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Subgraph Federated Unlearning
Anonymous Author(s)

ABSTRACT
Subgraph federated learning aims to collaboratively train a global
model over distributed subgraphs stored in multiple local clients
with strict privacy constraints, which is crucial to a wide range
of applications such as healthcare, recommendation systems, and
financial crime detection. With the increasing emphasis on the
"right to be forgotten," the issue of machine unlearning of subgraph
federated models has gained significant importance. However, ex-
isting federated unlearning approaches largely focused on unstruc-
tured data, overlooking the impact of structural dependency and
cross-client interferences in graph-based data. To this end, in this
paper, we propose ReGEnUnlearn, a subgraph federated unlearning
framework for efficient and comprehensive unlearning of multiple
target clients. Specifically, we first propose the Reinforced Federated
Policy Sampler (RFPS) to learn optimal sampling strategies that
minimize the interference among cross-client subgraphs. By inter-
acting with the federated graph sampling environment, the agent
learns to selectively forget an optimal subgraph of target clients,
thus preserving the global model utility. Moreover, we propose the
Parameter-free Graph Prompt Knowledge Distillation (PGPKD) mod-
ule, which retains the unique graph knowledge contributed by the
target clients, thereby facilitating comprehensive unlearning via a
tailored gradient ascent objective. Extensive experiments in various
federated settings demonstrate ReGEnUnlearn’s superiority over
existing federated unlearning methods, offering a speedup of 3.6×
to 9× compared to traditional retraining while maintaining model
utility within a range of 100% − 102%. The source code is available
at https://anonymous.4open.science/r/Unlearn-F27B/README.md

CCS CONCEPTS
• Security and privacy→ Mobile and wireless security; • Com-
puting methodologies→ Supervised learning.
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Figure 1: (a) Traditional federated unlearning on unstruc-
tured data (e.g., image, time series, and text etc.). (b) Subgraph
federated unlearning raises additional concerns about eras-
ing structural knowledge and cross-client subgraph overlap.
1 INTRODUCTION
Subgraph federated learning aims to address the challenges of col-
laborative learning across distributed subgraphs stored in multiple
local systems while adhering to strict privacy regulations [3]. This
approach is critical to diverse applications, including healthcare, rec-
ommendation systems, and financial crime detection, especially in
cross-silo federated learning scenarios [36, 40, 43]. With increasing
emphasis on privacy rights, such as the "right to be forgotten [11]
," subgraph federated unlearning emerges as a crucial task, aim-
ing to selectively remove specific clients’ contributions from the
global model. For example, in the context of international banks
applying federated learning for financial crime detection, changing
privacy laws may compel certain banks to withdraw their data,
underscoring the need for effective unlearning mechanisms.

Nevertheless, existing federated unlearning approaches, as dis-
cussed in [12, 13, 23, 30, 35], predominantly focus on non-graph
data, thus failing to address the complexities in subgraph federated
unlearning. For example, VERIFI [10] involves the submission of
gradient updates by all clients to the server. The server then ampli-
fies gradients from remaining clients while reducing contributions
from the target clients. Halimi et al. [14] introduce a projected
gradient ascent to maximize empirical loss on the target clients.
As another example, FedRecover [46] iteratively eliminates con-
tributions from target clients based on historical storage models.
However, the above methods primarily focused on erasing the con-
tribution of a target client with unstructured data (e.g., image, time
series, and text etc.), largely overlook the impact of structural de-
pendency and cross-client interferences in graph-based data, as
depicted in Figure 1. To address this gap, we investigate the sub-
graph unlearning problem in a federated environment withmultiple
client participants.

However, it is a non-trivial issue to effectively opt out of the
contribution of multiple distributed clients while maintaining the
model utility. (1) Cross-client subgraph interference. In the federated
scenario, the subgraphs held by each client may overlap with each
other (e.g., common users in multiple banks, patients shared by

1
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Figure 2: (a) Comparison of unlearning on subgraphs with
non-overlapping (Non-OL) and overlapping (OL) on the
Photo dataset. The subgraph overlapping significantly re-
duces the model’s utility. (b) Unlearning on optimally sam-
pled subgraph (OS Subgrpah) better retains the model utility
compared to heuristically sampled subgraph (HS Subgraph).

different hospitals). Simply eliminating contributions of a subgraph
in a target client may forget common knowledge encoded in the
overlapped subgraph, therefore leading to unexpected performance
degradation of the global model, as illustrated in Figure 2(a). One
straightforward solution is removing cross-client subgraphs via
graph sampling and applying unlearning on the filtered subgraph,
as depicted in Figure 2(b). However, due to privacy constraints,
both the server and clients have limited access to the identity of
cross-client subgraphs. How to eliminate the cross-client interfer-
ence to guarantee the global model utility is the first challenge.
(2) Diversified structural contribution of each client. A key benefit of
federated learning is to collaboratively train a better global model
by absorbing personalized knowledge from each client, e.g., rare
disease cases in a hospital, exclusive user purchase records in an
e-commerce platform. However, removing the unique contribution
of a target client from a global graph model requires identifying
various knowledge, such as entity attributes, node connectivity, and
high-order structural patterns. How to comprehensively unlearn
subgraph knowledge of a target client is another challenge.

To address the aforementioned challenges, we introduce the
Reinforced Graph Knowledge Enhancement Subgraph Federated Un-
learning (ReGEnUnlearn) framework, comprising two key modules.
First, the Reinforced Federated Policy Sampler (RFPS) module is pro-
posed to mitigate the interference among cross-client subgraphs.
By interacting with the federated graph sampling environment, the
agent learns optimal graph sampling strategies that facilitate the
removal of cross-client nodes while preserving model utility. Sec-
ond, a Parameter-free Graph Prompt Knowledge Distillation (PGPKD)
module is devised to distill specific graph knowledge from the tar-
get clients. This process encodes target clients’ unique knowledge
into the distilled graph prompts, which can be inserted into the
sampled subgraph. In this way, the structural knowledge of a target
client can be comprehensively unlearned by optimizing a gradient
ascent objective over the prompt-enhanced subgraph.

The contributions of our work are summarized as follows: (1)
To our knowledge, this is the first study to investigate subgraph
federated unlearning with consideration of multiple target clients.
(2) We propose the ReGEnUnlearn framework to comprehensively
eliminate multiple target clients while preserving utility. ReGE-
nUnlearn is agnostic to federated algorithms and can be easily

integrated into different subgraph federated scenarios. (3) We con-
duct comprehensive experiments on four real-world datasets un-
der various subgraph federated settings. The proposed framework
demonstrates notable speedups ranging from 3.6× to 9× compared
to traditional retraining while maintaining model utility within a
range of 100%-102%.

2 PRELIMINARIES
In this section, we provide the background on subgraph federated
learning and federated unlearning.

2.1 Subgraph Federated Learning
2.1.1 Notation. We represent the global graph as G = (V, E,X),
where V denotes the node set, E represents the edge set, and X
denotes the node feature set. Each node 𝑣 ∈ V is associated with
its feature x𝑣 ∈ X. In the federated learning system, we consider
a central server denoted as 𝑆 and 𝑀 distributed local clients C =

{C1, · · · , C𝑀 }, each possessing a subgraph G𝑖 = (V𝑖 , E𝑖 ,X𝑖 ). These
entities collaboratively train a global model 𝐹 (w), where w is the
model weights andV = ∪𝑀

𝑖=1V𝑖 .

2.1.2 Local Graph Learning. The Message Passing Neural Network
(MPNN) is a widely used framework for graph data that can accom-
modate various Graph Neural Network (GNN) architectures. In the
subgraph federated learning, each client has a local GNNmodel and
collaborates with others to train a global model. The local graph
learning process consists of the following two phases.

Message Passing. For each client C𝑖 , the 𝑙-th layer in MPNN is
defined as follows,

h𝑙+1,𝑖
𝑗

= U𝑤𝑙,𝑖 (h𝑙,𝑖𝑗 ,m
𝑙+1,𝑖
𝑗
), (1)

where h𝑙+1,𝑖
𝑗

represents the node feature vector at layer 𝑙+1 for node
𝑣 𝑗 in client C𝑖 . The term m𝑙+1,𝑖

𝑗
denotes the aggregated message

from the neighbors of node 𝑣 𝑗 , and U𝑤𝑙+1,𝑖 is a function updating
the node feature vector, with𝑤𝑙+1,𝑖 as the corresponding parameter
in the 𝑙-th layer. The computation of the messagem𝑙+1,𝑖

𝑗
is define

as below,

m𝑙+1,𝑖
𝑗

=
∑︁

𝑣𝑘 ∈N(𝑣𝑗 )
M𝜃𝑙+1,𝑖 (h

𝑙,𝑖
𝑗
,h𝑙,𝑖
𝑘
, e𝑙,𝑖
𝑗𝑘
), (2)

where N(𝑣 𝑗 ) represents the neighborhood of node 𝑣 𝑗 , M𝜃𝑙+1,𝑖 is
the function generating the message from node features, and 𝜃𝑙+1,𝑖

is the corresponding parameter. e𝑙,𝑖
𝑗𝑘

denotes message embedding
associated with the edge between nodes 𝑣 𝑗 and 𝑣𝑘 in the 𝑙-th layer.

Readout. The readout phase computes the final feature for sub-
sequent tasks,

𝑦𝑖𝑣𝑗 = 𝑃𝜔𝑖 (h𝐿,𝑖𝑗 |𝑣 𝑗 ∈ V
𝑖 ), (3)

where 𝑦𝑖𝑣𝑗 represents the prediction for node 𝑣 𝑗 . The readout
function 𝑃𝜔𝑖 encompasses methods such as mean pooling, where
𝜔𝑖 is the parameter for the readout function.

2
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2.1.3 Subgraph Federated Optimization. The objective of subgraph
federated learning is defined as follows,

min
w

𝑀∑︁
𝑖=1

𝑝𝑖R𝑖 (F𝑖 (w)), (4)

where the term 𝑝𝑖 denotes the model aggregation weight, with the
constraint that

∑𝑀
𝑖=1 𝑝𝑖 = 1. The function R𝑖 (·) corresponds to the

local empirical risk function and is formally expressed as
R𝑖 (F𝑖 (w)) := E(G𝑖 ,Y𝑖 ) [L(F𝑖 (w;G𝑖 ),Y𝑖 )], (5)

whereL(F𝑖 (w;G𝑖 ),Y𝑖 )) := 1
|V𝑖 |

∑
𝑣𝑖 ∈V 𝑙 (F𝑖 (w;G𝑖 (𝑣𝑖 )), 𝑦𝑣𝑖 ) is the

local loss function, F𝑖 (·) is the GNN model for client C𝑖 .
To optimize the objective function, we consider the classic fed-

erated algorithm, FedAvg algorithm [27], for illustration. In each
round 𝑡 , the central server sends the global model w𝑡 to all local
clients. Subsequently, each client performs multi-steps of the Sto-
chastic Gradient Descent (SGD) optimization method to refine their
local models. Following this local optimization, the clients trans-
mit their updated local models as w𝑡

𝑖
back to the central server.

Finally, the central server aggregates these local models by weights
𝑝𝑖 to obtain the next round’s global model w𝑡+1 =

∑
𝑖 𝑝𝑖w𝑡𝑖 . This

optimization process iterates over a specified number of 𝑇 rounds.

2.2 Federated Unlearning
Approximate Federated Unlearning. In this paper, we specif-
ically focus on client-level federated unlearning. In this scenario,
multiple clients want to opt out of the federation and eliminate
their contribution from the global model. Assume that there are
𝑁𝑡 clients who want to opt out of the federation. We refer to these
clients as target clients I = {I1, · · · ,I𝑁𝑡

} ⊆ C. Naive retraining
methods from scratch are computationally expensive and impracti-
cal, especially when confronted with frequent removal requests.

Objective. The objective of this paper is to solve approximate
federated unlearning, which can eliminate the contribution of the
subgraph in target clients while maintaining comparable model
utility comparable to full retraining.

Unlearning Verification. The backdoor trigger is one of the
most widely adopted verification methods for evaluating the per-
formance of federated unlearning methods [6, 9, 15]. In practical
scenarios, target clients utilize their datasets, incorporating a frac-
tion of the data injected with backdoor triggers corresponding to
specific target labels. The resulting global model learns the correla-
tion between the trigger patterns and the target labels. By denoting
the backdoor trigger as 𝑔, a successful trigger would lead the GNN
model to classify into the target label,

F𝑖 ⊕ 𝑔(w;G𝑖 (𝑣𝑖 )) = 𝑦𝜏 , (6)
where𝑦𝜏 represents the target label. A successful unlearningmethod
should disentangle this correlation, resulting in a lower attack suc-
cess rate.

F𝑖 ⊕ 𝑔(w;G𝑖 (𝑣𝑖 )) = 𝑦𝑣𝑖 , (7)
Threat Model. This work focuses on semi-honest scenarios,

excluding considerations of malicious clients or model replacement
attacks. The global model is expected to exhibit robust performance
on clean datasets, ensuring that introducing a backdoor trigger
does not compromise its overall performance.

3 REINFORCED GRAPH KNOWLEDGE
ENHANCEMENT SUBGRAPH FEDERATED
UNLEARNING

Overview. Figure 3 illustrates the overall framework of Reinforced
Graph Knowledge Enhancement Subgraph Federated Unlearning,
which consists of two crucial modules: (1) Reinforced Federated
Policy Sampler (RFPS) module aims to mitigate the cross-client
interference. (2) Prompt Knowledge Enhancement Graph Distilla-
tion (PKEGD) module distills specific graph knowledge from the
target clients for comprehensive subgraph unlearning. In particular,
the first module RFPS, selectively samples subgraphs for unlearn-
ing to guarantee the global model utility. For the second module,
PKEGD encodes key graph knowledge to graph prompts, which
can be inserted with the sampled subgraph from RFPS. Finally, the
global model is optimized via the tailored unlearning loss over the
integrated subgraph for multi-client unlearning.

3.1 Reinforced Federated Policy Sampler
Unlearning across multiple clients would significantly decrease
the model utility, especially with cross-client node interference.
Based on the observation illustrated in Figure 2, the first intuition
of our model is unlearning on a sampled subgraph. However, a key
challenge is to remove the overlapping subgraph without accessing
other clients’ data. To address this issue, we propose a Reinforced
Federated Policy Sampler, which leverages a reinforcement learning
algorithm to enable the agent to determine the optimal policy for
sampling a subgraph. The graph sampling process is formulated
into a general decisionM = {S (𝑖 ) ,A (𝑖 ) ,P (𝑖 ) , 𝑅} for client C𝑖 ∈ C.
Here, S (𝑖 ) = {𝑠 (𝑖 )𝑡 } represents the set of states comprising all pos-
sible intermediate and final sampled graphs. The set A (𝑖 ) = {𝑎 (𝑖 )𝑡 }
represents the actions characterizing the sampled graph’s behavior
at each time step. P (𝑖 ) is the transition dynamics specifying the
possible outcomes of carrying out an action. 𝑅(𝑠 (𝑖 )𝑡 ) is a reward
function specifying the reward after reaching the state 𝑠 (𝑖 )𝑡 .

State. For a client C𝑖 ∈ C, we define the state as all possible
sampled graphs. Specifically, each state 𝑠𝑡 is represented by a graph
G′
𝑖
= (V′

𝑖
, E′
𝑖
,X′
𝑖
), where E′ = {(𝑢,𝑤) | 𝑢,𝑤 ∈ V′ and (𝑢,𝑤) ∈

E}, and X′
𝑖
represents the corresponding node features.

Action. The action space encompasses all possible combinations
of selected𝑘 nodes, ranging from the original graphG (𝑖 ) . The𝑎 (𝑖 )𝑡 =

{0, 1}𝑛 represents an action, where the 𝑖-th of value 𝑎𝑡 indicates
whether node node 𝑣𝑖 is selected (1) or not (0). Specifically, the
action is generated by a policy function 𝜋𝜃 (𝑎

(𝑖 )
𝑡 |𝑠

(𝑖 )
𝑡 ), which takes

the state and the original graph as input, where 𝜃 represents the
parameters. In particular, the policy network 𝜋𝜃 (𝑎

(𝑖 )
𝑡 |𝑠

(𝑖 )
𝑡 ) consists

of node embedding and action prediction functions.
Node Embedding. To predict actions, the policy network first

computes the node embedding of the input graph using the node
embedding function 𝑔𝜑 (·), parameterized with 𝜑 . Specifically, we
employ a graph neural network to calculate the node embedding:

𝐻 (𝑙+1) = AGG
(
𝜎

(
�̃�−

1
2 𝐸�̃�

1
2𝐻 𝑙𝑊

))
, (8)
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Figure 3: Framework overview.
where 𝐻 (𝑙+1) represents the node features matrix at layer 𝑙 + 1.
AGG(·) denotes the aggregation function, 𝜎 is the activation func-
tion, �̃� is the normalized degree matrix, 𝐸 is the adjacency matrix,
and𝑊 is the learnable weight matrix.

Action Prediction. The action 𝑎 (𝑖 )𝑡 is predicted based on two
components: the probability-sampling-based action 𝑎 (𝑖 )

𝑃𝑡
and the

learnable action 𝑎 (𝑖 )
𝐿𝑡

,

𝑎
(𝑖 )
𝑡 = CONCAT(𝑎 (𝑖 )

𝑃𝑡
, 𝑎
(𝑖 )
𝐿𝑡
), (9)

where CONCAT represents the concatenation function, and 𝑎 (𝑖 )
𝑃𝑡
∼

𝑃𝜙 is a stochastic probability distribution with parameter 𝜙 . The
learnable action 𝑎 (𝑖 )

𝐿𝑡
is defined by the following equations,

𝑎
(𝑖 )
𝐿𝑡

= SOFTMAX(MLP(CONCAT(𝑔𝜑 (𝑠 (𝑖 )𝑡−1), 𝑔𝜑 (G𝑖 )))), (10)

where SOFTMAX(·) denotes the softmax function. The final sam-
pled graph is denoted as G′

𝑖
= (V′

𝑖
, E′
𝑖
,X′
𝑖
), where E′ = {(𝑢,𝑤) |

𝑢,𝑤 ∈ V′ and (𝑢,𝑤) ∈ E}, and X′
𝑖
signifies the corresponding

node features. The sampled nodes inV′
𝑖
are derived from the ac-

tion 𝑎𝑡 and maintain their 𝐾-hop neighborhood N𝐾 (𝑣).

V′
𝑖
= {𝑣 | 𝑣 ∈ V𝑖 , 𝑣 ∼ 𝑎 (𝑖 )𝑡 } ∪

⋃
𝑣∈V𝑖

N𝐾 (𝑣) , (11)

whereN𝐾 (𝑣) represents the set of 𝐾-hop neighboring nodes in the
original graph G𝑖 . Here, the sampling rate is denoted by 𝑠 = 𝑘

|V𝑖 |
to control the number of sampled nodes.

Transition.After taking action 𝑎 (𝑖 )𝑡 , the environment undergoes
a transition, and the state changes from 𝑠

(𝑖 )
𝑡 to 𝑠 (𝑖 )

𝑡+1, governed by
the transition probability 𝑃 (𝑠 (𝑖 )

𝑡+1 |𝑠
(𝑖 )
𝑡 , 𝑎

(𝑖 )
𝑡 ).

Reward Design. The environment yields a reward 𝑅(𝑟 (𝑖 )𝑡 ) to
assess the action 𝑎 (𝑖 )𝑡 in the state 𝑠 (𝑖 )𝑡 for client C𝑖 . The environment
aims to assign a positive reward when the sampled graph does not
significantly impact the model’s utility while preserving unlearning
performance. The reward function is designed as follows,

𝑅(𝑠 (𝑖 )𝑡 ) =
{

1
acc0−acc1+1 if acc1 < acc0
−1 otherwise ,

(12)

where acc0 denotes the client’s accuracy on the pre-unlearning
model. The acc1 represents the accuracy post the client’s unlearning
process. To conduct the unlearning procedure, a gradient ascent is
executed on the presently sampled graph G′𝑖 at time 𝑡 .

Federated Policy Gradient Training. The objective of the
agent is to train an optimal policy network capable of maximizing
the expected reward. The training of the policy network involves
defining the overall loss as follows.

L(𝜃 ) =
∑︁
𝑖

E
𝜋𝜃 (𝑎 (𝑖 )𝑡 |𝑠

(𝑖 )
𝑡 )
[(𝑟 (𝑖 )𝑡 ∇ log𝜋𝜃 (𝑎

(𝑖 )
𝑡 | 𝑠 (𝑖 )𝑡 )], (13)

The optimization of the policy network utilizes Adam optimizer,
which is detailed in Appendix A.

3.2 Parameter-free Graph Prompt Knowledge
Distillation

Recent research [31, 39] demonstrates the ability of graph prompts
to enhance performance on downstream tasks by leveraging the
knowledge from pre-trained models and increasing the expressive-
ness of downstream graph representations. Graph prompts can
serve as a medium for distilling knowledge from pre-trained mod-
els [32]. However, existing graph prompt methods are parameter-
extensive, which are computationally expensive to improve down-
stream tasks [31]. In this module, we introduce the parameter-free
graph prompt to distill subgraph knowledge from the target clients.

3.2.1 Graph Prompt Generation. We first learn a graph prompt gen-
erator 𝑓𝜙 (·) to derive graph prompts, which comprises three major
components: graph prompt token vectorization, graph prompt ag-
gregation, and graph prompts insertion.

Graph Prompt Token Vectorization. To derive the graph
prompt, we first generate vectorized graph prompt tokens, which
can be done via a Multi-Layer Perceptron (MLP),

𝑀𝐿𝑃 (G′𝑖 ) = G
(𝑖 )
v′𝑞
, (14)

G (𝑖 )v′𝑞
= (P,S), (15)

s𝑖 𝑗 =
{
𝜎 (p𝑖 · p𝑗 ) 𝜎 (p𝑖 · p𝑗 ) > 𝜂

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (16)

where G (𝑖 )v′𝑞
is the graph prompt for node v′𝑞 , P = {p1, · · · , p𝑞}

denotes the vectorized tokens. The superscript indicates the index
for subgraph G′

𝑖
. S = {(p𝑖 , p𝑗 ) |p𝑖 , p𝑗 ∈ P} denotes the pairwise

connected relation among the tokens. s𝑖 𝑗 is the connection relation
between token p𝑖 and p𝑗 . 𝜎 is the sigmoid function and 𝜂 is the
hyperparameter serving as a control threshold.

4
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Graph Prompt Aggregation. To integrate the distilled graph
prompts with the sampled graph, we initiate the process by aggre-
gating the graph tokens. Let 𝑓𝜑 (G (𝑖 )v′𝑞

) denote a universal aggrega-
tion function with parameter 𝜑 . The initial step involves aggregat-
ing the graph prompt tokens by taking into account the similarity
among tokens,

h𝑙𝑖 = 𝜎 (
∑︁

p𝑗 ∈N(p𝑗 )
s𝑖 𝑗W𝑙h

𝑘−1
𝑗 ), (17)

where h𝑙
𝑖
is the embedding of token p𝑖 at the 𝑙-th layer, and W𝑙

is the function weights at layer 𝑙 . The the universal aggregation
function paramater 𝜑 is defined as {W𝑘 }𝐿𝑘=1.N(p𝑗 ) represents the
connected relation set of token p𝑗 . Finally, mean global pooling is
applied to obtain the final embedding,

p′𝑖 =
1
𝑞

𝑞∑︁
𝑗=1

h(𝐿)
𝑗
, (18)

where h(𝐿)
𝑗

is the feature vector of the token p𝑗 at final layer 𝐿.
GraphPrompts Insertion. To incorporate the aggregated graph

prompts into the sampled graph G′
𝑖
, we firstly generate 𝑁𝑞 graph

prompts {G (𝑖 )v′
𝑗

}𝑁𝑞

𝑗=1 . Then, we randomly select 𝑁𝑞 nodes from the

sampled graph G′
𝑖
for insertion. The embedding {p′

𝑖
}𝑁𝑞

𝑖=1 of aggre-
gated graph prompt tokens are added to the sampled graph G′

𝑖
.

x̂′𝑖 =
{
x′
𝑖
+ p′

𝑖
x′
𝑖
∈ T𝑥

x′
𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(19)

where T𝑥 = {x′1, · · · , x
′
𝑞} denote the sampled nodes feature set.

The final sampled graph inserted with graph prompts is termed
knowledge enhancement graph Ĝ′

𝑖
= (V′

𝑖
, E′
𝑖
, X̂′
𝑖
), where X̂′

𝑖
=

{x̂′1, · · · , x̂
′
𝑛′ } is augmented feature set, where x̂′𝑞 is the enhanced

target node feature.

3.2.2 Graph Prompt Turning. The goal of graph prompts turning is
dist the specific graph knowledge learned from the target client by
fine-tuning the task parameters, denoted as 𝜔 = {{G (𝑖 )v′

𝑗

}𝑁𝑞

𝑗=1, {𝜙}}.
The graph prompts turning loss is defined as follows,

L Ĝ′
𝑖

= 𝑙 (𝐹𝑖 (w; Ĝ′𝑖 ),Y
′
𝑖 ), (20)

where 𝑙 (·) is the cross-entropy node classification loss, Y′
𝑖
is the

label set for graph G′
𝑖
. The model weight of the local model 𝐹𝑖 (w)

in the target client is fixed.

3.3 Gradient Descent Unlearning
Based on the knowledge enhancement graph, the target clients
are ready for unlearning. To provide guidance for the unlearning
process, we employ the average weights of the remaining models
as a constraint on the global model. The final unlearning loss is
defined as follows,

L𝑢 (F (w)) =
∑︁
C𝑖 ∈I
[− 1
|V𝑖 |

∑︁
𝑢′∈V′

[𝑙 (F𝑖 (w; Ĝ𝑖 (𝑢′)), 𝑦𝑢′ )]

+ 𝜆𝑢 ·
w𝑖 −w∗2], (21)

Algorithm 1: Reinforced Graph Knowledge Enhancement
Subgraph Federated Unlearner
Input: Client data {G𝑖 }𝑀𝑖=1, pretrained policy sampler

𝜋𝜃 (·), global model 𝐹 (w), fine-tuning epoch 𝐸.
Result: Enhanced compact subgraph Ĝ′

𝑖
= (V′

𝑖
, E′
𝑖
, X̂′
𝑖
)

1 Use pre-trained policy sampler 𝜋𝜃 (·) to sample the graphs
{G′𝑖 }𝑁𝑡

𝑖=1 based on Equation 11.;
2 for each target client C𝑖 ∈ I in parallel do
3 for 𝑘 = 1 to 𝐸 do
4 Generate the graph prompts based on Equation 14;
5 Aggregate the tokens embedding based on

Equations 17 and 18;
6 Insert the graph tokens based on Equation 19;
7 Compute the prompt enhancement loss by

Equation 20;
8 Update 𝜔 = {{G (𝑖 )v′

𝑗

}𝑁𝑞

𝑗=1, {𝜑}} using Adam

optimization with the gradients of L Ĝ′
𝑖

) ;
9 end

10 end
11 Use Adam optimizer to optimize the unlearning loss based

on Equation 21;
12 Return unlearned model F (wC\I ).

where w∗ = 1
| C\I |

∑
𝑖∈C\I w𝑖 is the guided model constraint, and

𝜆𝑢 is the constrain parameter. 𝑙 (·) is the corss-entropy loss. The
final unlearned global model is denoted as FwC\I (·).

We also employ the Adam optimizer to minimize the unlearn-
ing loss. After unlearning, the performance of the updated global
model may decrease for other clients. To mitigate this issue, the
server conducts a few rounds of federated learning involving the
remaining clients [6, 8, 15]. Empirical studies demonstrate that, in
practice, only a few rounds are sufficient to keep the new global
model wC\I up to date. The complete procedure for subgraph
federated unlearning is reported in Algorithm 1.

4 EXPERIMENTS
In this section, we empirically evaluate the proposed framework and
compare it with the state-of-the-art federated unlearning methods.
We report the unlearning performance on the real-world dataset. To
be more specific, we aim to answer the following research questions.
RQ1: Does the proposedmethod effectively eliminate contributions
from multiple clients compared to state-of-the-art unlearning meth-
ods? RQ 2: How effective are the proposed components within the
unlearning framework? RQ 3: How robust is the proposed method
concerning changes in hyperparameter values? RQ 4: Does the
unlearning process compromise the privacy of the clients?

4.1 Environmental Setup
Datasets. The distributed subgraph is constructed by partitioning
the datasets into a predetermined number of participants. In sub-
graph federated learning (FL), each client possesses a subgraph as

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

a subset of the original graph. Specifically, we utilize a set of real-
world graph datasets, including Cora [2], Pubmed [29], Photo [26],
and Cs [2]. In the default setting, the overlapping nodes are set to
0.2. Various overlapping nodes setting experiments is presented in
Appendix B.1.

Evaluation Metrics. For evaluating the effectiveness of feder-
ated unlearning methods, we use the widely acknowledged met-
rics [6, 8, 15]. (1) Attack Success Rate (ASR): The backdoor trigger
is employed to evaluate the efficacy of unlearning methods. ASR
quantifies the successful classification of manipulated data into the
target label [38]. A lower ASR signifies heightened proficiency in
unlearning. (2) Model Accuracy (MA): We assess the accuracy of
the global model after the unlearning process as the model utility.

Baselines.We consider the following federated unlearningmeth-
ods: Retraining from Scratch: This approach involves retraining on
an initialized model using the data from the remaining clients. Pro-
jected Gradient Ascent (PGA) [15]: PGA is an unlearning method
designed to maximize the empirical loss on the local clients. EWC-
SGA [38]: EWC-SGA combines elastic weight consolidation and
stochastic gradient ascent to enable the removal of client’s contri-
bution without the need for full model retraining. Noisy-GD [7]:
Noisy-GD is a robust data-deletion method that ensures differential
privacy constraints are met. ULKD [37]: ULKD is a server storage
history method used to eliminate target client sharing and improve
the model’s utility through distillation. In evaluating sampled-based
methods, we utilize random sampling and node degree for graph
selection. Stochastic Gradient Ascent (SGA) is then applied to erad-
icate target client information in the sampled graph, denoted as
SGA-Random and SGA-Degree. ReGEnUnlearn-Degree is the variant
of our proposedmethod by using the vanilla heuristics degree-based
graph sampler.

Implementations Details. All code is executed within the Py-
Torch framework. The experiments are carried out on two servers: a
Linux CentOS Server equipped with 4 RTX 3090 GPUs and a Linux
Ubuntu Server with 1 A800 GPU. The unlearning scenario consid-
ered involves the server conducting federated learning training and
subsequently receiving 𝑁𝑡 = 4 target clients’ requests to opt out
of the federation. In the context of federated subgraph learning,
there are 𝑀 = 10 clients. The different numbers of target clients
are discussed in Sections 4.4. Due to the page limit, the variations
in the number of clients are presented in Appendix B.1. For the
graph backdoor trigger, we employ the Erdos-Rényi (ER) model to
generate the graph trigger, with a trigger size of five, and use the
Gaussian distribution for the trigger features. We consider FedAvg
as the default federated algorithm. Additionally, we evaluate the
effectiveness of the proposed ReGEnUnlearn under more advanced
federated algorithms in Appendix B.2. Each experiment is iterated
five times to derive average results.

4.2 RQ 1: Main Results
Table 1 presents comprehensive results for the proposed methods
and respected baseline models across two metrics. We can make
the following observations: the proposed framework’s superior
performance in ASR across four datasets when compared to all
baseline models. In particular, ReGEnUnlearn achieves nearly 100%
elimination of multi-client contributions on datasets Cora, Pubmed,

and Cs. Furthermore, our proposed framework demonstrates supe-
riority model utility when compared to retraining methods across
all four datasets. In specific, ReGEnUnlearn achieves performance
levels of 100.66%, 100.69%, 103.47%, and 102.42%, which are directly
comparable to retraining methods. We further report the running
time of federated unlearning methods in Figure 4 and 5. Specifically,
our proposed framework achieves 3.66×, 4.7×, 16.07×, and 9.08×
speedup when compared to retraining methods on four datasets.
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Figure 4: Running time on Cora and Pubmed.
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Figure 5: Running time on datasets Photo and Cs.

4.3 RQ 2: Ablation Study
To evaluate the effectiveness of each module within ReGEnUnlearn,
we executed an ablation study across four datasets, employing
two metrics. Specifically, we investigated the following variants:
(1) ReGEnUnlearn-WoPolicy excludes the policy sampler module
using the random sampler to replace it. (2) ReGEnUnlearn-WoPrompt
excludes the graph prompt empowerment module.

As delineated in Table 2, the following observations across four
datasets. Each of the two modules significantly contributes to the
overall performance. Notably, the removal of any single module
results in performance degradation. Furthermore, our investiga-
tion reveals a performance decline when substituting the policy
sampler with the vanilla heuristics sampler method, underscoring
the tangible benefits of employing a learnable sampling strategy
to navigate the graph. Additionally, a performance improvement
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Table 1: Overall Performance of Federated Unlearning

Cora Pubmed
Methods Attack Success Rate Model Accuracy Attack Success Rate Model Accuracy
Retrain 0 0.8720 (0.0244) 0 0.8548 (0.0032)
PGA 0.2 (0.4472) 0.8594 (0.0532) 0.2 (0.4) 0.6621 (0.0203)

SGA-Random 0.2 (0.4472) 0.8628 (0.0277) 0.4 (0.5477) 0.746 (0.0416)
SGA-Degree 0.2 (0.4472) 0.8696 (0.0382) 0.4343 (0.5211) 0.7429 (0.0353)
EWC-SGA 0 0.7174 (0.0505) 0.2 (0.4) 0.7694 (0.0260)
Noisy-GD 0.9993 (0.0014) 0.7430 (0.0578) 0.9999 (0.0001) 0.8383 (0.0236)
ULKD 0 0.4029 (0.1808) 0.3998 (0.4897) 0.7178 (0.2179)

ReGEnUnlearn-Degree (Ours) 0 0.8763 (0.0227) 0.0159 (0.0283) 0.8639 (0.0169)
ReGEnUnlearn (Ours) 0 0.8778 (0.0202) 0.0027 (0.0048) 0.8607 (0.014)

Photo Cs
Methods Attack Success Rate Model Accuracy Attack Success Rate Model Accuracy
Retrain 0 0.7 (0.0751) 0 0.8437 (0.0128)
PGA 0 0.5008 (0.0537) 0.2 (0.4472) 0.8379 (0.0680)

SGA-Random 0.3285 (0.3505) 0.6287 (0.0600) 0.2 (0.4472) 0.8415 (0.0371)
SGA-Degree 0.2364 (0.1388) 0.6327 (0.2364) 0.2 (0.4472) 0.8494 (0.0191)
EWC-SGA 0.6914 (0.3908) 0.7128 (0.0287) 0.4007 (0.5471) 0.8505 (0.0287)
Noisy-GD 1 0.6991 (0.0300) 0.1995 (0.3985) 0.8650 (0.0045)
ULKD 0.2 (0.4) 0.4994 (0.0420) 0 0.3569 (0.1294)

ReGEnUnlearn-Degree (Ours) 0.2629 (0.31) 0.7229 (0.0431) 0 0.8730 (0.0068)
ReGEnUnlearn (Ours) 0.1703 (0.1202) 0.7243 (0.0725) 0 0.8642 (0.0137)

is observed when omitting the graph prompts modules, providing
empirical validation for the efficacy of unlearning the contributions
of target clients. Overall, the above results verify the effectiveness
of the proposed ReGEnUnlearn framework.

4.4 RQ 3 Parameter Analysis
Next, we investigate the parameter sensitivity of our proposed
approach. We present findings related to the number of target
clients 𝑁𝑡 , the sampling rate 𝑠 , and the number of graph tokens 𝑞
on the Cora dataset across threemetrics. Similar trends are observed
across the other three datasets.

First, we vary the value of 𝑁𝑡 from 1 to 5, as depicted in Fig-
ure 6(a). The observations are summarized as follows. The proposed
ReGEnUnlearn framework successfully eliminates all client contri-
butions across the range of target clients. Additionally, an increase
in 𝐾 initially leads to a rise in subtle MA.
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Figure 6: (a) Effect of the number of target clients. (b) Effect
of the number of target clients.

Secondly, we adjust the sampling rate 𝑠 within the range of 0.1
to 0.5, as depicted in Figure 6(b). Regarding ASR, a reduction is ob-
served as the sampling rate increases, underscoring the robustness
of our method. A parallel trend is also discernible in terms of MA.
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Figure 7: (a) Effect of the number of tokens. (b) Effect of the
number of 𝜖.

Finally, we vary the number of graph tokens 𝑞 within the range
of 10 to 50, as depicted in Figure 7(a). Our observations yield the
following synthesis: with an increase in 𝑞, the ASR exhibits an
initial ascent followed by a subsequent descent. Simultaneously,
MA maintains a relatively stable profile devoid of pronounced vari-
ations.

Overall, adjusting the above hyperparameters induces perfor-
mance variations within a reasonable range across three metrics,
thereby demonstrating the robustness of our approach.

4.5 RQ 4: Privacy Analysis
Privacy Protection. In the phase of federated unlearning, the di-
rect uploading of the GCN model by target clients poses potential
privacy concerns. The gradients in the model update may inadver-
tently expose private information to the target clients, as the GCN
model gradients inherently encode graph information preferences.
To protect the privacy of the target clients, Differential Privacy (DP)
can be employed during the unlearning stage.

w𝑖 + N(0, 𝜎2I) (22)
7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Ablation Study of Federated Unlearning

Cora Pubmed
Methods Attack Success Rate Model Accuracy Attack Success Rate Model Accuracy

ReGEnUnlearn-WoPolicy 0 0.8744 (0.0264) 0.1293 (0.2574) 0.7882 (0.0321)
ReGEnUnlearn-WoPrompt 0.6 (0.5477) 0.8633 (0.0188) 0.3890 (0.5273) 0.8264 (0.03324)
ReGEnUnlearn (Ours) 0 0.8778 (0.0202) 0.0027 (0.0048) 0.8607 (0.014)

Photo Cs
Methods Attack Success Rate Model Accuracy Attack Success Rate Model Accuracy

ReGEnUnlearn-WoPolicy 0.282 (0.3123) 0.7002 (0.0528) 0.2 (0.4) 0.8605 (0.01467)
ReGEnUnlearn-WoPrompt 0.3918 (0.4803) 0.6212 (0.0960) 0 0.8617 (0.0099)
ReGEnUnlearn (Ours) 0.1703 (0.1202) 0.7243 (0.0725) 0 0.8642 (0.0137)

whereN(0, 𝜎2I) is the Gaussian noise with amean of 0 and standard
deviation 𝜎2I. Let 𝜎 =

√︃
2 log 1.25

𝛿
/𝜖 , as established by [1], ensuring

that ReGEnUnlearn adheres to (𝜖, 𝛿)-differential privacy.
Effect of 𝜖. We set 𝛿 to 1 × 10−5 and adjust 𝜖 from 0.2 to 1. Fig-

ure 7(b) presents the comprehensive results. Notably, as 𝜖 increases,
there are subtle changes, yet the overall impact of unlearning re-
mains consistent. Additionally, a trade-off exists between privacy
protection and model utility. As the model’s privacy protection
increases, its utility decreases.

5 RELATEDWORK
5.1 Subgraph Federated Learning
Recently, researchers have made substantial progress in federated
subgraph learning [36, 40, 43]. Various FL frameworks have been
designed for graph learning tasks, encompassing recommenda-
tion [37], graph classification [42], and node classification [45],
among others [17, 33]. For instance, Wu et al. [37] introduced a
federated framework for privacy-preserving Graph Neural Network
(GNN)-based recommendation systems. This framework enables
collective training of GNN models from decentralized user data.
He et al. [16] proposed FedGNN, a unified framework applicable
to graphs from diverse domains. In federated subgraph learning, a
key challenge involves addressing missing link problems. Zhang
et al. [45] introduced FedeSage+, a subgraph federated unlearning
framework that trains neighborhood generators along with FedSage
to handle missing links across local subgraphs. Baek et al. [4] pre-
sented FedPub, a federated subgraph framework utilizing functional
embeddings to construct client relations based on similarity. An-
other challenge lies in defending against poisoning attacks. Recent
studies indicate that federated subgraph systems are vulnerable
to backdoor attacks, making them susceptible to graph triggers.
For example, Liu et al. [21] formally proposed a federated graph
backdoor framework capable of attacking federated graph systems.
However, there is a notable absence of attention to privacy issues
within the context of machine unlearning. To address this gap, to
the best of our knowledge, we are the first to explore subgraph
federated unlearning. We introduce ReGEnUnlearn framework for
efficient and comprehensive unlearning of multiple target clients.

5.2 Federated Unlearning
Recently, federated unlearning [6, 18, 25, 28, 44, 46] has garnered
significant research attention. Two scenarios exist in federated
unlearning: sample-level federated unlearning [8, 12, 20, 22, 47]

and client-level federated unlearning [5, 37, 38, 41, 46]. Sample-
level unlearning is a natural extension of the centralized setup. In
such settings, FL systems are tasked with requesting the forgetting
of a particular category or subset. For example, Wang et al. [34]
proposed a federated unlearning framework capable of scrubbing
specific categories. Liu et al. [24] proposed a rapid training approach
to completely erase data samples from a trained FL model. In client-
level federated unlearning, the FL system is tasked with requesting
the forgetting of the client’s entire contribution in a cross-silo sce-
nario. For instance, Wu et al. [37] propose that the server stores
historical local client information. When clients opt out of the feder-
ation, the server eliminates their contributions and uses knowledge
distillation to maintain model utility. Halimi et al. [15] proposed a
gradient descent method to unlearn the client’s entire contribution.
Subgraph federated unlearning primarily occurs in cross-silo sce-
narios where multiple institutes (e.g., banks and hospitals, et al.)
hold a subgraph and train FL models under strict privacy regu-
lations. Therefore, our primary focus is on considering how to
eliminate the entire contributions of multiple clients.

6 CONCLUSIONS
In this paper, we presented ReGEnUnlearn, a subgraph federated
unlearning framework for efficient and comprehensive unlearning
of multiple target clients. By sampling the graphs and distilling
graph knowledge, the proposed framework improves both model
utility and unlearning performance. Specifically, we introduce the
Reinforced Federated Policy Sampler (RFPS) to learn optimal sam-
pling strategies that minimize the interference among cross-client
subgraphs. By interacting with the federated graph sampling envi-
ronment, the agent learns to selectively forget an optimal subgraph
of target clients, thus preserving the global model utility. Moreover,
we propose the Parameter-free Graph Prompt Knowledge Distillation
(PGPKD) module, which retains the unique graph knowledge con-
tributed by the target clients, thereby facilitating comprehensive
unlearning via a tailored gradient ascent objective. We conduct
extensive experiments under diverse federated settings to demon-
strate the superiority of the proposed framework over state-of-the-
art federated unlearning approaches. It is also worth mentioning
that the framework is federated algorithm-agnostic, which means
it can be easily adopted in other subgraph federated scenarios. In
the future, we plan to apply ReGEnUnlearnon other tasks such as
federated graph classification and link prediction tasks.
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A REINFORCED FEDERATED POLICY
SAMPLER

Unlearning across multiple clients could significantly diminish
the model’s utility, particularly in the presence of interference from
cross-client nodes. The key challenge is how to remove the overlap-
ping subgraph without accessing data from other clients. To tackle
this issue, we introduce the Reinforced Federated Policy Sampler.
This approach employs a reinforcement learning algorithm, empow-
ering the agent to discern the optimal policy for subgraph sampling.
During the federated training stage, the server can execute the
Reinforced Federated Policy Sampler Pre-training, facilitating its
application in the subsequent unlearning stage. Further details
about the algorithm are elucidated in Algorithm 2.

Algorithm 2: Reinforced Federated Policy Sampler Pre-
training
Input: Target clients I, subgraphs {Ĝ𝑖 }𝑀𝑖 , local unlearn

epoch 𝑛.
Result: Pre-trained Policy Sampler 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

1 Server initializes 𝜃 .;
2 for each round 𝑡 = 1, 2, · · · do
3 for each target client C𝑖 ∈ C in parallel do
4 for 𝑗 = 1 to 𝑛 do
5 Generate the action based on Equation 3.1 ;
6 Obtain the sampled graph based on Equation 11 ;
7 Compute the reward by Equation 12 ;
8 Update the local client

E
𝜋𝜃 (𝑎 (𝑖 )𝑡 |𝑠

(𝑖 )
𝑡 )
[(𝑟 (𝑖 )𝑡 ∇ log𝜋𝜃 (𝑎

(𝑖 )
𝑡 | 𝑠 (𝑖 )𝑡 )] by

Adam optimizer. ;
9 end

10 end
11 𝜃𝑡+1 ←−

∑
𝑖 𝜃
(𝑖 )
𝑡+1 ;

12 end
13 Return 𝜃 to the server.

B FURTHER EXPERIMENTS
The statistical analysis of graph data is presented in Table 3. We
extend our investigations by conducting additional experiments
across diverse federated learning scenarios, including further pa-
rameter analysis and exploration of experiments under more ad-
vanced scenarios.

Table 3: Statistics analysis of the graph datasets.

Datasets # of Nodes # of Edges # of Classes
Cora 2,708 5,278 7

Pubmed 19,717 44,324 3
Photo 7,650 238,163 8
Cs 18,333 163,788 15

B.1 Further Experiments Parameter Analysis

We further conduct the additional experiments under different
parameter settings to evaluate the effect of parameters, including
scenarios with different numbers of clients, regularization coeffi-
cient, and overlapping rates on dataset Cora.

Effect of number of clients𝑀 .We fix the the number of unlearned
clients is 4, vary the number of clients from 10 to 30. Figure 8(a) re-
ports the overall results. We have made the following observations.
First, it becomes evident that the number of clients exerts negligible
influence on unlearning performance. Notably, the ASR remains
consistent across different configurations, showing a deviation of 0.
Additionally, we increase the value of𝑀 , leading to a corresponding
rise in the MA with the augmentation of supervised signals.

Effect of parameter 𝜆𝑢 . We vary the parameter 𝜆𝑢 from 0.2 from
1.0. Figure 8(b) reports the results across two metrics. First, we
observe that with the increase of 𝜆𝑢 , the ASR first increases and
then decreases. Second, with the increase of parameter 𝜆𝑢

Effect of overlapping rate.We systematically vary the overlapping
rate within the range of 0.1 to 0.5. The outcomes are illustrated in
Figure 9(a), showcasing results across two key metrics. Initially, as
the overlapping rate escalates, the ASR consistently maintains a
value of 0, underscoring the effectiveness of our proposed method.

Table 4: Unlearning Experiments under the FexProx

Methods Attack Success Rate Model Accuracy
Retrain 0 0.8802 (0.0142)
PGA 0.4 (0.5477) 0.8652 (0.0193)

SGA-Random 0.2007 (0.4448) 0.8715 (0.01659)
SGA-Degree 0.4021 (0.4702) 0.8720 (0.0214)
EWC-SGA 0.4 (0.5477) 0.6560 (0.1541)
Noisy-GD 1 0.4116 (0.1418)
ULKD 1 0.8297 (0.0405)

ReGEnUnlearn-Degree (Ours) 0 0.8807 (0.0146)
ReGEnUnlearn (Ours) 0 0.8807 (0.0132)

Table 5: Unlearning Experiments under the FedPub

Methods Attack Success Rate Model Accuracy
Retrain 0 0.8778 (0.0142)
PGA 0.4036 (0.5445) 0.8643 (0.0160)

SGA-Random 0.4036 (0.5455) 0.8667 (0.0190)
SGA-Degree 0.4 (0.5477) 0.8700 (0.0189)
EWC-SGA 0.4 (0.5477) 0.6696 (0.1746)
Noisy-GD 1 0.4671 (0.1738)
ULKD 0 0.1891 (0.0747)

ReGEnUnlearn-Degree (Ours) 0 0.8773 (0.0140)
ReGEnUnlearn (Ours) 0 0.8845 (0.0152)
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Figure 8: (a) Effect of number of clients 𝑀 . (b) Effect of pa-
rameter 𝜆𝑢

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Subgraph Federated Unlearning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Furthermore, a discernible trend emerges where an uptick in the
overlapping rate correlates with an increase in the MA, attributable
to the concurrent rise in the number of samples.

B.2 Unlearning Experiments under Other
Federated Scenarios

We further conduct the experiments on more advanced scenar-
ios on datasets Cora. More specifically, we will conduct further
experiments on more advanced federated algorithms and Non-IID
Settings.

Advanced Federated Algorithms. We investigate federated un-
learning scenarios, encompassing both a general federated algo-
rithm (e.g., FedProx [19]) and one tailored for graph scenarios (e.g.,
FedPub [4]). Table 4-5 reports the overall experimental results across
three metrics. We make the following observations. Firstly, our pro-
posed framework successfully eliminates contributions from all
clients for both FedProx and FedPub, in stark contrast to retraining
methods, where traditional approaches fail to eliminate contribu-
tions from the target client. Additionally, we observe a reduction
in model utility under more advanced federated algorithms com-
pared to the FedAvg algorithm. For example, our proposed method
achieves performance metrics of (100%, 100.76%) in comparison to
retraining methods under FedProx and FedPub.

Non-IID Setting. To evaluate the effectiveness of subgraph fed-
erated unlearning in the Non-IID setting, we conduct additional
experiments. Specifically, we utilize the Dirichlet function to par-
tition the participants with a parameter set to 0.3. The results are

presented in Table 6, and the following observations can be made.
Firstly, unlearning multiple target clients is more challenging under
the Non-IID setting, with most baselines struggling to eliminate all
client contributions. Additionally, our methods consistently main-
tain approximately 100.43%. compare with the retraining methods.
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Figure 9: (a) Effect of overlapping rate.

Table 6: Unlearning Experiments under Non-IID Setting

Methods Attack Success Rate Model Accuracy
Retrain 0 0.8908 (0.0119)
PGA 0.2 (0.4472) 0.8823 (0.0255)

SGA-Random 0.2 (0.4472) 0.8810 (0.0220)
SGA-Degree 0.2 (0.4472) 0.8871 (0.01684)
EWC-SGA 0.2 (0.4472) 0.6828 (0.1357)
Noisy-GD 0.9976 (0.0035) 0.5733 (0.2095)
ULKD 0.6 (0.5477) 0.4211 (0.1313)

ReGEnUnlearn-Degree (Ours) 0.1687 (0.3772) 0.8989 (0.0181)
ReGEnUnlearn (Ours) 0 0.8947 (0.0209)
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