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Abstract

Animated QR codes present an exciting frontier for dynamic content delivery and
digital interaction. However, despite their potential, there has been no prior work
focusing on the generation of animated QR codes that are both visually appeal-
ing and universally scannable. In this paper, we introduce AnimateQR, the first
generative framework for creating animated QR codes that balance aesthetic
flexibility with scannability. Unlike previous methods that focus on static QR
codes, AnimateQR leverages hierarchical luminance guidance and progressive
spatiotemporal control to produce high-quality dynamic QR codes. Our first
innovation is a multi-scale hierarchical control signal that adjusts luminance across
different spatial scales, ensuring that the QR code remains decodable while al-
lowing for artistic expression. The second innovation is a progressive control
mechanism that dynamically adjusts spatiotemporal guidance throughout the dif-
fusion denoising steps, enabling fine-grained balance between visual quality and
scannability. Extensive experimental results demonstrate that AnimateQR achieves
state-of-the-art performance in both decoding success rates (96% vs. 56% baseline)
and visual quality (user preference: 7.2 vs. 2.3 on a 10-point scale). Codes are
availble at https://github.com/mulns/AnimateQR.

1 Introduction

Aesthetic QR codes have emerged as a promising medium that integrates machine-readable func-
tionality with human-oriented visual design [41, 31, 22, 14]. Early approaches typically focused
on module deformation [3, 10, 45, 4, 16] and style transfer [41, 41] to improve visual appeal. With
the advancement of generative models [32, 36, 15, 35, 17, 19, 18, 20, 26, 28, 27], recent methods
employ ControlNet-based frameworks [6, 43] to synthesize stylized QR code images [34]. To further
ensure scanning reliability, dedicated mechanisms [22, 34, 39, 5] have been introduced to balance the
trade-off between aesthetics and robustness.

Unlike existing static QR codes, animated QR codes encoded as video sequences offer enhanced
branding potential, interactive storytelling, and context-aware content delivery. However, generating
temporally coherent animated QR codes that maintain robust scannability while achieving artistic
expressiveness presents significant challenges.

To the best of our knowledge, we are the first to tackle animated QR code generation, addressing
a critical gap in existing methods that are primarily designed for static image domains. Directly
applying these static methods [4, 3, 22, 34, 39] to animated scenario in a frame-by-frame manner
results in visually unappealing outcomes, often producing rigid and unnatural animations due to a
lack of temporal coherence and aesthetic consistency. Our motivation arises from the observation
that overly fine-grained control leads to instability, whereas overly coarse control introduces visual
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Figure 1: Samples of animated QR codes are shown. Best viewed with Acrobat Reader. Click the
images to play the animation clips and zoom in for finer details.

artifacts. To balance robustness and visual quality, we propose a novel framework with adaptive
control granularity, enabling dynamic adjustment of spatial and temporal constraints to prioritize
scannability in critical regions while allowing creative freedom in less important areas. We name the
method AnimateQR, which introduces two key innovations:

1. Hierarchical Luminance Guidance (HLG). HLG is a multi-scale luminance map that can be
derived from both natural images and QR codes. It encodes hierarchical structural information,
serving as a control mechanism to bridge artistic expression and QR code functionality. Our proposed
HLG-ControlNet, trained on natural images and their corresponding HLG maps, achieves superior
performance than existing luminance ControlNet [43] through three key innovations:

(1) Module-aligned Encoding: Spatial partitioning aligns with QR decoder’s module-wise processing
requirements, ensuring structural compatibility. (2) Hierarchical Control: Multi-scale constraint
mechanism enables dynamic granularity adaptation across different QR module hierarchies. (3) Adap-
tive Constraint: Ternary quantization strategy selectively preserves critical regions while allowing
flexibility in non-essential areas through stochastic relaxation.

2. Progressive SpatioTemporal control (ProST). Building upon the HLG-ControlNet framework,
we propose a novel diffusion-based progressive spatiotemporal control mechanism that jointly
optimizes visual quality and scannability during the inference phase. Unlike conventional approaches
that enforce uniform control across frames, ProST dynamically partitions control strength across both
spatial and temporal dimensions:

⋄ Temporally: ProST assigns distinct HLG maps to each frame through a combination of reshuffling
and interpolation, ensuring temporal coherence while maintaining scannability.

⋄ Spatially, the HLG control signals adaptively evolve across diffusion stages: regions prone to
decoding errors receive stronger guidance, while more stable areas transition to softer constraints.

This dual-domain adaptation mechanism effectively balances video coherence with decoding reliabil-
ity, achieving an optimal trade-off between visual appeal and functional robustness.

Extensive experimental results demonstrate that AnimateQR achieves state-of-the-art performance in
both decoding success rates (96% vs. 56% baseline) and visual quality (user preference: 7.2 vs. 2.3
on a 10-point scale).

The key contributions of this paper are threefold: 1) First generative framework for animated QR
codes. 2) Hierarchical Luminance Guidance (HLG) that enhances control granularity spatially. 3)
Progressive Spatiotemporal Control (ProST): a diffusion-based method for error-adaptive control
across space and time.

2 Related Work

Quick Response (QR) Code. As QR codes increasingly serve as a vital bridge between physical
and digital domains, there is growing interest in enhancing their visual aesthetics beyond the tradi-
tional monochrome design. Early efforts, such as halftone QR codes [3], align QR modules with
thematic images to create visually integrated patterns. Artup [7, 40] further explore the embedding of
colorful content within QR structures. For module rearrangement, the QArt team [4, 16] pioneered
the application of Gaussian-Jordan elimination algorithms to spatially reorganize encoding units.
Subsequent advances [30, 31] apply artistic style transfer techniques to enrich QR code appearance.
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Figure 2: Illustration of the proposed AnimateQR framework. The green box depicts the extraction
of the Hierarchical Luminance Guidance (HLG) map from input images. The red box outlines
the training of the HLG-ControlNet, while the blue box highlights the inference stage using the
proposed Progressive Spatiotemporal control (ProST) strategy. During training, we extract HLG
map with randomly sampled activation vector βk as detailed in Section 3.3. During inference,
animated QR codes are generated via the DDIM process using a Stable Diffusion model equipped
with HLG-ControlNet (as the control unit) and AnimateDiff (as the motion module). The HLG map
is progressively updated by the Evolve HLG module as detailed in Section 3.4, enabling adaptive
spatiotemporal control throughout the denoising process.

Style transfer technology further elevates the artistic quality of QR codes. Xu et al. [41] proposed
SEE QR codes, marking the advent of aesthetically pleasing QR codes based on style transfer.
Subsequently, Su et al. [30, 31] enhanced the aesthetic effect through a module-based deformable
convolution mechanism (MDCM), generating QR codes that are both recognizable by ordinary
mobile scanners and artistically expressive.

Diffusion for Aesthetic QR Image: In recent years, deep learning–based image manipulation
and generation techniques have made significant progress [32, 36, 15, 35, 17, 19, 18, 20], with
generative models leading the forefront of this advancement [42, 21, 24, 23, 26, 28, 27]. QRBTF [22]
employs diffusion models [25] to generate photorealistic QR codes with natural textures while
maintaining robust scannability. Meanwhile, GladCoder [39] integrates GANs [8] and diffusion
models [25] to refine high-frequency details in QR codes, enabling them to mimic complex artworks
without sacrificing machine readability, thus solving the problem of artistic expression limitations in
traditional QR designs. The QRMonster model [6], built upon the ControlNet framework, enhances
structural control capabilities of diffusion models through its adapter module [46]. Text2QR [34]
leverages QRMonster to improve visual output quality while optimizing positioning patterns via a
three-stage refinement process, thereby significantly enhancing the overall aesthetic quality of QR
code images. Face2QR [5] represents another noteworthy research direction, which explores the
integration of facial features into QR code design to create unique and highly personalized solutions.
This innovation undoubtedly opens up new possibilities for the future of QR code aesthetics.

3 Method

3.1 Preliminary

A QR code is decoded through three primary steps:

1. Detection and Localization: Locate the QR code region by detecting Finder Patterns (the square
markers at three corners) and Alignment Patterns, and determine the QR code’s version and format
information.
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2. Module Sampling and Binarization: Partition the QR code image into a grid of m×m modules,
where each module is assigned a binary value (0 or 1) based on its luminance level.

3. Error Correction and Decoding: Decode the binary sequence using Reed-Solomon error correction
to retrieve the original message.

In this paper, we define all QR code images as composed of m×m modules, where each module
consists of a× a pixels. For convenience, we standardize all images to a size of ma×ma.

3.2 Overall Framework

The overall framework of our approach is illustrated in Figure 2. During inference, our method
follows the standard Denoising Diffusion Implicit Models (DDIM) [29] process to denoise a randomly
sampled noise using Stable Diffusion (v1.5) [25]. Additionally, we employ ControlNet [43] for
spatial luminance control and AnimateDiff [9] for motion generation in video sequences. Specifically,
the ControlNet we utilize adheres to the standard model architecture but is trained on a novel
Hierarchical Luminance Guidance (HLG) signal dataset, referred to as HLG-ControlNet. During
the denoising process, we dynamically adjust the control signals through a mechanism named
Progressive Spatiotemporal Control (ProST), assigning varying control strengths both spatially
and temporally to achieve a fine-grained balance between visual quality and scanning robustness.

The rationale for selecting AnimateDiff as the motion module can be summarized as follows: (1) An-
imateDiff is seamlessly integrated with the image generation model Stable Diffusion, which benefits
from a rich ecosystem of community fine-tuned stylized models. (2) By leveraging AnimateDiff, we
can apply control through image-based ControlNet without the need to train a separate video Control-
Net. This design makes our method highly extensible, enabling both static and animated QR code
generation with minimal additional effort. (3) Unlike most video generation models, AnimateDiff
supports frame-wise luminance control, which naturally aligns with the requirements of animated
QR code generation.

In the subsequent sections, we elaborate on the training process of HLG-ControlNet and the inference
process of ProST for animated QR code generation.

3.3 Training HLG-ControlNet

As previously mentioned, although our framework generates animated QR codes in video sequences,
we leverage image-based ControlNet to achieve precise luminance control. As illustrated in the red
box of Fig. 2, we train the ControlNet following the standard process [43] on a dataset of images paired
with their corresponding Hierarchical Luminance Guidance (HLG) maps. The network is trained
end-to-end, with HLG maps provided as conditional inputs. We adopt the same loss functions and
optimization strategy as ControlNet to ensure reproducibility while focusing on learning HLG-guided
control signals.

The HLG map is defined as a three-channel representation, where each channel corresponds to a
distinct scale. Each pixel in the HLG map assumes one of three values: -1 for dark regions, 1 for
bright regions, and 0 for regions with unrestricted luminance.

The subsequent section details the process of extracting the HLG map from an input image, as further
illustrated in the green box of Figure 2.

Multi-scale Luminance Extraction. For input image I ∈ Rma×ma, we partition it into m2 non-
overlapping a× a patches P = {pk}m

2

k=1 via grid decomposition. Each patch is analyzed using three
Multi-scale Central Masks {Mr ∈ Ra×a}3r=1, defined with central radii cr = ⌊a/2r−1⌋:

Mr(x, y) =

{
1 if (x, y) ∈ Center(cr × cr),

0 otherwise.
(1)

The hierarchical luminance values are calculated through:

µr
k =

1

∥Mr∥0

∑
(x,y)∈Ωk

pk(x, y) ·Mr(x, y), (2)

where Ωk is the pixel coordinate space within patch pk and r ∈ {1, 2, 3} denotes three scales.
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Hierachical Luminance Guidance. Given the average luminance values across different scales,
we quantize them to align with the distribution of QR code images. We define a ternary quantization
function Q : [0, 1]→ {−1, 0, 1} as follows:

Q(µ) =


−1 (Dark) if µ < τb,

1 (Bright) if µ > τa,

0 (Unconstrained) otherwise,
(3)

where τa = 0.7 and τb = 0.3 are decoder-calibrated thresholds derived from sensitivity analysis.
For each patch pk, the average luminance µr

k is mapped to the ternary luminance vector γk =[
Q(µ1

k), Q(µ2
k), Q(µ3

k)
]

according to Equation 2 - 3.

To dynamically activate scale-specific constraints, we introduce an activation vector βk ∈ B. Here,
B is explicitly defined as the ordered basis set:

B ≜ (b1, ..., b8) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. Each
basis bi (for i = 1, 2, . . . , 8) controls the activation of the three scales, with 0 indicating deactivation
and 1 indicating activation, thereby enumerating all possible activation patterns. Each value in bi
corresponds to one scale: activating a scale enables its corresponding blocks to contribute to the
content control strength. For instance, (1, 0, 0) modifies only coarse-scale blocks, resulting in weaker
control, whereas (1, 1, 1) involves all scales and achieves maximal control strength. The definition
of B and bi facilitates the explanation of how the HLG map is updated by modifying the activation
vector during inference, as detailed in the following section.

The final HLG map H is constructed by combining multi-scale constraints through channel-wise
concatenation (denoted as

⊕
):

Hk =

3⊕
r=1

[γr
k ·Mr · βr

k] , H = unpatchify({Hk}m
2

k=1). (4)

During training, we uniformly explore all patterns by sampling βk such that P (βk = bi) =
1
8 for all

i ∈ {1, . . . , 8}. This ensures that the HLG-ControlNet becomes robust to spatially dynamic control
strengths.

3.4 Inference with ProST

Our diffusion-based Progressive Spatiotemporal Control (ProST) framework addresses the long-
standing control-strength dilemma through an error-adaptive constraint escalation mechanism.
Specifically, ProST dynamically modulates hierarchical constraints in response to error-driven con-
trol escalation, operating through three distinct phases: Init HLG, Evolve HLG, and Scannability
Enhancement. This phased approach ensures a systematic and adaptive progression in constraint
enforcement, significantly enhancing the framework’s robustness and precision in spatiotemporal
control tasks. The complete algorithm is presented in Algorithm 1.

Notation. Let k ∈ {1, . . . ,m2} index the QR modules, where m2 represents the total number of
modules in the QR code. Let {zτs}Ss=0 denote the latent states at evenly spaced timesteps, where
τs = T − s∆τ and ∆τ = T/S. At each stage s, conditional denoising is performed as:

zτs+1
= DDIM(zτs , H

s, τs → τs+1), (5)

where Hs is the adaptive HLG map, dynamically updated based on intermediate decoding results.

Given an animated QR sequence V consisting of N frames, we partition it into two disjoint subsets:
the keyframe setK ⊂ {1, 2, . . . , N} and the non-keyframe set T = {1, 2, . . . , N}\K. The keyframes
K are uniformly sampled and are required to satisfy scannability constraints, while the non-keyframes
T primarily focus on maintaining temporal coherence without enforcing scannability.

Init HLG. Given a QR code q and random noise zT , this module generate a initialized HLG map
H0. First, the initial video sequence V ′ = {It}Nt=1 is generated as:

V ′ = Dvae
(
DDIM(zT , H

null, T → 0)
)
, (6)
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where Hnull denotes null control, N represents the number of video frames (typically set to 16), and
Dvae is the VAE Decoder [13].

Next, we align the QR modules with the video content through the following operations:

q′t = g(V ′, q) =

{
Reshuffle(It, q), if t ∈ K;
Interp(q′t− , q

′
t+ , αt), if t ∈ T ; (7)

where: Reshuffle(·, ·) is derived from QArt [4] (details provided in the Appendix); Interp(·) performs
nearest-neighbor interpolation between two keyframes based on temporal distance; t− = max{i ∈
K | i < t} and t+ = min{i ∈ K | i > t} denote the nearest preceding and succeeding keyframes
relative to frame t; αt =

t−t−

t+−t− ∈ (0, 1) represents the temporal interpolation ratio; q′t ∈ Rm2

is the
reshuffled binary sequence with q′t[k] ∈ {−1, 1}.
Subsequently, we construct the HLG map for each frame in parallel, where the temporal subscript is
omitted for simplicity. According to Eq. 4, the HLG map Hs at stage s is formulated as:

Hs = f(q′, {β(s)
k }

m2

k=1) = unpatchify

{
3⊕

r=1

[q′[k] ·Mr · βr
k
(s)]

}m2

k=1

 . (8)

At the initial stage s = 0, we set β(0)
k = b2 as the initialized activation state.

Evolve HLG. At stage s > 0, given the current estimate zτs from Eq.5 and the reshuffled QR code
q′, the module updates the HLG map from Hs to Hs+1. As defined in Eq.8, this is essentially achieved
by updating the activation vector set {β(s)

k }m
2

k=1. To achieve error-driven control updates, we first
analyze the error distribution. Specifically, the current estimate zτs is decoded as q̂s = Dqr(Dvae(zτs)),
whereDqr denotes the simulated QR decoder [1] (details provided in the Appendix). The module-wise
error mask is then computed as:

Es
k = I[q̂s[k] ̸= q′[k]], 1 ≤ k ≤ m2, (9)

where I[·] is the indicator function, returning 1 if the condition is true and 0 otherwise.

Next, we define the evolve function as follows:

β
(s+1)
k =

{
bmin(ϕ(βs

k)+1,8), if Es
k = 1;

bmax(ϕ(βs
k)−1,1), otherwise,

(10)

where ϕ : B → {1, . . . , 8} is a bijective index mapping satisfying ϕ(bi) = i. After this, the updated
HLG map Hs+1 is computed following Eq. 8. This update rule ensures that for erroneous modules,
the control strength is increased, while for correct modules, the control strength is decreased, thereby
achieving a balanced trade-off between scannability and aesthetic quality.

Scannability Enhancement. After the final denoising step, the latent code is refined using the SELR
(Scannability Enhancement via Latent Refinement) module [34]. This module applies gradient-based
iterative refinement as follows:

zen
0 = z0 − η

L∑
i=1

∇z0Lscan

(
q′,Dqr(Dvae(z

(i)
0 ))

)
, (11)

where: L is the number of SELR iterations, z(i+1)
0 = z

(i)
0 − η∇Lscan represents the iterative update

with learning rate η, Lscan is the scannability loss function (detailed in the Appendix). This refinement
process ensures that the final latent code zen

0 is optimized for scannability while preserving the visual
quality of the generated QR code.

4 Experiment
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Algorithm 1 Progressive Spatiotemporal Control (ProST)

Require: Initial noise zT , target QR q, stages S
Ensure: Scannable V qr

1: Initialize: V ′ ← Dvae
(
DDIM(zT , H

null, T → 0)
)

2: Let q′ ← g(V ′, q)
3: Let β0

k ← (0, 0, 1) , ∀k ∈ {1, 2, . . . ,m2}
4: Let H0 ← f(q′, {β(0)

k }m
2

k=1)
5: Let zτ0 ← zT
6: for s = 1 to S do
7: Denoise: zτs ← DDIM(zτs−1

, Hs−1, τs−1 → τs)
8: Decode: q̂s ← Dqr(Dvae(zτs))
9: for k = 1 to m2 do

10: if q̂sk ̸= q′k then
11: βs

k ← bmin(ϕ(βs−1
k )+1,8)

12: else
13: βs

k ← bmax(ϕ(βs−1
k )−1,1)

14: end if
15: end for
16: Update HLG: Hs ← f(q′, {β(s)

k }m
2

k=1)
17: end for
18: Enhance Scannability: zen

0 ← SELR(z0)
19: Output: V qr ← Dvae(z

en
0 )

Experimental Setup and Configura-
tion. Our implementation is based
on the PyTorch framework and runs
on an NVIDIA GeForce RTX 4090
GPU. We generate QR codes of ver-
sion 5, corresponding to 37× 37 mod-
ules (i.e., m = 37). For training the
HLG-ControlNet, we adopt *Stable
Diffusion v1.5* as the backbone and
utilize a dataset comprising 60,000
high-resolution images, each prepro-
cessed to a resolution of 512 × 512
pixels. During inference, we set the
ControlNet control strength to 0.9, the
number of frames in AnimateDiff to
16, and the motion scale to 1.0. By
default, we define the keyframe set as
K = {1, 8, 16} and set the learning
rate to η = 0.001.

For comparative evaluation, we con-
struct a dataset of 500 uniquely styl-
ized QR images, each with a resolu-
tion of 1024 × 1024 pixels, encom-
passing diverse visual content and

artistic styles. To assess scanning robustness, all generated results are displayed on a 27-inch,
144Hz IPS monitor. The scannability of dynamic QR codes is tested under real-world conditions by
playing the 16-frame animation on the screen and performing actual scanning, consistent with their
intended practical usage.

As mentioned earlier, our proposed AnimateQR can be easily extended to generate static aesthetic
QR code images. This is achieved by disabling AnimateDiff and setting K = {1}. We refer to this
static variant as AnimateQR-s.

4.1 Qualitative Comparison

Animated QR Code Quality. Due to the absence of dedicated methods for animated QR code
generation, we extend two representative static image-to-QR approaches, ArtCoder [31] and Glad-
Coder [39], to the video domain via frame-by-frame processing, denoted as “ArtCoder-d” and
“GladCoder-d”, ensuring fair comparison under identical conditions. As shown in Fig. 3, these
baselines exhibit noticeable temporal flickering due to the lack of inter-frame modeling, whereas our
method generates animations with significantly improved temporal coherence and visual continuity.

Static QR Code Quality. For fair comparison, we evaluate our static variant, AnimateQR-s,
against state-of-the-art static QR code generation methods. The comparison includes image-to-QR
methods (ArtCoder [31], GladCoder [39]) and text-to-QR methods (QRBTF [22], Text2QR [34]). To
accommodate varying input requirements, we use unified prompt-image pairs as dual conditioning
inputs (details are in the Appendix). As Figure 4 shows, ArtCoder, QRBTF, and GladCoder suffer
from color-block artifacts, while Text2QR improves aesthetics but exhibits unnatural textures and
color shifts. In contrast, AnimateQR-s delivers visually coherent QR codes with seamless module
integration, thanks to our adaptive control strategy that spatially modulates hierarchical constraints
based on reconstruction errors.

4.2 Quantitative Comparison

Scanning Robustness. In this study, we evaluate the scanning robustness of our QR codes in
comparison with two methods: Text2QR [34] and QRBTF [22]. We generate a set of 50 aesthetically
optimized QR images for each method, all at a resolution of 1024× 1024 pixels. These images are
displayed on a high-definition monitor at three standard sizes: 3 cm2, 5 cm2, and 7 cm2. During
controlled testing, smartphones are held at a fixed distance of 40 cm, and each QR code is scanned
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Table 1: Average scanning success rates (%)
are assessed across various phone applica-
tions, considering different sizes (cm2) and
angles (◦). “Scanner” denotes the native
scanner of system. We compare our method
with QRBTF [22] and Text2QR [34] under
same condition.

Decoders
Success Rate (%)

(3cm)2 (5cm)2 (7cm)2

45◦ 90◦ 45◦ 90◦ 45◦ 90◦

QRBTF [22]

Scanner 100 100 100 100 100 100
TikTok 96 96 78 83 56 72
WeChat 100 100 100 98 94 100

Text2QR [34]

Scanner 100 100 100 100 100 100
TikTok 100 100 100 100 96 100
WeChat 100 100 96 100 94 100

AnimateQR

Scanner 100 100 100 100 100 100
TikTok 100 100 100 100 96 100
WeChat 100 100 100 100 96 96

Table 2: Comparison of animated QR code generation
with best results in bold.

Methods Q-Bench↑ SimpleVQA↑ Speed↑
ArtCoder-d 0.2954 3.0254 0.031
GladCoder-d 0.2453 2.6901 0.016
AnimateQR 0.6217 3.5872 0.613

Table 3: Comparison of static QR code generation

Methods Q-Align↑ LIQE↑ AesBench↑
ArtCoder 0.6003 2.6363 0.4396
GladCoder 0.6559 3.2529 0.7729
QRBTF 0.7877 3.5447 0.7822
Text2QR 0.7788 3.5034 0.7610
AnimateQR-s 0.8433 3.8572 0.8832

ArtCoder GladCoder

Pe
rc

en
ta

ge
 (%

)

15.2 8.5

84.8 91.5
AnimateQR Compared Method

QRBTF Text2QR

24.1 29.3

75.9 70.7

Figure 5: Statistical results of user study.

for 3 seconds from various angles. Scanning success rates, averaged over 20 trials, are reported in
Table 1. Our method consistently achieves a success rate above 96%, outperforming the baselines.
Notably, QR codes failing within the 3-second window were often successfully scanned with extended
exposure, demonstrating the practical reliability of our generated codes.

IQA / VQA Metrics and Inference Speed. To assess static QR code quality, we adopt Q-Align [38]
(0 – 1), LIQE [44] (0 – 5), AesBench [12] (0 – 1), and AesExpert [11, 33] (0 – 1) as aesthetic
evaluation metrics. For animated QR codes, we employ Q-Bench [37] (0 – 1) and SimpleVQA [2] (0
– 5). In addition, we report the average inference speed (samples per second) for animated QR code
generation. All metrics and runtime statistics are averaged over 100 generated samples per method
and summarized in Table 2 - 3. Our method consistently achieves the best performance across both
static and animated QR code evaluations.

User Study. To further assess the practical effectiveness of our method, we conduct a user study
as a supplementary subjective evaluation. The user study consisting of 30 participants to evaluate

ArtCoder-d GladCoder-d AnimateQR ArtCoder-d GladCoder-d AnimateQR

Figure 3: Visual comparison of animated QR code generation methods. Best viewed with Acrobat
Reader. Click the images to play the animation clips and zoom in for finer details.

8



Input ArtCoder [31] QRBTF [22] GladCoder [39] Text2QR [34] AnimateQR-s

Figure 4: Visual comparison of static QR code generation methods.

Table 4: Average QR code scanning success rates
(%) across illumination levels ranging from 500
to 5 LUX.

Methods 500 400 300 200 100 5

Text2QR-d 100 100 96 82 64 2
QRBTF-d 98 96 90 62 48 0
AnimateQR 100 100 98 88 66 8

Table 5: Average QR code scanning success rates
(%) across motion blur levels ranging from 0.1
to 2.0 m/s.

Methods 0.1 0.5 1.0 1.5 2.0

Text2QR-d 100 100 96 90 88
QRBTF-d 98 98 92 82 70
AnimateQR 100 100 96 92 88

Table 6: Average QR code scanning success rates
(%) across scanning angles ranging from 0◦ to
60◦.

Methods 0◦ 15◦ 30◦ 45◦ 60◦

Text2QR-d 100 100 100 100 98
QRBTF-d 98 100 98 100 96
AnimateQR 100 100 100 100 98

Table 7: Comparison of AnimateQR variants.
AnimateQR-XL uses SDXL + AnimateDiff-XL;
AnimateQR-LCM uses AnimateDiff-LCM.

Methods Q-Bench↑ SimpleVQA↑
AnimateQR 0.6217 3.5872
AnimateQR-XL 0.6926 3.8216
AnimateQR-LCM 0.6138 3.5921

200 generated QR codes (50 for each methods) generated by different methods (the approval from
Institutional Review Board is obtained). Participants are asked to rank the results in the aspect of
aesthetic quality. The percentages represent how many users prefer the results of a method over
others. The results are illustrated in Figure 5, with detailed experimental settings provided in the
Appendix. The results indicate a clear user preference for our method over existing baselines.

Real-World Robustness. To rigorously evaluate the robustness of our method in real-world sce-
narios, we conduct three types of tests: varying illumination, motion blur, and scanning angles. As
benchmarks, we extend Text2QR and QRBTF to dynamic settings via per-frame generation, denoted
as “Text2QR-d” and “QRBTF-d”. We perform side-by-side comparisons on 50 QR code sequences
(each 5 cm×5 cm), ensuring a fair and comprehensive evaluation. We conduct controlled experiments:
ambient illumination is varied from near 0 to 500LUX across six levels with the phone fixed at 0◦,
motion blur is simulated along a 3m path at speeds of 0.1–2m/s under 500LUX, and scanning angles
are tested from 0◦ to 60◦ with stationary phones under 500LUX. Each method scans the same QR
codes 10 times per condition, and average success rates are recorded. The results, summarized in
Table 4–6, show that AnimateQR consistently outperforms Text2QR-d and QRBTF-d under realistic
conditions, including low light, motion blur, and non-standard scanning angles, achieving superior
stability and decoding reliability in challenging scenarios.

Model Generality. We evaluate the generality and scalability of our framework across different
model variants. As shown in Table 7, AnimateQR-XL (SDXL + AnimateDiff-XL) shows substantial
improvements over the SD-v1.5 variant, while AnimateQR-LCM (with the distilled AnimateDiff-
LCM) achieves comparable performance. These results demonstrate our framework’s extensibility to
newer architectures and generalizability to distilled models. Moreover, our framework supports style
generality by integrating LoRA-trained diffusion models to modify output styles.
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Table 8: HLG-ControlNet Ablation Comparison.
Details are in Section 4.3.

QR-C.Net HLG-C.Net∗ HLG-C.Net
C

on
di

tio
n

G
en

er
at

ed

Table 9: ProST Ablation. We compare ProST
(adaptive βk) with static baselines using fixed
βk = b2 (light control) and βk = b8 (strong
control). ProST achieves better balance between
visual quality and scannability, as reflected by
scanning error rates.

βk = b2 βk = b8 adaptive βk

Error Rate:
72.3%

Error Rate:
2.63%

Error Rate:
11.3%

4.3 Ablation Study

HLG-ControlNet. While prior methods such as Text2QR [34], Face2QR [5], and GladCoder [39]
adopt QRMonster [6] as the ControlNet conditioned on QR code images, we propose HLG-
ControlNet, which leverages hierarchical luminance guidance for conditioning. To enhance ro-
bustness during training, we introduce random sampling of the modulation vector βk to simulate
varying control strengths. We conduct ablation studies by replacing HLG-ControlNet (referred
to as HLG-C.Net) in AnimateQR with: (1) QRMonster, denoted as QR-C.Net, which serves as
the standard ControlNet conditioned on QR code images, and (2) HLG-C.Net∗, a variant trained
with a fixed modulation vector βk = b8, thereby disabling adaptive control. As shown in Table 8,
QRMonster often introduces blocky artifacts. HLG-C.Net∗ benefits from hierarchical luminance
guidance, yielding more coherent outputs. Our full model achieves the best visual quality, validating
the effectiveness of both HLG-based conditioning and adaptive modulation.
Progressive Spatiotemporal Control (ProST). While previous methods such as Text2QR [34],
Face2QR [5], and GladCoder [39] employ a fixed control signal throughout inference, we introduce
ProST, a strategy that adaptively updates the HLG map during inference. To assess its effectiveness,
we compare ProST against static control baselines using fixed activation vectors: βk = b2 = (0, 0, 1)
for light control and βk = b8 = (1, 1, 1) for strong control. As shown in Table 9, static light control
yields high visual fidelity but poor scannability, whereas strong control improves scannability at the
cost of degraded aesthetics. In contrast, our ProST strategy with adaptive βk achieves a superior
trade-off, delivering outputs with both robust scannability and high visual quality.

5 Conclusion
We present AnimateQR, a generative framework for animated QR code synthesis. Leveraging hierar-
chical luminance guidance and progressive spatiotemporal control, AnimateQR achieves a strong
balance between visual aesthetics and scannability. Extensive experiments confirm its superiority over
prior methods. Beyond QR codes, our adaptive control strategy holds promise for other scannable me-
dia, such as animated AR markers, and inspires future work on constraint-aware generative modeling.

Limitations. Despite its strengths, AnimateQR has some limitations. First, generating high-
resolution, visually complex animations can be computationally demanding. Second, although
designed for broad compatibility, a small fraction of legacy or less-common scanners may still
encounter decoding issues.
Broader Impact. By elevating the visual appeal and personal relevance of QR codes, our work
re-imagines them as expressive, aesthetic artifacts—unlocking new applications in entertainment,
social media, marketing, and personal memorabilia.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In abstract, the main contributions of this paper are emphasized. Furthermore,
in the last paragraph of the introduction, these contributions are clearly listed again.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all needed information to reproduce the main experimental results
of this paper in Section 4. Our code will be released upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Although no link to the code is currently provided in the paper, we have a
strong intention to follow up by releasing the code of this work via Github to promote the
development of related areas once the paper is published.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experiments details are illustrated in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper mainly conducts qualitative comparisons and subjective experi-
ments. Therefore, the corresponding error bars are not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources have been described in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work is conducted in accordance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited, and the license and terms of use are explicitly mentioned and
are properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented alongside the
assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: This paper includes the full text of instructions given to participants and
screenshots, and the human subjects are paid at least the minimum wage in the country of
the data collector, following the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: There is no such potential risks aware for research with human subjects in this
paper. We have obtained the IRB approval and also adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, and formatting purposes, without impact
the core methodology, scientific rigorousness, or originality of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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