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ABSTRACT

Mixture-of-Experts large language models (MoE-LLMs) marks a significant step
forward of language models, however, they encounter two critical challenges in
practice: 1) expert parameters lead to considerable memory consumption and
loading latency; and 2) the current activated experts are redundant, as many tokens
may only require a single expert. Motivated by these issues, we investigate the
MoE-LLMs and make two key observations: a) different experts exhibit varying
behaviors on activation reconstruction error, routing scores, and activated frequen-
cies, highlighting their differing importance, and b) not all tokens are equally
important– only a small subset is critical. Building on these insights, we propose
MC, a training-free Mixture-Compressor for MoE-LLMs, which leverages the
significance of both experts and tokens to achieve an extreme compression. First, to
mitigate storage and loading overheads, we introduce Pre-Loading Mixed-Precision
Quantization (PMQ), which formulates the adaptive bit-width allocation as a Linear
Programming (LP) problem, where the objective function balances multi-factors
reflecting the importance of each expert. Additionally, we develop Online Dynamic
Pruning (ODP), which identifies important tokens to retain and dynamically select
activated experts for other tokens during inference to optimize efficiency while
maintaining performance. Our MC integrates static quantization and dynamic
pruning to collaboratively achieve extreme compression for MoE-LLMs with less
accuracy loss, ensuring an optimal trade-off between performance and efficiency.
Extensive experiments confirm the effectiveness of our approach. For instance, at
2.54 bits, MC compresses 76.6% of the model, with only a 3.8% average accuracy
loss in eight commonsense benchmarks. During dynamic inference, we further
reduce activated parameters by 15%, with a performance drop of less than 0.6%.
Remarkably, MC even surpasses floating-point 13b dense LLMs with significantly
smaller parameter sizes, suggesting that mixture compression in MoE-LLMs has
the potential to outperform both comparable and larger dense LLMs. Our code is
available at https://github.com/Aaronhuang-778/MC-MoE.

1 INTRODUCTION

Mixture-of-Experts large language models (MoE-LLMs) (Muennighoff et al., 2024; Jiang et al., 2024;
Dai et al., 2024) provide an efficient model-scaling mechanism by utilizing a sparse architecture, in
which only a subset of experts is activated by router. This selective activation boosts computational
efficiency and scalability by assigning experts dynamically based on the specific needs of each input.
Despite reducing the number of active experts to improve inference efficiency, MoE models still
face significant deployment challenges. All experts must be loaded into memory simultaneously,
and typically at least two experts are activated during inference, resulting in considerable memory
and computational overhead. Even an NVIDIA A100-80GB GPU cannot accommodate typical
MoE models like Mixtral 8×7b (Jiang et al., 2024) (Fig. 1(b)). The proposed challenges hinder the
deployment of LLM with limited hardware resources which further promotes study on MoE-LLM
compression for better deploying model-scaling paradigm.
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Figure 1: (a) MMLU (5-shot↑) accuracy across different open-source LLMs with various activated
parameters (dot-lines denote the quantized models, solid-lines are 16-bit models). To align quantized
models’ parameter size with 16-bit models, we define 16bits as one parameter (e.g. 8×2-bit elements
represent one parameter). (b) Comparison of total parameter size and inference activated parameter
size on few open-source LLMs and compressed Mixtral 8×7b.

The primary goal of compressing MoE-LLMs is to reduce the size of expert parameters, as they
dominate the memory usage (Li et al., 2024). For instance, in models like Mixtral 8 × 7b, the
number of expert parameters is 33 times greater than that of the attention modules. On the other
hand, recent studies (Chi et al., 2022; Lu et al., 2024) have shown that due to the training strategies
of MoE, not all experts are equally important, which indicates that both the static experts during
the pre-loading phase and the dynamic experts during online inference need to be compressed.
Previous expert compression methods have typically focused on compressing a single phase, such as
quantizing expert weights during the pre-loading stage (Li et al., 2024) or pruning experts during
the inference stage (Lu et al., 2024; Koishekenov et al., 2022; Kim et al., 2021). Furthermore,
vanilla uniform bit-width quantization and expert pruning based solely on routing scores struggle to
maintain performance at extremely high compression ratios. Therefore, in this work, we are the first
to explore extreme training-free mixture compression for MoE-LLMs, efficiently combining static
expert quantization with dynamic expert pruning using a combination of expert importance metrics
to achieve ultra-lightweight MoE-LLMs without significantly sacrificing performance.

To this end, we propose the MC, i.e., Mixture-Compressor for MoE LLMs, exploring the combined
benefits of expert quantization and pruning. MC consists of two phases: Pre-Loading Mixed-Precision
Quantization (PMQ) and Online Dynamic Pruning (ODP), as shown in Fig. 1(a). In the pre-loading
phase, we focus on extreme compression of the stored experts through low-bit quantization. Our
empirical study reveals imbalances in activation reconstruction error, routing weights, and frequencies
of activated expert (Sec. 3.2.1 and Fig. 3), which inspires the allocation of different bit-widths to
each expert. However, relying solely on the routing frequencies or scores is insufficient to accurately
determine the optimal bit-width, as the two distributions may not be consistent but rather the
opposite (Li et al., 2024). Therefore, we developed a weighted evaluation function that considers both
the frequency and scores of expert activations, as well as the associated quantization loss at different
bit-widths. This function is then minimized within a Linear Programming (LP) model to determine
the optimal quantization configuration. Utilizing a training-free Post-training Quantization (PTQ)
approach, GPTQ (Frantar et al., 2022), PMQ achieves high-performance compression at extremely
low bit-widths (1.5-bit∼2.5-bit), and our mixed-precision strategy is compatible with other advanced
quantization techniques (Tseng et al., 2024; Chen et al., 2024; Shao et al., 2023; Egiazarian et al.,
2024; Liao & Monz, 2024). As for inference phase, ODP dynamically prunes low-confidence experts
for each token based on the routing weights. Our pruning strategy follows two key principles:
first, experts with significantly lower routing scores are categorized as “low confidence” and can
be pruned (Lu et al., 2024). Second, to prevent attention degradation that solely relies on routing
weights, we protect important tokens by considering both attention scores and feature magnitudes.
Experiments show that protecting only 2% of the important tokens effectively mitigates pruning loss
while maintaining nearly the same compression ratio.

The proposed mixture compression of low bit-width experts improves performance compared to
uniform quantized experts or other mixed-precision strategies, even surpassing float-point (FP) models
with the same number of activated parameters. Moreover, when compressing Mixtral 8 × 7b to
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around 8b (2.54-bit), its activated parameters amounted to only 2b, while even outperforming 16-bit
LLaMA2-13b by around 8% on the MMLU (5-shot), as shown in Fig. 1(a). Mixture compression
exploits the disparities between MoE experts, for the first time enabling surpassing of smaller FP
models of equivalent size under extreme compression without training. This achievement underscores
the significant compression potential and practical utility of sparse MoE-LLMs.

2 RELATED WORKS

Mixture-of-Experts LLMs. LLMs have achieved significant advancements across various natural
language domains (Chang et al., 2024; Zhao et al., 2023). Despite their success, these models rely
heavily on dense parameters, which presents significant challenges for deployment(Zhou et al., 2024;
Zhu et al., 2023). Sparse activated MoE models have been identified as an essential strategy to
enhance the cost-performance balance in LLMs. In MoE models, each layer is comprised of several
experts, with each token activating only a specific subset, thereby significantly improving efficiency
compared to dense models, which activate all parameters for every input (Shazeer et al., 2017; Yun
et al., 2024). Recent advancements in LLMs (Brown, 2020) have further popularized MoE-based
architectures (Jiang et al., 2024; Muennighoff et al., 2024). Industry-leading models such as Mixtral
8× 7b (Jiang et al., 2024) and Deepseek-R1 (Guo et al., 2025) also incorporate this technology.

Quantization for LLMs. Post-Training Quantization (PTQ) is an efficient method that requires
no additional training, making it well-suited for large-scale LLMs (Dettmers et al., 2022; Frantar
et al., 2022; Xiao et al., 2023; Shao et al., 2023; Lin et al., 2024). Previous studies have investigated
the diverse salience of weights and proposed mixed-precision methods to improve low-bitwidth
performance by allocating different bitwidths accordingly (Dong et al., 2020; Huang et al., 2024c;
Dettmers et al., 2023; Shang et al., 2023; Huang et al., 2024a). Recent research introduced an expert-
guided, block-wise mixed-precision benchmark for MoE-LLMs to address the disparities in expert
weights (Li et al., 2024); however, developing more effective expert-wise quantization strategies
remains a challenge. Codebook-based encoding approaches enable more precise quantization of
LLMs and enhance post-quantization performance through fine-tuning (Egiazarian et al., 2024; Tseng
et al., 2024). While Quantization Aware Training (QAT) requires significant resources (Chen et al.,
2024; Liu et al., 2023b), QAT-based retraining strategies or PTQ combined with additional fine-
tuning (Liao & Monz, 2024; Guo et al., 2023; Huang et al., 2024b) are more effective in maintaining
the performance of quantized lightweight LLMs.

Parameter pruning for LLMs. Parameter pruning is another effective method for neural network
compression (Kwon et al., 2022; Hubara et al., 2021), and it has recently become crucial in reducing
the size of LLM weights (Frantar & Alistarh, 2023; Sun et al., 2023). Traditional pruning approaches
focus on two main techniques: structured and unstructured pruning, both of which selectively zero
out certain parameters based on their importance (Zhou et al., 2024). In MoE-LLMs, less important
experts can be pruned based on activation frequencies or the statistical characteristics of gating (Kim
et al., 2021; Koishekenov et al., 2022; Liu et al., 2024). During the model preloading stage, pruning
tends to incur greater loss than quantization at the same compression rate. However, dynamically
adjusting the quantization bit-width during inference remains a challenge, whereas pruning offers the
flexibility to dynamically select activation parameters during inference (Zhu et al., 2023). Recent
work by (Lu et al., 2024) has explored dynamically activating top-k experts based on gating weights
in MoE, significantly improving inference efficiency.

3 METHOD

3.1 PRELIMINARIES

Mixture-of-Experts LLM. In decoder-only MoE-LLMs, conventional feed-forward networks
(FFN) are replaced by MoE layer, each having N experts (Gale et al., 2023). The MoE-
LLMs selectively activates the top-k experts for different tokens by a group of routing scores
wtop-k = {w0, w1, ..., wk−1}, k < N , generated by a gating layer G(t). Fig. 2(a) illustrates the
experts selection mechanism during the inference phase based on routing scores. Specifically, in the
Mixtral 8× 7b model, there are 8 experts and each token t is routed to the top-2 experts (Jiang et al.,
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Figure 2: The overview of our proposed MC pipeline with two stages compression for experts.
(a) Framework of pre-loading static mixed-precision quantization (PMQ) of MoE-LLMs. PMQ
determins the activated feature and loss sensitivity of all experts and plans the optimal precision
configuration under ultra-low -bit-width. (b) Schematic of online dynamic mixture pruning (ODP)
of MoE-LLMs. ODP utilizes significant token protection mechanism with weigh-guided experts
pruning, which only need to keep 2% token to successfully safeguard the MoE performance.

2024). The output y of each token in MoE layer is calculated as:

y =
∑

wi∈Top-2{G(t)}

wi Ei(t), (1)

where Ei represents the feed-forward operator of the i-th expert and wi is the routing weights/scores
calculated by the gating G(t). Therefore, according to the definition in Eq (1), the routing mechanism
establishes the correspondence between tokens and experts.

Quantization Technique. Since the substantial memory overhead of MoE models mainly arises
from the weights of its experts (over 96% weights of the model), quantization is employed for the
experts. Specifically, floating-point weights distributed in the interval [Wmin,Wmax] are mapped
to the integer range of [0, 1..., 2B ], where B represents the target bit-width, and the quantization
reconstruction for the weights W ∈ Rin×out can be defined as:

argmin
Wq

∥WX−WqX∥22, (2)

where Wq denotes the quantized weight and ∥ · ∥2 is the mean square error (MSE) loss. The primary
objective of this study is to explore the optimal mixture compression strategy for MoE-LLMs. To
this end, we employ the efficient PTQ scheme, GPTQ (Frantar et al., 2022), as our foundational
tool. By utilizing Hessian-based estimation (H = 2XX⊤) and quantization error compensation,
GPTQ effectively reduces the group-wise quantization error of weights, enabling the quantization of
Mixtral 8× 7b within 90 minutes. This work focuses on the design of optimal mixture compression
strategies for MoE-LLMs and is therefore orthogonal to other quantization techniques, including
PTQ methods (Shao et al., 2023; Lin et al., 2024), codebook-based works (Egiazarian et al., 2024;
Tseng et al., 2024), and even the deployment of fine-tuning (Liao & Monz, 2024) or QAT (Chen et al.,
2024; Liu et al., 2023b) can be deployed for MC, additional evidences are shown in Appendix A.3.

3.2 PRE-LOADING MIXED-PRECISION QUANTIZATION

As outlined in Sec. 3.1, the primary storage overhead of MoE-LLMs resides in the experts, necessitat-
ing compression before loading onto devices. Mainstream LLM pruning suffers from performance
degradation under extreme pruning conditions (≥50%) (Frantar & Alistarh, 2023; Sun et al., 2023;
Lu et al., 2024), whereas quantization has been demonstrated to achieve high levels of compression
with lower performance drop (Huang et al., 2024b; Zhou et al., 2024). Moreover, as shown in (Li
et al., 2024) and our Sec. 4.1, uniform bit-width quantization does not meet the extreme compression
accuracy requirements for MoE-LLMs. Therefore, the diverse and uneven features of experts inspire
us to explore the optimal mixed-precision quantization approaches.

In this section, we introduce our Pre-Loading Mixed-Precision Quantization (PMQ) method, designed
to effectively reduce the model size by applying targeted-experts quantization. The core focus of
PMQ is optimizing the bit-width allocation strategy for experts. To this end, we begin by conducting
a thorough analysis of experts’ behavior on the calibration dataset and leverage this information to
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Figure 3: Distribution of expert drop F-norm (red), activated weights (green) and frequencies (blue)
in the Mixtral 8× 7b model, encompassing 32 MoE layers with 8 experts per layer. The top set of
the heatmap is calculated through C4 dataset, and the bottom set is calculated through MATH dataset.
MoE-LLMs selectively activate top-2 experts in each MoE layer, wherein a significant portion of
experts remain less important or inactivated all the time.
design an Integer Programming (IP) model that solves the optimal quantization configuration. For
other components of the model, such as attention parameters, we apply the same bit-width.

3.2.1 EXPERTS SIGNIFICANCE ANALYSIS

The core principle of our expert quantization strategy is grounded in the significance of each expert,
which enables the allocation of bit-widths according to their relative importance within a block.
We initially observed the performance of different experts in Mixtral 8 × 7b in terms of expert-
drop reconstruction loss (Frobenius norm) (He et al., 2017), and activation features on the dataset
C4 (Raffel et al., 2020) and the specialized domain dataset Math (Hendrycks et al., 2021). As shown
in Fig 3, the impact of experts on the model varies widely: 1) some experts, such as the one at position
[2, 4] (Fig 3 left), have minimal influence on the output activation reconstruction loss, while others in
layer 2 exhibit significantly higher losses, highlighting the imbalance among MoE-LLMs’ experts; 2)
the activation scores and frequencies reveal distinct patterns, where experts at positions [11, 3] and
[12, 7] show extremely low activation frequencies and average scores, while the expert at position
[1, 3] has low scores but comparatively high activation frequencies; and 3) in task-specific contexts
like mathematics, MoE activates fewer experts, resulting in a sparser distribution than general tasks.
This variability in routing feature inspires the need to consider multiple factors in determining the
optimal bit-width allocation for experts.

We mainly measure the significance of each expert through two factors: access frequency and
activation weight. Given an N -sized calibration dataset C4 (general language understanding dataset),
we first perform inference on the original 16-bit MoE-LLMs. For each expert, access frequency
refers to the rate at which the expert is activated. Thus, i-th expert’s access frequency is ϕi =

ni

N ,
where ni is this expert’s total activated number. A higher activation frequency indicates that the
expert is triggered more often, suggesting its generality and applicability across a wide range of
tokens. However, access frequency alone overlooks the potential significance of experts who are
rarely activated. To account for this, we introduce the activation-weighted metric, which sums the
routing weights assigned to each expert during inference. This metric for i-th expert can be denoted

as wi =
∑N

j=1 σj

N , where σj is the expert’s routing weight in the j-th inference. This provides a
finer-grained measure of an expert’s contribution in MoE-LLMs, capturing its relative importance
beyond mere frequencies. The final expert significance is computed as ϕα

i · wβ
i , where α and β are

hyperparameters used to balance the two factors.

3.2.2 OPTIMAL EXPERTS BIT-WIDTH ALLOCATION WITH WEIGHTED IMPORTANCE FACTORS

After obtaining the expert significance, we proceed to explore how to leverage this significance for
mixed-precision quantization. The core idea is to assign different bit-widths to each expert based
on its importance, preserving the contributions of more significant experts with higher bit-widths
while applying more aggressive quantization to less significant experts. In addition to considering
expert significance, we evaluate the reconstruction error of output activations in each MoE layer
post-quantization, which allows us to quantify the impact of individually quantizing each expert.
Specifically, for a given expert, we compute the Frobenius norm (F-norm) between the output of the
model when this expert is quantized and the output when no quantization is applied to any experts.

ϵi,j = ∥F (θ)− F (θ[ei → Q(ei, j)])∥F , (3)
where F (θ) is the model output with full parameters θ, and F (θ[ei → Q(ei, j)]) represents the
output when only expert ei is quantized to j bits. Q(·) denotes the quantization function.
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Figure 4: Typical attention map of block 15, head 4 in Mixtral 8×7b under different dynamic pruning
process. The middle with out pruning shows that attention, in a column-wise manner, highlighted
several tokens with high scores, such as token 31 and token 67. However, after undergoing traditional
weight-only pruning through block 14 layers, experts pruned at the position of token 67, resulting in
a decay in the attention map. Through attention-aware pruning based on token importance, block 14
protected token 67, thereby avoiding attention decay in the subsequent layer.

Our goal is to ensure that the extremely-low average bit-width across all experts in a MoE block
equals a targeted value k, with bit-width options restricted to {1, 2, 3}-bit. To achieve this, we
formulate the problem as an Integer Programming (IP) optimization, which only takes a second to
finish the bit-width allocation computing. The IP model is defined as:

MINIMIZE

n∑
i=1

3∑
j=1

ϕα
i · wβ

i · (ϵi,j · xij)
γ

SUBJECT TO

n∑
i=1

3∑
j=1

j · xij = n · k,
3∑

j=1

xij = 1, ∀i,

n∑
i=1

xi3 ≥ 1,

n∑
i=1

xi2 ≥ 1, xij ∈ {0, 1}, ∀i, j.

(4)

Here, xij is a binary variable indicating whether the i-th expert is quantized to j bits (xij = 1 if true,
xij = 0 otherwise). To preserve the accuracy of key experts, we enforce a constraint that at least one
expert must be quantized to 3 bits and at least one expert to 2 bits. γ is a weighting hyperparameter.
After determining the optimal bit-width combination for each MoE Block expert, we apply the
GPTQ quantization algorithm to quantize the experts accordingly. For the remaining weights in the
attention or gating module, considering their extremely small parameter size, we quantize them to
4-bit, resulting in an introduced average bit-width of no more than 0.05 bits.

3.3 ONLINE DYNAMIC PRUNING

Our PMQ strategy compresses the storage memory of experts during the pre-loading phase; however,
the selection of the top-k experts during inference still incurs high computational costs. As discussed
in Lu et al. (2024), not all tokens require k experts for inference. To optimize efficiency while
maintaining performance during inference, in this section, we introduce the Online Dynamic Prun-
ing (ODP) technique, which identifies important tokens to retain and dynamically selects activated
experts for other tokens.

3.3.1 ATTENTION DECAY UNDER WEIGHT-ONLY PRUNING

To effectively perform dynamic experts pruning, an intuitive and efficient method involves utilizing
the top-k experts’ routing scores during inference (Lu et al., 2024; Huang et al., 2023). This approach
directly skips experts with lower routing weights among selected set for each token. For simplicity,
when k = 2 (as in Mixtral 8× 7b), the pruning process follows:

{w0 = 0, w1 = 1, w0, w1 ∈ Top-2{G(t)} | w1

w0
< µ} (5)

w0 and w1 denote the top-2 experts, respectively, with µ erving as a hyperparameter threshold for
each MoE layer. This threshold is set at the median value of w1

w0
derived from calibration data
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(Lu et al., 2024). According to Eq. (5), when a selected expert has a notably low weight, it is
feasible to be pruned for the current token, thus retaining only the primary expert for computation.
Sec. 4.2 documents that employing this weight-based dynamic pruning strategy reduces computational
demands by 15%, but also incurs a performance decrease of approximately 10%. Further examination
reveals that this decline is due to an “attention decay” effect, which is evident in Fig. 4. Specifically,
unpruned conditions show a pronounced vertical pattern in the attention map of block 15, head 4, at
token 67 (Fig. 4, middle). However, the application of weight-only pruning in block 14 results in the
elimination of one expert for token 67, leading to a significant reduction in the attention map score at
token 67 in block 15 (Fig. 4, left). This effect is herein defined as “attention decay.”

3.3.2 SIGNIFICANCE-AWARE TOKEN PROTECTION

Weight-only pruning considers only the routing weights of experts, but overlooks the intrinsic
importance of tokens. However, the output capabilities of LLMs are often influenced by a few
critical tokens (Zhang et al., 2024; Guo et al., 2024; Nrusimha et al., 2024), and considering weights
alone, as illustrated in Fig. 4, can lead to the pruning of experts corresponding to salient tokens. To
circumvent the issue of attention decay, we introduce a simple but effective method that safeguards
the computational experts of the most critical tokens in dynamic inputs from being pruned. Inspired
by (Guo et al., 2024), we introduce an evaluation metric for token importance:

Ij = ∥tj∥1 ·
∑

j≤i≤L Aj,i

L− j
(6)

where Ij denotes the importance of the i-th token, ∥ · ∥1 is the ℓ1 norm, and the total length of input
tokens is L. A represents the attention map in an LLM block, calculated from A = softmax(K

⊤Q√
dk

)

of this layer. Considering the co-effects of token magnitude and attention socres, Eq. 6 flexibly
combines these two factors to accurately define the importance of each token.

As demonstrated in Fig. 4, right, introducing important token protection into weight-only pruning
effectively mitigates attention decay issues. Due to the high importance parameter I67 of token
67, all experts are preserved for computing token 67 in block 14, thereby preserving the expected
distribution in the attention map of block 15 for token 67. Experiments in Sec. 4.2 indicate that
selectively protecting merely 2% of important tokens can significantly reduce performance losses in
MoE-LLMs, while still maintaining a computational efficiency improvement of approximately 15%.
We also provide the detailed computation overhead analysis in Appendix A.9.

4 EXPERIMENT

In this section, a series of experiments are conducted to evaluate the proposed MC. We present by
describing the experimental parameter settings and results. In Sec. 4.1, we assess the parameter
settings for the PMQ method and the performance of mixture quantization. We conduct a detailed
evaluation of the performance loss and compression efficiency of ODP stage, shown in Sec. 4.2.
Finally, we present the combined performance of MoE mixture compressor.

Table 1: Selected MoE-LLMs and model configu-
rations. Size: the total parameter size, Act Size: ac-
tivated parameter size per-token; B: decoder block
number, H: hidden dimension, E: expert number.

Model Size Act Size B H E
Mixtral 8× 7b 49b 13b 32 4096 8
Mixtral 8× 22b 141b 39b 56 6144 8

Experiment Setup. The mixed-precision fac-
tors of experts are calibrated from C4 (Raffel
et al., 2020) dataset, with 128 sets of random
sequences, each 2048 tokens long. After de-
termining the bit-width configuration, the final
quantization process follows the GPTQ (Frantar
et al., 2022) procedure. We select the open-
source Mixtral 8 × 7b and Mixtral 8 × 22b as
our target models, shown in Tab. 1. Mixtral 8× 7b can be compressed on two NVIDIA A100-80GB
GPUs, while Mixtral 8× 22b is completed on four NVIDIA A100-80GB GPUs.

Other None-MoE layers are set to 4-bit. Due to the significant size of expert weights, the 4-bit
quantization of other parameters has minimal impact on the average bit-width. In the performance
experiments for the proposed MC, perplexity (PPL↓) was chosen as the metric to evaluate token
prediction capabilities, primarily deploying the general text dataset WikiText2. To comprehensively
assess the language capabilities of the compressed LLMs, we evaluated the models’ overall abilities
in eight zero-shot benchmarks (↑) tested by EleutherAI LM Harness (Gao et al., 2013).
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Figure 5: Quantized PPL performance of Mix-
tral 8 × 7b under different mixed-precision
strategies (with random allocation)

Figure 6: Quantized PPL performance of Mix-
tral 8 × 7b under different mixed-precision
strategies (without random allocation).

Table 2: Performance of quantized Mixtral 8× 7b on eight zero-shot benchmarks. We deploy GPTQ
as our baseline PTQ method for uniform quantization. “Uni” denotes the uniform quantization of
2-bit with GPTQ. Since the results of some data sets in the block score predictor (BSP) (Li et al.,
2024) method were not reported, we resumed the relevant quantized model from the official code
repository and evaluated all the results under the same settings. In BSP, 25% MoE layers are 4-bit
and the left are 2-bit to achieve 2.54-bit. “HellaS.” is the short format of “HellaSwag” and “Wino.”
denotes “Winogrande”. ↓ gives the accuracy loss between quantized results and original 16-bit model.

Method Bits PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.% ↑

16.00 85.20 84.01 57.17 85.35 81.48 75.93 39.29 67.88 71.29
Uni 3.00 82.10 78.58 55.80 82.94 79.28 74.19 39.26 60.58 69.092.2%↓

Uni 2.00 61.98 47.20 25.71 62.39 41.91 53.22 22.79 30.36 42.6728.6%↓
BSP

(Li et al., 2024) 2.54 68.23 54.97 28.38 68.16 55.61 62.19 24.07 27.74 49.0722.2%↓

Hessian
(Dong et al., 2020)

2.54 80.21 76.38 51.20 81.11 78.05 72.97 35.27 56.21 67.184.1%↓

2.05 75.32 67.26 45.01 70.29 71.90 69.11 31.07 40.85 58.8512.4%↓

1.57 65.26 52.12 21.84 68.21 52.91 50.32 24.99 31.58 45.9125.4%↓

PMQ

2.54 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.503.8%↓

2.42 80.36 75.76 50.17 80.00 78.13 73.09 34.97 53.22 65.715.6%↓

2.30 83.11 73.59 47.78 80.83 76.48 73.14 33.84 52.54 64.916.4%↓

2.20 79.05 73.70 47.87 74.56 76.63 72.77 34.24 47.73 63.298.0%↓

2.05 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.258.0%↓

1.94 76.88 68.48 45.48 75.23 72.05 72.61 31.16 40.93 60.3510.9%↓

1.81 76.93 66.67 43.60 75.50 70.50 69.85 28.68 40.71 59.0612.2%↓

1.69 75.41 64.14 40.61 68.96 67.01 68.03 28.04 37.14 56.1715.1%↓

1.57 72.42 62.46 37.88 73.55 63.17 66.38 26.80 32.25 54.4916.8%↓

4.1 EXPERIMENT ON PRE-LOADING MIXED-PRECISION QUANTIZATION

Ablation of Bit-Width Allocating Metrics. Fig. 5 illustrates a significant decline in model perfor-
mance with random bit-width allocation. And employing only the routing scores of experts from
calibration data, the curve in Fig. 6 though better than random allocation, the PPL curve is still high.
However, activation frequencies, in comparison to weight, shows a better performance.

Furthermore, in conventional networks and dense LLMs, Hessian-based quantization loss is a common
use for bit-width allocation (Dong et al., 2020; Huang et al., 2024c). We also utilized is as a compared
metric for expert-wise bit-width allocation. Fig. 6 also contains three metric curves: Hessian, F-norm,
and PMQ. F-norm and PMQ are more effective than Hessian for expert-wise bit-width allocation,
exhibiting better performance under different bit-widths. When the average bit-width exceeds 2-bit,
the F-norm is similar to the PPL curve of PMQ; below 2-bit, the lead of PMQ gradually widens.

Comparison of Mixed-Precision Quantization. We present a comprehensive comparison of the
performance of PMQ within the ultra-low bit-width range. GPTQ was set as the baseline for uniform
bit-width quantization, denoted as “Uni” in Tab. 2. We also compare it with a recent mixed-precision
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Figure 7: Significant tokens protection of 2.05-bit
Mixtral 8 × 7b. “CR” denotes the average com-
putation compression ratio (blue); “PPL” denotes
the perplexity(red); Star represents the weight-
only pruning performance.

Figure 8: Less significant tokens drop of 2.05-
bit Mixtral 8× 7b. In Mixtral 8× 7b, we mask
all experts of the less significant tokens. “CR”
denotes the average computation compression
ratio (blue); “PPL” denotes the perplexity(red).

approach for MoE-LLMs known as the block score predictor (BSP) (Li et al., 2024). Following Eq. 4,
we set the average bit-width of Mixtral 8 × 7b within the range of 1.57-bit to 2.54-bit. As shown
in Tab. 2, the uncompressed 16-bit model achieves an average accuracy of 71.29%. With uniform
precision quantization, the average loss for the 3-bit model is approximately 2.2%, while the loss for
the 2-bit model increases significantly by 28.6%, highlighting the challenges in maintaining model
accuracy with existing uniform precision quantization methods at ultra-low bit widths.

Table 3: Comparison of different mixed-precision
strategies on few-shot performance (MMLU five-
shot ↑) for Mixtral 8×7b. More results of different
bit-widths are shown in Appendix. A.1.

Method Bits Accuracy % ↑
16.00 70.60

Uni 2.00 34.0536.6%↓
BSP (Li et al., 2024) 2.54 31.5739.0%↓

Hessian (Dong et al., 2020)
2.54 58.2212.4%↓
2.05 43.5127.1%↓
1.57 31.9638.6%↓
2.54 61.199.4%↓

PMQ 2.05 49.8420.8%↓
1.57 33.4437.2%↓

BSP achieves an average accuracy of only
49.07% at 2.54-bit. However, our proposed
PMQ achieves a performance of 67.50%, ex-
ceeding BSP by 18.4% and only falling of the
16-bit Mixtral 8× 7b by 3.8%. Notably, PMQ
can maintain a accuracy of 54.49% at 1.57-bit,
even outperforming BSP at 2.54-bit by 5.4%.
The Hessian-based method in Tab. 2 consistently
underperform to PMQ across varying bit-width
levels. Specifically, Hessian shows a slight un-
derperformance of 0.2% at 2.54-bit, while PMQ
demonstrates more substantial advantages be-
low 2-bit, leading by 9.4% at 1.57-bit. Further-
more, we also evaluated the few-shot capability
of PMQ in Tab. 3, where PMQ continues to
demonstrate superior accuracy. More bit-widths performance results are shown in Appendix. A.1.

4.2 EXPERIMENT ON ONLINE DYNAMIC PRUNING

In pre-loading phase, PMQ enables the compression of MoE-LLMs to an exceptionally low bit-width
range. Furthermore, during the inference phase, we apply the ODP outlined in Sec. 3.3 to the
quantized MoE model, further enhancing the efficiency of real-time inference for lightweight models.

Ablation of Tokens Protection. As shown Fig. 7, when we select 2% crucial tokens to be protected,
the PPL drops from 6.46 to 6.24, with activated experts’ parameters decreasing only from 15.1%
to 14.8%. Moreover, as we gradually increase the ratio, the performance remains relatively stable,
while the compression ratio exhibits a nearly linear decline. Thus, we conclude that protecting just
2% of the important tokens can significantly enhance the compressed performance of MoE-LLMs
with almost no impact on efficiency. Furthermore, we try to prune all experts associated with the
less important tokens, as illustrated in Fig. 8. When removing the experts to the 2% of tokens, the
overall compression ratio reached 15.8%, while the PPL improved to 6.35, yielding performance
enhancements in both efficiency and accuracy compared to weight-only pruning. However, we
observed that the performance curves of all experts’ masking exhibited exponential growth, indicating
that directly skipping experts results in a significant accuracy loss. By employing a protection
mechanism for only 2% of the experts, we can maintain the accuracy of MoE-LLMs without
compromising efficiency. We also provide the detailed ablation on pruning threshold in Appendix A.8.
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Table 4: Ablation evaluation of PMQ and ODP for Mixtral 8 × 7/22b, and compared with dense
LLaMA models. “Params” denotes the parameter size, and “Act Params” is averaged activated pa-
rameters for one token. The parameter calculation of the compressed model includes the compressed
weights and quantizer parameters (e.g., scaling factor and zero factor for dequantization). We carry
out the average activated parameter size and speedup on C4 dataset. 16-bit Mixtral 8 × 7b uses 2
A100-80GB GPUs and Mixtral 8× 22b uses 4, quantized models are tested on one A100-80GB GPU.

LLMs Bits PMQ ODP Uni LM-Eval% ↑ Params.(GB) Act Params.(GB) Speedup

LLaMA2-7b 16.00 - - - 61.52 13.48 13.48
LLaMA2-13b 16.00 - - - 65.19 26.03 26.03

Mixtral 8× 7b

16.00 - - - 71.29 96.80 26.31 1.00×
2.00 - - ✓ 42.67 13.61 3.70 1.72×
2.54 ✓ - - 67.50 16.24 4.53 1.63×
2.54 ✓ ✓ - 66.94 16.24 3.96 1.71×
2.05 ✓ - - 63.25 13.41 3.73 1.67×
2.05 ✓ ✓ - 62.68 13.41 3.23 1.80×
1.57 ✓ - - 54.49 10.82 2.94 1.82×
1.57 ✓ ✓ - 53.77 10.82 2.55 1.89×

Mixtral 8× 22b

16.00 - - - 76.33 281.24 76.49 1.00×
2.00 - - ✓ 50.44 38.08 10.35 1.95×
2.54 ✓ - - 72.08 46.58 12.66 1.77×
2.54 ✓ ✓ - 71.21 46.58 10.96 1.82×
2.05 ✓ - - 67.94 38.35 10.42 1.80×
2.05 ✓ ✓ - 66.50 38.35 9.03 1.87×
1.57 ✓ - - 59.29 30.27 8.23 1.97×
1.57 ✓ ✓ - 58.84 30.27 7.13 2.06×

Memory Saving and Inference Efficiency. Tab. 4 details the memory compression, speed tests,
and average results (Gao et al., 2013) (LM-Eval) of the proposed MC. The 16-bit Mixtral 8 × 7b
model requires two A100-80G GPUs, while the Mixtral 8× 22b model needs four. We utilize the
HQQ (Badri & Shaji, 2024) tool to save quantized weights and handle dequantization. To saving the
binary weight, we design a bit-change transformation (see Appendix A.2). After applying PMQ, the
Mixtral 8 × 7b model can be compressed to a memory from 10.82 to 16.65 GB. During dynamic
inference, ODP reduces activation parameters by about 15%, with average accuracy decreasing by
less than 1%. At 2.05-bit, the average activation parameter per token is only 3.23 GB, resulting in
a 1.80× increase in inference speed and an evaluation accuracy of 62.68%. Tab. 4 also compares
the performance of the LLaMA series dense models. The MC compressed 2.54-bit Mixtral 8× 7b
model outperforms the 26.03 GB 16-bit LLaMA2-13b model, with a total parameter size of 16.65
GB and activation parameters of 3.69 GB. We have also extended the compression experiments to the
Mixtral 8×22b model. MC shows higher overall performance compared to mainstream dense models,
without any training of original model. (more real speedup results are shown in Appendix A.9).

5 CONCLUSION

MoE represents a promising framework of sparse models for natural language understanding through
scaling up the model capacity. However, the memory demands and redundancy among experts pose
significant challenges for their practical implementation. In this work, we propose MC, a mixture
compression strategy based on the imbalance of significance among experts. This method co-designs
the Pre-Loading Mixed-Precision Quantization (PMQ) and Online Dynamic Pruning (ODP) approach,
allowing MoE models to be compressed to an ultra-low bit-width while maintaining exceptional
memory and parameter efficiency, as well as knowledgeable performance. And our mixed-precision
strategy is orthogonal to various quantization techniques. Comprehensive experiments validate
the effectiveness of our mixture compression, revealing that highly compressed MoE-LLMs can
even outperform equal-size full-precision dense LLMs, thereby improving the feasibility of MoE
compression. Future work will focus on adapting this strategy for multimodal applications and
optimizing it for specific hardware platforms.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work has been supported in part by Hong Kong Research Grant Council - Early Career Scheme
(Grant No. 27209621), General Research Fund Scheme (Grant No. 17202422, 17212923), Theme-
based Research (Grant No. T45-701/22-R), the Innovation and Technology Fund (Mainland-Hong
Kong Joint Funding Scheme, MHP/053/21), and the Shenzhen-Hong Kong-Macau Technology
Research Program (SGDX20210823103537034). This research is also supported in part by National
Key R&D Program of China (2022ZD0115502), National Natural Science Foundation of China
(NO. 62461160308, U23B2010), ”Pioneer” and ”Leading Goose” R&D Program of Zhejiang (No.
2024C01161).

REFERENCES

Hicham Badri and Appu Shaji. Towards 1-bit machine learning models, March 2024. URL https:
//mobiusml.github.io/1bit_blog/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping
Luo. Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of
experts. Advances in Neural Information Processing Systems, 35:34600–34613, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. NeurIPS, 35:30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Hawq-v2: Hessian aware trace-weighted quantization of neural networks. NeurIPS, 33:18518–
18529, 2020.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

11

https://mobiusml.github.io/1bit_blog/
https://mobiusml.github.io/1bit_blog/


Published as a conference paper at ICLR 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, L Golding, J Hsu,
A Le Noac’h, et al. A framework for few-shot language model evaluation. URL https://zenodo.
org/records/10256836, 7, 2013.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. arXiv preprint arXiv:2311.12023, 2023.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Hsien-Hsin S Lee, Anjali Sridhar, Shruti
Bhosale, Carole-Jean Wu, and Benjamin Lee. Towards moe deployment: Mitigating inefficiencies
in mixture-of-expert (moe) inference. arXiv preprint arXiv:2303.06182, 2023.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024a.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3 models? an
empirical study. arXiv preprint arXiv:2404.14047, 2024b.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
models. arXiv preprint arXiv:2405.14917, 2024c.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find n: m transposable masks. NeurIPS,
34:21099–21111, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A
comprehensive evaluation of quantization strategies for large language models. arXiv preprint
arXiv:2402.16775, 2024.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and efficient
moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Yeskendir Koishekenov, Alexandre Berard, and Vassilina Nikoulina. Memory-efficient nllb-200:
Language-specific expert pruning of a massively multilingual machine translation model. arXiv
preprint arXiv:2212.09811, 2022.

12



Published as a conference paper at ICLR 2025

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
A fast post-training pruning framework for transformers. NeurIPS, 35:24101–24116, 2022.

Pingzhi Li, Xiaolong Jin, Yu Cheng, and Tianlong Chen. Examining post-training quantization for
mixture-of-experts: A benchmark. arXiv preprint arXiv:2406.08155, 2024.

Baohao Liao and Christof Monz. Apiq: Finetuning of 2-bit quantized large language model. arXiv
preprint arXiv:2402.05147, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Efficient expert pruning for sparse mixture-of-experts language
models: Enhancing performance and reducing inference costs. arXiv preprint arXiv:2407.00945,
2024.

Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and
Ji-Rong Wen. Do emergent abilities exist in quantized large language models: An empirical study.
arXiv preprint arXiv:2307.08072, 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800, 2024.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and Yoon
Kim. Mitigating the impact of outlier channels for language model quantization with activation
regularization. arXiv preprint arXiv:2404.03605, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large language
models. arXiv preprint arXiv:2310.00034, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

13



Published as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Longfei Yun, Yonghao Zhuang, Yao Fu, Eric P Xing, and Hao Zhang. Toward inference-optimal
mixture-of-expert large language models. arXiv preprint arXiv:2404.02852, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
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A APPENDIX

A.1 MORE QUANTIZED RESULTS OF PMQ

This section expands on the comparative results of the Hessian and PMQ mixed precision metrics
across different bit-width settings. Tab. 5 serves as an extension of Tab. 2, specifically providing a
detailed comparison of the evaluation results across eight zero-shot datasets using the Hessian metric
employed by HAWQ V2 (Dong et al., 2020) in the 1.57 to 2.54-bit range. Within the target bit-width
interval, PMQ outperforms Hessian in all ranges, achieving better bit-width allocation results by
0.3% to 8.6%. Notably, at the ultra-low bit-width of 1.57-bit, PMQ achieves a comprehensive score
of 54.49%, while Hessian reaches only 45.91%.

Table 5: Performance of quantized Mixtral 8× 7b on eight zero-shot benchmarks. “HellaS.” is the
short format of “HellaSwag” and “Wino.” denotes “Winogrande”.

Method Bits PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.% ↑
16.00 85.20 84.01 57.17 85.35 81.48 75.93 39.29 67.88 71.29

Hessian

2.54 80.21 76.38 51.20 81.11 78.05 72.97 35.27 56.21 67.18
2.42 78.81 73.97 47.58 81.04 77.72 72.77 33.01 52.16 64.23
2.30 79.21 72.41 46.70 79.15 76.38 71.25 31.97 50.60 63.47
2.20 78.46 72.98 46.66 77.29 75.31 70.22 31.84 45.29 62.25
2.05 75.32 67.26 45.01 70.29 71.90 69.11 31.07 40.85 58.85
1.94 75.41 64.02 43.19 67.75 69.18 68.27 28.58 36.99 56.67
1.81 71.96 60.81 37.72 68.27 63.29 65.46 26.27 32.58 53.30
1.69 69.88 60.37 35.64 70.06 59.60 58.43 26.05 32.11 51.39
1.57 65.26 52.12 21.84 68.21 52.91 50.32 24.99 31.58 45.91

PMQ

2.54 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.50
2.42 80.36 75.76 50.17 80.00 78.13 73.09 34.97 53.22 65.71
2.30 83.11 73.59 47.78 80.83 76.48 73.14 33.84 52.54 64.91
2.20 79.05 73.70 47.87 74.56 76.63 72.77 34.24 47.73 63.29
2.05 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.25
1.94 76.88 68.48 45.48 75.23 72.05 72.61 31.16 40.93 60.35
1.81 76.93 66.67 43.60 75.50 70.50 69.85 28.68 40.71 59.06
1.69 75.41 64.14 40.61 68.96 67.01 68.03 28.04 37.14 56.17
1.57 72.42 62.46 37.88 73.55 63.17 66.38 26.80 32.25 54.49

Additionally, in Tab. 6, we extend the comparison of Hessian and PMQ’s few-shot performance
across different bit widths presented in Tab. 3. At 1.69-bit, PMQ achieves a score of 38.35% on the
MMLU (five-shot) benchmark, while maintaining a model size that is 16% smaller than the 2-bit
model under uniform quantization, with an accuracy improvement of 4.5%. More importantly, we
observe that PMQ at 2.54-bit compresses the model size by 84% compared to the 16-bit model,
yet the few-shot performance is only 9.4% lower, highlighting the substantial advantages of mixed
compression for MoE models. In comparison to Hessian at the same bit-width, PMQ demonstrates
great overall improved accuracy. BSP, on the other hand, exhibits poor performance in the few-shot
evaluations, which is even lower than 2-bit uniform quantization. In Tab. 7, we also compare these
precision allocating metrics on WikiText2 dataset; PMQ shows a clearer advantage, particularly
at 1.57-bit, where it achieves a PPL of 8.50, representing a significant improvement over the 2-bit
uniform quantization, while the Hessian at 1.57-bit achieves only 14.20.

A.2 ONE-BIT WEIGHT SAVING AND DEQUANTIZATION

This paper presents MC, which explores static compression strategies and dynamic pruning method
for MoE-LLMs in the ultra-low bit-width range, with selected static bit-width of 1-bit, 2-bit, and 3-bit.
We observe that both 2-bit and 3-bit can be addressed using conventional linear quantizers, a method
commonly utilized in most studies (Frantar et al., 2022; Shao et al., 2023; Huang et al., 2024c; Lin
et al., 2024). In contrast, the quantization of 1-bit weights involves totally different calculations; we
first provide the binarization formula for the weights:

B = sign(W) (7)
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Table 6: Comparison of different mixed-
precision strategies on few-shot performance
(MMLU five-shot ↑) for Mixtral 8× 7b.

Method Bits Accuracy % ↑
16.00 70.60

Uni 2.00 34.0528.4%↓
BSP 2.54 31.5730.9%↓

Hessian

2.54 58.224.2%↓
2.42 54.098.3%↓
2.30 51.3711.1%↓
2.20 47.0115.4%↓
2.05 43.5118.9%↓
1.94 38.6223.8%↓
1.81 33.8728.9%↓
1.69 33.0429.4%↓
1.57 31.9630.49%↓
2.54 61.191.3%↓
2.42 58.304.2%↓
2.30 55.087.4%↓
2.20 50.7011.8%↓

PMQ 2.05 49.8412.6%↓
1.94 45.9816.5%↓
1.81 41.6720.8%↓
1.69 38.3524.0%↓
1.57 33.4429.0%↓

Table 7: Comparison of different mixed-
precision strategies on PPL performance (Wiki-
Text2 PPL ↓) for Mixtral 8× 7b.

Method Bits PPL ↓
16.00 3.84

Uni 2.00 16.38
BSP 2.54 13.61

Hessian

2.54 5.41
2.42 5.81
2.30 5.86
2.20 6.58
1.05 6.65
1.97 7.88
1.81 8.45
1.69 10.18
1.57 14.20
2.54 5.09
2.42 5.25
2.30 5.45
2.20 5.72

PMQ 2.05 5.91
1.94 6.49
1.81 6.81
1.69 7.78
1.57 8.50

sign(x) =

{
1 if x ≥ 0,

−1 others.
(8)

where W ∈ Rd×m is the full precision weight and B ∈ {−1,+1}d×m denotes the binarized matrix.
Due to the elements range of B being ±1, we can not directly save the one-bit value into compact
memory. Hence, we propose a simple transformation for B:

B̃ =
sign(W) + 1

2
(9)

where B̃ ∈ {0, 1}d×m. In this case, we can really use 1-bit memory to storage each element. During
the inference stage, we need to dequantize the binary weight and operate the matrix multiplication of
each input vector follows:

s · xB = s(

d∑
j:B̃ij=1

xj −
d∑

j:B̃ij=0

xj), for i = 1, 2, ...m (10)

where x ∈ R1×d denotes one set of input vector (token), and s represents the scaling factor of each
binary matrix, which is calculated from s =

∥W∥ℓ1

d×m (Rastegari et al., 2016). In this binarized weight
format, we can achieve computation without minimal multiplication operation. As shown in Eq. (10),
the original computation requires dm multiplications and (d− 1)m additions, resulting in a MACs
consumption of dm and a computational complexity of O(m2). In contrast, binary matrix operations
require only m multiplications and (d− 1)m additions, leading to a MACs consumption of just m
and a computational complexity of O(m).

A.3 RESULTS OF DIFFERENT QUANTIZATION TECHNIQUES

As detailed in Sec. 3.2 of the main text, PMQ focuses primarily on leveraging the significance
differences between experts to construct an optimal mixed-precision bit-width allocation. After
determining the optimal allocation, it can be combined with various quantization techniques. In this
study, to efficiently validate the effect of mixed compression, we employ GPTQ (Frantar et al., 2022),
an efficient training-free post-training quantization (PTQ) strategy, which completes mixed-precision
quantization on the Mixtral 8× 7b model in just 90 minutes.
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Uniform 3-bit PMQ 2.54-bit PMQ 2.05-bit PMQ 1.57-bit

Figure 9: Needle in a Haystack evaluation. Green squares indicates a high retrieval success rate, the
Y-axis represents the distance to the retrieved target.

Table 8: Performance of quantized Mixtral 8× 7b on eight zero-shot benchmarks on GPTQ (Frantar
et al., 2022) and Omniquant (Shao et al., 2023). w denotes “with”.

Method Bits PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.% ↑
16.00 85.20 84.01 57.17 85.35 81.48 75.93 39.29 67.88 71.29

PMQ
w GPTQ

(Frantar et al., 2022)

2.54 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.50
2.05 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.25
1.57 72.42 62.46 37.88 73.55 63.17 66.38 26.80 32.25 54.49

PMQ
w Omniquant

(Shao et al., 2023)

2.54 81.63 78.66 52.91 82.54 80.17 74.51 39.20 59.83 68.80
2.05 79.77 74.24 48.65 81.09 75.76 72.48 33.01 47.15 64.01
1.57 73.33 65.28 38.54 74.06 66.61 66.59 26.74 35.20 55.79

In this section, we replace GPTQ with another advanced quantization method, Omniquant (Shao et al.,
2023), which uses a learnable weight clipping (LWC) for quantization calibration. For calibration,
256 sequences from the C4 dataset are selected for gradient optimization. Omniquant requires
approximately 480 minutes to quantize the Mixtral 8 × 7b model (see Tab. 8), but it outperforms
GPTQ across eight zero-shot benchmarks, owing to its precise search for quantizer factors via LWC.
This further demonstrates the flexibility of our PMQ framework.

A.4 QUANTIZATION RESULTS ON CHALLENGING BENCHMARKS

In this section, we expand our mixed-precision benchmarks on more challenging datasets in
Tab. 9, considering the importance of performance testing on more complex long text or reasoning
tasks (Cobbe et al., 2021; Bai et al., 2023; Chen et al., 2021). We have observed that in challenging
tasks like GSM8K, HumanEval, and long-context Needle-in-a-haystack, the performance drop of
model compression becomes more pronounced. This phenomenon holds true in other MoE LLM
compression methods (Frantar et al., 2022; Huang et al., 2024c; Shao et al., 2023; Lu et al., 2024)
as well. However, our PMQ method, compared to the latest method like BSP (Li et al., 2024) and
HAWQ (Dong et al., 2020) with Hessian-based approaches for MoE LLM, is still able to maintain
state-of-the-art performance. Fig. 9 shows the NIAH results in different sequences.

Recent studies on quantization performance losses (Jin et al., 2024; Liu et al., 2023a) were also
explored, revealing that ARC-C and GSM8K primarily involves inference issues, categorized as
chain-of-thought (CoT), while MMLU can be classified as in-context learning (ICL). CoT tasks, due
to their intricate reasoning demands, pose significant challenges to various LLM types. Given that
many open-source MoE LLMs and dense LLMs do not exhibit strong inference capabilities during
pre-training, we anticipate larger performance losses when reducing model bit-width to ultra-low
scenarios. The results in Tab. 2 and Tab. 9 also indicate that there is the huge potential for future
exploration of MoE LLM compression on complex tasks.

A.5 DETAILED RESULTS ON BIT-WIDTH ALLOCATION

In this section, we further visualize the different bit-width allocation results of PMQ on Mixtral
8× 7b model, as shown in Fig. 10. The results clearly show that the importance of MoE expert varies
with different position. It can be seen that at lower bits-width, our algorithm only selects a small part
of the position for protection, which greatly improves calculation efficiency. With the increasing of
the bit-width, the important positions from lower bit-width are leavening unchanged which further
proves the effectiveness of the proposed method.
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Table 9: Comparison of different mixed-precision quantization methods on challenging benchmarks.
NIAH denotes the task in Needle-in-a-haystack, which is a more challenging task for evaluating
long-context ability.

Method Bits GSM8K↑ HumanEval (pass@10)↑ NIAH↑
16.00 58.30 59.15 100.00

Uniform 3.00 38.13 29.88 98.48
Uniform 2.00 0.00 0.00 0.00

BSP 2.54 4.25 3.21 42.21
Hessian 2.54 33.59 25.49 100.00
Hessian 2.05 17.24 7.84 93.45

PMQ 2.54 37.67 29.34 100.00
PMQ+ODP 2.54 35.25 27.58 100.00

PMQ 2.05 19.97 11.83 100.00
PMQ+ODP 2.05 18.04 10.02 99.26

A.6 ABLATION ANALYSIS ON HYPER-PARAMETERS OF EXPERT SIGNIFICANCE WEIGHT

In this section, we conduct experiments based on different hyperparameter settings for the expert
significance factor weights, i.e., α and β in Eq. 4. We evaluate these factors with values of 1,
1.5, and 2 to differentiate their relative significance on Mixtral 8 × 7B (2 bit). Since quantization
error is a critical evaluation metric, we fix its weight γ at 2 and vary the weights of the expert
significance factors accordingly. The experimental results, shown in Tab. 10, indicate that the overall
accuracy remains stable, but exhibits a slight decline when the combined value of α and β exceeds
the quantization error weight.

Table 10: Ablation analysis on Mixtral 7×8B model, evaluating different settings for the weights of
the two significance factors, α and β (Eq. 4), with the quantization error weight fixed at 2, using the
WikiText2 dataset.

α = 1 α = 1.5 α = 2

β 1 1.5 2 1 1.5 2 1 1.5 2

PPL 5.92 5.92 5.91 5.92 5.91 5.96 5.91 5.96 5.95

A.7 COMPARISON OF DIFFERENT TOKEN-DEPENDENT PRUNING METRIC

Regarding the dynamic pruning of experts, we note that most existing pruning methods for LLMs or
other neural networks focus on static weight pruning (Sun et al., 2023; Zhang et al., 2023), and cannot
dynamically prune experts during inference based on tokens. Dynamic pruning during inference
remains under-explored, with only one recent post-training MoE LLM dynamic pruning work (Lu
et al., 2024) proposing a gating-score-based strategy for dynamic pruning. This work has already
compared with Wanda (Sun et al., 2023) method, a highly effective static pruning method, and
concluded that static pruning methods result in significant performance degradation when applied
to dynamic MoE LLM experts. We incorporated additional metrics for dynamic expert pruning to
expand the scope of our experiments. Specifically, we perform token-dependent expert pruning on
token kurtosis, token var, and token mean, where 30% of tokens will be pruned from top-2 to top-1
(Tab. 11).

A.8 ABLATION OF DYNAMIC EXPERT PRUNING THRESHOLD

We follow the setting from recent dynamic MoE pruning work (Lu et al., 2024), selecting it as
the median value of w1

w0
, which also theoretically and empirically demonstrates that this choice of
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Table 11: Comparison of different token-dependent dynamic expert pruning strategies on Mixtral
8× 7b. Avg.CP denotes the average compressed parameters ratio for each token. NIAH denotes the
task in Needle-in-a-haystack, which is a more challenging task for evaluating long-context ability.

Method µ(w1/w0) Avg.CP WikiText2↓ LM-Eval%↑ GSM8K↑ HumanEval(pass@10)↑ NIAH↑
Token kurtosis 0.3 15.62% 7.16 57.22 14.05 6.54 93.16
Token variance 0.3 15.62% 6.69 60.02 17.33 7.92 95.37

Token mean 0.3 15.62% 6.82 59.27 17.76 6.02 95.65

ODP - 14.88% 6.22 63.25 18.04 10.02 99.26

threshold is a comprehensive optimal setting. In this section, we provide a more comprehensive
ablation on threshold µ in Eq. 5. As demonstrated in Table 12, utilizing a manual threshold of 0.4,
the PPL performance stands at 6.29 with a mere 12.00% of experts pruned. In contrast, our proposed
method, referred to as ODP, achieves a PPL of 6.22 and prunes 14.88% of the experts. This not only
showcases superior accuracy but also highlights enhanced efficiency.

Table 12: Ablation of different threshold hyperparameter.

µ(w1/w0) PPL (WikiText2)↓ Avg. Pruning Params.

0.4 6.29 12.00%
0.5 6.49 16.51%
0.6 6.64 19.25%
0.7 6.89 22.43%

Median 6.48 15.18%
ODP(Median + Protection) 6.22 14.88%

A.9 COMPUTATION ANALYSIS OF ONLINE DYNAMIC PRUNING

During the ODP phase, compared to the significant reduction in the number of tokens and experts
leading to large-scale matrix multiplications, the computational cost of token importance calculation
can be negligible. Specifically, in Mixtral 8× 7b, where the typical input token matrix size is Rn×m,
the token importance calculation involves three steps: summing attention weights, computing the ℓ1
norm, and performing top-k calculations. The overall floating-point operations per second (FLOPs)
calculation amounts to n2 + n+mn+ nlogn. In the ODP inference phase, after dynamic pruning,
an average of 15% of tokens in a MoE layer will reduce an experts inference (see Tab. 12). The
FLOPs for these 15% of tokens within an expert (an expert with 3 linear layers, the size is Rm×m1 ,
Rm1×m1 , Rm1×m) are 0.15n∗×(m×m1×2+m2

1×2+m1×m×2), where m1 is typically much
larger than n and m in Mixtral 8× 7b. Therefore, the computational cost of importance calculation
is usually low. As demonstrated in Tab. 4, when PMQ is combined with ODP, it further enhances
computational efficiency. This indicates that the efficiency gain from experts’ dynamic pruning
outweighs the computational cost of token importance calculation.

Table 13: End-to-end latency comparison between FP16 and MC on Mixtral 8× 7b under different
[batch, input token length]. Each cell is the latency for one token generation speed (second).

Hardware [1,512] [1,1024] [1,2048] [1,4096] [8,2048] [8,4096] [16,2048] [16,4096]

FP16 2×A100 0.029 0.038 0.043 0.057 0.009 0.011 0.007 0.010
MC 2.54-bit 1×A100 0.015 0.018 0.019 0.025 0.004 0.005 0.004 0.004
Speedup(%) - 48.3 52.7 56.2 56.1 55.4 54.3 47.6 60.1

In Tab.13 and Tab.14, we present the actual speed enhancements of deployment achieved by our
MC method on various hardware platforms. The speed enhancements in MC, as detailed in Tab. 13,
originate from static compression during the PMQ phase and adaptations of the CUDA kernel (based
on HQQ) along with ODP. Across varying batch sizes and input sequence lengths, our speedup
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Table 14: Latency comparison of MoE and dense LLM under different hardware platform.

Model Hardware Loading Memory Peak GPU Memory LM-Eval%↑ Token/s

Mixtral 8×7b 2×A100 96.8 GB 112.6 GB 71.29 23
Mixtral 8×7b 1×3090 OOM OOM - -
LLaMA2-13b 1×A100 26.0 GB 33.4 GB 65.19 46
LLaMA2-13b 1×3090 OOM OOM - -

Mixtral 8×7b
MC 2.54-bit 1×A100 16.2 GB 20.7 GB 66.94 38

Mixtral 8×7b
MC 2.54-bit 1×3090 16.2 GB 20.7 GB 66.90 52

ranges from 40% to 60%. The performance boost from model weight compression remains consistent
regardless of input sequence length and batch size. However, with a fixed batch size, we notice a
more pronounced speed advantage for our MC-MoE as the sequence length increases, attributed
to the increased efficiency demonstrated by ODP. As batch size increases, both the FP16 models
and compressed models experience an overall increase in throughput, leading to accelerated average
token generation speeds. In Tab. 14, with MC-MoE on the RTX 3090 GPU, extreme compression
allows for an average speed of 52 token/s, which is very cost-effective. In this scenario, compressed
MoE LLM outperforms dense LLM in memory, accuracy, and speed.
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Figure 10: Visualization on different bit-width allocation. Color refers to the bit size.
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