 1: Performance comparison of traditional machine learning methods and L-CPC components on the Codeforces

test dataset.

Among L-CPC’s components, the CodeBERT/U-
niXcoder module performed best with an F1-score

of 0.76, Hamming Loss of 0.14, and Jaccard Score
of 0.85.

4.3 Additional Experiments

We further analyzed L-CPC’s performance across
programming languages and problem difficulty lev-
els. It achieved F1-scores of 0.82 for C++, 0.79
for Python, and 0.77 for Java, with Java’s verbosity
presenting challenges. Additionally, when the tar-
get label set was modified, L-CPC demonstrated
robustness, maintaining a Hamming Loss of 0.14,
except for the fine-tuned CodeBERT/UniXcoder
module, which requires retraining to adapt to the
new label set.

5 Discussion

In this study, we analyze the limitations of multi-
label labeling with traditional machine learning
methods in complicated cases that need more fea-
tures. And further we propose a more efficient
and robust framework L-CPC, in the context of
competitive programming codes. L-CPC is a multi-
module language-represented competitive program-
ming code annotation system. L-CPC demonstrates
significant improvements in multi-label code anno-
tation, achieving a Jaccard Score of 0.90 and an F1-
score of .80 on the Codeforces dataset, surpassing
traditional methods like SVM and Random Forest.
Its parallel architecture, leveraging NLP and LLMs,
effectively captures semantic relationships in com-
petitive programming code, enabling robust identi-
fication of multiple algorithmic paradigms. How-
ever, challenges remain with advanced problems
(F1-score: 0.76 for ratings above 2000) and ver-
bose languages like Java (F1-score: 0.77), where
syntactic complexity impacts performance. Ad-

ditionally, the fine-tuned CodeBERT/UniXcoder
module’s need for retraining when label sets change
highlights a limitation in adaptability. Future work
could focus on enhancing scalability for diverse
languages, improving the CodeBERT/UniXcoder
module’s flexibility through dynamic fine-tuning,
and incorporating richer contextual cues, such as
problem descriptions, to better handle complex
codebases.

Future Work

Future research will focus on extending L-CPC
to support a broader range of programming lan-
guages and larger codebases. We plan to improve
the adaptability of the CodeBERT/UniXcoder mod-
ule through dynamic fine-tuning techniques, reduc-
ing the need for retraining when label sets change.
Additionally, integrating more contextual informa-
tion, such as detailed problem descriptions, could
enhance performance on complex problems. Ex-
ploring L-CPC’s applicability in industrial settings,
such as automated code review, is another promis-
ing direction.
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6 Limitations

This study explores the application of state-of-the-
art large language models (LLMs) and fundamental
natural language processing (NLP) techniques for
multi-label code annotation in the context of com-
petitive programming contests. While the approach
demonstrates promising results, several limitations
must be acknowledged.

The performance of LLMs in this study is heav-
ily dependent on the quality and diversity of the
training data. Competitive programming datasets
may not fully represent the variety of coding styles,
problem complexities, or programming languages
encountered in real-world scenarios.

The multi-label annotation task introduces chal-
lenges related to label imbalance and ambiguity.
Some labels, such as those indicating specific al-
gorithmic paradigms (e.g., fft), may be underrep-
resented in the dataset, leading to biased model
predictions.

The study primarily focuses on static code anal-
ysis and does not account for dynamic runtime
behaviors or execution efficiency. Incorporating
runtime performance metrics or debugging-related
annotations could enhance the practical utility of
the model but was beyond the scope of this work.
Future research could address these gaps by inte-
grating dynamic analysis techniques or expanding
the label set to include performance-oriented anno-
tations.
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A Implementation Details

This section elaborates on the implementation specifics of the L-CPC framework, ensuring reproducibility
and transparency.

A.1 Hyperparameter Settings

The hyperparameters for each L-CPC module are as follows:

+ CodeBERT/UniXcoder: Utilizes CodeBERT-base with a learning rate of 2 x 10~°, batch size of
32, and 10 epochs. Optimization is performed using AdamW with a linear learning rate scheduler
(warmup steps: 500).

* LLM-based: Employs GPT-40 in a zero-shot configuration, relying on prompts detailed in Subsec-
tion A.3.

* Retrieval-based: Uses cosine similarity (threshold: 0.8) for retrieving code from a corpus of 10,000
Codeforces solutions, with labels inferred via LLM analysis of metadata.

* T5: Implements T5-large with a learning rate of 3 x 10~%, batch size of 16, and 5 epochs, optimized
using Adam.

A.2 Hardware Environment

Experiments were conducted on a high-performance setup:
* GPU: NVIDIA A100 (40GB VRAM)
¢ CPU: Intel Xeon Gold 6230
¢ Memory: 128GB RAM
* Training Time: Approximately 12 hours for the full L-CPC pipeline

A.3 LLM Prompt Design

The LLM-based module leverages a structured prompt to predict algorithmic paradigms from AST features.
Below is the prompt used, followed by an example:

Given the following features extracted from the code’s Abstract Syntax Tree (AST): [e.g., "contains
nested loops"”, "uses recursion”, "has priority queue”], identify the most likely algorithmic
paradigms. Options include: dynamic programming, graph traversal (BFS, DFS), greedy algorithm,
binary search, divide and conquer, backtracking. Provide all applicable paradigms, separated by
commas.

Example:
Input: """
{

"type": "Function”,

"name": "fib",

"params”: ["n"],

"body": [

{"type": "If","condition”: {"type"”: "BinaryOp”, "operator”: "<=", "left": {"type"”: "Variable”,
"name”: "n"}, "right": {"type": "Literal”, "value": 1}},
"body": [{"type": "Return”, "value”: {"type": "Variable", "name": "n"3}}13},

nnn

Qutput: "dynamic programming”

The prompt is designed to support multi-label predictions, using last output logits to calculate the
confidence for specified labels’ confidence.




B Label Set and Code Examples

This section defines the label set and illustrates its application with code snippets.

B.1 Label Set
L-CPC supports the following algorithmic paradigms:

binary search bitmasks brute force combinatorics  constructive algorithms
data structures  dfs and similar  divide and conquer dp dsu
it Sflows games geometry graph matchings
graphs greedy hashing implementation interactive
math matrices number theory probabilities shortest paths
sortings strings ternary search trees two pointers

B.2 Code Examples

Below are two representative examples:

* Single-label: Dynamic Programming

int dp[1000];
for (int i = 1; i <=n; i++) {
dp[i] = min(dp[i-1], dp[i-2]) + cost[il];

S

}

Description: This snippet uses state transitions to compute the minimum cost, a classic dynamic programming approach.

* Multi-label: Dynamic Programming + Graph Traversal

1 |vector<int> adj[1000];

2 |int dp[1000][1000];

3 |void dfs(int u, int p) {

4 for (int v : adjful) {

5 if (v 1= p) {

6 dfs(v, u);

7 dpLull@] += max(dpl[v1[@l1, dplv1[11);
8 }

9 }

10 |}

Description: This code integrates DFS with dynamic programming to solve the maximum independent set problem on a
tree.

C Ablation Study Results

This section evaluates the contribution of each L-CPC module through an ablation study.

Table 2: Ablation Study Results on Codeforces Dataset

Configuration F1-score Jaccard Score
Full L-CPC 0.80 0.90
w/o CodeBERT/UniXcoder 0.72 0.82
w/o LLM-based 0.75 0.85
w/o Retrieval-based 0.74 0.84
w/o TS 0.76 0.87

Analysis: Removing CodeBERT/UniXcoder results in the largest performance drop (F1: 0.72), highlighting its role in feature
extraction. The T5 module’s removal has a milder effect (F1: 0.76), reflecting its dependency on problem descriptions.

D Error Analysis

This section examines two prediction errors to identify L-CPC’s limitations.
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D.1 Case 1: High-Difficulty Problem

vector<int> solve(int n, vector<int>& a) {
// Complex logic with rare algorithmic patterns

3

Error: Missed "divide and conquer" label. Reason: The code’s complexity obscured key structural features, suggesting a need
for enhanced feature extraction.

D.2 Case 2: Verbose Java Syntax

public class Solution {
public int maxProfit(int[] prices) {
// Verbose implementation
}
}

Error: Predicted "greedy algorithm" but missed "dynamic programming." Reason: Java’s verbose syntax introduced noise in the
AST, affecting label accuracy.

Implication: Future improvements should refine AST parsing for verbose languages and rare paradigms.

This is a section in the appendix.




