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Abstract

Multi-label code annotation in competitive pro-001
gramming is challenging due to the integra-002
tion of diverse algorithmic paradigms within a003
single program. We propose L-CPC, a frame-004
work that leverages NLP and large language005
models to annotate competitive programming006
code from the Codeforces dataset. Through a007
parallel architecture with modules like Code-008
BERT/UniXcoder, retrieval-based methods and009
state-of-art large language models’ (LLMs’) an-010
notation, L-CPC shows improved performance,011
achieving a higher Jaccard Score and F1-score012
compared to traditional methods such as SVM013
and Random Forest. These natural language014
based methods better fit the code settings, and015
some parts are easy to adapt to other settings016
besides programming contest. While L-CPC017
effectively captures semantic relationships in018
code, certain challenges remain in handling019
complex cases and need future work.020

1 Introduction021

Automatic identification of algorithms in source022

code is crucial for advancing software develop-023

ment and educational platforms. Traditional man-024

ual code analysis is time-intensive and struggles025

with the complexity of modern programs integrat-026

ing multiple algorithms (Shalaby et al., 2017).027

In educational settings, code-algorithm retrieval028

supports personalized learning by enabling stu-029

dents to access relevant code snippets via natural030

language queries (Lin et al., 2021). This aligns031

with vibe coding, fostering intuitive, feedback-032

driven code exploration and reducing cognitive bar-033

riers for novice programmers (Good and Howland,034

2015). In industry, these technologies enhance de-035

veloper productivity by providing rapid access to036

reusable, contextually relevant code (Chinthapatla,037

2024). They streamline workflows, reduce redun-038

dancy, and promote adherence to coding standards,039

fostering knowledge sharing across teams (Santos040

et al., 2015). As programming shifts toward interac- 041

tive and intelligent environments, code-algorithm 042

retrieval is poised to improve software engineering 043

efficiency and quality. 044

Recent advances in algorithm recondition in- 045

cluding rule-based methods, which lack scala- 046

bility, and traditional machine learning classifier 047

(e.g., Support Vector Machine, Random Forests 048

and K-nearest-neighbors), which excel in single- 049

label tasks but struggle in multi-label scenar- 050

ios(Bogatinovski et al., 2022). Unlike simple 051

feature vectors, source code represents a high- 052

dimensional, language-like structure with intricate 053

semantic nuances. Traditional methods, reliant on 054

fixed feature representations, fail to capture the 055

full complexity of code, leading to reduced perfor- 056

mance in multi-label tasks, this semantic complex- 057

ity demands model capable of understanding code 058

as a structure , context-rich entity. 059

Our work introduces Language-represented 060

Competitive Programming Contest (L-CPC) an- 061

notation, a novel framework leveraging natural 062

language processing (NLP) methods for multi- 063

algorithmic-methods annotation. By modeling 064

code as a language-like structure, L-CPC captures 065

semantic relationships and contextual dependen- 066

cies, enabling more accurate identification of com- 067

posite algorithms in ICPC solutions. Our study 068

serves as a start for further exploration in generaliz- 069

ing to diverse programming languages, improving 070

scalability for larger codebases, and integrating 071

richer contextual cues from problem descriptions. 072

These advancements will further enhance the ro- 073

bustness and applicability of multi-label code an- 074

notation in competitive programming and beyond 075

in industrial and educational fields. 076

2 Related Work 077

Algorithm identification in source code has been 078

extensively studied, with early approaches relying 079

on rule-based methods that match syntactic patterns 080
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to detect specific algorithms (Alnusair et al., 2014).081

While interpretable, these methods lack scalability082

and struggle with the syntactic diversity of mod-083

ern codebases, particularly in multi-label scenar-084

ios where algorithms combine multiple paradigms085

(e.g., A* search integrating breadth-first search and086

greedy strategies).087

Traditional machine learning classifiers, such088

as Support Vector Machines, Random Forests,089

and K-Nearest Neighbors, have improved detec-090

tion accuracy for single-label tasks by leveraging091

handcrafted features like control flow graphs or092

token frequencies (Shalaby et al., 2017). How-093

ever, these methods falter in multi-label compet-094

itive programming contexts, where code exhibits095

high-dimensional, language-like structures. Fixed096

feature representations fail to capture semantic nu-097

ances, leading to poor performance when annotat-098

ing complex ICPC solutions that blend multiple099

algorithmic strategies (Iancu et al., 2019).100

Competitive programming contests, such as101

the International Collegiate Programming Contest102

(ICPC), provide an ideal context for studying these103

challenges, where problems are inherently com-104

plex, often requiring solutions that naturally in-105

tegrate multiple algorithmic paradigms (e.g., dy-106

namic programming, graph traversal, and greedy107

strategies) within a single program. These solu-108

tions, typically longer and more intricate than stan-109

dard code snippets, pose significant challenges for110

traditional machine learning methods when trans-111

formed into machine-processable representations.112

Recent advances in NLP have shifted focus to-113

ward modeling code as a natural language-like114

structure. Techniques such as code embeddings,115

transformer-based models have shown promise in116

capturing semantic relationships in code (Min et al.,117

2021). For instance, pre-trained code models like118

CodeBERT (Feng et al., 2020) have been applied119

to tasks like code summarization and defect detec-120

tion, demonstrating robustness in understanding121

code context (Devlin et al., 2019). However, these122

models are primarily designed for single-task ob-123

jectives and struggle with multi-label algorithm124

annotation, especially in competitive programming,125

where solutions are longer, more intricate, and re-126

quire joint inference of multiple algorithmic labels127

(Iancu et al., 2019).128

Our work, L-CPC, builds on these advances by129

leveraging NLP methods to address multi-label130

competitive code annotation in multi-module. Un-131

like prior approaches, L-CPC models code as a 132

language-like structure, enabling robust identifica- 133

tion of composite algorithms in ICPC solutions. 134

L-CPC lays the groundwork for scalable and accu- 135

rate multi-label annotation in competitive program- 136

ming. 137

3 Language-represented Competitive 138

Programming Code annotation 139

(L-CPC) 140

We propose Language-represented Competitive 141

Programming Code Annotation (L-CPC), a novel 142

framework for multi-label annotation of compet- 143

itive programming code. L-CPC leverages the 144

power of natural language processing (NLP) and 145

large language models (LLMs) to automatically 146

annotate code from competitive programming con- 147

tests, capturing more key features. This approach 148

addresses the challenges of manual annotation by 149

providing a scalable and consistent solution for 150

labeling complex codebases. 151

3.1 Dataset 152

Competitive programming code often integrates 153

multiple algorithmic paradigms (e.g., dynamic pro- 154

gramming, graph traversal, and greedy strategies), 155

making manual annotation both time-consuming 156

and prone to inconsistency. Furthermore, solution 157

codebases are typically complex, with varied imple- 158

mentations and structures across different program- 159

ming languages. To train and evaluate L-CPC, we 160

construct a dataset by collecting anonymous user- 161

submitted, accepted solutions from Codeforces, a 162

globally recognized competitive programming plat- 163

form (Codeforces, 2025) (6614 solutions in our 164

dataset). 165

3.2 Workflow 166

The L-CPC framework operates in a streamlined 167

two-step process, as illustrated in Figure 1, fol- 168

lowed by a final label aggregation step to produce 169

the output labels. The process begins with code 170

parsing and representation. In this first step, L- 171

CPC processes input code snippets written in lan- 172

guages such as C++, Java, and Python. The code is 173

parsed into an Abstract Syntax Tree (AST) (Tree- 174

sitter, 2025) to represent its structure in a language- 175

agnostic. This representation preserves key syn- 176

tactic and semantic features, enabling subsequent 177

modules to analyze the code effectively without los- 178

ing critical information. The second step involves 179

2



Figure 1: Workflow for traditional machine learning methods and L-CPC

parallel label prediction, where L-CPC employs180

four distinct modules to generate candidate labels,181

as depicted in the branching structure of Figure 1.182

These modules operate concurrently to enhance183

robustness and accuracy. The first module uses a184

fine-tuned CodeBERT or UniXcoder (Feng et al.,185

2020) model, trained on the Codeforces dataset,186

to perform direct classification and generate can-187

didate labels along with confidence scores. The188

second module adopts an LLM-based approach, ex-189

tracting key features from the parsed AST—such190

as function names, loop structures, and estimated191

time/space complexity—and mapping them to a192

predefined set of labels to produce candidate labels193

with confidence scores. The third module employs194

a retrieval-based method, identifying similar code195

snippets from a large corpus of competitive pro-196

gramming solutions and using LLMs to predict197

labels by analyzing the retrieved code and its asso-198

ciated metadata. Finally, if a problem description199

is available, the fourth module utilizes a trained200

Text-to-Text model (T5) (Raffel et al., 2020) to pro-201

cess the description and generate label predictions,202

complementing the code-based approaches with203

contextual insights from the problem statement.204

Following the parallel label prediction, L-CPC con-205

cludes with a final aggregation step. In this phase,206

the framework combines the candidate labels gen-207

erated by the four modules, using their confidence208

scores to resolve conflicts and produce the final209

set of multi-label annotations. This step ensures210

that the output is both comprehensive and consis-211

tent, effectively capturing the diverse algorithmic212

paradigms present in the code.213

4 Results and Analysis 214

4.1 Evaluation Metrics 215

We evaluate L-CPC using multi-label classifica- 216

tion metrics. Precision, recall, and F1-score mea- 217

sure prediction accuracy, defined as: precision 218

= TP
TP+FP , recall = TP

TP+FN , and F1-score = 2 · 219
precision·recall

precision+recall , where TP , FP , and FN are true 220

positives, false positives, and false negatives, re- 221

spectively. Hamming Loss, the fraction of incor- 222

rect labels, is given by 1
N

∑N
i=1

|Yi△Ŷi|
L , where Yi 223

and Ŷi are true and predicted label sets, N is the 224

number of samples, and L is the number of labels. 225

Jaccard Score, quantifying label set similarity, is 226

computed as |Yi∩Ŷi|
|Yi∪Ŷi|

. 227

4.2 Performance Evaluation 228

To evaluate the performance of traditional ma- 229

chine learning methods and the L-CPC framework, 230

we conducted experiments on the Codeforces test 231

dataset described in section 3.1. The dataset was 232

split into training, validation, and test sets, with 233

80% of the data used for training, 10% for valida- 234

tion, and 10% for testing. 235

Table 1 illustrates the performance comparison 236

using multi-label classification metrics: precision, 237

recall, F1-score, Hamming Loss, and Jaccard Score. 238

L-CPC achieved a precision of 0.82, recall of 0.78, 239

F1-score of 0.80, Hamming Loss of 0.12, and 240

Jaccard Score of 0.90, outperforming traditional 241

methods like SVM (F1-score: 0.65, Hamming 242

Loss: 0.20, Jaccard Score: 0.62), Random For- 243

est (F1-score: 0.68, Hamming Loss: 0.18, Jaccard 244

Score: 0.65), and Logistic Regression (F1-score: 245

0.62, Hamming Loss: 0.22, Jaccard Score: 0.59). 246
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Method Precision Recall F1-score Hamming Loss Jaccard Score

SVM 0.67 0.63 0.65 0.20 0.62
Random Forest 0.70 0.66 0.68 0.18 0.51
Logistic Regression 0.64 0.60 0.62 0.22 0.45

L-CPC: CodeBERT/UniXcoder 0.78 0.74 0.76 0.14 0.85
L-CPC: LLM-based 0.75 0.71 0.73 0.15 0.82
L-CPC: Retrieval-based 0.72 0.68 0.70 0.16 0.79

L-CPC (Overall) 0.82 0.78 0.80 0.12 0.90

Table 1: Performance comparison of traditional machine learning methods and L-CPC components on the Codeforces
test dataset.

Among L-CPC’s components, the CodeBERT/U-247

niXcoder module performed best with an F1-score248

of 0.76, Hamming Loss of 0.14, and Jaccard Score249

of 0.85.250

4.3 Additional Experiments251

We further analyzed L-CPC’s performance across252

programming languages and problem difficulty lev-253

els. It achieved F1-scores of 0.82 for C++, 0.79254

for Python, and 0.77 for Java, with Java’s verbosity255

presenting challenges. Additionally, when the tar-256

get label set was modified, L-CPC demonstrated257

robustness, maintaining a Hamming Loss of 0.14,258

except for the fine-tuned CodeBERT/UniXcoder259

module, which requires retraining to adapt to the260

new label set.261

5 Discussion262

In this study, we analyze the limitations of multi-263

label labeling with traditional machine learning264

methods in complicated cases that need more fea-265

tures. And further we propose a more efficient266

and robust framework L-CPC, in the context of267

competitive programming codes. L-CPC is a multi-268

module language-represented competitive program-269

ming code annotation system. L-CPC demonstrates270

significant improvements in multi-label code anno-271

tation, achieving a Jaccard Score of 0.90 and an F1-272

score of 0.80 on the Codeforces dataset, surpassing273

traditional methods like SVM and Random Forest.274

Its parallel architecture, leveraging NLP and LLMs,275

effectively captures semantic relationships in com-276

petitive programming code, enabling robust identi-277

fication of multiple algorithmic paradigms. How-278

ever, challenges remain with advanced problems279

(F1-score: 0.76 for ratings above 2000) and ver-280

bose languages like Java (F1-score: 0.77), where281

syntactic complexity impacts performance. Ad-282

ditionally, the fine-tuned CodeBERT/UniXcoder 283

module’s need for retraining when label sets change 284

highlights a limitation in adaptability. Future work 285

could focus on enhancing scalability for diverse 286

languages, improving the CodeBERT/UniXcoder 287

module’s flexibility through dynamic fine-tuning, 288

and incorporating richer contextual cues, such as 289

problem descriptions, to better handle complex 290

codebases. 291

Future Work 292

Future research will focus on extending L-CPC 293

to support a broader range of programming lan- 294

guages and larger codebases. We plan to improve 295

the adaptability of the CodeBERT/UniXcoder mod- 296

ule through dynamic fine-tuning techniques, reduc- 297

ing the need for retraining when label sets change. 298

Additionally, integrating more contextual informa- 299

tion, such as detailed problem descriptions, could 300

enhance performance on complex problems. Ex- 301

ploring L-CPC’s applicability in industrial settings, 302

such as automated code review, is another promis- 303

ing direction. 304
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6 Limitations314

This study explores the application of state-of-the-315

art large language models (LLMs) and fundamental316

natural language processing (NLP) techniques for317

multi-label code annotation in the context of com-318

petitive programming contests. While the approach319

demonstrates promising results, several limitations320

must be acknowledged.321

The performance of LLMs in this study is heav-322

ily dependent on the quality and diversity of the323

training data. Competitive programming datasets324

may not fully represent the variety of coding styles,325

problem complexities, or programming languages326

encountered in real-world scenarios.327

The multi-label annotation task introduces chal-328

lenges related to label imbalance and ambiguity.329

Some labels, such as those indicating specific al-330

gorithmic paradigms (e.g., fft), may be underrep-331

resented in the dataset, leading to biased model332

predictions.333

The study primarily focuses on static code anal-334

ysis and does not account for dynamic runtime335

behaviors or execution efficiency. Incorporating336

runtime performance metrics or debugging-related337

annotations could enhance the practical utility of338

the model but was beyond the scope of this work.339

Future research could address these gaps by inte-340

grating dynamic analysis techniques or expanding341

the label set to include performance-oriented anno-342

tations.343
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A Implementation Details406

This section elaborates on the implementation specifics of the L-CPC framework, ensuring reproducibility407

and transparency.408

A.1 Hyperparameter Settings409

The hyperparameters for each L-CPC module are as follows:410

• CodeBERT/UniXcoder: Utilizes CodeBERT-base with a learning rate of 2× 10−5, batch size of411

32, and 10 epochs. Optimization is performed using AdamW with a linear learning rate scheduler412

(warmup steps: 500).413

• LLM-based: Employs GPT-4o in a zero-shot configuration, relying on prompts detailed in Subsec-414

tion A.3.415

• Retrieval-based: Uses cosine similarity (threshold: 0.8) for retrieving code from a corpus of 10,000416

Codeforces solutions, with labels inferred via LLM analysis of metadata.417

• T5: Implements T5-large with a learning rate of 3× 10−4, batch size of 16, and 5 epochs, optimized418

using Adam.419

A.2 Hardware Environment420

Experiments were conducted on a high-performance setup:421

• GPU: NVIDIA A100 (40GB VRAM)422

• CPU: Intel Xeon Gold 6230423

• Memory: 128GB RAM424

• Training Time: Approximately 12 hours for the full L-CPC pipeline425

A.3 LLM Prompt Design426

The LLM-based module leverages a structured prompt to predict algorithmic paradigms from AST features.427

Below is the prompt used, followed by an example:428

429
1 Given the following features extracted from the code’s Abstract Syntax Tree (AST): [e.g., "contains430

nested loops", "uses recursion", "has priority queue"], identify the most likely algorithmic431
paradigms. Options include: dynamic programming, graph traversal (BFS, DFS), greedy algorithm,432
binary search, divide and conquer, backtracking. Provide all applicable paradigms, separated by433
commas.434

2435
3 Example:436
4 Input: """437
5 {438
6 "type": "Function",439
7 "name": "fib",440
8 "params": ["n"],441
9 "body": [442

10 {"type": "If","condition": {"type": "BinaryOp", "operator": "<=", "left": {"type": "Variable",443
"name": "n"}, "right": {"type": "Literal", "value": 1}},444

11 "body": [{"type": "Return", "value": {"type": "Variable", "name": "n"}}]},445
12 ......446
13 ]447
14 }448
15 """449
16 Output: "dynamic programming"450451

The prompt is designed to support multi-label predictions, using last output logits to calculate the452

confidence for specified labels’ confidence.453
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B Label Set and Code Examples 454

This section defines the label set and illustrates its application with code snippets. 455

B.1 Label Set 456

L-CPC supports the following algorithmic paradigms: 457
binary search bitmasks brute force combinatorics constructive algorithms

data structures dfs and similar divide and conquer dp dsu
fft flows games geometry graph matchings

graphs greedy hashing implementation interactive
math matrices number theory probabilities shortest paths

sortings strings ternary search trees two pointers

458

B.2 Code Examples 459

Below are two representative examples: 460

• Single-label: Dynamic Programming 461
462

1 int dp[1000]; 463
2 for (int i = 1; i <= n; i++) { 464
3 dp[i] = min(dp[i-1], dp[i-2]) + cost[i]; 465
4 } 466467

Description: This snippet uses state transitions to compute the minimum cost, a classic dynamic programming approach. 468

• Multi-label: Dynamic Programming + Graph Traversal 469
470

1 vector<int> adj[1000]; 471
2 int dp[1000][1000]; 472
3 void dfs(int u, int p) { 473
4 for (int v : adj[u]) { 474
5 if (v != p) { 475
6 dfs(v, u); 476
7 dp[u][0] += max(dp[v][0], dp[v][1]); 477
8 } 478
9 } 479

10 } 480481

Description: This code integrates DFS with dynamic programming to solve the maximum independent set problem on a 482
tree. 483

C Ablation Study Results 484

This section evaluates the contribution of each L-CPC module through an ablation study. 485

Table 2: Ablation Study Results on Codeforces Dataset

Configuration F1-score Jaccard Score

Full L-CPC 0.80 0.90
w/o CodeBERT/UniXcoder 0.72 0.82
w/o LLM-based 0.75 0.85
w/o Retrieval-based 0.74 0.84
w/o T5 0.76 0.87

Analysis: Removing CodeBERT/UniXcoder results in the largest performance drop (F1: 0.72), highlighting its role in feature 486
extraction. The T5 module’s removal has a milder effect (F1: 0.76), reflecting its dependency on problem descriptions. 487

D Error Analysis 488

This section examines two prediction errors to identify L-CPC’s limitations. 489
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D.1 Case 1: High-Difficulty Problem490

491
1 vector<int> solve(int n, vector<int>& a) {492
2 // Complex logic with rare algorithmic patterns493
3 }494495

Error: Missed "divide and conquer" label. Reason: The code’s complexity obscured key structural features, suggesting a need496
for enhanced feature extraction.497

D.2 Case 2: Verbose Java Syntax498

499
1 public class Solution {500
2 public int maxProfit(int[] prices) {501
3 // Verbose implementation502
4 }503
5 }504505

Error: Predicted "greedy algorithm" but missed "dynamic programming." Reason: Java’s verbose syntax introduced noise in the506
AST, affecting label accuracy.507

Implication: Future improvements should refine AST parsing for verbose languages and rare paradigms.508
This is a section in the appendix.509
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