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Abstract

Most existing structured pruning methods for
Large Language Models (LLMs) require substan-
tial computational and data resources for retrain-
ing to reestablish the corrupted correlations, mak-
ing them prohibitively expensive. To address this,
we propose a pruning framework for LLMs called
Orthogonal decomposition and linear calibration
(Olica), which eliminates the need for retraining.
A key observation is that the multi-head atten-
tion (MHA) layer depends on two types of matrix
products (i.e., WqW

⊤
k and WvW

⊤
o ). By treat-

ing these matrix products as unified entities and
applying principal component analysis (PCA), we
extract the most important information to com-
press LLMs without sacrificing accuracy or dis-
rupting their original structure. Consequently, re-
training becomes unnecessary. A fast decomposi-
tion method is devised, reducing the complexity
of PCA by a factor of the square of the num-
ber of attention heads. Additionally, to mitigate
error accumulation problem caused by pruning
the feed-forward network (FFN) layer, we intro-
duce a linear calibration method to reconstruct the
residual errors of pruned layerS using low-rank
matrices. By leveraging singular value decompo-
sition (SVD) on the solution of the least-squares
problem, these matrices are obtained without re-
quiring retraining. Extensive experiments show
that the proposed Olica is efficient in terms of data
usage, GPU memory, and running time, while
delivering superior performance across multiple
benchmarks.
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Table 1. We compare the resource consumption of different prun-
ing methods on the LLaMA-7B model, focusing on the number of
data usage, peak GPU memory consumption, and the runtime re-
quired for pruning (or retraining). The performance of the pruned
model is evaluated based on perplexity (PPL) on the WikiText-
2 dataset and accuracy averaged across the following datasets:
BoolQ, PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and
OBQA. ”SR” indicates the sparsity ratio of the pruned model.

SR: 25% SR: 33%

Method Sam. Time Mem. PPL (↓) Acc. (↑) PPL (↓) Acc. (↑)

LLM-Pruner 50K 3h 30GB 20.57 58.67 24.50 55.39

SlimGPT 50K 1h 20GB 18.45 62.45 22.43 61.41
Olica (Ours) 256 7min 3GB 16.69 63.53 19.83 61.21

1. Introduction
Since the introduction of transformer architecture (Vaswani
et al., 2017), the field of natural language processing has
witnessed a surge of unsupervised pre-training models, such
as BERT (Devlin et al., 2019) and GPT series (Brown et al.,
2020). Following the scaling law (Kaplan et al., 2020), the
model parameters have expanded from hundreds of millions
to hundreds of billions (Chowdhery et al., 2023; Touvron
et al., 2023a; OpenAI, 2024), earning them the label of
Large Language Models (LLMs). Despite emerging abil-
ities such as in-context leaning and instruction following
(Wei et al., 2022a) with increasing scale, the sheer size of
LLMs makes their deployment and inference on edge de-
vices highly challenging. To address this, techniques such
as network pruning (Han et al., 2015; Frankle & Carbin,
2019), knowledge distillation (Hinton et al., 2015; Sun et al.,
2019), and quantization (Frantar et al., 2023; Dettmers et al.,
2024) have been proposed.

In this work, we focus mainly on network pruning, which
aims to eliminate redundant parameters in neural networks
while preserving their performance. Before the era of LLMs,
network pruning approaches primarily relied on Taylor ex-
pansion of the loss function or regularization techniques.
For instance, Optimal Brain Damage (LeCun et al., 1989),
Optimal Brain Surgeon (Hassibi & Stork, 1992), and later
works (Liu et al., 2021; Kwon et al., 2022) assess the the
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importance of parameters using the Hessian matrix of the
objective function. Despite their success, it is prohibitively
expensive to acquire the gradient of full model parame-
ters for LLMs. On the other hand, regularization-based
approaches (Han et al., 2015; Wen et al., 2016; Tan et al.,
2024) impose l1 or l2 penalties on the parameters of neu-
ral networks, thereby pruning those with relatively smaller
magnitudes. However, the pre-training process of LLMs is
so resource-intensive that developers often avoid imposing
structured penalties. Penalty-based pruning methods have
become less effective in the context of LLMs, as evidenced
by empirical results shown in (Frantar & Alistarh, 2023).

Recent pruning works on LLMs can be categorized into
unstructured and structured approaches. Unstructured prun-
ing (Frantar & Alistarh, 2023; Sun et al., 2024) removes
individual weights but often struggles to achieve significant
speedup without specialized libraries or hardware. In con-
trast, structured pruning (Ma et al., 2023; Li et al., 2024;
Zhao et al., 2024a; Ling et al., 2024; Gao et al., 2024)
regularly reduces the dimensionality of intermediate fea-
tures, allowing it to benefit from most GPU devices. How-
ever, existing structured pruning methods typically require
substantial computational resources and large amounts of
data for retraining to reestablish the corrupted correlations.
For instance, DISP-LLM (Gao et al., 2024) necessitates
4 NVIDIA A100 80GB GPUs to prune a 13B LLaMA
model, while methods like LLM-Pruner (Ma et al., 2023),
LoRAP (Li et al., 2024), and SlimGPT (Ling et al., 2024)
demand tens of thousands of well-annotated instruction data
(i.e., Alpaca (Taori et al., 2023)) for retraining to recover
the model’s performance. These significant computational
and data requirements present huge challenges in resource-
constrained settings. For example, when pruning LLMs
for a specific domain, annotating a large amount of instruc-
tion data from scratch is a prohibitively labor-intensive and
time-consuming process.

To address these challenges, we propose an efficient struc-
tured pruning framework for LLMs that eliminates the need
for retraining, called Orthogonal Decomposition and Lin-
ear Calibration (Olica). The key observation motivating
our method is that the core design of transformers, i.e., the
multi-head attention (MHA) layer, involves two types of ma-
trix products (i.e., WqW

⊤
k and WvW

⊤
o ). We treat these

products as unified entities and apply Principal Component
Analysis (PCA) to extract the most important information
for compressing LLMs. The benefit of this approach is that
it eliminates the data requirements for reestablishing corre-
lations within the MHA layer, as it directly operates on the
parameter matrices. Furthermore, to reduce the complex-
ity of PCA, we devise a fast-approach that only performs
SVD on one of the product matrices based on the observa-
tion of similar distributions of singular values for Wq and
Wk (also for Wv and Wo). The fast-approach reduces

the complexity from O(h · d3) to O(d3/h), where d and h
are the dimensionality of the embedding and the number of
heads, respectively. In addition, pruning a layer can alter
its output, and these changes may be amplified as layers
stack. To mitigate error accumulation problem caused by
pruning, we introduce a linear calibration strategy to recon-
struct the residual errors of the pruned feed-forward network
(FFN) layers. Our approach leverages the closed-form solu-
tion of ridge regression to model the reconstruction process,
thereby alleviating the need for retraining. Additionally, to
reduce the number of additional parameters introduced by
the linear calibration, we apply a low-rank approximation
to the ridge regression solution.

To summarize, our contributions are as follows: i) We pro-
pose applying PCA to the matrix product in the MHA layer,
which compresses the model without the need for retraining.
Moreover, we devise a fast decomposition method, reducing
the complexity of PCA by a factor of the square of the num-
ber of attention heads. ii) We introduce linear calibration
to model the residual errors of pruned FFN layers. Along
with the proposed weighted SVD and layer selection crite-
rion, this method adds negligible extra parameters. iii) Our
approach is efficient in terms of data usage, GPU memory
consumption, and runing time, while achieves performance
that is either better or on par with existing methods across
several benchmarks. For example, as shown in Table 1, com-
pared to state-of-the-art structured pruning methods (e.g.,
LLM-Pruner (Ma et al., 2023) and SlimGPT (Ling et al.,
2024)), Olica requires only hundreds of calibration samples,
consumes less GPU memory, and significantly reduces the
running time while delivering better performance.1

2. Related Work
Large Language Models (LLMs). As demonstrated in
(Zhao et al., 2024b), the development of Language Models
(LMs) follows four major stages: statistical-based, neural-
based, pre-training-based, and scaling-based LMs. The rise
of LLMs is primarily concentrated in the third stage. Pre-
training-based LMs, such as BERT (Devlin et al., 2019;
Liu, 2019), GPT-1 (Radford et al., 2018), and GPT-2 (Rad-
ford et al., 2019), typically follow a paradigm where the
model is first pre-trained on a large corpus in a task-agnostic
manner, and then fine-tuned for specific downstream tasks.
Subsequently, according to the scaling law (Kaplan et al.,
2020), researchers have found that by simply scaling up the
size of the pre-trained model and the amount of pre-training
data, and with sufficient computational resources, the per-
formance of LMs increases exponentially (Wei et al., 2022a;
Schaeffer et al., 2023). Through scaling, LMs have demon-
strated exceptional abilities in handling downstream tasks,

1Code is available at https://github.com/
BetterTMrR/LLM-Olica.
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Figure 1. (a): Orthogonal neuron decomposition. Neurons that
carry shared information preserve the core projection information
from all the original neurons, while neurons that carry residual
information can be pruned with minimal impact on accuracy. (b):
Linear calibration. This is an example of reconstructing the resid-
ual errors of pruned FFN Layers.

such as in-context learning (Brown et al., 2020), instruc-
tion following (Ouyang et al., 2022), and chain-of-thought
prompting (Wei et al., 2022b). As a result, the parameters
of current LLMs generally range from tens of billions to
hundreds of billions (Touvron et al., 2023a; Bai et al., 2023;
OpenAI, 2024; Team, 2024).

Despite LLMs surpassing human performance across vari-
ous tasks, their large parameter scale makes deployment and
inference highly challenging, hindering researchers from
conducting further studies on these models.

Network Pruning on LLMs. Network pruning aims to
remove redundant parameters from neural networks while
maximally maintaining their performance. Pioneering prun-
ing works (Ma et al., 2023; Frantar & Alistarh, 2023) have
identified two major challenges in pruning LLMs: the over-
whelmingly large number of parameters and the lack of
readily available training data. These challenges make con-
ventional gradient-based (LeCun et al., 1989; Hassibi &
Stork, 1992; Molchanov et al., 2019; Sanh et al., 2020) and
penalty-based (Han et al., 2015; Wen et al., 2016; Tan et al.,
2025) methods inefficient in the context of LLMs. To ad-
dress these issues, Ma et al. (2023) proposed a two-stage
pruning framework: first, using a small amount of calibra-
tion data to eliminate unimportant components of LLMs
(fast), and then leveraging Low-rank Adaptation (LoRA)
(Hu et al., 2022) to retrain the pruned model and recover its
performance (time-consuming). Most subsequent works on
structured pruning (Ashkboos et al., 2024; Ling et al., 2024;
Li et al., 2024) have followed this paradigm, with differ-
ences in the first phase. For instance, SliceGPT (Ashkboos
et al., 2024) uses PCA to reduce the dimensionality of the
hidden representations; LoRAP (Li et al., 2024) employs
low-rank approximation to replace the weight matrices in
the self-attention layer; and SlimGPT (Ling et al., 2024)
extends the optimal brain surgeon (OBS) framework (Has-

sibi & Stork, 1992; Frantar & Alistarh, 2023) to structured
pruning scenarios. Additionally, Compresso (Guo et al.,
2023), LoRAPrune (Zhang et al., 2024), and APT (Zhao
et al., 2024a) proposed single-stage pruning approaches, but
these still require LoRA to retrain the LLMs.

As mentioned in Section 1, retraining LLMs using LoRA
is a tedious and resource-intensive process, especially for
models with tens of billions of parameters. In contrast, our
proposed approach has the distinct feature of single-stage
pruning without the need for retraining.

3. Methodology
3.1. Preliminaries

Transformer. The transformer model consists of L blocks,
each of which contains two consecutive layers: a multi-
head self-attention (MHA) layer and a feed-forward network
(FFN) layer. Let Xl ∈ Rn×d represent the inputs to the
lth transformer layer, where n is the length of the token
sequence and d is the dimensionality of a token. The forward
pass of the lth transformer block is then given by:

XMHA = Xl +MHA(Xl),

Xl+1 =XMHA + FFN(XMHA),
(1)

where MHA(·) and FFN(·) are defined as:

MHA(X) =

h∑
i=1

SM(
XWqiW

⊤
ki
X⊤

√
dh

)XWviW
⊤
oi , (2)

FFN(X) = σ(XWu)W
⊤
d , (3)

where SM is the softmax operation. Wqi , Wki
, Wvi ,

Woi ∈ Rd×dh denote the ith head’s query, key, value, and
output matrices, respectively. h and dh are the number
of heads and the dimensionality of each head (generally
d = dh × h), correspondingly. Wu,Wd ∈ Rd×4d and
σ is an activation function, such as ReLU, GeLU, SiLU,
etc. Some LLMs, like LLaMA, adopt a gated activation:
FFN(X) = (XWu ⊙ σ(XWg))W

⊤
d , where ⊙ denotes

the Hadamard product.

Importance Scores. In network pruning works, the most
common criterion for evaluating the importance of elements
in the weight matrix W is the first-order Taylor expan-
sion of the loss function L(·): |L(θ|Wij = 0) − L(θ)| ≈
|Wij

∂L(θ)
∂Wij

|, where θ is the parameter set that consists of all
weight matrices. This criterion reflects how much the loss
function changes when setting Wij = 0.

The above criterion requires computing the gradient of all
parameters in the model, which is computationally expen-
sive for LLMs. To mitigate this, Wanda (Sun et al., 2024)
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(a) Wv (b) Wo

(c) Wq (d) Wk

Figure 2. The distributions of singular values of different weight
matrix in the MHA layer (LLaMA-7B). Wq and Wk exhibit
strongly similar distribution of singular values, and similar results
can be observed from Wv and Wo. Notably, Wq and Wk show
more significant low-rank property.

proposed using the magnitudes of weights and activations
to measure the contribution of a parameter Wij :

I(Wij) = ∥x(i)∥2 · |Wij |, (4)

where ∥x(i)∥2 is the l2 norm of the ith column of X, i.e.,
the vector comprised of ith feature of all n tokens. Formula
(4) is intuitive: if both the ith feature of the input samples
and Wij have larger magnitudes, removing the parameter
Wij will result in a drastic change in the projection out-
put XW, so it should be kept. Formula (4) is fast and
memory-efficient for assessing the importance of parame-
ters in LLMs, as it only requires the forward pass of the
model. Therefore, in this work, we use (4) by default to
evaluate the importance scores of the model’s parameters.
Although originally designed for unstructured pruning, the
subsequent work LoRAP (Li et al., 2024) has demonstrated
that it is also effective for structured pruning. Inspired by
these empirical results, we measure the importance of a
group of parameters, such as the jth intermediate neuron of
the FFN layer, as follows:

I(neuronj) =
∑
i

[I(Wuij ) + I(Wdij )]. (5)

3.2. Orthogonal Decomposition for MHA

In this section, we consider the compression of the MHA
layer. From (2), we can see that the MHA layer, the key
design of transformers, depends on matrices Wq , Wk, Wv

and Wo through two kinds of matrix product: Wqk =
WqWk

⊤ and Wvo = WvWo
⊤, where the head index is

omitted for simplicity. Thus, Wqk and Wvo can be treated
as unified entities. The most important information about a
specific MHA layer then can be derived by analyzing Wqk

and Wvo. Here, we use PCA to extract the most important
features from Wqk and Wvo to compress the models while
maintaining the performance of the MHA layer. Specifically,
taking Wvo as an example, we apply SVD to Wvo: Wvo =
UΣV⊤, and define Ŵv ← UΣ and Ŵo ← V. Clearly,
we have ŴvŴ

⊤
o = WvW

⊤
o . Since the columns of U

and V are orthogonal, the resulting output neurons, such
as XŴv, carry distinct information, as shown in Figure 1
(a). This ensures that the information is captured as fully
as possible within the given dimensionality. We refer to
this method as Orthogonal Neuron Decomposition (OND).
One of the advantages of OND is that it can extract the
key information from the MHA layer without requiring
additional data and retraining.

MHA Pruning. A direct approach for pruning the MHA
layer is to preserve the first r eigenvectors corresponding
to the largest eigenvalues when performing SVD. This is
known as the magnitude-based pruning method. However,
eigenvalues with smaller magnitudes may still contain im-
portant information. Therefore, we use (5) to evaluate the
importance of each eigenvector, resulting in the following
criteria:

I(neuronj) =
∑
i

[I(Ŵvij
) + I(Ŵoij )]. (6)

Based on (6), we prune the neurons with the least impor-
tance, thereby reducing the dimensionality of each attention
head while maintaining performance.

Fast OND. The complexity of performing SVD on Wvo ∈
Rd×d is O(d3). Moreover, there are h heads in a MHA
layer, resulting in a complexity of O(hd3). This complexity
requires about an hour to prune a 7B model. Fortunately,
we observe similar distributions of singular values for Wv

and Wo (also for Wq and Wk) as shown in Figure 2. This
means that the number of retained singular values required
to preserve a certain energy ratio for Wv and Wo is also
similar. Therefore, we can only perform SVD on one of
Wv and Wo to roughly determine the redundancy of the
unified entity Wvo. Specifically, for instance, letting Wv =
UΣV⊤, then we have Ŵv ← U and Ŵo ← WoVΣ⊤.
Since typically Wv ∈ Rd×d/h, the SVD complexity is
O(d3/h2), leading to a complexity of O(d3/h) for a entire
MHA layer. Fast-OND reduces the complexity by a factor
of h2. In the LLaMA-7B model, the number of heads h is
32, and pruning it requires only several minutes of runtime.

3.3. Pruning and Linear Calibration for FFN

FFN Pruning. As illustrated in Figure 1 (b), our goal is to
prune the intermediate neurons of each FFN layer, making
the pruned FFN layer slimmer. To achieve this, we evaluate
their importance scores using (5) and prune the neurons with
the lowest importance scores. For example, with a specified
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(a) PPL of LLaMA-7B (b) RXE

Figure 3. (a): Perplexity (PPL, lower is better) on WikiText2 with
different number of FFN layers calibrated. (b): Each FFN layer’s
MC2 of LLaMA-7B and LLaMA-13B models.

sparsity ratio s, the weights of the pruned FFN layer can be
represented as Ŵu,Ŵd ∈ Rd×d̂, where d̂ = ⌊(1−s)×4d⌋,
and the original weights are Wu,Wd ∈ Rd×4d.

Linear Calibration. Pruning a layer generally leads to
significant changes in its output. Conventional methods typ-
ically require retraining to restore the correlation between
layers. Here, we propose a linear calibration strategy to re-
construct the residual errors (RE) of the pruned FFN layers,
eliminating the need for retraining. Let f denote a FFN
layer, and let f̂ represent the pruned version of f . To mit-
igate these changes, we use a linear model to recover the
alterations by solving the ridge regression loss:

Ŵ = arg min
W∈Rd×d

∥E−XW∥22 + λ∥W∥2F , (7)

where E = f(X) − f̂(X) ∈ Rn×d indicates the RE of a
pruned layer f̂ , ∥ · ∥F is the Frobenius norm, and λ indi-
cates the penalty strength, which helps avoid the irreversible
problem. Then, the forward pass of our linear calibration
for the lth layer is as follows:

Xl+1 = f̂l(Xl) +XlŴl. (8)

The loss of ridge regression (7) has a closed-form solution
Ŵ = (X⊤X + λI)−1XE, where I is an identity matrix.
Therefore, we can use a small amount of calibration data to
obtain the solution, avoiding the need for retraining.

Layer Selection. Figure 3 (a) shows that perplexity (PPL,
lower is better) decreases, then stays stable as the number of
calibrated FFN layers increases. This implies that more cali-
bration is not necessarily better, especially it may introduce
more parameters. Hence, it is necessary to select the FFN
layers that should be calibrated. Here, we choose layers
whose RE are linearly recoverable, as we are using the lin-
ear calibration strategy. To this end, we propose a criterion
based on the Multiple Correlation Coefficient (MC2), which
is used to express the linear correlation and is denoted as
RXE. Let Ê = XŴ ∈ Rn×d represents the prediction of
a linear model that fits the residual data (X,E). Then, the

RXE is defined as follows:

RXE =
1

d

d∑
i=1

Ri (9)

where Ri is the pearson correlation coefficient:

Ri =

∑n
j=1(e

(i)
j − ē(i))(ê

(i)
j − ¯̂e(i))√∑n

j=1(e
(i)
j − ē(i))2

∑n
j=1(ê

(i)
j − ¯̂e(i))2

, (10)

e(i) is the ith column of E, ē(i) indicates its mean, and
similarly for ê(i) and ¯̂e(i) when E is replaced by Ê. If Ri

is large, a linear model can effectively approximate e(i):
e(i) ≈ Xw(i) where w(i) indicates the ith column of Ŵ.
Therefore, a large value of (9) indicates that the RE of the
pruned layer f̂ is able to be calibrated. Figure 3 (b) shows
the RXE values for each FFN layer of the LLaMA-7B and
LLaMA-13B models, demonstrating that the RE of the FFN
layer in the shallower blocks are highly calibratable.

Low-rank Approximation. The linear calibration intro-
duces a matrix Ŵ ∈ Rd×d, with the number of parameters
being d2. This accounts for 1/8 of the number of parameters
for a FFN layer. To reduce the number of extra parame-
ters introduced, we propose to use a low-rank approxima-
tion of Ŵ. Specifically, let Ŵ = UΣV⊤, and define
Ŵ1 = UrΣr and Ŵ2 = Vr, where we preserve the first r
eigenvectors with the largest eigenvalues. Then, the number
of parameters, i.e., Ŵ1 and Ŵ2, introduced by the linear
calibration is 2dr, which is far less than d2 if we take r ≪ d.
The forward pass of (8) can then be modified as:

Xl+1 = f̂l(Xl) +XlŴl1Ŵ
⊤
l2 .

(11)

4. Experiments
4.1. Experimental Settings

Models and evaluation protocols. Following the previous
works (Ma et al., 2023; Li et al., 2024), we mainly focus on
the evaluation of LLaMA-1 (Touvron et al., 2023a), LLaMA-
2 (Touvron et al., 2023b), and Vicuna (Chiang et al., 2023)
models. We assess the performance of the pruned models
on WikiText2 (Merity et al., 2017) with sequence length of
128 tokens, and on the following downstream tasks: BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021)
, ARC-easy (Clark et al., 2018), ARC-challenge (Clark
et al., 2018), and OpenbookQA (Mihaylov et al., 2018). We
employ lm-eval-harness framework (Gao et al., 2021) to
evaluate the pruned model performance on these tasks2.

2The version of lm-eval-harness used in this paper is the same
as SlimGPT (Ling et al., 2024), which can be found in their the sup-
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Table 2. Zero-shot performance and PPL on WikiText2 of pruned LLaMA-1 family. “SR” indicates sparsity ratio, and “FT” denotes
whether LoRA fine-tuning is used to recover the model’s performance. † represents results that are reproduced by this paper. The best and
the second best performances are marked as bolded and underlined, correspondingly.

Model SR% Method FT PPL (↓) BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg. (↑)

0% Dense % 12.63 75.08 79.16 76.20 70.00 72.89 44.88 44.40 66.09

L
L

aM
A

-7
B

20%

LLM-Pruner ! 18.01 66.76 78.45 71.44 63.77 66.41 39.85 43.80 61.50
DISP-LLM % - - 76.66 68.39 64.72 64.81 37.12 - -
Compresso ! - 79.08 75.46 53.44 67.80 68.64 37.97 34.20 59.51
FLAP % 17.00 69.40 74.70 66.90 66.30 64.60 36.50 38.20 59.50
LoraPrune ! 16.80 65.62 79.31 70.00 62.76 65.87 37.69 39.14 60.06
LoRAP † % 15.84 73.88 76.71 72.94 68.03 69.70 40.87 42.40 63.60
SlimGPT % 16.99 75.93 77.58 73.07 67.96 68.60 41.72 41.80 63.81
Olica (Ours) % 15.35 71.59 77.91 73.30 70.01 72.10 42.66 44.20 64.54

25%

LLM-Pruner ! 20.57 62.81 76.93 69.21 60.46 63.34 38.14 39.80 58.67
Compresso ! - 73.55 73.07 49.16 64.80 66.20 37.20 29.80 56.25
SlimGPT % 19.11 75.11 76.77 70.60 67.25 66.75 40.40 40.40 62.47
LoRAP † % 17.40 72.14 77.20 71.30 68.75 68.48 39.16 41.00 62.57
Olica (Ours) % 16.69 72.54 76.88 71.40 68.19 70.83 41.72 43.20 63.54

33%

LLM-Pruner ! 24.50 62.02 74.92 64.41 61.80 53.79 32.00 38.80 55.39
Compresso ! - 68.69 72.85 47.18 63.38 65.99 35.07 29.00 54.59
LoRAP † % 21.66 66.54 74.70 67.11 65.98 63.97 35.41 39.40 59.02
SlimGPT % 24.55 72.72 75.68 68.10 66.54 62.29 37.03 40.20 60.37
Olica (Ours) % 19.83 72.87 75.55 67.95 67.01 66.25 37.63 41.20 61.21

L
L

aM
A

-1
3B

0% Dense % 11.58 77.89 80.14 79.06 72.85 74.75 47.61 44.80 68.16

20%

LLM-Pruner ! 16.62 79.38 77.36 71.47 70.32 70.54 44.88 45.80 65.68
SlimGPT % 14.87 77.06 79.82 76.94 72.61 69.78 44.80 43.60 66.37
LoRAP † % 13.84 78.87 79.05 77.54 71.35 73.57 43.00 44.54 66.84
Olica (Ours) % 13.68 78.32 78.89 77.21 74.11 73.99 46.59 44.60 67.67

Implementation details. We randomly select 256 samples
from Bookcorpus (Zhu et al., 2015) and Alpaca (Taori et al.,
2023) datasets, each of which is truncated to a sequence
length of 128 tokens, as the calibration data. The number of
calibrated FFN layers is selected from {6, 12, 16} for mod-
els with different parameter sizes. In the linear calibration,
we retain the top 3% eigenvectors for low-rank approxima-
tion, i.e., r/d = 0.03. Following LoRAP (Li et al., 2024),
we compress the MHA and FFN layers, until achieving a
specified sparsity ratio of the entire model (i.e., including the
token embedding layer and the final projection layer). All
the experiments are conducted on a single NVIDIA A100
80GB GPU. More details can be found in Appendix A, and
a detailed algorithm can be found in Appendix B.

plementary material: https://openreview.net/forum?
id=MxF0IKJtKW. Therefore, the baseline results in this paper,
if not specified, are cited from (Ling et al., 2024).

Baselines. We select state-of-the-art structured pruning
approaches for comparisons: LLM-Pruner (NeuIPS’23) (Ma
et al., 2023), LoraPrune (Findings of ACL’23) (Zhang et al.,
2024), Compresso (Guo et al., 2023), FALP (AAAI’ 24)
(An et al., 2024), SliceGPT (ICLR’24) (Ashkboos et al.,
2024), LLM-Surgeon (ICLR’24) (van der Ouderaa et al.,
2024), LoRAP (ICML’24) (Li et al., 2024), DISP-LLM
(NeuIPS’24) (Gao et al., 2024), and SlimGPT (NeuIPS’24)
(Ling et al., 2024).

4.2. Main Results

Performance. The experimental results presented in Table
2 and Table 3 highlight the superior performance of our
Olica method across multiple models and sparsity ratios. In
particular, for LLaMA-7B in Table 2, Olica achieves the
highest average accuracy of 64.54%, 63.54%, and 61.21%,
while achieving the lowest perplexity (PPL) values of 15.35,
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Table 3. Zero-shot performance and PPL on WikiText2 of pruned LLaMA-2 and Vicuna. “SR” indicates sparsity ratio, and “FT” denotes
whether LoRA fine-tuning is used to recover the model’s performance. † represents results that are reproduced by this paper. The best and
the second best performances are marked as bolded and underlined, correspondingly.

Model SR% Method FT PPL (↓) BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg. (↑)

L
L

aM
A

-2
-7

B

0% Dense % 12.19 77.71 79.05 76.00 68.98 74.58 46.33 44.20 66.69

30%

SliceGPT % - - 63.55 49.62 61.33 51.77 31.23 - -
DISP-LLM % - - 73.72 62.87 63.93 60.10 37.03 - -
LLM-Surgeon % - 61.25 73.56 60.72 61.09 63.09 36.69 38.80 56.56
LoRAP † % 19.42 68.93 75.46 66.66 66.30 62.37 35.49 37.00 58.89
Olica (Ours) % 18.54 71.19 75.35 67.04 67.88 68.60 37.71 39.20 61.14

V
ic

un
a-

7B

0% Dense % 16.11 78.41 78.56 74.68 70.09 72.01 43.77 43.40 65.85

20%

LLM-Pruner ! 19.11 61.96 76.88 69.18 63.30 61.83 37.88 39.40 58.63
SlimGPT % 21.14 75.41 77.09 72.34 68.43 69.23 41.47 43.40 63.91
LoRAP † % 20.74 78.01 76.12 72.62 66.93 71.17 43.09 42.80 64.39
Olica (Ours) % 20.23 75.81 76.66 72.82 68.67 72.81 42.41 45.00 64.88

Table 4. Statistics of the pruned model LLaMA-7B, including the
parameters, MACs, memory, and inference latency.

SR% Params MACs Memory Latency
0% 6.74B 424.02G 12884.5MiB 46.95s
20% 5.39B 373.23G 10464.3MiB 40.62s
25% 5.01B 360.25G 9696.3MiB 39.32s
33% 4.52B 339.53G 8718.1MiB 35.78s

16.69, and 19.83 at sparsities of 20%, 25%, and 33%, respec-
tively. Additionally, the improvement of Olica over other
methods increases with higher sparsity. These demonstrate
its ability to maintain both modeling and reasoning perfor-
mance under compression and pruning. For LLaMA-13B at
20% sparsity, Olica outperforms all baseline methods with
the highest average accuracy of 67.67% and the lowest PPL
of 13.68, demonstrating its scalability to larger models. In
Table 3, for LLaMA-2-7B at 30% sparsity, Olica achieves
the best average accuracy of 61.14% and the lowest PPL of
18.54, outperforming structured pruning methods like LLM-
Surgeon and LoRAP across key benchmarks. Similarly, for
Vicuna-7B at 20% sparsity, Olica leads with an average accu-
racy of 64.88%, excelling on datasets like WinoG (68.67%)
and OBQA (45.00%), while maintaining the lowest PPL
of 20.23. These results demonstrate that Olica consistently
outperforms baseline pruning methods across diverse tasks,
higher sparsity ratios, and multiple model architectures, all
while requiring no retraining to recover performance. This
makes Olica a highly effective, robust, and scalable solu-
tion for compressing LLMs without significant performance

Table 5. Compare Fast-OND with SVD, Activation-Weighted SVD
(AWSVD) (Li et al., 2024), and Wanda (Sun et al., 2024), under
scenarios with and without linear calibration (LC).

Setting Method PPL (↓) Mean Accuracy (↑)

w/o LC

SVD 71.01 47.62
AWSVD 25.78 59.93
Wanda 20.94 59.82
Fast-OND 20.34 60.68

w/ LC

SVD 63.48 48.62
AWSVD 24.72 60.38
Wanda 20.40 60.04
Fast-OND 19.83 61.21

degradation and resource consumption.

Inference cost of the pruned models. Table 4 presents
the statistics of the pruned LLaMA-7B model, including
sparsity ratio (SR), number of parameters (Params), MACs,
memory consumption, and inference latency. As the sparsity
ratio increases, both the model size (Params) and computa-
tional requirements (MACs) decrease. For instance, at 33%
sparsity, the number of parameters decreases from 6.74B
(at 0% sparsity) to 4.52B, and MACs drop from 424.02G
to 339.53G, indicating a significant reduction in compu-
tational complexity. Similarly, memory usage decreases
from 12884.5 MiB to 8718.1 MiB, demonstrating improved
memory efficiency. Inference latency is also notably re-
duced, from 46.95s at 0% sparsity to 34.28s at 33% sparsity
(measured on the WikiText2 test set using a single NVIDIA
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(a) PPL on WikiText2 (b) Ratio of Parameters (%)

Figure 4. (a): PPL on WikiText2 datatset (after minus 19 for better
presentation), where we vary the number of calibrated FFN layers
and the retained ratio of ranks in the linear calibration strategy.
(b) each cell represents the ratio (%) of additional parameters
introduced by the linear calibration strategy, corresponding to (a).

GeForce RTX 4090). These results show that higher sparsity
ratios effectively reduce resource consumption and enhance
inference efficiency, making the pruned models more suit-
able for resource-constrained environments without signifi-
cant performance loss.

4.3. Ablation Study

Effectiveness of the proposed modules. In this experiment,
we aim to investigate the effectiveness of the proposed Fast-
OND and the linear calibration strategy. The experiment is
arranged as follows: first, we replace Fast-OND with stan-
dard SVD (directly performing SVD on both Wv and Wo),
Activation-Weighted SVD (performing weighted SVD on
both Wv and Wo by the magnitudes of input features),
and Wanda (directly remove neurons based on (5) for Wv

and Wo ); second, all these experiments are conducted un-
der the scenarios with and without linear calibration. The
results are reported in Table 5. We can observe that the
proposed Fast-OND is more effective when compared with
baselines. Moreover, the linear calibration strategy can be
easily coupled with existing pruning methods, and improves
their performance.

Parameters introduced by the linear calibration. In this
experiment, we examine the effect of the number of cali-
brated FFN layers and the retained ratio r/d for low-rank
approximation in linear calibration strategy. From Figure
4 (a), where each cell represents the model performance
(measured by PPL) under different scenarios, we observe
that both factors affect the PPL. Specifically, when the num-
ber of calibrated FFN layers is fixed and the retained ratio
increases, the PPL gradually decreases. Similarly, when
the retained ratio is fixed and the number of calibrated FFN
layers increases, a similar trend is observed. However, the
performance gain gradually diminishes once the rank ratio
exceeds 0.15 or the number of calibrated FFN layers ex-
ceeds 20. In Figure 4 (b), we observe that within the region
showing performance gains in Figure 4 (a), the linear cali-
bration strategy introduces very few additional parameters.
Specifically, when the number of calibrated FFN layers is 20

(a) Number of Samples (b) Sequence Length

Figure 5. (a): Vary the number of samples while fixing the length
of sequence as 128. (b) Vary the length of sequence while fixing
the number of samples as 128. To meet the length of sequence,
these samples are sampled from C4 dataset (Raffel et al., 2020).

Table 6. Pruning runtime of OND and fast-OND (LLaMA-7B).

Method SR Runtime PPL (↓) Mean Accuracy (↑)
OND 20% 2910s 15.17 64.32
Fast-OND 20% 413s 15.35 64.54

and the retained rank ratio is 0.15, the additional parameters
account for around 1%, while the corresponding PPL, as
shown in Figure 4 (a), decreases significantly.

4.4. Efficiency Analysis

Sample efficiency. From Figure 5, we observe that our
approach is not sensitive to the amount of calibration data.
Specifically, both the number of samples and the sequence
length vary from 8 to 2048 (28 times larger), yet the PPL
changes by at most 2.4.

Runtime analysis. We present the runtime of OND and
Fast-OND in Table 6, where we observe that while both
OND and Fast-OND achieve similar performance in terms
of PPL and accuracy, the runtime of Fast-OND is signifi-
cantly shorter than that of OND.

5. Conclusion
In this paper, we proposed an efficient pruning method for
LLMs, called Orthogonal Neuron Decomposition and Lin-
ear Calibration (Olica), which eliminates the need for re-
training. One of the core designs in the Olica is Orthogo-
nal Neuron Decomposition (OND), which treats the matrix
products in the MHA layer as unified entities. Thus, we
can use PCA to extract the most information from the MHA
layer without sacrificing accuracy or disrupting their origi-
nal structure. We also devised a fast-OND method, reducing
the complexity by a factor of the square of the number of
attention heads. In addition, we introduced a linear calibra-
tion approach to mitigate the problem of error accumulation
in the FFN layer. Using the closed-form solution of ridge
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regression, we model the residual errors of the pruned FFN
layers with two low-rank matrices, without retraining. Fi-
nally, we conducted extensive experiments, showing that
the proposed Olica is efficient in terms of data usage, GPU
memory, and running time, while delivering superior perfor-
mance across multiple benchmarks.
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(a) Bookcorpus + Alpaca (b) C4 + Alpaca

Figure 6. Perplexity (PPL) on WikiText2 of LLaMA-30B under different sparsity ratio, where different calibration datasets are used. (a):
256 samples with 128 sequence length are randomly selected from Bookcorpus and Alpaca datasets. (ab): 256 samples with 128 sequence
length are randomly selected from C4 and Alpaca datasets.

A. Implementation Details
We randomly select 128 samples from each of Bookcorpus (Zhu et al., 2015) and Alpaca (Taori et al., 2023) datasets, each of
which is truncated to a sequence length of 128 tokens, as the calibration data. The number of calibrated FFN layers is selected
from {6, 12, 16} for models with different parameter sizes. In the linear calibration, we retain the top 3% eigenvectors for
low-rank approximation, i.e., r/d = 0.03. Following LoRAP (Li et al., 2024), we compress the MHA and FFN layers, until
achieving a specified sparsity ratio of the entire model (i.e., including the token embedding layer and the final projection
layer). Following (Frantar & Alistarh, 2023; Frantar et al., 2023), we set the λ in 7 as: λ = λ0 ·Mean(diag(X⊤X)) where
λ0 is fixed as 0.5.

The form of MHA layer formulated in (2) is one of the most popular transformer architectures. However, the popular open-
sourced LLaMA models employ rotary position embedding (RoPE) (Su et al., 2024) in the MHA layer: xiWqΦijW

⊤
k x

⊤
j ,

i.e., it inserts a rotary matrix Φij that is based on the position of input variables before the product of Wq and Wk to inject
the positional information of tokens, which means that there is no direct product between Wq and Wk. Fortunately, from
Figure 2 (c) and (d), we observe significant low-rank property for Wq and Wk, which means that they are suitable for
low-rank approximation. Thus, we apply PCA to Wq and Wk respectively, approximating each by two low-rank matrices.
The approximation are obtained by retaining the first r principle components. Moreover, inspired by the success of weighted
SVD (Hsu et al., 2022; Li et al., 2024), we replace the standard SVD with weighted SVD by the magnitudes of input features
with the following objective function:

arg min
W1,W2

∥(W −W1W2)D∥22, (12)

where D = diag(∥x(1)∥2, · · · , ∥x(d)∥2) and x(i) is the ith column of input matrix X. This can be solved by performing
standard SVD on WD = UΣV⊤: W1 = UΣ and W2 = VD−1. Despite performing separate PCA on Wq and Wq

(this is not our contribution), in the ablation study (i.e., Table 5), we have demonstrated that the Fast-OND is still very
important for pruning Wv and Wo, which highlights the contribution of our proposed Fast-OND.

Parameter Allocation. Letting s denotes the sparsity ratio (SR), we first modify the SR as ŝ = s · M1

M2
, where M1 is the

number of parameters of the entire model and M2 is the number of parameters of all the MHA and FFN layers. Then, the SR
for the query and key matrices is 2ŝ; the SR for value and output matrices is ŝ/2; the SR for the FFN layers is determined by
the remaining parameter budgets that ensures the SR of the entire model is ŝ.
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Algorithm 1 Overview of the proposed Olica

Input: Calibration data D, a modelM (e.g., LLaMA-7B), and the number of FFN layers needed to calibrate K, sparsity
ratio (SR) s;

Output: A pruned model M̂
1: # Step 1: Layer selection
2: Indexes← FFN indexes with TopK MC2 using (9);
3: # Step 2: Start pruning
4: inputs← Preprocess(D);
5: for block inM.blocks do
6: outputs← block(inputs);
7: # Pruning MHA layer with SR s
8: Wq , Wk, Wv , Wo ← block.MHA.matrices;
9: Ŵq , Ŵk ←WeightedSVD(Wq,Wk);

10: Ŵv , Ŵo ← Fast OND(Wv,Wo);
11: # Pruning and calibrating FFN layer with SR s
12: f̂FFN← using (5);
13: if block.FFN.index in Indexes then
14: Ŵ1, Ŵ2← Performing SVD on the solution of (7);
15: Modifying block.FFN.forward as (11);
16: end if
17: inputs← outputs;
18: end for
19: return The pruned model M̂

B. Algorithm.
Algorithm. As an example, we use LLaMA models to present the final algorithm in Algorithm 1.

C. Pruning Results of LLaMA-30B
Here, we provide the pruning results of a larger model, i.e., LLaMA-30B. The results for the pruned LLaMA-30B model
are presented in Figure 6. We report results for sparsity ratios of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Additionally, we evaluate
different combinations of datasets for calibration data, namely Bookcorpus + Alpaca and C4 + Alpaca. It can be observed
that without retraining, the LLaMA-30B model can tolerate a maximum sparsity ratio of 40%. Beyond this threshold, when
the model is pruned with a higher sparsity ratio, its performance deteriorates significantly. Furthermore, when the sparsity
ratio is below 40%, the choice of calibration dataset has a minimal impact on the pruning results.

D. Results of 50% Sparsity Ratio
We observe that at high sparsity ratios (e.g., 50%), the performance of pruned LLMs deteriorates significantly. For instance,
in the results reported by (Ma et al., 2023; Li et al., 2024; Ling et al., 2024), the performance of the pruned LLaMA-13B
model with a 50% sparsity ratio is notably lower than that of LLaMA-7B, even with retraining. This suggests that a 50%
sparsity ratio may exceed the tolerance limit of these models. However, we believe that when pursuing a high sparsity ratio,
the primary prerequisite is to maximally maintain the performance of LLMs. Therefore, we provide the results of LLMs
with 50% sparsity ratio in the Appendix.

Table 7 presents the zero-shot performance and perplexity (PPL) results on the WikiText2 dataset for various models with
a 50% sparsity ratio. The table compares the performance of different pruning methods, including Olica (our proposed
method), LLM-Pruner, and LoRAP.

- LLaMA-7B: At 50% sparsity, Olica achieves an average accuracy of 50.68%, which is higher than both LLM-Pruner
(48.35%) and LoRAP (46.86%). Olica also performs well on BoolQ (65.32%) and ARC-e (51.98%), with a competitive
PPL of 49.39. This demonstrates that Olica balances compression with high performance across several reasoning tasks.
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Table 7. Zero-shot performance and PPL on wikitext2 with 50% sparsity ratio.

Model Method FT PPL (↓) BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg. (↑)

LLaMA-7B

Dense % 12.19 77.71 79.05 76.00 68.98 74.58 46.33 44.20 66.69

LLM-Pruner ! 40.64 60.21 68.88 47.86 54.62 43.94 27.73 35.20 48.35

LoRAP † % 54.19 53.85 64.74 48.58 57.30 44.28 27.30 32.00 46.86

Olica (Ours) % 49.39 65.32 66.87 47.80 58.72 51.98 30.72 33.40 50.68

LLaMA-13B

Dense % 11.58 77.89 80.14 79.06 72.85 74.75 47.61 44.80 68.16

LLM-Pruner ! 74.62 62.35 72.74 58.43 55.88 51.89 33.02 38.20 53.22

LoRAP † % 34.93 57.68 70.24 59.93 62.19 54.46 31.83 36.00 53.18

Olica (Ours) % 35.35 70.03 71.16 58.63 65.35 61.41 34.47 33.80 56.41

LLaMA2-7B

Dense % 12.19 77.71 79.05 76.00 68.98 74.58 46.33 44.20 66.69

LoRAP † % 70.33 51.87 62.08 43.78 57.54 40.78 26.79 32.20 45.00

Olica (Ours) % 52.82 64.07 62.73 43.34 53.91 49.49 28.24 31.20 47.57

LLaMA2-13B

Dense % 10.98 80.55 80.52 79.37 72.21 79.38 48.98 45.20 69.46

LoRAP † % 37.55 67.13 69.04 55.60 58.96 53.83 31.14 34.00 52.81

Olica (Ours) % 34.21 65.96 70.67 54.63 60.30 60.31 34.04 33.60 54.21

Vicuna-7B

Dense % 16.11 78.41 78.56 74.68 70.09 72.01 43.77 43.40 65.85

LLM-Prunerr ! 43.96 40.76 67.08 46.64 53.28 43.98 27.56 34.00 44.76

LoRAP † % 82.18 48.62 63.71 47.26 55.96 42.34 28.33 31.00 45.31

Olica (Ours) % 56.35 56.02 66.27 51.11 56.99 52.31 31.91 32.20 49.54

Vicuna-13B

Dense % 13.50 85.29 79.11 77.51 71.59 78.66 50.77 45.40 69.76

LoRAP † % 45.58 70.61 69.10 58.15 60.62 56.27 34.04 36.40 55.02

Olica (Ours) % 39.22 72.02 70.29 57.59 61.80 62.16 36.95 35.20 56.57

- LLaMA-13B: For this larger model, Olica again outperforms LLM-Pruner and LoRAP, with an average score of 56.41%,
which is higher than both methods (LLM-Pruner: 53.22%, LoRAP: 53.18%). Olica also delivers superior performance on
datasets like BoolQ (70.03%) and WinoG (65.35%), with a relatively low PPL of 35.35.

- LLaMA2-7B: Olica shows strong performance with an average score of 47.57%, significantly surpassing LoRAP (45.00%)
and providing solid results across the tasks. It achieves a low PPL of 52.84.

- Vicuna-7B: Olica performs well here too, with an average score of 49.54%, surpassing LLM-Pruner (44.76%) and LoRAP
(45.31%). It also maintains a lowest PPL of 56.35.

- Vicuna-13B: At 50% sparsity, Olica outperforms LoRAP (55.02%) with an average score of 56.57%. It achieves a low PPL
of 39.22, showing the robustness of Olica across larger models as well.

In summary, Olica consistently outperforms both LLM-Pruner and LoRAP across all tested models, achieving better or
comparable performance while maintaining competitive perplexity. These results demonstrate the effectiveness of Olica as a
pruning method that preserves model performance while significantly reducing model size and computational complexity.
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