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Abstract

We release 70 small and discriminative test sets for machine translation (MT)
evaluation called variance-aware test sets (VAT), covering 35 translation direc-
tions from WMT16 to WMT20 competitions. VAT is automatically created by
a novel variance-aware filtering method that filters the indiscriminative test in-
stances of the current MT test sets without any human labor. Experimental results
show that VAT outperforms the original WMT test sets in terms of the corre-
lation with human judgement across mainstream language pairs and test sets.
Further analysis on the properties of VAT reveals the challenging linguistic features
(e.g., translation of low-frequency words and proper nouns) for competitive MT
systems, providing guidance for constructing future MT test sets. The test sets
and the code for preparing variance-aware MT test sets are freely available at
https://github.com/NLP2CT/Variance-Aware-MT-Test-Sets.

1 Introduction

Automated machine translation (MT) evaluation relies on metrics and test sets. Based on the use of
test sets, the metrics to quantify the performance of MT systems can be divided into two categories:
reference-based metrics (Papineni et al., 2002; Popović, 2015; Lo, 2019; Zhang et al., 2020) and
reference-free metrics (Popović, 2012; Yankovskaya et al., 2019). Reference-based metrics which
measure the overlap between the reference and model’s hypothesis, are widely used both in research
and practice. Even the state-of-the-art metrics that exploit a pre-trained model (Zhang et al., 2020;
Sellam et al., 2020; Rei et al., 2020) are able to evaluate the finer-grained semantic overlap, it still
cannot achieve human-level judgements (Ma et al., 2019; Mathur et al., 2020). Although the metric
itself can be further elaborated, the reference in the test set, which is another key ingredient in the
MT evaluation, has received less attention from the community.

The references are not innocent of confusing automatic metrics. Research has proven that the collected
references tend to exhibit a monotonous translation style (Popovic, 2019; Freitag et al., 2020b) instead
of natural text, and lack diversity in the evaluation. On the other hand, the competitive MT systems
typically share a homogeneous architecture and training data, causing the performance of the MT
systems to be too close to be distinguished, thus the differences in the scores given by the automatic
metrics are small. To alleviate this problem, previous work has focused on increasing the diversity of
the references by means of paraphrasing, including human paraphrasing (Freitag et al., 2020a,b) and
automatic paraphrasing (Kauchak and Barzilay, 2006; Guo and Hu, 2019; Bawden et al., 2020), but
both of these are expensive in terms of human labor and computational cost. Considering the fact that
not all the references are monotonous, it is still unclear how to select those discriminative references
instead of diversifying them for the MT evaluation.
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This paper aims to tackle this problem without any human labor. Our motivation comes from a
common fact in the real world. In a general examination or test, the simplest and most difficult
questions cannot tell the difference between the examinees because they may be all correctly or
incorrectly answered. Accordingly, those questions that receive diverse answers play a vital role in
distinguishing the examinees’ abilities by comparing them with the ground truth. Based on this fact,
a similar phenomenon can also happen in the test set for evaluating machine translations.

In this paper, we use the variance of translation scores evaluated by the metric as a criterion to
create a variance-aware test set whose references are more discriminative in evaluating MT systems.
The selected references are characterized by their diverse evaluation scores, indicating that the MT
systems are not consistent in translating the same source, thus this translation case is a valuable
indicator for distinguishing the capability of MT systems. Experimental results show that evaluating
with the created variance-aware test set can improve the correlation with human judgements. Further
analysis of the properties of the variance-aware test set also confirms its effectiveness.

Our main contributions are as follows:

• We release 70 variance-aware MT test sets, covering 35 translation directions from the
WMT16 to WMT20 competitions. The test set filters 60% of the test instances from the
original WMT version, which is time-efficient for research consuming high computational
resources (e.g., reinforcement learning and neural architecture search).

• We propose a simple and effective method to automatically identify discriminative test
instances from MT test sets. We demonstrate that using the discriminative test instances can
yield a better correlation with human judgements than using the original test set.

• We give an in-depth analysis of the properties of discriminative and non-discriminative test
instances. We find that the translations of low-frequency words and proper nouns are highly
discriminative, providing clues for building challenging MT test sets.

2 Background

2.1 MT Evaluation and Meta-Evaluation

The evaluation of machine translation is a crucial topic in the development of MT due to the need
to compare the performance of several candidate MT systems. Traditionally, human assessment
is used to evaluate MT systems, but it is expensive in terms of its costs. Moreover, the quality of
the assessment of crowdsourced evaluation work is unpredictable, and there is a big gap between
non-expert and professional translators (Toral et al., 2018; Läubli et al., 2020; Mathur et al., 2020).
Therefore, automatic evaluation metrics have received a lot of attention due to their advantages, such
as their low cost and the controllability of the process, and are now widely used in model selection
and optimization (Shen et al., 2016; Wieting et al., 2019).

The reference-based metrics which rely on a reference translation are the most popular automatic
evaluation metrics. They differ in the ways they measure overlap. For example, BLEU (Papineni
et al., 2002) and its variants (Doddington, 2002; Popović, 2015) evaluate the overlap by matching
the n-grams, and other metrics like TER (Snover et al., 2006) quantify the overlap by the edit
distance. However, these metrics are conducted in a hard matching paradigm and do not consider
semantics. METEOR (Banerjee and Lavie, 2005; Denkowski and Lavie, 2014) alleviates this
problem by introducing synonymy and other linguistic features in the word matching but is limited
in the availability of language resources. Recent embedding-based metrics break the limitation of
hard matching, making it possible to evaluate the semantic overlap. By enhancing the semantic
representation by a pre-trained model (Devlin et al., 2019; Lample and Conneau, 2019), BERTScore
(Zhang et al., 2020) correlates better with human judgements than previous metrics. At the same time,
the end-to-end paradigm using a pre-trained representation is also applied to the evaluation of MT,
and has achieved remarkable performance, e.g., COMET (Rei et al., 2020) and BLEURT (Sellam
et al., 2020).

To verify the effectiveness of automatic evaluations, the process that measures the correlation
between the scores given by an automatic metric and human ratings is called meta-evaluation. A
meta-evaluation mainly uses correlation coefficients such as Pearson’s r to determine the extent to
which the automatic metric performs like a human evaluator (Callison-Burch et al., 2006, 2008). The
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validation process of our method covers the mainstream metrics and uses the ordinary meta-evaluation
methods to validate the improvement in the correlation.

2.2 Shortcomings of Current Test Sets

The less discriminative instances in a public benchmark are the bottleneck of automatic evaluation.
The test sets released by the organizers of the WMT competition are the well-recognized benchmark
for MT evaluation. However, some have argued that some of the references in these test sets may
mislead reference-based metrics, making the evaluation results of automatic metrics different from
human judgement. One major issue is that the existing references tend to be monotonous (Popovic,
2019; Freitag et al., 2020b). This translation style is easy to achieve by the MT systems and less
discriminative for the evaluation. In addition, based on the phenomenon observed by Zhan et al. (2021)
in the evaluation of the WMT19 English→German task, most tokens can be correctly translated by
all the participation systems, especially for the competitive ones, indicating that the test sets are only
partly valuable in distinguishing the MT systems.

There are ways to create a more diverse test set so as to improve discernment. Kauchak and Barzilay
(2006) explored the automatic paraphrasing techniques for improving the accuracy of automatic
metrics and validated their effectiveness on small-scale human assessment data. Bawden et al. (2020)
further investigated the use of automatic paraphrasing in automatic evaluation, finding limited gains
in correlation with human judgements on the WMT19 benchmark. Promisingly, human paraphrased
references have proved that they can significantly improve the correlation metrics of BLEU on some
language pairs (Freitag et al., 2020b). Overall, these methods to augment the references are restricted
by their construction costs and consistently limited improvement.

Instead of diversifying the references, our work pays attention to selecting the discriminative part
from the existing test set for better distinguishing between strong MT systems.

3 Variance-Aware Test Set

Seek self-improvement autonomously. 

Count on your independence. 

Rely on independence to be strong. 

We need to be strong on our own.

Scores Variance

Chinese companies are studying 5G networks. 

Chinese companies are studying 5G networks. 

Chinese companies are studying the 5G network. 

Chinese companies are studying 5G networks.

First, obtaining strength through unity. 

First, rely on unity for strength. 

First, there is solidarity. 

First, strength through unity.

: Reference : MT System 1 : MT System 3: MT System 2 : Automatic Metric

0.2213 

0.2152 

0.2333

Evaluate

Scores Variance
1.0000 

0.9626 

1.0000

Evaluate

Scores Variance
0.6835 

0.4494 

0.7615

Evaluate
0.0075 0.0176 0.1326

Less Discernment      Filtered Less Discernment      Filtered More Discernment      Reserved

Figure 1: An illustration of the proposed variance-aware filtering method.

3.1 Motivation

Generally speaking, the test items that are either too easy or too difficult, cannot tell the differences
of test-takers since they would not perform very differently when answering the extremely simple or
difficult questions.

Machine translation evaluation is a kind of test. One can make an analogy between MT evaluation
and tests in general: the MT systems are the test-takers, the instances in the test set are the test items.
Similarly, to discriminate between MT systems in terms of their ability, a discriminative test instance
must reveal clear differences in the systems’ performance. As illustrated in Figure 1, evaluating MT
systems’ performance by using the first two references causes a subtle difference in evaluation results
due to the polarized difficulty, thus it is hard to discriminate between the systems in this circumstance.
By contrast, the gap of evaluation results in the last case is huge enough to detect the differences in
translation ability.
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These cases clearly show that a discriminative test instance must make the evaluation exhibit a
large diversity so that it can become a decisive clue for comparing the MT systems. Since the
metrics evaluate the performance of an MT system, the discrimination power of test instances can
be quantified by the variance of scores given by a metric, reflecting the degree of diversity in the
evaluation. A higher variance indicates that using this test instance in the evaluation makes it easier to
differentiate between the systems. Therefore, our goal is to create a discriminative test set for better
evaluating MT systems by selecting the instances whose variance of evaluation results is high. This
process will be referred to as variance-aware filtering.

3.2 Variance-Aware Filtering

To measure how differently MT systems perform on a test instance, the performance of candidate
systems is firstly quantified by the automatic metrics, then the standard deviation is simply used as
a statistical indicator to model the diversity of the evaluated performance. The standard deviation
takes the square root of the variance, we use it because the scale of this measurement is the same as
the original data. Given N references T = {t1, t2, ..., tN} and a set of corresponding hypotheses
h = {h1,h2, ...,hN} generated by k systems in which hi =

{
h
(1)
i , h

(2)
i , ..., h

(k)
i

}
, the performance

diversity of hypothesis hi is estimated by the standard deviation σi of the scores, which is formulated
as:

σi =

√√√√1

k

k∑
j=1

(M(h
(j)
i , ti)− µi)2, 1 ≤ i ≤ N (1)

whereM(·, ·) is the metric used to score the performance of the translation and µi is the average
value of all the systems’ scores, which can be calculated as follows:

µi =
1

k

k∑
j=1

M(h
(j)
i , ti), 1 ≤ i ≤ N (2)

For all the standard deviations {σ1, σ2, ..., σN}, a higher σi indicates that the behaviour of the systems
on reference ti is more diverse. Therefore, λ percent of test instances whose corresponding references
have lower values of σ will be filtered out in order to create a new discriminative test set, where λ is a
hyperparameter determined by the empirical experiments.

4 Experiments and In-Depth Analysis

4.1 Experimental Setup

Table 1: Detailed information about the test sets involved in the experiments, where Num denotes
the number of translation directions.

WMT16
(Num=7)

WMT17
(Num=14)

WMT18
(Num=14)

WMT19
(Num=18)

WMT20
(Num=17)

X-English cs, de, fi, ro, ru,
tr

cs, de, fi, lv, ru,
tr, zh

cs, de, et, fi, ru,
tr, zh

de, fi, gu, kk, lt,
ru, zh

cs, de, iu, ja, km,
pl, ps, ru, ta, zh

English-X ru cs, de, fi, lv, ru,
tr, zh

cs, de, et, fi, ru,
tr, zh

cs, de, fi, gu, kk,
lt, ru, zh

cs, de, ja, pl, ru,
ta, zh

Others / / / de-cs, de-fr, fr-de /

Data Five WMT test sets (Bojar et al., 2016, 2017; Ma et al., 2018, 2019; Mathur et al., 2020)
ranging from WMT16 to WMT20 were used to conduct the experiments since they are the well-
recognized benchmarks in the MT community. The included translation directions are as shown in
Table 1. On the other hand, we choose the test sets starting from WMT16 because the neural machine
translation (Bahdanau et al., 2015; Sennrich et al., 2016; Vaswani et al., 2017) paradigm has largely
improved the capability of MT systems and the systems submitted to the WMT competitions have
gradually become more competitive since 2016. For each language pair, we use the raw data released
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by the WMT competitions including the official references, submitted hypotheses of the different MT
systems, and the corresponding human ratings.

Metrics and Meta-Evaluation Without loss of generality, we validate our research hypotheses on
the following four representative metrics, and use their public open-source implementations so that
the results can be easily reproduced:

• BLEU (Papineni et al., 2002) is an n-gram based metric that uses the precision rate to
evaluate the coverage of reference n-gram in the model hypothesis. We use the sentence-
level BLEU in the filtering procedure and evaluate the corpus-level system performance.

• COMET (Rei et al., 2020) is an end-to-end metric that builds on the top of the pre-trained
XLM model including reference-based models and reference-free models. We use the
recommended reference-based estimator model in the experiments.

• BLEURT (Sellam et al., 2020) is an end-to-end metric that fine-tunes the BERT model with
several regression and classification tasks to make the model better be adapted to the MT
evaluation scenario. We use its released checkpoint and default settings in the experiments.

• BERTScore (Zhang et al., 2020) is an embedding-based metric that relies on a pre-trained
BERT model to encode the reference and hypothesis, measuring the similarity of represen-
tation with precision (BERTS-P), recall (BERTS-R), and the F -measure (BERTS-F). For
the evaluation of different language pairs, we use the default BERT-family models as the
same as the BERTScore implementation, e.g., RoBERTa-large for evaluating English text
and BERT-base-multilingual-case for evaluating other languages.

To examine the effectiveness of the automatic evaluation metrics, we use the system-level Pearson’s
r, Kendall’s τ and Spearman’s ρ correlation coefficients as the metrics for measuring how the results
of the automated evaluation correlate with human judgements; these are also widely used in the
competitions (Macháček and Bojar, 2013; Mathur et al., 2020) and related research (Freitag et al.,
2020b).

4.2 Ablation Study

There are two main factors that may affect our proposed filtering approach: the filtering percentage λ
and the filtering metricM. Hence, a series of empirical experiments was conducted on the WMT20
benchmark to explore the best settings for building the most discriminative test sets, and the finalized
setting would subsequently be used to validate its generality in other WMT benchmarks.
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(a) BLEU and End-to-End Metrics
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(b) BERTScore Metrics

Figure 2: Comparison of averaged Pearson correlations measured on all the WMT20 translation
directions using different filtering percentages. Extreme settings will hurt the correlation results
whereas filtering 60% or 70% of the data out of the test sets is the appropriate choice.

Choice of Filtering Percentage λ affects the amount of data to be preserved and is also an indicator
that reflects the discernment of the current data sets in terms of the evaluation metrics. As shown in
Figure 2, using only a partial test set can improve the evaluation correlation of automatic metrics,
but the most effective percentage setting depends on the type of evaluation metric. Compared to the
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BLEU metric, the metrics driven by the pre-trained models achieve the local optimal correlation
using a smaller proportion of the test set, i.e., λ ≥ 50. The underlying reason for this may lie in the
granularity of the evaluation in terms of the semantics: a metric that is better in parsing the semantics
needs fewer data to distinguish the MT systems because of the larger impact of those discriminative
samples in the comparison. However, the percentage setting may vary from language to language.
Figure 3 shows that filtering 60% of original data still can improve the correlation performance for
both to-English and from-English translation directions, confirming the robustness of this setting. For
fitting most of the metrics and languages, we filter 60% of the instances out of the original test sets in
the subsequent experiments.
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Figure 3: Comparison of averaged Pearson correlations measured on the WMT20 to/from English
translation directions using different filtering percentages. Filtering 60% of original data works well
for the two translation directions.

Choice of the Filtering MetricM matters because the discernment of a test instance can not be
estimated without an accurate evaluation of the MT systems’ performance. Figure 4 presents how the
scores given by the different metrics affect the correlation of filtered test sets. Filtering the test set
based on the scores given by the BERTS-R metric outperforms the test sets created by other metrics.
It is reasonable that the BERTS-R metric consistently achieves the best correlation when using it as
the evaluation metric (also as shown in Figure 2), and thus is better at quantifying the differences
between the hypotheses and filtering out the non-discriminative instances. Although COMET is also
remarkable in terms of Kendall’s τ correlation, we chose to use the scores given by the BERTS-R
metric as the bedrock to create the discriminative test set due to the balancing performance of these
correlation coefficients.
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Figure 4: Comparison of averaged correlation results measured on all the WMT20 translation
directions using different filtering metrics. Filtering the test sets by BERTS-R scores consistently
yields stable correlation results across different evaluation metrics. Using COMET scores has
comparable correlation performance with BERTR-S except Pearson correlation results.
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4.3 Main Results

Using the filtering settings determined in the previous sections for other WMT benchmarks, Tables 2
and 3 present the comparison of correlation results between using the filtered and original test sets.
The improved correlation performance across most metrics and benchmarks consistently confirms
the greater effectiveness of evaluating with a variance-aware test set (VAT), especially for the metrics
powered by pre-trained models. As for the n-gram-based metrics, it may over-penalize overlaps that
share the same semantics, due to the hard-matching paradigm, making some VAT instances inactive
in evaluating the diverse hypotheses. In contrast to the hard-matching paradigm, the metrics using
the pre-trained models are able to fairly judge synonymous expressions, thus the created VAT are
substantially useful to distinguish the MT systems.

Table 2: Comparison of averaged correlation results using original and variance-aware test sets (VAT)
where Num denotes the number of language pairs. Evaluating MT systems with variance-aware test
sets (+VAT) better correlates with human judgements across different evaluation metrics.

Metric
WMT16
(Num=7)

WMT17
(Num=14)

WMT18
(Num=14)

WMT19
(Num=18)

WMT20
(Num=17)

|r| |τ | |ρ| |r| |τ | |ρ| |r| |τ | |ρ| |r| |τ | |ρ| |r| |τ | |ρ|
BLEU .826 .645 .778 .910 .737 .865 .827 .727 .802 .912 .762 .878 .881 .675 .798
+VAT .880 .723 .837 .928 .754 .876 .827 .723 .796 .918 .786 .906 .879 .709 .828

COMET .988 .886 .958 .982 .884 .958 .980 .925 .975 .979 .882 .958 .861 .731 .854
+VAT .988 .881 .955 .985 .885 .959 .983 .921 .969 .981 .862 .948 .881 .743 .860

BLEURT .982 .856 .942 .939 .789 .890 .970 .900 .966 .925 .776 .896 .878 .699 .828
+VAT .984 .859 .944 .951 .807 .906 .974 .891 .959 .935 .791 .902 .892 .717 .839

BERTS-P .970 .848 .924 .951 .806 .909 .965 .866 .949 .953 .811 .911 .886 .699 .827
+VAT .976 .880 .948 .960 .820 .919 .978 .865 .949 .953 .827 .924 .897 .714 .842

BERTS-R .941 .831 .931 .974 .825 .926 .915 .843 .908 .961 .821 .924 .916 .742 .853
+VAT .953 .854 .943 .972 .826 .925 .953 .842 .911 .960 .834 .930 .920 .743 .856

BERTS-F .975 .881 .950 .970 .833 .927 .947 .846 .909 .963 .824 .924 .906 .728 .848
+VAT .979 .900 .964 .974 .842 .929 .969 .873 .942 .960 .823 .925 .914 .733 .850

Table 3: Comparison of Pearson correlations using original and variance-aware test sets (VAT) on
some mainstream language pairs. T. denotes the WMT test set. Using variance-aware test sets (+VAT)
consistently improves the evaluation results of the language pairs across different test sets.

Metric De-En En-De Zh-En En-Zh En-Cs
T.17 T.18 T.19 T.17 T.18 T.19 T.17 T.18 T.19 T.17 T.18 T.19 T.17 T.18 T.19

BLEU .928 .969 .888 .819 .980 .952 .869 .983 .900 .980 .947 .902 .956 .996 .987
+VAT .940 .975 .925 .845 .981 .952 .894 .986 .895 .980 .953 .925 .961 .994 .994

COMET .989 .997 .947 .935 .989 .987 .979 .988 .989 .993 .981 .975 .978 .974 .970
+VAT .993 .998 .952 .950 .990 .993 .979 .990 .992 .990 .985 .976 .985 .976 .978

BLEURT .965 .997 .940 .797 .987 .982 .915 .984 .984 .797 .883 .807 .919 .990 .987
+VAT .979 .998 .944 .841 .987 .981 .955 .988 .984 .822 .914 .877 .947 .986 .984

BERTS-P .948 .998 .947 .798 .988 .984 .964 .981 .975 .970 .954 .881 .959 .994 .975
+VAT .964 .999 .952 .830 .989 .989 .977 .984 .982 .982 .959 .926 .968 .998 .984

BERTS-R .988 .997 .946 .909 .990 .991 .981 .990 .987 .994 .976 .940 .982 .997 .984
+VAT .989 .997 .950 .912 .990 .991 .978 .991 .987 .988 .980 .951 .984 .997 .989

BERTS-F .973 .999 .949 .859 .990 .990 .983 .988 .983 .992 .968 .925 .976 .997 .981
+VAT .981 .999 .952 .876 .989 .992 .988 .990 .986 .994 .972 .949 .979 .998 .987

4.4 Analysis of Variance-Aware Test Sets

To investigate how the correlation improvement benefits from VAT, we characterize the VAT built on
the WMT20 benchmark from the perspective of their linguistic and data properties in this section.

Sentence Length generally associates with the translation difficulty (Koehn and Knowles, 2017),
but the difficult sentence may be less relevant to the high discernment. As shown in Figure 5, longer
sentences exhibit lower discernment and were filtered out by our method. Translating longer sentences
is extremely challenging for MT systems due to the long-distance dependency or complex entity
relationships (Cho et al., 2014; Sennrich and Haddow, 2016; Eriguchi et al., 2019), leading to close
translation performance of MT systems. On the contrary, short sentences are more discriminative

7



10%

0%

10%

P
er

ce
nt

ag
e 

C
ha

ng
e

cs-en de-en en-cs en-de en-ja en-pl en-ru en-ta en-zh

10%

0%

10%

P
er

ce
nt

ag
e 

C
ha

ng
e

iu-en ja-en km-en pl-en

Sentence Length Groups

ps-en ru-en ta-en zh-en

Short

Middle

Long

Figure 5: Absolute constitution changes of variance-aware test sets in terms of sentence length. VAT
preserved more short sentences for most language pairs. The one-third of the sentences will be treated
as the Long group, and the Medium/Short grouping methods are analogous.

because different systems tend to show greater differences in their syntactic and lexical choices.
But some special translation directions show the opposite trends, such as Chinese→English and
German→English. Not only is the number of systems that participated in these translation tasks
relatively huge, but also the systems trained on these high-resource language pairs are likely to be
more competitive. Since the competitive systems can be good at translating short sentences, the clues
to judge their capability could rely on the translation of medium or long sentences.
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Figure 6: Absolute constitution changes of variance-aware test sets in terms of word frequency. VAT
filtered the sentences which contain more frequent words. The boundaries for categorizing the “Rare”,
“Middle”, “Frequent” group are 20%, 60%, 100% percentile of word frequency, respectively.

Word Frequency is a measure that reflects the finer-grained difference of MT systems since they
may vary in their lexical choice of rare words (Koehn and Knowles, 2017; Ding et al., 2021b).
As shown in Figure 6, the proportion of frequently occurring words in the training set is reduced
in the VAT, indicating that high-frequency words are less discriminative. The representations of
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high-frequency words learned on the training set tend to be stable, whereas the low-frequency words
are insufficiently learned. In particular, some systems may enhance the translation performance of
low-frequency words with the help of data augmentation (Fadaee et al., 2017; Ding et al., 2021a)
or representation enhancement techniques (Nguyen and Chiang, 2018; Liu et al., 2019), resulting
in the differences of lexical choice performed on the test set. Overall, the percentage change of
word frequencies is not so large as it was for the comparison of sentence lengths, because the
filtering operation is conducted at the sentence level, thus only those sentences whose proportion of
low-frequency words is high will be preserved.

Part-of-Speech better depicts the lexical features of VAT considering the syntactic role a word
plays. It can be seen from Figure 7 that VAT preserved more sentences containing proper nouns
(NNP). This phenomenon echoes our previous comparative exploration of word frequency since there
is a large overlap between NNPs and low-frequency words, such as the technical terms of a specific
domain, but the translation performance on NNPs is not as intractable on long sentences. Due to the
fact that the bottleneck of long-sentence translation may be related to the model architecture (Cho
et al., 2014), most MT systems that share a homogeneous architecture (Vaswani et al., 2017) still
have problems in translating these challenging sentences. Similar to the problem of low-frequency
words, the poor translation accuracy for NNPs can be alleviated by introducing external knowledge
(Chatterjee et al., 2017) or domain adaptation techniques (Hu et al., 2019) concerning data-efficient
learning, thus evaluating the translation of NNPs is also valuable in distinguishing MT systems.
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Figure 7: Absolute constitution changes of variance-aware test sets in terms of English part-of-speech
tagged by the NLTK toolkit. VAT has more proper nouns than the original test sets.

Human Paraphrasing is another option for optimizing existing MT test sets. It asks human
experts to paraphrase the references as much as possible (Freitag et al., 2020b). This can effec-
tively improve the correlation of automatic metrics but is very costly. In this experiment, we
investigate the relationship between human paraphrased test sets provided by Freitag et al. (2020b)
and the preserved (discriminative) and filtered out (non-discriminative) subsets by our approach.

Table 4: Edit distances between different subsets of
the English→German test set with corresponding
human paraphrased data. Human experts need to
do fewer paraphrases on the preserved subsets.

All Filtered Out Preserved
WMT20 30.35 30.46 30.18
WMT19 19.82 20.25 19.17
WMT18 20.02 20.30 19.72

Table 4 gives the averaged edit distance (Leven-
shtein, 1966): a large value means more para-
phrases on a subset. The results show that hu-
man experts need to produce more paraphrases
for the filtered out test instances whereas making
fewer paraphrases for the preserved ones. This
means that the preserved subsets are of higher
quality for MT evaluation, and thus can improve
the correlation with human judgements.
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Figure 8: Comparison of distribution of
BERTS-R scores between filtered out
and preserved sentences. Sentences with
medium difficulty are more discrimina-
tive than which are either extremely hard
or extremely easy.

Translation Difficulty is not the same as the evaluation
discernment as we assumed before. The test instances
whose difficulty lies at the extremes of the scale are not
useful in an evaluation aiming to distinguish between MT
systems, so the preserved samples possibly are not the sim-
plest or the most difficult instances. Starting from this intu-
ition, we investigate the distribution of the averaged score
of the test instances on the WMT20 English→German
translation task since it involves competitive systems that
are challenging for the automated evaluation (Freitag et al.,
2020b). Obviously, Figure 8 reveals that the preserved in-
stances have moderate but not extreme difficulty. The
phenomenon that samples with slightly higher difficulty
are preserved also conforms with the previous observation
in terms of the sentence length, that the longer sentences
are more vital in distinguishing the MT systems due to
their strong capability, also echoes the previous research
stating that this translation direction easily confused the
automatic evaluation metric (Bojar et al., 2018; Barrault
et al., 2019).

To conclude, a test item preserved by the proposed filtering method is discriminative in terms of its
linguistic and data properties, thus the improvement in the correlation of the variance-aware test set is
reasonable. Moreover, the variance-aware filtering method has the potential for saving the human
labor for diversifying the test sets.

5 Conclusions and Future Work

This paper introduces a method to select discriminative test instances from the machine translation
benchmark and automatically create a series of variance-aware test sets. Experimental results show
that using the created test sets can improve the correlation performance of automatic evaluation
results across representative test sets and languages, confirming the effectiveness and generality of
the proposed method. Further analysis of the features of the test instances supports the rationality of
variance-aware test sets and ensures its reliability for other possible uses.

Future work includes: 1) investigating the use of the variance-aware test sets in other MT research
questions. For example, using them as the validation sets in some time-consuming scenarios, e.g.,
neural architecture search and reinforcement learning; 2) applying the filtering method to the training
set to accelerate the learning process; 3) extending the filtering method to other evaluation tasks like
dialogue generation.
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