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Summary
We present DeepCubeAF, a method for training a foundation model for heuristic functions

that generalize across pathfinding domains. Our approach uses a domain generator to gen-
erate training data, trains a graph neural network (GNN) using deep reinforcement learning
and hindsight experience replay, and uses batch weighted A* search to solve problems. Our
experiments show that DeepCubeAF consistently solves more problems than foundation mod-
els based on supervised learning, is competitive with traditional domain-independent planners,
and can solve problems from domains not seen during training.

Contribution(s)
1. We introduce DeepCubeAF, a foundation model trained with reinforcement learning to learn

heuristic functions for solving pathfinding problems.
Context: Previous methods rely on supervised learning and, therefore, assume training
instances can already be solved. Traditional domain-independent methods do not make use
of machine learning, and thus must rely only on hand-designed heuristics.

2. We demonstrate that the resulting model can generalize to previously unseen domains by
applying without additional fine-tuning.
Context: This shows that deep reinforcement learning is a viable approach for creating a
domain-independent solver. This will allow practitioners that are not familiar with machine
learning algorithms to solve pathfinding problems with machine learning models.
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Abstract

Pathfinding problems can be found in fields such as robotics, mathematics, chemistry,1
and program synthesis, where the objective of pathfinding is to find a sequence of ac-2
tions that transforms a given start state into a goal state. Recently, deep reinforcement3
learning (DRL) has emerged as a promising method for automatically training domain-4
specific heuristic functions to solve these problems in a largely domain-independent5
fashion. However, these approaches often require retraining for even a slight change in6
domain, resulting in significant resource and time inefficiencies. While existing ap-7
proaches use supervised learning to learn generalizable heuristics to handle unseen8
domains, they are limited by the need to obtain supervised labels. We draw inspi-9
ration from domain randomization in reinforcement learning to handle these limita-10
tions and the DeepCubeA algorithm and introduce DeepCubeA for foundation models11
(DeepCubeAF). DeepCubeAF trains a heuristic function across randomly generated do-12
mains using reinforcement learning and uses this trained heuristic function with batch13
weighted A* search to solve problems. Our model consistently shows better generaliz-14
ability than the existing foundation model for both seen and unseen domains. This work15
represents a step toward training robust, generalizable models and providing access to16
these models to experts across various fields.17

1 Introduction18

Pathfinding aims to find a sequence of actions that forms a path from a given start state to a given19
goal state while minimizing the total path cost. Pathfinding problems, many of which are also stud-20
ied in reinforcement learning, are prevalent across computer science, robotics, mathematics, and21
the natural sciences. Heuristic search, one of the most prominent approaches to solving pathfinding22
problems, relies on a heuristic function which estimates the “cost-to-go,” which is the cost of the23
shortest path from a given state to a nearest goal state. Recently, deep reinforcement learning (DRL)24
(Sutton & Barto, 2018) based methods have successfully been used to learn domain-specific heuris-25
tics in a largely domain-independent fashion to solve pathfinding problems such as puzzle solving26
(Agostinelli et al., 2019; 2024), chemical synthesis (Chen et al., 2020), and quantum algorithm com-27
pilation (Zhang et al., 2020). However, training such heuristic functions using deep neural networks28
(DNNs) (Schmidhuber, 2015) can take days and requires substantial computational resources, of-29
ten necessitating retraining for even minor domain changes. These hardware and time constraints30
limit accessibility of these methods for researchers not familiar with machine learning algorithms31
and hardware and present a bottleneck when attempting to solve problems across many different32
domains.33

These challenges with hardware and time constraints when using DRL to solve pathfinding prob-34
lems are common across applications of machine learning, such as those encountered in computer35
vision and natural language processing. To address these challenges, foundation models have been36
developed, which are large DNNs trained on large, diverse, datasets that can then be adapted to new37
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tasks with minimal to no fine-tuning (Szegedy et al., 2015; Devlin et al., 2019; Radford et al., 2019).38
Based on the success of foundation models for other applications of machine learning, we will create39
a foundation model for heuristic functions for pathfinding problems.40

To create our foundation model, we will use the planning domain description language (PDDL)41
(McDermott, 2000), which is a description language commonly used by the planning community to42
represent pathfinding problems. A PDDL description of the domain, along with a PDDL description43
of the problem instance, which consists of a start state and a goal, will be given to a graph neural44
network (GNN), which represents the heuristic function. To generate training data, we will build45
on PDDLFUSE (Khandelwal et al., 2024) to generate domains and hindsight experience replay46
(HER) (Andrychowicz et al., 2017) to generate training problem instances. To train the heuristic47
function, we will build on the DeepCubeA algorithm (Agostinelli et al., 2019) by using approximate48
value iteration (AVI) (Bertsekas & Tsitsiklis, 1996). To solve problem instances in a given domain,49
we will also build on DeepCubeA by using batch weighted A* search (Hart et al., 1968; Pohl,50
1970) with the trained heuristic function. We call this algorithm DeepCubeA for foundation models51
(DeepCubeAF). Our experiments show that DeepCubeAF can generalize to domains not seen during52
training and outperforms foundation models trained only using supervised learning.53

2 Related Work54

2.1 Generalization in Pathfinding Problems55

Domain-independent planners, such as the fast downward planner (Helmert, 2006), rely on the auto-56
mated construction of heuristic functions based on a PDDL description of a domain. These methods57
include the fast forward (Hoffmann & Nebel, 2001), causal graph, and goal count heuristics. How-58
ever, experiments have shown that these methods do not perform as well as learned heuristic func-59
tions (Agostinelli et al., 2024). Large language models (LLMs), have been used to solve pathfinding60
via in-context learning (Sermanet et al., 2023; Li et al., 2023; Silver et al., 2023); however, they face61
notable challenges that include syntax errors and lack inherent search capabilities. Although, future62
work using chain-of-thought reasoning may be able to overcome this.63

Chen et al. (2024) introduced three novel graph representations for planning tasks using GNNs to64
learn domain-independent heuristics. Their approach mitigates issues with large grounded GNNs by65
leveraging lifted representations and demonstrates superior generalization to larger problems com-66
pared to models like STRIPS-HGN (a hypergraph network model that learns domain-independent67
planning heuristics directly from the delete-relaxed representation of STRIPS problems using a re-68
current encode-process-decode architecture)(Shen et al., 2020). However, it faces scalability issues69
with large graph construction. Building on this, Chen et al. (2024) proposed the GOOSE framework70
using GNNs with novel grounded and lifted graph representations for classical planning to learn a71
generalized heuristic function with supervised learning. Their heuristics outperform STRIPS-HGN72
and hFF (the Fast Forward heuristic (Hoffmann & Nebel, 2001), which computes cost-to-go esti-73
mates by generating relaxed plans that ignore delete effects) in various domains, however, since74
they use supervised learning, their approach assumes that ability to find optimal solutions for all75
training instances. However, this is not possible for many pathfinding tasks without significant76
domain-dependent effort (Agostinelli et al., 2024). Additionally, (Toyer et al., 2018) utilized GNNs77
to improve coverage and plan quality in classical planning tasks through new graph representations,78
though their approach only generalizes across a subset of test domains.79

2.2 GOOSE80

Our work also compares with an existing generalizable method for solving planning domains. (Chen81
et al., 2024) uses the STRIPS Learning Graph (SLG) representation, which encodes states, actions,82
and their relationships into a structured graph. SLG captures domain knowledge by representing83
preconditions and effects and deleting effects of actions as graph edges, enabling the model to learn84
heuristics through Graph Neural Networks (GNNs).85
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This approach combines domain-specific training with domain-independent methods, leveraging the86
SLG’s ability to generalize within a domain. The GNN propagates information through the SLG to87
compute heuristic values, allowing the model to handle larger instances of the same domain without88
retraining.89

Although primarily domain-specific, the SLG-based model aligns with foundational principles by90
utilizing structural representations and scalable learning techniques. It demonstrates how graph-91
based representations can improve adaptability in classical planning tasks, particularly for domains92
like n-puzzle.93

2.3 Domain Randomization in Reinforcement Learning94

Domain randomization has proven highly effective in reinforcement learning (RL) for training95
agents that generalize to unseen environments. By training on multiple randomized variants of a96
domain, RL agents learn to handle discrepancies in states, transitions, or dynamics. For instance,97
Mehta et al. (2020) introduce Active Domain Randomization, which adaptively selects challenging98
environments for training, while Ajani et al. (2023) demonstrate improved robustness by randomiz-99
ing physical parameters such as friction in robotics. These successes highlight the power of exposing100
learning systems to diverse environments, a principle that can be translated to automated planning101
domains.102

3 Preliminaries103

3.1 Foundation Models104

Foundation models are deep learning models pre-trained on extensive, diverse datasets. Once105
trained, Fθ is expected to generalize across different domains and tasks with or without fine-tuning.106
Foundation models have significant applications in computer vision Szegedy et al. (2015) and natu-107
ral language processing (NLP) Devlin et al. (2019); Radford et al. (2019).108

Definition: A foundation model Fθ is trained to minimize the loss function L over a dataset D:109

θ∗ = argmin
θ

L(Fθ(x), x) for x ∈ D

3.2 Pathfinding110

A pathfinding domain can be represented by a weighted directed graphs where nodes represent111
states, edges represent transitions between states (actions), and weights represent transition costs.112
Given a domain, a pathfinding problem instance is defined by a start state and a set of goal states.113
A solution to a pathfinding problem is a sequence of actions that forms a path between the start114
state and a goal state, with preference for solutions with cheaper path costs, where the path cost is115
the sum of transition costs along a given path. Traditionally, pathfinding employs heuristic search116
algorithms, which make use of a heuristic function that maps states to an estimate of the cost-to-go.117

Approximate Value Iteration Given a tabular representation for the heuristic function, value it-118
eration can be used to find h∗, which maps states to the cost of a shortest path using the following119
equation as an update rule:120

h′(s) = min
a∈A

(c(s, a) + h(T (s, a))) (1)

where h(s) represents the current estimate of the cost-to-go, h′(s) is the updated estimate, c(s, a)121
is the cost of taking action a in state s, and T (s, a) is the resulting state after applying action a.122
Since pathfinding problems are deterministic, value iteration can use a deterministic state transition123
function instead of transition probabilities.124
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Tabular methods become impractical for domains with large state spaces, which are common in real-125
world problems. To address this, we use approximate value iteration (AVI), where a parameterized126
function approximates value iteration updates. In AVI, a DNN with parameters θ is used to represent127
the heuristic function. The network refines its estimates for the cost-to-go values by minimizing the128
loss:129

L(θ) =

(
min
a∈A

(c(s, a) + hθ−(T (s, a)))− hθ(s)

)2

(2)

where hθ(s) approximates the cost-to-go and θ− denotes the parameters of a target network (Mnih130
et al., 2015), which is periodically updated to θ.131

3.3 Batch Weighted A* Search132

A* search (Hart et al., 1968) is a widely used algorithm for solving pathfinding problems. A* search133
maintains a search tree, where nodes represent states and edges represent transitions between states.134
Nodes are expanded according to a priority, f , shown in Equation 3:135

f(n) = g(n) + h(n) (3)

where g(n) is the path cost from the starting node to node n and h(n) is the cost-to-go estimate136
from the state associated with node n to a closest goal state provided by a heuristic function. The137
algorithm terminates when a node associated with a goal state is selected for expansion.138

In order to trade potentially faster search times with potentially longer path costs a weight, λ, can139
be used to reduce the contribution of, g, to the total cost, as shown in Equation 4, where 0 ≤ λ ≤ 1.140
Furthermore, when the heuristic function is represented by a DNN, parallelism provided by graphics141
processing units (GPUs) can be exploited by expanding N nodes at a time instead of just one using142
batch weighted A* search (BWAS) (Agostinelli et al., 2019; Li et al., 2022).143

f(n) = λg(n) + h(n) (4)

3.4 Planning Domain Definition Language (PDDL)144

The Planning Domain Definition Language (PDDL) provides a formal framework for representing145
planning problems, where an agent transitions through states by executing actions to achieve a goal.146
A PDDL problem consists of a domainD and a problemP . The domainD defines the set of possible147
actions and how they effect a given state, while the problem P specifies an initial state s0 and a goal148
condition G.149

A PDDL domain is defined by:150

• Objects O: The entities in the domain.151

• Predicates P: Boolean functions describing state conditions.152

• Actions A: Each action a ∈ A is defined by:153

– Parameters: A set of objects required for execution.154

– Preconditions Pre(a) ⊆ P: Conditions that must hold before execution.155

– Effects Eff(a) ⊆ P: State changes resulting from execution.156

A problem instance P consists of an initial state s0 ⊆ P and a goal condition G ⊆ P . The objective157
is to find a sequence of actions π = (a1, a2, . . . , an) such that executing π from s0 results in a state158
satisfying G.159

3.5 PDDLFUSE: Generating Diverse Planning Domains160

Taking inspiration from domain randomization techniques in reinforcement learning (Mehta et al.,161
2020; Ajani et al., 2023), PDDLFUSE (Khandelwal et al., 2024) generates planning domains in162
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PDDL format by randomly modifying and combining (fusing) existing domains. PDDLFUSE does163
this by by: 1) merging predicate sets and action schemas from multiple domains; 2) randomly adding164
or removing preconditions and/or effects; 3) introducing controlled negation and reversibility flags165
for selected predicates. Empirical results show that standard domain-independent planners often166
struggle to solve the more challenging PDDLFUSE domains.167

4 Methodology168

4.1 Enhanced Domain and Problem Instance Generation169

Expanded Base Domains and Problem Files. Our modifications to PDDLFUSE begin by signif-170
icantly increasing the set of base domains and problem files. This expansion ensures more diverse171
set of initial problem files per generated domains. When fusing domains, we preserve predicate and172
action names by applying systematic renaming, ensuring there is no overlap among symbols across173
different domains. The final fused domain thus contains a merged set of predicates and actions with174
randomized modifications to preconditions and effects.175

Adaptive Negation. A key step in domain fusion involves adding or removing preconditions and176
effects from actions. We introduce an adaptive negation mechanism that selectively identifies pred-177
icates eligible for negation in the newly fused domain’s problem file. Specifically, a predicate is178
deemed eligible if it is not present in the critical preconditions of actions—since negating such pred-179
icates could prevent actions from being executed and render the problem unsolvable. By applying180
negation with a user-controlled probability only to these non-essential predicates, our approach pre-181
serves the core functionality of the domain while still introducing useful variability. By carefully182
targeting the negated predicates, we improve the consistency of generated actions and the solvability183
of resultant problems.184

4.2 Revised Action Generation Technique185

Previously, PDDLFUSE created problem files by randomly selecting actions from the fused domain186
and subsequently pruning to form a valid plan. This random approach was often inefficient, requiring187
substantial computation to verify solvability and identify relevant actions. We replace it with a more188
planner-aligned technique designed to efficiently produce action sequences and solvable planning189
problems.190

Planner-Aligned Sampling. Instead of choosing actions uniformly at random, we adopt a tech-191
nique akin to a forward search used in classical planners. We begin with an initial state derived from192
the domain objects and predicates, then dynamically select only the set of applicable actions—those193
whose preconditions are satisfied in the current state. Among these applicable actions, we apply a194
stochastic selection (e.g., uniform or heuristic-based) to pick one action. We then apply this action195
to reach a successor state.196

Controlled Sequence Generation. We repeat the above process for a user-configurable number197
of steps (or until no applicable actions remain). This controlled, state-based generation ensures that198
we continuously build a coherent action sequence, thereby avoiding many dead-end paths. Once the199
final state is reached, we designate a subset of its predicates as the goal conditions. The resulting200
domain and problem pair therefore includes a sequence of actions known to transition the initial201
state to the goal state. This process is summarized in Algorithm 1. This approach is similar to that202
of hindsight experience replay (HER) Andrychowicz et al. (2017) in that the state at the end of a203
sequence of actions is used to create a goal.204

Computational Benefits. Aligning the action generator with planner logic significantly lowers the205
computational overhead. Instead of repeatedly checking for plan validity after random selections,206
the state-based approach validates each action as it is chosen, mitigating expensive re-planning or207
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Algorithm 1 Revised Action Generator

Require: Fused domain D, maxSteps M
1: state← randomlyInstantiate(D)
2: for i = 1 to M do
3: applicableActions← {a ∈ A | pre(a) ⊆ initializeState}
4: if applicableActions = ∅ then
5: break ▷ No more valid actions
6: end if
7: a∗ ← chooseAction(applicableActions)
8: state← apply(a∗, state)
9: end for

10: goalPreds← selectSubset(state)
11: return

(
D, initialState, goalPreds

)

Figure 1: Overview of the training pipeline. PDDLFUSE generates diverse domains and problem
instances from which states and goals (which is a set of states) are derived. HER is used to generate
problem instances, and a graph-based representation encodes each state, goal (a set of states), and
domain as a graph. The GNN maps this representation to an estimate of the cost-to-go.

pruning phases. This streamlined method is especially beneficial when large numbers of domains or208
problem files are generated, as it accelerates the overall workflow.209

4.3 Training the Foundation Model210

Figure 1 illustrates our training algorithm which combines PDDLFUSE, HER, GNNs, and rein-211
forcement learning.212

State and Goal Generation. We use PDDLFUSE to create diverse planning domains D and cor-213
responding problem instance Π. Each state, s, is associated with a domain and problem instance.214
We then sample actions under a given exploration policy to produce transitions (s, a, s′). After each215
transition, drawing from HER, we create additional goal states, g′, by treating s′ (or subsets of its216
predicates) as potential new goals. This process increases the amount of training data by using paths217
that did not reach the original goal, g.218

Graph Representation. Given a state, goal, and domain tuple (s, g,D), we construct a STRIPS219
Learning Graph (SLG) to encode the planning task (Chen et al., 2024). Each node corresponds to220
grounded predicates from s, with a feature vector indicating whether the predicate is true in the ini-221
tial state and whether it is required by the goal g. Edges capture semantic relationships defined by222
actions: an edge labeled "pre" links an action to a predicate in its preconditions, while edges labeled223
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"add" or "del" link the action to its positive or negative effects. This concise, structured representa-224
tion encapsulates the core dependencies between predicates and actions, providing a rich input for225
our Graph Neural Network to learn effective heuristic functions. This representation produces a set226
of inputs for a GNN.227

GNN Heuristic Function. A GNN, hθ, takes (s, g,D) as input and outputs an estimate of the cost-228
to-go, hθ(s, g,D). During training, we minimize the value-iteration-based loss shown in Equation229
5:230

L(θ) =

(
min
a∈A

(c(s, a) + hθ−(T (s, a), g,D))− hθ(s, g,D)
)2

(5)

5 Experiments231

We use eight canonical planning domains: Blocks, Ferry, Gripper, N-Puzzle, Sokoban, Spanner,232
VisitAll, and VisitSome. Each domain has distinct predicates and actions. These domains are used233
during training for GOOSE and with PDDLFUSE to train DeepCubeAF. A ninth domain, Folding, is234
used as an additional test domain that was not used during training. We also train a domain-specific235
heuristic function using DeepCubeA and HER on the folding domain to compare how a heuristic236
function trained for a specific domain compares to that of DeepCubeAF.237

We train DeepCubeAF for one million iterations on domains generated by PDDLFUSE using the238
Adam optimizer with an initial learning rate of 0.001, with decay of 0.9999993, and batch size239
of 1000. We encode planning states using a STRIPS Learning Graph (SLG) representation (Chen240
et al., 2024). This graph captures domain predicates, objects, and actions in a structured manner.241
All learned models (Vanilla DeepCubeA, DeepCubeAF, and GOOSE) use a message-passing neural242
network with 16 message-passing layers. This setup follows the GOOSE architecture to maintain243
consistency among learned models.244

We compare to GOOSE, which trains a GNN to represent a heuristic function with supervised learn-245
ing on the eight aforementioned domains. Since DeepCubeAF is based on reinforcement learning, it246
does not assume the ability to solve the given problem instances. Therefore, DeepCubeAF can train247
on many more domains and problem instances. We also compare to the fast downward planner with248
the fast-forward (FF) heuristic (Helmert, 2006), which is a domain-independent planner that does249
not use machine learning.250

To solve problem instances with the trained heuristic function from DeepCubeAF, we use batch251
weighted A* search (BWAS) with 100 batch size and 0.8 weight. For GOOSE, we report results252
available in their paper (Chen et al., 2024) as well as when using the GOOSE heuristic function with253
our implementation BWAS. Finally, to further test the ability of DeepCubeAF to generalize, we do254
a leave-one-out experiment, where one of the eight training domains is not used in PDDLFUSE and255
a heuristic function is trained with data generated from PDDLFUSE with the remaining seven.256

6 Results257

We evaluate each solver on eight domains plus an additional domain, folding, which is not used258
for training DeepCubeAF and GOOSE. We use the test instances from the (Chen et al., 2024), as259
shown in Table 1, which also indicates the parameter ranges for each domain. Table 2 shows results260
for all solvers. DeepCubeAF achieves higher coverage than GOOSE in all domains, including the261
leave-one-out (LOO) variants of DeepCubeAF that exclude the test domain. GOOSE_ours, which262
combines the original GOOSE heuristic function with our implementation of BWAS, solves more263
instances than GOOSE reported by Chen et al. (2024) (which may be due to the batched node264
expansions) but still solves fewer problem instances that DeepCubeAF and DeepCubeAF(LOO).265
DeepCubeAF outperforms DeepCubeAF(LOO), which suggests that additional domain diversity in266
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training contributes to better generalization. DeepCubeAF solves more problem instances than the267
fast downward planner in the majority of cases. In the Spanner domain, DeepCubeAF solves 18%268
of the instances, DeepCubeAF(LOO) solves 7%, whereas FD(FF) and the GOOSE models do not269
solve any problems.270

Neither DeepCubeAF nor GOOSE uses the folding domain during training. DeepCubeA, trained271
only on folding, attains the highest coverage on folding, as shown in Table 3. Among the domain-272
independent approaches, DeepCubeAF solves 60% of problem instances while GOOSE and the fast273
downward planner solve 38%.274

domain testing

blocks (90) b ∈ [15, 100]
ferry (90) l, c ∈ [15, 100]

gripper (18) b ∈ [15, 100]
n-puzzle (50) n ∈ [5, 9]
sokoban (90) n ∈ [8, 12]
spanner (90) s, n ∈ [15, 100]
visitall (90) n ∈ [15, 100]

visitsome (90) n ∈ [15, 100]
domain-folding (90) length, folds ∈ [15, 100]

Table 1: Domains, parameter ranges, and number of instances for testing.

7 Discussion275

DeepCubeAF uses reinforcement learning to train its heuristic function while GOOSE uses super-276
vised learning. Though supervised learning provides exact labels, reinforcement learning does not277
assume that the problems it sees can already be solved. In fact, many problems generated by PDDL-278
FUSE cannot be solved with domain-independent planners (Khandelwal et al., 2024), which means279
they would not be able to be used in a supervised learning setting. However, reinforcement learn-280
ing will most likely need more examples and longer training times compared to supervised learning281
since reinforcement learning iteratively updates its own labels. We believe DeepCubeAF was able282
to outperform GOOSE due to the fact that more diverse training data can be seen during training283
because it does not assume that labels are given.284

One benefit of domain-independent planners that are not based on learning, like the fast-downward285
planner, is that heuristics can quickly be computed from PDDL files. However, experiments on the286
folding domain, which was not seen during training for DeepCubeAF, shows that foundation mod-287
els based on deep reinforcement learning can outperform traditional domain-independent planners.288
Furthermore, our leave-one-out experiments show DeepCubeAF outperforming the fast-downward289
planner on three domains. Future research is needed to better define the set of domains for which290
we can expect foundation mdoels to outperform traditional domain-independent planners.291

Future work will investigate how to improve DeepCubeAF, especially for domains not used during292
training. Foundation models for NLP have showed that larger models and more diverse training data293
results in better performance. Therefore, one improvement can come from improving the diversity294
of domains generated by PDDLFUSE. This can possibly be done by leveraging LLMs to generate295
new PDDL domains instead of just combining existing domains. Another improvement can come296
from simply training larger models. Finally, given a test domain, limited finetuning can be done.297
Future work will investigate the effect of finetuning on performance.298

8



DeepCubeAF

Domain Solver Len Nodes Secs Nodes/Sec Solved

blocks

FD(FF) 366.9 4.74E+05 7.7 1.45E+04 74%
GOOSE - - - - 10%
GOOSE_ours 168.25 1.19E+06 65.73 1.81E+04 18%
DCAF(LOO) 249.15 4.45E+06 228.21 1.95E+04 44%
DCAF 405.12 1.89E+07 492.14 3.84E+04 80%

ferry

FD(FF) 245.47 4.78E+05 2.01 1.29E+04 95.5%
GOOSE - - - - 31%
GOOSE_ours 148.75 1.96E+06 86.96 2.27E+04 40%
DCAF(LOO) 175.09 2.32E+06 148.14 1.56E+04 58%
DCAF 239.21 4.42E+06 268.68 1.64E+04 92%

gripper

FD(FF) 239 1.67E+04 0.06 6.88E+04 100%
GOOSE - - - - 28%
GOOSE_ours 173.13 9.18E+05 58 1.58E+04 44%
DCAF(LOO) 175.77 1.32E+06 89.2 1.48E+04 50%
DCAF 220.1 1.51E+06 142.2 1E+04 89%

n-puzzle

FD(FF) 1529.54 1.59E+06 61.84 1.55E+04 70%
GOOSE - - - - 12%
GOOSE_ours 798.68 1.84E+07 110.4 1.66E+05 38%
DCAF(LOO) 1013.88 8.62E+06 82.4 1E+04 50%
DCAF 1414.23 2.06E+07 127.63 1.61E+05 72%

sokoban

FD(FF) 100.38 5.11E+05 7.61 3.22E+04 98%
GOOSE - - - - 50%
GOOSE_ours 104.59 1.8E+06 116.9 1.53E+04 63%
DCAF(LOO) 103.4 2.54E+06 163.8 1.5E+04 65.5%
DCAF 100.72 5.17E+06 258.4 2E+04 97%

spanner

FD(FF) - - - - -
GOOSE - - - - -
GOOSE_ours - - - - -
DCAF(LOO) 790.3 3.2E+06 210.0 1.52E+04 7%
DCAF 765.9 1.32E+07 490.5 2.6E+04 18%

visitall

FD(FF) 1842.14 2.77E+07 252.37 2.89E+04 8%
GOOSE - - - - 18%
GOOSE_ours 1950.32 3.20E+07 340.02 9.41E+04 20%
DCAF(LOO) 1800.91 4.5E+07 480 9.37E+04 27%
DCAF 1850.07 5.3E+07 590.4 8.97E+04 45%

visitsome

FD(FF) 2110.69 1E+06 30 2.89E+04 29%
GOOSE - - - - 81%
GOOSE_ours 2100.45 9.00E+06 300.0 3.00E+04 64%
DCAF(LOO) 2000.72 1.10E+07 330.0 3.33E+04 80%
DCAF 1950.30 2.00E+07 550.0 3.64E+04 85%

Table 2: Comparison of DeepCubeAF (DCAF) with the domain-independent Fast Downward plan-
ner (FF heuristic), the GOOSE GNN-based heuristic learner, and the single-domain DCAF(LOO)
is a leave-one-out experiment that does not use the given domain during training. Metrics include
solution length, node expansions, search time (seconds), nodes expanded per second, and the per-
centage of solved problems. Note: All other metrics are computed based on solved instances only.
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Domain Solver Len Nodes Secs Nodes/Sec Solved

folding

FD(FF) 512.1 8.40E+05 58.47 1.44E+04 38%
DeepCubeA 420.5 9.00E+06 89.56 1.01E+05 90%
GOOSE_ours 486.2 2.10E+06 120.20 1.75E+04 38%
DCAF 600.8 4.80E+06 297.72 1.61E+04 60%

Table 3: Comparison of DeepCubeAF (DCAF) with the domain-independent Fast Downward plan-
ner (FF heuristic), the GOOSE GNN-based heuristic learner, and DeepCubeA, which is trained only
on the folding domain. The folding domain is not seen during training for DCAF and GOOSE.
Metrics include solution length, node expansions, search time (seconds), nodes expanded per sec-
ond, and the percentage of solved problems. Note: All other metrics are computed based on solved
instances only.

8 Conclusion299

This paper introduces DeepCubeAF, the first foundation model based on deep reinforcement learn-300
ing for learning a heuristic function that generalizes across pathfinding domains. DeepCubeAF is301
trained on randomly generated domains and problem instances and demonstrates improved gen-302
eralization compared to heuristic functions trained with supervised learning and competitive per-303
formance with traditional domain-independent heuristic planners. Experimental results show that304
DeepCubeAF generalizes to both domains used during training and unseen domains.305
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